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Gülbahçe Köyü, Urla, İzmir 35430, Turkey

Abstract. The metric reversal symmetry was introduced in the context of cosmological
constant problem. Besides proposing a solution to the cosmological constant problem the
metric reversal symmetry has also provided a framework for solution of the zero-point
energy problem, an automatic Pauli-Villars-like regularization, and an interesting Kaluza-
Klein spectrum with interesting phenomenological implications. In this talk I give a brief
overall summary and discussion of these topics with their potential implications.

5.1 Introduction: Metric reversal symmetry and the
cosmological constant problem

In this talk I will consider a symmetry that may be called metric reversal symmetry,
in particular, the extra dimensional representations of this symmetry. This symme-
try, first, was introduce in [1] as a possible solution to cosmological constant (CC)
problem [2] in a classical setting in extra dimensions. Below I define the metric
reversal symmetry and mention its use for CC problem. In the following sections I
review my recent studies on the use of this symmetry at quantum level, namely,
zero-point energy problem, an interesting Kaluza-Klein spectrum, an automatic
Pauli-Villars-like regularization, and some of their possible implications.

Metric reversal is defined by

ds2 = gABdx
AdxB → −ds2 (5.1)

This transformation has two realizations: The first [1,3,4] is

xA → i xA , gAB → gAB (5.2)

The second [5,6,7] is
xA → xA , gAB → −gAB (5.3)
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46 R. Erdem

Metric reversal symmetry (MRS) may be imposed at the level of the equations
of motion (EM) (e.g. Einstein equations) by requiring the equations be covariant
under MRS or at the level of the action by requiring the action be invariant under
MRS. MRS forbids a CC in any dimension if it is imposed at the level of EM [3,4].
MRS can be only classically viable if it is introduced at the level of EM. On the
other hand MRS can be extended to the quantum domain if it is imposed to the
action. So I prefer to impose MRS at the level of action functional. The gravitational
action

SR =
1

16πG

∫√
(−1)SgRdDx (5.4)

is invariant under either of (5.2) or (5.3) only in

D = 2(2n+ 1) , n = 0, 1, 2, 3, .... . (5.5)

while the CC action
SC =

1

8πG

∫ √
gΛdDx. (5.6)

is forbidden in 2(2n+ 1) dimensions.
So if our space is taken to be 2(2n+1) dimensional (or if the gravitation and

the CC reside on a 2(2n+1) dimensional subspace of a larger space) then the cos-
mological constant (CC) is forbidden. In this framework the accelerated expansion
of the universe may be attributed to a small breaking of MRS or to an alternative
mechanism (such as quintessence, modified gravity etc.) if the symmetry is taken
to be exact. Another point to to be mentioned is that two realizations of MRS are
not equivalent in matter sector while they are wholly equivalent in the gravita-
tional sector. For example FABFAB is odd under (5.2) while it is even under (5.3).
So two realizations of MRS may be considered to be two different symmetries
after the introduction of matter. As we shall see in the next section this point may
be used to construct a model that solves zero-point energy problem as well. The
details of these points and some other less major points may be found in [1,6,8].

5.2 Metric Reversal symmetry and zero-point energy problem

Quantization results in by-product energies that survive even in the absence of any
particle. These energies (i.e. zero-point energies (ZPE)) are some kind of vacuum
energy. They emerge as zero modes of harmonic oscillators or fields in quantum
theory. The total ZPE associated with a particle is constant, and is found as the sum
over the contributions due to different momenta, and is naively infinite. However
ZPE is eliminated by subtracting ZPE from total energy. In the quantum field
theory (QFT) in flat space this elimination (normal ordering) has no physical effect
because changing the energy by a constant does not change the physical results.
However in QFT in curved space this naive elimination of ZPE is not well-defined
because gravity couples to all energies. So subtraction process affects the physical
out-come. Moreover after normal ordering a non-zero vacuum energy remains
and it is proportional to particle masses. So even the renormalized zero-point
energy of electron gives a vacuum energy density that is 1036 times the observed
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energy density of the universe. This may be called ZPE problem. Renormalized
ZPE may be identified by CC or as a different kind of vacuum energy depending
on how the infinities are regulzarized in renormalization procedure. Moreover
CC may get classical field theoretic contributions such as vacuum expectation of
scalar feilds. Therefore it is better to consider ZPE problem separately.

In an attempt for a solution for ZPE one must take the following points into
account: CC problem as well should be addressed. Therefore the dimension of
the subspace we live in should be D = 2(2n+1). Another point is that It is easier to
impose the symmetry so that ZPE vanishes instead of trying to make it small. This
requires the symmetry be exact while the scale factor, a(t) in Robertson-Walker
metric breaks the symmetry generated by (5.2). Therefore both realizations of MRS
should be used so that the realization of MRS generated by (5.3) is kept intact to
impose ZPE vanish while the realization of MRS generated by (5.2)is broken. The
following is the summary of a model that satisfies these criteria [9].

Consider a space consisting of the sum of 2(2n+1) and 2(2m+1) (e.g 6 and 2)
dimensional subspaces with the metric

ds2 = gABdx
A dxB + gA′B′dx

A′ dxB
′

= Ωz(z)[gµν(x)dx
µdxν + g̃ab(y)dy

adyb] + Ωy(y)g̃A′B′(z)dz
A′dzB

′

(5.7)

Ωy(y) = cosk|y|) , Ωz(z) = cosk′|z| (5.8)

A,B = 0, 1, 2, 3, 5, ....N , N = 2(2n+ 1)

A′, B′ = 1′, 2′, , ....N′ , N′ = 2(2m+ 1)

µν = 0, 1, 2, 3 , a, b = 1, 2, ..., N− 4 , n,m = 0, 1, 2, 3...... .

The usual four dimensional space is embedded in the first space gABdxA dxB.
I assume that the gravitational sector is invariant under both realizations of

MRS, that is, under

ds2 → −ds2 as xA → i xA , xA
′ → i xA

′

gAB → gAB , gA′B′ → gA′B′ (5.9)⇒ Ωz → Ωz , Ωy → Ωy

gµν → gµν , g̃ab → g̃ab , g̃A′B′ → g̃A′B′ (5.10)

and

ds2 → −ds2 as ky → π − ky , k′z → π − k′z

xA → xA , xA
′ → xA

′
(5.11)⇒ Ωz → −Ωz , Ωy → −Ωy

gµν → gµν , g̃ab → g̃ab , g̃A′B′ → g̃A′B′ . (5.12)

Note that the requirements of the homogeneity and isotropy of the 4-dimensional
space together with the equations (5.9-5.12) set gµν to the Minkowski metric
ηµν = diag(1,−1,−1,−1). Later (5.10) will be broken by a small amount in the
matter sector to accommmodate the cosmic expansion.
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The gravitational action is taken to be

SR =
1

16π G̃

∫
dV R̃2 (5.13)

dV = dV1 dV2 , dV1 =
√
g(−1)S dNx , dV2 =

√
g′(−1)S′ dN

′
x′

(5.14)

R̃ = R(x, x′) + R′(x, x′) (5.15)

where the meaning of the primed and the unprimed quantities is evident from
(5.9). After integration over extra dimensions SR becomes

SR =
MN+N′−4

16π G̃

∫√
(−1)Sg

√
(−1)S′g′ 2 R(x)R′(x′)dNxdN

′
x′

=
1

16πG

∫√
(−1)SgR(x) dNx (5.16)

where

1

16πG
= M2

pl(
M

Mpl
)2MN+N′−6 1

16π G̃

∫√
(−1)S′g′ 2 R′(x′)dDx′ (5.17)

which is the usual Einstein-Hilbert action. The cosmological constant term is still
forbidden by either realization of MRS.

Now we consider the subject that is the heart of this section, namely, the zero-
point energies induced by the matter sector. Here we consider only the kinetic
term of a scalar field here since this is enough to give the essential points of the
formulation. The other details and consideration of the other fields can be found
in [9]. Consider the kinetic part of the Lagrangian, LMk for a scalar field (in the
space given in (5.9)

Lφk = Lφk1 + Lφk2 (5.18)

Lφk1 =
1

2
gAB∂Aφ∂Bφ , Lφk2 =

1

2
gA
′B′∂A′φ∂B′φ (5.19)

For simplicity I take gµν = ηµν. Then the corresponding action is

SMk =

∫
dV LMk

=
1

2

∫ √
(−1)Sg

√
(−1)S′g′ dDxdDx′[

1

2
gAB∂Aφ∂Bφ +

1

2
gA
′B′∂A′φ∂B′φ]

=
1

2

∫
d4xdy1dy2dz1dz2Ω

3
zΩy {Ω

−1
z [ηµν∂µφ∂νφ − (

∂φ

∂y1
)2 − (

∂φ

∂y2
)2]

−Ωy[(
∂φ

∂z1
)2 + (

∂φ

∂z2
)2] }

=
1

2
LL′
∫
d4x

∫L
0

∫L′
0

dydz cos3 k′z cosky{cos−1 k′z[ηµν∂µφ∂νφ − (
∂φ

∂y
)2]

− cos−1 ky(
∂φ

∂z
)2} (5.20)
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where y = y2, z = z2 is adopted.
φmay be Fourier decomposed as

φ = φAA(x, y, z) + φAS(x, y, z) + φSA(x, y, z) + φSS(x, y, z)

φAA(x, y, z) =
∑
n,m

φAAn,m(x) sin (nky) sin (mk′z) (5.21)

φAS(x, y, z) =
∑
n,m

φASn,m(x) sin (nky) cos (mk′z) (5.22)

φSA(x, y, z) =
∑
n,m

φSAn,m(x) cos (nky) sin (mk′z) (5.23)

φSS(x, y, z) =
∑
n,m

φSSn,m(x) cos (nky) cos (mk′z) (5.24)

k =
π

L
, k′ =

π

L′
, 0 ≤ y ≤ L , 0 ≤ z ≤ L′ , n,m = 0, 1, 2, .....

where we have used k = π
L

, k′ = π
L′

since 0 ≤ y ≤ L, 0 ≤ z ≤ L′. After
replacing this expansion in (5.20) and requiring the action be invariant under extra
dimensional parity one obtains

SMk =
1

2
LL′
∫
d4x {ηµν

∑
n,m,r,s

∂µ(φn,m(x) )∂ν(φr,s(x) )

×
∫L
0

dy cosky sin (nk|y|) sin (r k|y|)∫L′
0

dz cos2 k′z sin (mk′|z|)) sin (s k′|z|))

−k2
∑

n,m,r,s

nrφn,m(x)φr,s(x)

∫L
0

dy cosky cos (nk|y|) cos (r k|y|)

×
∫L′
0

dz cos2 k′z sin (mk′|z|)) sin (s k′|z|))}

−k′2
∑

n,m,r,s

msφn,m(x)φr,s(x)

∫L
0

dy sin (nk|y|) sin (r k|y|)

×
∫L′
0

dz cos3 k′z cos (mk′|z|)) cos (s k′|z|)) =

(5.25)



i
i

“proc10” — 2010/12/2 — 1:08 — page 50 — #60 i
i

i
i

i
i

50 R. Erdem

=
1

32
(LL′)2

∫
d4x {ηµν

∑
r,s

∂µ
[
φr−1,s−2(x) + φr−1,s+2(x) − φr−1,−s−2(x) − φr−1,2−s(x)

+ 2φr−1,s(x) − 2φr−1,−s(x) + φr+1,s−2(x)

+ (φr+1,s+2(x) − φr+1,−s−2(x) − φr+1,2−s(x)

+ 2φr+1,s(x) − 2φr+1,−s(x) − φ−r−1,s−2(x) )

−φ−r−1,s+2(x) + φ−r−1,−s−2(x) + φ−r−1,2−s(x) − 2φ−r−1,s(x)

+ 2φ−r−1,−s(x) − φ1−r,s−2(x) − φ1−r,s+2(x) + φ1−r,−s−2(x)

+φ1−r,2−s(x) − 2φ1−r,s(x) + 2φ1−r,−s(x)
]
∂ν(φr,s(x) )

−k2
∑
r,s

r
[
(r− 1)(φr−1,s−2(x) − φ1−r,s−2(x) )

+ (r− 1)(φr−1,s+2(x) − φ1−r,s+2(x) )

− (r− 1)(φr−1,−s−2(x) − φ1−r,−s−2(x) )

− (r− 1)(φr−1,2−s(x) − φ1−r,2−s(x) ) + 2(r− 1)(φr−1,s(x) − φ1−r,s(x) )

− 2(r− 1)(φr−1,−s(x) − φ1−r,−s(x) )

+ (r+ 1)(φr+1,s−2(x) − φ−r−1,s−2(x) )

+ (r+ 1)(φr+1,s+2(x) − φ−r−1,s+2(x) )

− (r+ 1)(φr+1,−s−2(x) − φ−r−1,−s−2(x) )

− (r+ 1)(φr+1,2−s(x) − φ−r−1,2−s(x) ) + 2(r+ 1)(φr+1,s(x) − φ−r−1,s(x) )

− 2(r+ 1)(φr+1,−s(x) − φ−r−1,−s(x) )
]
φr,s(x)

−
1

2
k′2
∑
r,s

s
[
(s− 3)(φr,s−3(x) − φr,3−s(x) )

+ (s+ 3)(φr,s+3(x) − φr,−s−3(x) ) + 3(s− 1)(φr,s−1(x) − φr,1−s(x) )

+ 3(s+ 1)(φr,s+1(x) − φr,−s−1(x) ) + (3− s)(φ−r,s−3(x) − φ−r,3−s(x) )

+ (s+ 3)(φ−r,−s−3(x) − φ−r,s+3(x) )

+ 3(1− s)(φ−r,s−1(x) − φ−r,1−s(x) )

− 3(s+ 1)(φ−r,s+1(x) − φ−r,−s−(x) )
]
φr,s(x)}. (5.26)

We notice that the odd modes are coupled to even modes and vica versa. In
fact this is a result of the invariance under kya → π− kya, k′ za → π− k′ za that
enforces the coupling of even and odd modes to compensate the minus coming
from the volume element in the action.

This makes the energy-momentum tensor Tµν be of the same form in the extra
dimensional Fourier modes. The replacement of the expansion of the modes in
terms of creation and annihilation operators

φn,m(x) =
∑
k

[an,m(k) ζ(t)eik.x + a†n,m(k) ζ∗(t)e−ik.x ] (5.27)

in the energy momentum tensor

Tνµ =
∑

m,n,r,s

∂µφn,m(x)∂νφr,s(x) − gνµL (5.28)
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results in the terms of the form

< 0|Tνµ |0 > ∝ < 0|an,ma†r,s|0 >= 0 , < 0|a†r,sar,s|0 >= 0 (5.29)

n 6= r and/or m 6= s

(because ar,s|0 >= 0, and [an,m, a
†
r,s ] = 0 for n 6= r and/or m 6= s) . In other

words there is no contribution to vacuum energy density due to zero-point energies
in this scheme. This solves the zero point-energy problem.

5.3 Metric reversal symmetry and an interesting Kaluza-Klein
spectrum

In this section we shall consider a model where all except a finite number of
Kaluza-Klein modes (i.e. the extra dimenional Fourier modes) are screened by the
conformal factor in the metric. Note that both the form of the conformal factor
and the form of the mixing of the Kaluza-Klein modes are determined by MRS.
The details of the analysis given here may be found in [10]. In this scheme it is not
enough to produce a mode to in order to detect it have high enough energies to
produce the mode but it is also necessary to have them high enough momenta
relative to the detector (to expose to the sizes smaller than the extra dimension(s)).
Therefore it has interesting phenomenological implications.

Adopt the following 5-dimensional space

ds2 = cosk z [ηµν(x)dxµdxν − dz2 ] µ, ν = 0, 1, 2, 3 (5.30)

where the extra dimension is taken to be compact and have the size L, and k = 2π
L

.
Consider fermions with the action

Sf =

∫
(coskz)

5
2 Lf d4xdz

=

∫
(coskz)2 iχ̄γa(∂a +

1

16
tankz [γa , γ5] )χ d4xdz + H.C. (5.31)

{γa, γb} = 2ηab , (ηab) = diag(1,−1,−1,−1,−1)

where H.C. stands for Hermitian conjugate, and the term with the coefficient 1
16

is
the spin connection term.

We impose the following symmetries on the action

k z → π + k z. (5.32)

xa → −xa a = 0, 1, 2, 3, 4 (5.33)

χn(x) → ελn CPT χn(−x) , λn =
i

2
(−1)

n
2 (5.34)

where the superscript a refers to the tangent space, ε is some constant, and CPT
denotes the usual 4-dimensional CPT operator (acting on the spinor part of the
field). We also impose anti-periodic boundary conditions in the extra dimension
i.e. χ(x, z) = −χ(x, z+ 2πL).
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The extra dimensional Fourier expansion of χ in the light of invariance under

χ = χA + χS (5.35)

χA (x, z) =

∞∑
|n|=1

χ̃A|n| (x) sin
(
1

2
|n|kz

)
(5.36)

χS (x, z) = χ0 (x) +

∞∑
|n|=1

χ̃S|n|(x) cos
(
1

2
|n|kz

)
(5.37)

χ̃
A(S)
|n|

(x) = χA(S)
n (x) − (+)χ

A(S)
−n (x)

where n are odd integers (due to anti-boundary conditions in the z-direction), the
absolute value signs in |n| is used to emphasize the positiveness of n (due to the
symmetry xa → −xa).

After replacing (5.35) in (5.31) we obtain

∞∑
r,s=0

∫
d4x iχ̄(2|r|+1)γ

µ̄∂µ̄χ(2|s|+1) × 2
∫
dz (coskz)2[

cos
2|r|+ 1

2
kz cos

2|s|+ 1

2
kz − sin

2|r|+ 1

2
kz sin

2|s|+ 1

2
kz

]
+ H.C.

=

∞∑
r,s=0

∫
d4x iχ̄(2|r|+1)γ

µ̄∂µ̄χ(2|s|+1)∫L
0

dz (cos 2kz+ 1) cos (|r|+ |s|+ 1)kz + H.C.

=
1

2

∞∑
r,s=0

∫
d4x iχ̄(2|r|+1)γ

µ̄∂µ̄χ(2|s|+1)

∫L
0

dz [ cos (|r|+ |s|− 1)kz ] + H.C.

(5.38)

where 2r + 1 = 4l + 1, 2s + 1 = 4p + 3 (l,p=0,1,2,....) or vica versa. The non-zero
contribution to (5.38) are due to the terms where the arguments of the cosine
functions are zero (or multiples of 2π) i.e. the modes that satisfy

|r|+ |s|− 1 = 0 ⇒ r = 0 , s = 1 or s = 1 , r = 0 (5.39)

Therefore the result of the integration in (5.38) is

L

2

∫
d4x

[
iχ̄1γ

µ̄∂µ̄χ3 + iχ̄3γ
µ̄∂µ̄χ1

]
+ H.C. (5.40)

=
1

2
L

∫
d4x

[
iψ̄γµ̄∂µ̄ψ − i ¯̃ψγµ̄∂µ̄ψ̃

]
+ H.C. (5.41)

ψ =
1√
2
(χ1 + χ3 ) , ψ̃ =

1√
2
(χ1 − χ3 ) (5.42)

This means that at scales larger than the size of the extra dimension (which
effectively corresponds to integration over the extra dimension) only one fermion
and one ghost fermion is observed. The other modes are only observed at smaller
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scales while they are screened at large extra dimensional length scales due to the
screening because of the (the cosine) form of the conformal factor. These modes can
be observed only in interactions with energies higher than the inverse size of the
extra dimension. At distances greater than the size of the extra dimension(s) even
when they are already excited they seem hidden (unless they have high relative
momenta when they interact in the detector). In other words these modes behave
like a strange form of dark matter. The experimental predictions of this model
are quite different from the usual Kaluza-Klein prescription and need further
study. In high energy colliders the signature of these modes would be a sudden
increase in the strength of the interactions and a high correlation between the
interacting particles. In my opinion the phenomenological implications of this
scheme deserves a separate and detailed study by its own.

5.4 Metric reversal symmetry and an automatic
Pauli-Villars-like regularization

In the usual Kaluza-Klein scheme, Kaluza-Klein tower is an additional source of
infinites that should be regulated. This property of compact extra dimensions is
one of the major problems of quantum field theory in extra dimensions. On the
other we will see that in the spaces with metric reversal symmetry (MRS) there is
the possibility of an automatic, Pauli-Villars-like on contary to the generic extra
dimensional spaces. Below I summarize a model of this type. The details of this
model may be found in [11].

Consider the following 7-dimensional space (µ, ν = 0, 1, 2, 3)

ds2 = gµν(x)dx
µdxν − cos2 k2y2 [ dy21 + cos2 k3y3dy22 + dy23 ] (5.43)

where the extra dimensions are compact and have the sizes L1, L2, L3, and k1 =
2π
L1

, k2 = 2π
L2

, k3 = 2π
L3

. Assume the symmetry

xa → − xa , a = 0, 1, 2, 3, 5 (5.44)

xb → − xb , b = 0, 1, 2, 3, 6 (5.45)

where x5 = y1, x6 = y2, x7 = y3; and anti-periodic boundary conditions are
adopted for the 5th and 6th directions while periodic boundary condition is
adopted for the 7th direction for the field χ i.e. χ(x, z) = −χ(x, z + L) for z = y1,
L = L1 or z = y2, L = L2 while χ(x, y3) = χ(x, y3+L3). Then the Fourier expansion
of a field χ is

χ(x, z) =

∞∑
n=1

{ f|n|[cos (
|n|kz

2
) + sin (

|n|kz)

2
)]

+g|n|[cos (
|n|kz)

2
) − sin (

|n|kz)

2
)]}χ|n|(x) (5.46)

where z = y1, y2, k = k1, k2, a|n|, b|n|, f|n|, g|n| are some constants. Even and odd
n correspond to periodic and anti-periodic boundary conditions [13], respectively.
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The modes χn are taken to transform under (5.44) and (5.45) as

ϕn,m,r(x) → ξλnCPT ϕn,m,r(−x) as xa → −xa (5.47)

ϕn,m,r(x) → ξλmCPT ϕn,m,r(−x) as xb → −xb (5.48)

ϕn,m,r(x) → ξλn+λmCPT ϕn,m,r(−x)
as xa → −xa , xb → −xb (5.49)

λn =
i

2
(−1)

n
2 λm =

i

2
(−1)

m
2 a = 0, 1, 2, 3, 5 ; b = 0, 1, 2, 3, 6

( where n, m, r are the modes corresponding to y1, y2, y3 directions, respectively;
ξ is some constant other than 1 or -1, and CPT denotes the part of (4-dimensional)
CPT transformation acting on the spinor part of the field. I also impose the sym-
metry

k1y1 → k1y1 + π (5.50)

k2y2 → k2y2 + π (5.51)

In the light of the above observations I consider the following action

Sfk1 =

∫
d4x d3y cos3 k2y2 cosk3y3

1

2
[Lfk11 + Lfk12] + H.C. (5.52)

Lfk11 =
i

4
[(χ̄(1)γ

µ ∂µχ(3) + ¯χ(1)Pγµ ∂µχP(3)) + y1 → −y1] (5.53)

Lfk12 =
i

4
[(χ̄γµ ∂µχ

P − χ̄Pγµ ∂µχ) + (y1 → −y1)]. (5.54)

After inserting the explicit form of χ and imposing the symmetries (5.44),
(5.45), (5.49), (5.51) one finds

Lfk1 =
1

2
[Lfk11 + Lfk12]

=

∞∑
n1,m1=1

A
(1,3)
n1,m1 iχ̄n1(x, y)γ

µ∂µχm1(x, y) cos
n1 +m1

2
k1y1 + H.C.

(5.55)

where y = y2, y3. The spectrum at the scales larger than the size of the extra
dimensions may be found by integration of [Lfk11 + Lfk12] over the extra dimen-
sions.

Sfk1 =

∫
d4x d2y cos3 k2y2 cosk3y3

∞∑
n1,m1=1

A
(1,3)
n1,m1 iχ̄n1(x, y)γ

µ∂µχm1(x, y)

×
∫
dy1 cos

n1 +m1
2

k1y1 + H.C. = 0 (5.56)

A
(1,3)
n1,m1 = (f∗n1gm1 + g

∗
n1fm1 + f

∗
n1fm1 − g

∗
n1gm1)

The upper index ∗ denotes complex conjugate, H.C. stands for Hermitian con-
jugate, and fn, gn’s are those given in (5.46). The subscripts (1), (3), and the
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superscripts (1, 3) above refer to the modes with n = 4p + 1 and n = 4p + 3,
respectively, where p = 0, 1, 2, ...... The y1 → −y1 terms in the above equations
stands for the term obtained from the previous one by replacing y1’s in that term
by −y1 and insures the invariance of the Lagrangian Lfk1 under (5.44). The values
of n1, m1 in (5.54,5.56) are fixed by the requirement of invariance under (5.50),
(5.47), and are given by

n1 = 4l1 + 1 , m1 = 4p1 + 3 or vica versa l1, p1 = 0, 1, 2, ....... (5.57)

It is evident that (5.56) gives zero because
∫L1
0

cos n1+m1
2

k1y1 dy1 = 0 since
n1 +m1 6= 0. Hence there are no observable fermions at scales larger than the
sizes of the extra dimensions. Therefore an additional action must be introduced
to accaount for the usual fermions while Sfk1 may be used for a Pauli-Villars-
like regularization as we shall see. Assume that on the hyper-surface, y3 = y1
the symmetry (5.44) (and (5.47) ) is broken by a small amount while there is an
unbroken symmetry under the separate (and simultaneous) applications of (5.36),
(5.37), and under the simultaneous application of (5.44) and (5.45) (and (5.47) and
(5.48 ). Consider the following action that obeys these conditions

Sfk2 = ε

∫
δ(k3y3 − k1y1) cos3 k2y2 cosk3y3

1

2
[Lfk21 + Lfk22] + H.C. (5.58)

Lfk21 =
i

8
[(χ̄(1,3)γ

µ ∂µχ(1,3) + χ̄
P1,P2
(1,3) γ

µ ∂µχ
P1,P2
(1,3) − χ̄P1(1,3)γ

µ ∂µχ
P1
(1,3) −

χ̄P2(1,3)γ
µ ∂µχ

P2
(1,3)) + (y1,2 → −y1,2)] (5.59)

Lfk22 =
i

8
[(χ̄(1,3)γ

µ ∂µχ
P1
(1,3) + χ̄

P1
(1,3)γ

µ ∂µχ(1,3) − χ̄
P2
(1,3)γ

µ ∂µχ
P1,P2
(1,3) − χ̄P1,P2(1,3) γ

µ ∂µχ
P2
(1,3)

+χ̄(1,3)γ
µ ∂µχ

P2
(1,3) + χ̄

P2
(1,3)γ

µ ∂µχ(1,3) − χ̄
P1
(1,3)γ

µ ∂µχ
P1,P2
(1,3) − χ̄P1,P2(1,3) γ

µ ∂µχ
P1
(1,3)

+χ̄P1(1,3)γ
µ ∂µχ

P2
(1,3) + χ̄

P2
(1,3)γ

µ ∂µχ
P1
(1,3) + χ̄(1,3)γ

µ ∂µχ
P1,P2
(1,3) + χ̄P1,P2(1,3) γ

µ ∂µχ(1,3))

+(y1 → −y1)] (5.60)

where ε << 1 is some constant that accounts for the breaking of the symmetry
(5.44) by a small amount. The superscripts P1, P2 refer to the χ’s transformed
under (5.36), (5.37), respectively. After replacing the Fourier expansion of χ and
integrating over extra dimensions one obtains

Sfk2 =
εL1L2L3

4π
(f∗1g1 + g

∗
1f1 + f

∗
1f1 − g

∗
1g1)

(f∗3g3 + g
∗
3f3 + f

∗
3f3 − g

∗
3g3)

∫
d4x iχ̄13γ

µ∂µχ13 (5.61)

In other words only the mode χ13 is observed at large scales. If we take n3 = 0

to be the lowest lying mode in y3 direction then the usual fermions (i.e. the zero
mode) are identified by χ130.

Although only Sfk2 is relavant on the brane y1 = y3 and at large scales both
of Sfk1 and Sfk2 are relavant on the brane. One must consider small patches in
extra dimensional space to regulariza the affect of the delta function. Therefore we
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integrate Lfk1 and [Lfk21 + Lfk22] on the patch

−∆ ≤ u ≤ ∆ , v ≤ v′ ≤ v+∆′ , u = k1y1−k3y3 , v = k1y1+k3y3 (5.62)

The result of the integration may be expressed as∫
d4xLeff (5.63)

where

Lefffk2 =
i

2
lim
x′→x∂µ ( χ̄130(x

′), χ̄310(x
′)χ̄330(x

′) ) M̃γµ

χ130(x)χ310(x)

χ330(x)

 (5.64)

here

M̃ =

 Ã B̃ C̃B̃ D̃ 0
C̃ 0 0

 (5.65)

where

Ã ' ε cos3 k2y2
∞∑

p1,s1=0

Ã(1,1)
p1s1

T̃ (1,3)p1,s1
(y1)

∞∑
p2,s2=0

Ã(3,3)
p2s2

cos [2(p2 + s2) + 1]k2y2

(5.66)

B̃ ' cos3 k2y2
∞∑

p,s=0

A(1)
ps (y2) Tp,s(y1) (5.67)

C̃ ' cos3 k2y2
∞∑

p,s=0

A(3)
ps (y2) Tp,s(y1) (5.68)

D̃ ' ε cos3 k2y2
∞∑

p1,s1=0

Ã(3,3)
p1s1

T̃ (3,1)p1,s1
(y1)

∞∑
p2,s2=0

Ã(1,1)
p2s2

cos [2(p2 + s2) + 3]k2y2

(5.69)

here

T̃ (1,3)p1,s1
(y1) =

∆′

2
{
cos (p1 + s1 + 1)(k1y1 + k3y3)

p1 + s1 + 1

+
cos (p1 + s1)(k1y1 + k3y3)

p1 + s1
} (5.70)

T̃ (3,1)p1,s1
(y1) =

∆′

2
{
cos (p1 + s1 + 2)(k1y1 + k3y3)

p1 + s1 + 2

+
cos (p1 + s1 + 1)(k1y1 + k3y3)

p1 + s1 + 1
} (5.71)

Tp,s(y1) =
∆′

(p+ s)(p+ s+ 1)
[ sin (p+ s)∆ cos (p+ s+ 1)(k1y1 + k3y3)

+ sin (p+ s+ 1)∆ cos (p+ s)(k1y1 + k3y3) (5.72)
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Note that ∆′ << 2π is employed in (5.69) and (5.70-5.72) since ∆ and ∆′ should
be taken as small as possible because my aim is to study point-wise as much as
possible (while without causing any ambiguity due to the delta function on the
brane). Therefore provided that ε� 1

M̃ '

 0 B̃ C̃B̃ D̃ 0
C̃ 0 0

 (5.73)

Hence the conclusions about the spectrum of the fields at the points k1y1 6= k3y3
essentialy remain the same at the points k1y1 = k3y3 (or at the points k1y1 '
k3y3). The diagonalization of M in (5.73) results in

Leff ' iB(y)[ψ̄1(x)γ
µ ∂µψ1(x) − ψ̄2(x)γ

µ ∂µψ2(x) ] (5.74)

ψ1 =
1

2
√
2
[χ130 + (cos θχ310 − sin θχ330)] (5.75)

ψ2 =
1

2
√
2
[χ130 − (cos θχ310 − sin θχ330)] (5.76)

tan θ =
B
C
, B(y) =

√
(B2 + C2) , y = y1, y2 (5.77)

Hence the spectrum at scales smaller than the size of the extra dimension has
a fermion and a ghost fermion coupled to each standard model fermion that
appears at scales greater than the size of the extra dimensions. There is another
state ψ3 = sin θχ310 + cos θχ330 but this does not contribute to (5.74). So it is an
auxiliary field. Although sign of the kinetic term of ψ2 in (5.74) is opposite of a
usual fermion (and so it is a ghost-like field) it does not suffer from the problems
of the usual ghosts. ψ1 or ψ2 in (5.74) can not be introduced or removed from
(5.74) because (5.74) follows from the couplings of χ130, χ310, χ330. So ψ1, ψ2
form a single system. For example in this case ψ1, ψ2 may be considered as the
components of a single field with a 8-component spinor and the gamma matrices
given by γµ � τ3 where � denotes tensor product and τ3 is the third Pauli matrix.
This solves the problem of negative norm for ψ2 because there is single norm i.e.
that of the system composed of ψ1, ψ2. Moreover since ψ1 and ψ2 have the same
internal space properties and they form a single system they may be assigned
the same 4-momentum with positive energy, and this solves the negative energy
problem of ψ2. However the extension of this argument to the fields other than
the fermions is not straightforward and requires additional study.

Eq.(5.74) implies an automatic regularization. The fermion ghost fermion pair
at smaller scales naturally introduces a cut-off for the loop calculations. This may
be seen better as follows: At scales larger than the size of the extra dimensions the
relevant field is χ130(x) and its propagator is

D(p) =
i

6 p+m
(5.78)

(wherem is the mass of the field at scales larger than the sizes of extra dimensions
(e.g. induced by Higgs mechanism)) while at smaller scales the relevant fields are
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ψ1 and ψ2 with the effective propagator

Deff(p) = D1(p) + D2(p) ∼
i

B′(6 p+m1)
−

i

B′( 6 p+m2)

= i
m2 −m1

B′( 6 p+m1)( 6 p+m2)
(5.79)

B′ = NB(y) cos3 k2y2 cosk3y3

wherem1,m2, in general, may depend on y1, y2, and I have assumed for sake of
generality that ψ1, ψ2 may have two different effective masses at scales smaller
than the size of extra dimensions that may be induced by spin connection terms,
Higgs mechanism, or some other mechanism. Form1 = m2 this equivalent to finite
renormalization while form1 6= m2 it is equivalent to Pauli-Villars regularization
[14] at propagator level.

5.5 Conclusion

We have seen that metric reversal symmetry gives interesting results for a wide
range of issues and problems in physics, namely, cosmological constant problem,
zero-point energy problem, regularization of extra dimensional quantum field
models, and Pauli-Villars regularization. We have also found a an interesting
Kaluza- Klein spectrum that may give interesting signatures in accelerator experi-
ments and quite different, non-conventional dark matter-like spectrum. Therefore
the next step in this direction may be more realistic models of this form and a
detailed study of their phenomenological implications.
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