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ABSTRACT 

 
IDENTIFICATION OF MITOCHONDRIAL 

ELECTRON TRANSPORT CHAIN MUTATIONS THAT EFFECT 
AGEING 

 
Aging can be defined as the loss of cell functionality by accumulation of 

deleterious effects. Mitochondrial electron transport chain (ETC) is the main site for 

reactive oxygen species (ROS) production. According to free radical theory of aging, 

free radicals produced by normal aerobic respiration accumulate by time and can cause 

aging. Although previous studies have identified that inner mitochondrial membrane 

complexes I and III are the major sites of ROS production, role of ETC genes in ROS 

production is a matter of debate. The purpose of the present study was to determine the 

ETC mutations that affect aging using S.cerevisiae as a model organism. Deletion 

mutants of S.cerevisiae lacking 73 genes of ETC were analyzed aging and we found out 

that nine mutants caused reduction in replicative lifespan. In addition to aging profiles, 

ROS production levels, respiratory competence and oxidative stress tolerance level of 

these deletion strains were also investigated.  In order to verify lifespan modulation by 

these genes, they were all overexpressed in wild-type cells and aging profile of these 

cells was analyzed. Most of the cells lived longer than wild type control cells containing 

sham vector. Our results suggest that some of the ETC genes play important roles in 

mitochondrial functions and aging. We hope that our results will contribute to the field 

of aging studies. 
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ÖZET 

 
YAŞLANMAYI ETKİLEYEN MİTOKONDRİ ELEKTRON TAŞIMA 

ZİNCİRİ MUTASYONLARININ TESPİTİ 
 

Yaşlılık zararlı etkilerin birikmesine bağlı olarak hücrenin fonksiyonunu 

kaybetmesi olarak tanımlanabilir. Mitokondriyel elektron taşıma zinciri (ETC) reaktif 

oksijen türlerinin (ROS) asıl oluşum yeridir. Yaşlılığın serbest radikal teorisine göre 

normal aerobik solunumla oluşan serbest radikaller zamanla birikerek yaşlılık ve 

dejeneratif hastalıklara sebep olabilirler. Önceki çalışmalarda, iç mitokondriyel zar 

kompleksleri I ve III, ROS oluşum yerleri olarak tespit edilmesine rağmen yaşlılığın 

moleküler mekanizması hala tartışma konusudur. Çalışmanın amacı, model organizma 

olarak S.cerevisiae hücrelerini kullanarak ve bu hücrelerin ROS oluşturma 

potansiyelleri esas alınarak yaşlanmayı etkileyen mitokondriyel ETC mutasyonlarını 

tespit etmektir. 73 ETC geninden yoksun delesyon mutantları analiz edildi ve dokuz 

genin yaşlanma profillerine göre replikatif ömürlerinde azalma olduğu bulundu. Ayrıca, 

yaşlanma profillerinin yanı sıra, bu delesyon suşların ROS üretim seviyeleri, 

respirasyon kapasiteleri ve dış kaynaklı oksidatif stres toleransları incelendi. Yaşam 

süresinin bu genler tarafından düzenlendiğini doğrulamak için, genler yabani türde aşırı 

ifadelendirildi ve yaşlanma profilleri analiz edildi. Birçok hücre yalnızca vektörü 

bulunduran yabani tür kontrol hücrelerine göre daha uzun yaşadı. Çalışmamız bazı ETC 

genlerinin mitokondriyel fonksiyonlarda ve yaşlılıkta önemli bir rol aldığını öne 

sürmektedir. Bu sebeple çalışmamızın yaşlılık çalışma alanlarında katkı sağlamasını 

umuyoruz. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1. Aging 

 

 

Aging is a natural process and defined as accumulation of deleterious alterations 

inside the cell. These alterations include telomere shortening, over-expression of 

oncogenes, and oxidative stress. In human, these alterations activate DNA damage 

response pathways which stimulate various signaling pathways resulting in senescence. 

Accumulation of senescent cells may cause aging in two ways. Firstly, accumulated 

senescent cells may reduce self-renewing capability of cells and cause aging as a result 

of decreased tissue function. Secondly, increasing levels of degradative enzymes, 

inflammatory cytokines and epithelial growth factors may cause tissue structure 

disruption and function, resulting in aging (Chen, et al. 2007). In other words excess 

amounts of reactive oxygen species (ROS), dysfunction of antioxidant defense systems, 

declining in DNA repair system induce DNA damage and aging process. 

As a single-celled eukaryote, S. cerevisiae is the best model organism although 

there is no differentiation and specialization. Their short life cycle, small genome (about 

6000 genes and completely sequenced), nuclear genome without introns and orthology 

with human genome make them attractive for aging studies (Gershon and Gershon 

2000).  

Two modes of aging are defined in S. cerevisiae which are replicative lifespan 

and chronological lifespan. Chronological lifespan is determined as a chronological 

time that a cell can remain stationary phase post-mitotically (Fabrizio and Longo 2003). 

The number of buds produced from mother cell (mitotically) gives the replicative 

lifespan of the yeast (Jazwinski 2004). Asymmetrical division of yeast cells is the 

adaptation to the wild in order to rapid growth of colonies. Human orthologs RAS1 and 
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RAS2 modulate yeast replicative aging. RAS1 deletion caused lifespan extension while, 

RAS2 caused short lifespan (Sun et al. 1994). Mutations in SIR complex and reduction 

in autophagy-inducer Tor signaling resulted in replicative lifespan extension (Kennedy, 

Smith, and Kaeberlein 2005; Kaeberlein et al. 2005). Calorie restriction is another 

determinant of yeast replicative aging as it increases lifespan. Calori restriction 

inactivates Tor signaling, protein kinase A and Sch9 (nutrient responsive kinase) 

followed by increased respiration rate due to Msn2/4 (stress response proteins) 

activation. Msn2/4 also inhibits nicotinamide deaminase Pnc1. Both events activates 

Sir2 and result in lifespan extension (Steinkraus, et al. 2008).  In S. cerevisiae telomere 

shortening is not observed over the life-time unlike human. Cell surface area expansion, 

deceleration of cell cycle, infertility, and accumulation of aging factors such as extra-

chromosomal rDNA circles (ERCs), carbonylated proteins, and protein aggregates are 

associated with aged S. cerevisiae (Steinkraus, et al. 2008).  

Besides these aging markers, elevated ROS production is the key point. 

According to free radical theory of aging by Denham Harman, ROS generation by 

mitochondria or other sites from the cell cause initiation of degradative processes 

related to mitochondrial damage (Harman 2003). Mitochondria have a central role in 

aging because ROS is mainly produced by electron transport chain. Short half-life of the 

ETC-derived ROS causes oxidative stress-mediated mitochondrial dysfunction. mtDNA 

is found in matrix and does not have histones. Because of this reason mitochondria can 

not protect their mtDNA from ROS-mediated impact (Cadenas and Davies 2000). 

Mitochondria have both antioxidant defense systems and DNA repair systems. 

However, elevated accumulation of the ROS blocks antioxidant systems and causes 

mtDNA lesions which can not be repaired (Cadenas and Davies 2000). Oxidative 

damage to the mitochondria reduces mtDNA turnover and results in mitochondrial 

impair dependent limitation of maximum lifespan. Oxidative damage to the nuclear 

DNA results in degenerative diseases and reduction in mean lifespan (Sastre, Pallardo, 

and Vina 2003).  
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1.2. Oxidative Stress and Reactive Oxygen Species Production Sites  

In Mitochondria 
 

 

Oxidative stress is defined as imbalance between antioxidant defense system 

mechanisms and accumulation of free radicals. Highly reactive hydroxyl radical-

mediated irreparable DNA lesions cause DNA repair mechanisms dysfunction (Turrens 

2003). This process results in oxidative stress related neurodegenerative diseases, aging 

and cancer due to excess amounts of reactive oxygen species (ROS) accumulation 

(Perrone, et al. 2008; Imlay 2003). ROS are stable free radical intermediates which are 

derived from one unpaired electron participation to the molecular oxygen (Cadenas and 

Davies 2000). There are two main sources of ROS which are endogenous and 

exogenous sources. Endogenous sources are mitochondrial respiration, NADPH-oxidase 

activity, peroxizomes, lipoxygenase; while exogenous sources are UV, ionizing 

radiation, and xenobiotics that pick up an electron from a respiratory carrier and transfer 

it to molecular oxygen, stimulating free radical formation without inhibiting the 

respiratory chain (Turrens 2003). 

 Morphologically, mitochondria are composed of four compartments including 

outer and inner membrane, inter-membrane space and matrix and different kinds of 

metabolic pathways are carried out such as Krebs cycle, oxidative phosphorylation, 

glycolysis and mitochondrial protein assembly. Outer membrane is composed of  porins 

which allow the passage of small molecules (Pfanner and Meijer 1997) and nDNA-

encoded mitochondrial proteins (Wallace 2005). Both outer and inner membrane 

includes translocases called as TOM and TIM, respectively. Pre-protein structures cross 

through these two general import pores and subsequently become mature proteins with 

the help of the mitochondrial chaperone Hsp70 and mitochondrial protein peptidases in 

the matrix region (Pfanner and Meijer 1997). Mitochondrial inner membrane is the site 

of oxidative phosphorylation which allows ATP production via the oxidation-reduction 

reactions (Scheffler 2001) and this site is responsible for the formation of most of the 

free radicals (Murphy 2009).  

Superoxide, hydrogen peroxide and hydroxyl radical are important reactive 

oxygen species that are produced mainly in mitochondria. Superoxide is the product of 

the molecular oxygen reduction with one unpaired electron and precursor of other 
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oxidants. Superoxide is mainly produced from the leakage of electrons from the 

mitochondrial electron transport chain as the side product of aerobic respiration 

(Murphy 2009). Molecular oxygen has a tendency to produce superoxide ion because of 

its thermodynamic. Hydrogen peroxide is derived from two superoxide dismutation by 

superoxide dismutases or spontaneously. Although hydrogen peroxide seems to be 

harmless, it is the precursor of the hydroxyl radical and its formation is catalyzed by 

transition metals reduction with Fenton reactions, UV-irradiation and  radiolysis of 

water by x-or γ-rays (Orrenius, et al. 2007). Small electron carriers like NADH, 

NADPH, ubiquinone, and glutathione (GSH) do not react with molecular oxygen 

therefore they do not have a tendency to generate superoxide (Imlay 2003). 

Mitochondrial superoxide production exists in redox active sites of the protein and 

when electron carriers are bound to proteins, superoxide production is favored by 

kinetic factors (Imlay 2003). Superoxide formation concentration is proportional to the 

enzyme (redox active) concentration and the molecular oxygen concentration. Previous 

studies show that superoxide generation increases if oxygen concentration raises with 

respect to normal atmospheric level of oxygen (Murphy 2009). It is thought that active 

sites which are facing with aqueous phase or membrane core are the superoxide 

production sites because of closer oxygen interaction (Imlay 2003). Superoxide 

generation in mitochondrial matrix is measured as the sum of hydrogen peroxide efflux 

from mitochondria, superoxide sinks, and degraded hydrogen peroxide concentration 

minus external hydrogen peroxide production concentration (Murphy 2009). 

Electron transport chain is composed of five enzyme complexes which are 

Complex I (NADH-ubiquinone oxidoreductase), Complex II (succinate-ubiquinone 

oxidoreductase), Complex III (ubiquinol:cytochrome c oxidoreductase), Complex IV 

(cytochrome c oxidase) and ATP synthase (Complex V). NADH and FADH2 enter the 

chain via complex I and complex II, proceeding with electron transfer through 

molecular oxygen and result in H2O formation in complex IV (Liu, Fiskum, and 

Schubert 2002). H2O formation changes proton gradient and membrane potential 

resulted in ADP phosporylation in complex V (Liu, et al. 2002; Wallace 2005).  

The main source of superoxide in electron transport chain is Complex I and its 

subunits. Complex I (NADH-ubiquinone oxidoreductase) is the first place for electron 

entrance at the site of FMN (flavin mononucleotide). The entire complex composed of 

more than 40 subunits. Saccharomyces cerevisiae have rotenone-insensitive matrix-

facing NADH-ubiquinone oxidoreductase which is encoded by the gene NDI1 and 
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intermembrane space-facing NADH-ubiquinone oxidoreductase which is encoded by 

the genes NDE1 and NDE2 instead of complex I (Grandier-Vazeille et al. 

2001).Complex I composed of FMN and up to seven non-heme iron-sulfur clusters on 

peripheral arm which faces with matrix site. The other structural portion of the complex 

is ubiquinone hydrogenase site which is embedded in the membrane. After passage of 

electrons to the complex III via ubiquinone four H+  are pumped out to inter-membrane 

space and changes both membrane potential and proton gradient. Translocation of the 

protons through the intermembrane space FMN or ubisemiquinone is required (Hatefi 

1985). However in yeast, there is no proton pumping mechanism in complex I (Fang 

and Beattie 2003).These are free radical form of FMN, F-site (NADH binding site for 

oxidation of NADH), R-site (NAD+ binding site for univalent oxygen reduction). Once 

NADH/NAD+ratio increases in the matrix, these subunits converted to electron leakage 

sites (Grivennikova and Vinogradov 2006; Kushnareva, et al. 2002). Previous studies 

about S. cerevisiae show that if cytosolic NADH is used as electron donor, it was found 

that high concentrations of hydrogen peroxide and superoxide  produced by the external 

NADH dehydrogenases unlike human (Nde1p, Nde2p) (Herrero et al. 2008; Fang and 

Beattie 2003). 

Complex II is referred as succinate-ubiquinone oxidoreductase which has a 

catalytic heterodimer containing covalent FAD and three non-heme iron-sulfur clusters 

which are [2Fe-2S], [3Fe-3S] and [4Fe-4S] (Lemire and Oyedotun 2002). Because of 

cysteine residues in iron sulfur clusters which have redox potential, electrons can pass 

through these clusters to the complex structure. Previous study with Caenorhabditis 

elegans shows that SdhC Gly69 mutation to glutamic acid residue exhibits mev-1 

mutations in SDH genes (coding for succinate dehydrogenase) causes a significant 

increase in superoxide production in Complex II (Cecchini 2003). The [3Fe-4S] cluster 

seems to the site of reactive oxygen species production site in the presence of quinones 

results with the enzyme inactivation in E.coli (Senoo-Matsuda et al. 2001). Coenzyme-

Q related enzymes seem to be the ROS production sites like in succinate oxidation via 

complex II by reverse electron transport at complex I (Guzy et al. 2008). The yeast 

SDH3 S94E (mimics C. elegans mev-1 mutation) SDH2 P190Q mutations near the QP 

site (ubiquinone-binding site) decrease the activity of the complex II and cause 

hypersensitivity to paraquat. This indicates that    mutations are located near the QP site 

and this increases the possibility that QP site is the site of radical formation and the 
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mitochondrial succinate dehydrogenases can be significant sources of oxygen-free 

radicals (Guo and Lemire 2003).  

Complex III (ubiquinol:cytochrome c oxidoreductase) composed of redox-active 

diheme cytochrome b (high-potential bH and lower potential bL), cytochrome c1, [2Fe-

2S]-containing Rieske iron-sulfur protein. The molecular function of the complex III is 

to transfer electrons from ubiquinol to cytochrome c by Q-cycle (Lenaz et al. 2007; 

Hunte et al. 2008). This transfer is coupled with proton translocation to the 

intermembrane space. Amino acid sequences of the cytochrome b display high 

homology between human and S.cerevisiae. They both have conserved histidine 

residues (Hatefi 1985). E272 (glutamate at position 272; highly conserved cytochrome b 

residue) has important role in prevention of short circuit reactions and correct binding 

and pH stabilization (Wenz et al. 2006). [2Fe–2S] domain mobility of the Rieske protein 

is required to transportation of electrons between ubihydroquinone oxidation at center P 

(Qo; electropositive site; toward intermembrane space) to cytochrome c1. The low-

potential heme bL (b566) is closer to the inter-membrane space and center P, whereas 

the high-potential heme bH (b562) is close to center N (Qi; electronegative site; inner 

membrane facing matrix side) (Hunte et al. 2008). Electron transfer pathway is followed 

by passage of electrons through the high-potential chain consisting of ISP, cytochrome 

c1, and cytochrome c. The second electron is transferred through the low-potential 

chain via heme bL and heme bH to N center at which quinone is reduced to 

semiquinone (reaction intermediate). In order to transfer electrons through the 

cytochrome c requires oxidation of two ubihydroquinone which is reduced to 

semiquinone completely.  

Complex III is the main site for ROS production in mitochondria (Turrens 

2003), and blockade of electron flow by using rotenone and succinate dehydrogenase 

inhibitor upstream of complex III reduces net ROS production  that are oxidizing 

complex I substrates (Chen et al. 2003). Qi center produces superoxide through the 

matrix side however; Qo center produces toward intermembrane space (Chen et al. 

2003). Another study about Qo superoxide production ability shows that myxothiazol 

usage as a Complex III inhibitor stimulates hydrogen peroxide formation at the site of 

Qo (Starkov and Fiskum 2001). 

Complex IV is the final enzyme of the electron transport chain and called as 

cytochrome c oxidase and catalyses the transferring of the electrons from the 

cytochrome c to molecular oxygen, converting molecular oxygen to two molecules of 
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water. Cytochrome c oxidase is composed of 13 subunits in human and 11 subunits in 

S.cerevisiae. Large three subunits are encoded by mitochondrial genome and the others 

which are found in core protective shield encoded by nuclear genome (Fontanesi, et al. 

2008). Complex contain two hemes that are a and a3, and two copper centers. Except 

that components complex IV contains Mg and Zn metal centers which are not redox 

centers. Their role appears to stabilizing three-dimensional structure, proton 

translocation process and the direction of the electron transfer (Ludwig et al. 2001). 

Electron transfer path in complex IV begins with electron transfer from cytochrome c to 

CuA center to heme a, then heme a3/CuB and finally to the molecular oxygen which is 

used to water production coupled with proton translocation process (Varotsis et al. 

1993). Normally ROS do not produced from Complex IV. According to the second 

mechanism of respiratory control is independent from the membrane potential unlike 

the first mechanism of respiratory control in which at high membrane potentials 

complexes I, III, IV are inhibited. Second mechanism proposes that without allosteric 

ATP-inhibition stimulation of ADP is inhibited because ADP uses membrane potential 

to convert ADP to ATP. Dephosphorylation of Complex IV by phosphatases results in 

blockade of allosteric ATP-inhibition and causes high membrane potential which is 

excited state and stimulates ROS production, apoptosis and degenerative diseases 

(Kadenbach, et al. 2009). 

Proton translocation to the intermembrane space by complex I, III and IV results 

in membrane potential variation and proton gradient forces ATP synthase to produce 

energy. ATP synthase is composed of two main parts which are insoluble F0 and soluble 

F1. The F0 part provides a channel for proton translocation from its high potential on the 

outside. Mitochondrial F1F0 ATP synthases contain eight subunits which are consisted 

of five different subunits α, β, γ, δ and ε in F1 domain including central stalk and  three 

different subunits named a, b and c in F0 domain (Dudkina et al. 2006).  Saccharomyces 

cerevisiae has mitochondrial specific ε subunit located in the central stalk. Remaining d, 

e, f, g, h, i and k are located in the F0 domain closer to the peripheral stalk portion. 

Previous studies show that these small subunits are involved in dimerization process 

(Dudkina et al. 2006). As it is well known that there is no indication about ROS 

production from ATP synthase.   
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1.3. Aim of the Study 

 
 

All of studies about electron transport chain and ROS production capacity are a 

matter of debate and not enough to answer the questions that which specific mutations 

cause electron leakage-mediated ROS production, where they are produced and how 

they are related to aging process. Because of these question marks we wanted to study; 

electron transport chain mutations that affect aging process. In addition, enlightening 

the mechanisms of human genetic disorders related to electron transport chain 

dysfunction is the main scope of all aging research including our project.   
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CHAPTER 2 

 

 

MATERIALS AND METHODS 

 

 

2.1. Materials 

 

 

A detailed list of commonly used media, solutions, and their compositions are 

presented in Appendix A.  
 

 

2.2. Methods  
 

 

2.2.1. Yeast Strains 
 

 

Wild-type (BY4741; MATa, his3, leu3, met15, ura3) and isogenic 73 different 

deletion mutants (derived from BY4741) of Saccharomyces cerevisiae were examined 

(Table 3.1.). For the further analysis nde1∆ (MATa, his3, leu2, met15, ura3, 

∆nde1:KANR), tcm62∆ (MATa, his3, leu2, met15, ura3, ∆tcm62:KANR), ∆rip1 (MATa, 

his3, leu2, met15, ura3, ∆rip1:KANR), qcr8∆ (MATa, his3, leu2, met15, ura3, 

∆qcr8:KANR), cyt1∆ (MATa, his3, leu2, met15, ura3, ∆cyt1:KANR), pet117∆ (MATa, 

his3, leu2, met15, ura3, ∆pet117 :KANR), cox11∆ (MATa, his3, leu2, met15, ura3, 

∆cox11:KANR), atp11∆ (MATa, his3, leu2, met15, ura3, ∆atp11:KANR), fmc1∆ 

(MATa, his3, leu2, met15, ura3, ∆fmc1:KANR) were used.  
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2.2.2. Identification of ETC Mutations That Lead to Aging 

 

 
Yeast strains were grown on YPD rich medium (2% glucose, 2% peptone, 1% 

yeast extract and 2% agar) for determination of short-lived mutants and YNB minimal 

medium (0.17% yeast nitrogen base without amino acids, 5% ammonium sulfate, 2% 

glucose supplemented with appropriate amino acids and bases) for determination of 

strains that have over-expressing genes. Before analysis, cells were kept for 2 days 

incubation at 30ºC. Cells were inoculated onto agar plates as a single line. For each 

strain, average 40 individual cells were selected and removed from yeast colonies by 

using a micromanipulator. 20 of 40 individual daughter cells were collected and 

selected as starting mother cells. Newly formed daughter cells     from these virgin cells 

were removed and discarded. Every 90 minutes intervals plates were controlled and 

newly formed daughters were removed until cells stopped dividing. During night 

periods plates were stored at 4ºC. Replicative life span was determined as the total 

number of daughter cells that each mother cell generated.  
 

 

2.2.3. Oxidative Stress Tolerance of Short Living ETC Mutants 
 

 

Short-living mutants compared to the WT were analyzed for oxidative stress 

tolerance with using diamide and hydrogen peroxide as oxidizing agents. Diamide acts 

on thiol-containing groups and oxidizes them via increasing oxidizing glutathione levels 

which means that redox imbalance in vivo and oxidizes cysteine residues of the proteins 

in vitro (Flattery-O'Brien and Dawes 1998). Hydrogen peroxide is the product of 

dismutation of the two superoxide anion and exogenous H2O2 increase the intracellular 

reactive oxygen species levels (Lu and Gong 2009). In order to determine the 

endogenous oxidative effect of the diamide spotting assay and for hydrogen peroxide 

Halo assay were performed, respectively. 

For spotting assay; yeast cells were grown over-night and diluted to OD600 0.2. 

Four dilution series were prepared as 0.2, 0.02, 0.002 and 0.0002. From each dilution 5 

μl of sample was dropped onto YPD media which include no diamide, 2mM diamide, 
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2.5mM diamide. YPD plates were incubated at 30ºC approximately 2 days and growth 

behavior was examined.  

For Halo assay; strains were grown over night in liquid YPD medium at 30°C 

OD600 values were equalized to 0.2 with sterile H2O. 400μl of sample was plated and 

5μl 8.8M hydrogen peroxide was dropped at the middle of the plate and incubated 

overnight at 30ºC in order to observe sensitivity which is determined as a diameter of 

the growth inhibition zone. 

 

 

2.2.4. Determination of Respiratory Deficient Strains in Short Living 
ETC Mutants 

 

 

In order to determine respiratory deficient strains mutants that have short 

lifespan were grown on YPG media including 3% glycerol. Usage of glycerol as a 

carbon source forces mitochondria to respire. Glycerol as a carbon source inhibits 

ethanol formation and induces pyruvate conversion to acetyl-CoA through Krebs cycle 

and oxidative phosphorylation in order to produce ATP via respiration activation.  

For determination of respiratory deficient strains spotting assay was performed. 

For spotting assay; yeast cells were grown over-night on liquid YPD media and diluted 

to OD600 0.2 with dH2O. Four dilution series were prepared as 0.2, 0.02, 0.002 and 

0.0002. From each dilution 5 μl of sample was dropped onto YPG (3% glycerol) media. 

YPG plates were incubated at 30ºC approximately 2 days and growth behavior was 

examined.  
 

 

2.2.5. Measurement of Intracellular Superoxide Levels of the  
       Short Living ETC Mutants 

 

 

 Relative intracellular superoxide levels were analyzed using the superoxide 

sensitive fluorescent probe MitoSOX Red (Molecular Probes) which is superoxide 

indicator in living cells. It is oxidized by superoxide and displays red fluorescence in the 

mitochondria. Strains were grown in YPD media to an OD600 of 0.5. At that OD600 
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value MitoSOX added to the YPD to a concentration of 5μM and negative control (not 

treated with MitoSOX) was prepared. Cells were incubated for 1h in the fluorescent dye 

at 30°C for shaking at 180 rpm. After incubation, cells were centrifuged and washed 

twice with phosphate saline buffer (PBS) and resuspended in 200μL PBS. The 

fluorescence intensity of cells for each strain was measured by Varioskan 

spectrophotometer with 510/580 nm excitation/emission wavelengths.  
 

 

2.2.6. Overexpressing ETC Genes that are Important for Aging  
 

 

Over-expression constructs of NDE1, TCM62, RIP1, CYT1, QCR8, PET117, 

COX11, ATP11, FMC1 were made with Gateway® Cloning System. System is 

composed of two main reactions. BP recombination reaction was performed with PCR 

products (as a template, yeast genomic DNA; primers of each of nine gene) and 

pDONR221 was used to generate an entry clone. LR recombination reaction was 

performed by using pAG423-GPD (2μ high copy plasmid; HA-tagged; GPD promoter; 

Addgene) and pAG413-GPD (low copy plasmid; GPD promoter; Addgene) as 

destination vectors and entry clone for each plasmid. BP and LR reaction mixtures were 

transformed to the OmniMax competent cells for the selection of antibiotic resistant 

colonies which include desired gene in plasmids. Recombination occurs between attB 

and attP sites give rise to attL and attR sites. Homolog recombination between these 

sites allows insertion of desired gene into the expression vector (Gateway® 

Technology; Invitrogen). All constructs were made for this study verified by 

sequencing.  
 

 

2.2.7.Transformation of Cells Overexpressing ETC Genes that are 
Important for Aging  

 

 

In order to perform transformation of yeast strains lithium-acetate method was 

used with a few modifications (Amberg et al. 2005). Yeast wild-type strain was grown 

in liquid YPD media over-night at 30°C. Grown cells was centrifuged in 10sec and 
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washed with sterile dH2O. Pellet was resuspended and washed twice with 0.1M lithium-

acetate. Then pellet was resuspended with 240μl PEG (50%), 36μl 1M lithium-acetate, 

7μl single-stranded salmon sperm carrier DNA, 5μl expression vector (including the 

gene that was wanted to be over-express), 10μl DTT (Dithiothreitol; 0.3M) for high 

transformation efficiency and 62μl sterile dH2O in order. Transformation mix was 

incubated for 30 min at 30°C shaker incubator. After that, transformation mix was 

allowed to heat shock at 42°C for 15 min and spreaded onto YNB synthetic media 

(without histidine). Each expression vector including the gene that was wanted to be 

over-express was transformed into the wild-type strain. 
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CHAPTER 3 

 

 

RESULTS 

 

 

3.1. Identification of ETC Mutations That Lead to Aging  
 

 

Since electron leakage at mitochondrial ETC is the major cause of ROS 

production, we thought that disruption of electron flow by genetic manipulations may 

elevate the level of ROS production and leads to premature aging. To analyze the role 

of all the nonessential ETC genes (Table 3.1.) in life span, 73 deletion mutants were 

first screened in the fashion of 5 replicas. For the second screening, 40 replicas were 

analyzed for each mutant and repeated at least twice.  We found out that mutations in 

nine ETC genes shortened lifespan enormously (Figure 3.1). These genes were NDE1, 

TCM62, RIP1, CYT1, QCR8, PET117, COX11, ATP11 and FMC1. 

The NDE1 which encodes mitochondrial external NADH dehydrogenase that 

catalyzes the oxidation of cytosolic NADH. Previous studies about NDE1 showed that 

deletion of it was resulted in shorter replicative lifespan (Lin et al. 2004). Another study 

proposed that deletion of NDE1 was resulted in extension of chronological lifespan (Li 

et al. 2006).Consistent with previous report (Lin et al. 2004), we determined 40% 

reduction in  lifespan of nde1∆ mutants (Table 3.2.). 

TCM62 plays role in the assembly and stability of the mitochondrial succinate 

dehydrogenase complex and is required for essential mitochondrial functions at high 

temperature (Klanner, Neupert, and Langer 2000). Previous studies showed that 

Complex II has a role on aging process studied in C.elegans harbors mev-1 mutation. 

This mutation found in the succinate dehydrogenaseC (SdhC) causes reduction in 

lifespan and accumulation of aging markers (Cecchini 2003). There is no indication 

about molecular function of the TCM62 as a cell aging process in the literature. Our 
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study showed that deletion of TCM62 was resulted in lifespan reduction in 28% 

compared to the wild-type (Table 3.2.). 

Aging assays showed that 3 genes were determined related to Complex III. First 

one is the RIP1 which encodes ubiquinol-cytochrome-c reductase, a Rieske iron-sulfur 

protein of the mitochondrial Complex III and transfers electrons from ubiquinol to 

cytochrome c1 during aerobic respiration. Its biological role only includes aerobic 

respiration and electron transfer (Beckmann et al. 1987). Second one is the CYT1 which 

encodes cytochrome c1 protein which transfers electrons from ubiquinol to cytochrome 

c (Ahmad and Sherman 2001). Third one is the QCR8 encodes subunit 8 which is a 

member of ubiquinol cytochrome-c reductase complex (component of the both Qo and 

Qi sites) and its function is the electron transfer from ubiquinol to the cytochrome c 

(Bruel, Brasseur, and Trumpower 1996). According to our aging assays, percent 

reduction in lifespan of ∆rip1, ∆cyt1 and ∆qcr8 mutants were 55%, 31% and 33% 

compared to the wild-type strain (Table 3.2.).  

PET117 and COX11 encode proteins that are essential for assembly of the multi-

subunit enzyme Complex IV, which catalyzes the conversion of molecular oxygen to 

water for cellular respiration. COX11 is required in the copper addition to the Cu(B) site 

of complex IV (Hiser et al. 2000). PET117 encodes protein that has a role in assembly 

of the Complex IV (McEwen et al. 1993) and molecular function of it is not known 

(Saccharomyces Genome Database). Deletion of PET117 and COX11 reduced lifespan 

by 34% and 31%, respectively (Table 3.2.). 

Two other genes that were identified as aging genes were ATP11 and FMC1 

which encode the assembly proteins in F1 sector of F1-F0 ATPase (Ackerman 2002; 

Lefebvre-Legendre et al. 2001). Aging assay results showed that deletion of ATP11 and 

FMC1 (with unknown molecular function) which are encodes subunits of Complex V 

was resulted in reduction of life span by 44% and 26%, respectively (Table 3.2.).   
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Table 3.1. Non-essential ETC genes that were investigated in this study 
 

 ORF 
(gene) Description 

NDE1 Mitochondrial external NADH dehydrogenase 

NDI1 NADH:ubiquinone oxidoreductase  

C
om

pl
ex

 I 

NDE2 Mitochondrial external NADH dehydrogenase 

SDH2 Iron-sulfur protein subunit of succinate dehydrogenase 

SDH4 Membrane anchor subunit of succinate dehydrogenase 

TCM62 Assembly of the mitochondrial succinate dehydrogenase complex 

SDH1 Flavoprotein subunit of succinate dehydrogenase  

C
om

pl
ex

 II
 

YJL045W     Minor succinate dehydrogenase isozyme  

QCR7 Subunit 7 of the ubiquinol cytochrome-c reductase complex 

QCR9 Subunit 9 of the ubiquinol cytochrome-c reductase complex 

 
QCR2  Subunit 2 of the ubiquinol cytochrome-c reductase complex 

CBP4 Required for assembly of ubiquinol cytochrome-c reductase  

BCS1 ATP-dependent chaperone, required for the assembly of the cytochrome bc(1) 
complex  

QCR6 Subunit 6 of the ubiquinol cytochrome-c reductase complex, required for 
maturation of cytochrome c1 

CBP3 Mitochondrial protein required for assembly of ubiquinol cytochrome-c 
reductase complex  

RIP1 A Rieske iron-sulfur protein of the mitochondrial cytochrome bc1 complex; 
transfers electrons from ubiquinol to cytochrome c1 during respiration 

 
QCR1  Core subunit of the ubiquinol-cytochrome c reductase complex (bc1 complex)  

 
CYT1 Cytochrome c1, component of the mitochondrial respiratory chain 

QCR8 Subunit 8 of ubiquinol cytochrome-c reductase complex 

C
om

pl
ex

 II
I 

QCR10 Subunit of the ubiqunol-cytochrome c oxidoreductase complex, involved in 
aerobic respiration 

 
(cont. on next page) 
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Table 3.1. (cont) Non-essential ETC genes that were investigated in this study 

 
MBA1 Protein involved in assembly of mitochondrial respiratory complexes 

COX8 Subunit VIII of cytochrome c oxidase, which is the terminal member of the 
electron transport chain  

COX15 Protein required for the hydroxylation of heme O to form heme A, which is an 
essential prosthetic group for cytochrome c oxidase  

COX6 Subunit VI of cytochrome c oxidase, which is the terminal member of the 
mitochondrial inner membrane electron transport chain  

COX12 Subunit VIb of cytochrome c oxidase is required for assembly of fully active 
cytochrome c oxidase  

PET100 Chaperone that specifically facilitates the assembly of cytochrome c oxidase  
PET117 Protein required for assembly of cytochrome c oxidase  

COX5B Subunit Vb of cytochrome c oxidase is predominantly expressed during 
anaerobic growth  

COX11 Mitochondrial inner membrane protein required for delivery of copper to the 
Cox1p subunit of cytochrome c oxidase 

PET161  
 

Required for cytochrome c oxidase activity, respiration deliver copper to 
cytochrome c oxidase 

SCO2 A redundant function with Sco1p in delivery of copper to cytochrome c oxidase 

COX10 Required for cytochrome c oxidase activity; human ortholog is associated with 
mitochondrial disorders  

SHY1 Required for normal respiration, possible chaperone involved in assembly of 
cytochrome c oxidase  

PET191 Protein required for assembly of cytochrome c oxidase  

CYC1 Cytochrome c, isoform 1; electron carrier of the mitochondrial intermembrane 
space  

COX14 Mitochondrial membrane protein, required for assembly of cytochrome c 
oxidase  

COX17 Copper metallochaperone that shuttles copper from the cytosol to the 
mitochondrial intermembrane space  

COX5A Subunit Va of cytochrome c oxidase  

CYC7 Cytochrome c isoform 2 ; transfers electrons from ubiquinone-cytochrome c 
oxidoreductase to cytochrome c oxidase during cellular respiration  

COX16 Required for assembly of cytochrome c oxidase  

COX18 Required for export of the Cox2p C terminus from the mitochondrial matrix to 
the intermembrane space during its assembly into cytochrome c oxidase;  

COX20 Required for proteolytic processing of Cox2p and its assembly into cytochrome 
c oxidase  

COX9 Subunit VIIa of cytochrome c oxidase  
COX7 Subunit VII of cytochrome c oxidase  

CYB2 Cytochrome b2 (L-lactate cytochrome-c oxidoreductase), required for lactate 
utilization 

C
om

pl
ex

 IV
 

COX19 Protein required for cytochrome c oxidase assembly that delivers copper to 
cytochrome c oxidase  

(cont. on next page) 
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Table 3.1. (cont) Non-essential ETC genes that were investigated in this study 

ATP5 Subunit 5 of the stator stalk of mitochondrial F1F0 ATP synthase, required for 
ATP synthesis 

COQ6 Putative flavin-dependent monooxygenase, involved in ubiquinone (Coenzyme 
Q) biosynthesis  

COQ1 Catalyzes the first step in ubiquinone (coenzyme Q) biosynthesis  
COQ5 Involved in ubiquinone (Coenzyme Q) biosynthesis 

ATP1 Alpha subunit of the F1 sector of mitochondrial F1F0 ATP synthase, required for 
ATP synthesis  

ATP4 Subunit b of the stator stalk of mitochondrial F1F0 ATP synthase, required for 
ATP synthesis  

ATP1 Subunit of the mitochondrial F1F0 ATP synthase, required for ATP synthesis 

ATP11 Molecular chaperone, required for the assembly of alpha and beta subunits into 
the F1 sector of mitochondrial F1F0 ATP synthase  

ATP15 Epsilon subunit of the F1 sector of mitochondrial F1F0 ATP synthase 

ATP12 Molecular chaperone, required for the assembly of alpha and beta subunits into 
the F1 sector of mitochondrial F1F0 ATP synthase  

ATP13  Mitochondrial protein, likely involved in translation of the mitochondrial OLI1 
mRNA  

ATP14 Subunit h of the F0 sector of mitochondrial F1F0 ATP synthase, required for 
ATP synthesis  

COQ2 Catalyzes the second step in ubiquinone biosynthesis  

FMC1 Required for assembly or stability at high temperature of the F1 sector of 
mitochondrial F1F0 ATP synthase  

INH1 Protein that inhibits ATP hydrolysis by the F1F0-ATP synthase  

COQ3 Catalyzes two different O-methylation steps in ubiquinone (Coenzyme Q) 
biosynthesis  

ATP17 Subunit f of the F0 sector of mitochondrial F1F0 ATP synthase, required for 
ATP synthesis  

ATP10 Mitochondrial inner membrane protein required for assembly of the F0 sector of 
mitochondrial F1F0 ATP synthase  

COQ4 Protein with a role in ubiquinone (Coenzyme Q) biosynthesis  

ATP2 Beta subunit of the F1 sector of mitochondrial F1F0 ATP synthase, required for 
ATP synthesis  

ATP7 Subunit d of the stator stalk of mitochondrial F1F0 ATP synthase, required for 
ATP synthesis  

CIR2 Strong similarity to human electron transfer flavoprotein-ubiquinone 
oxidoreductase  

CAT5 Involved in ubiquinone biosynthesis, essential for respiration and gluconeogenic 
gene activation 

TFP1 Vacuolar ATPase V1 domain subunit A containing the catalytic nucleotide 
binding sites 

ATP20 Subunit g of the mitochondrial F1F0 ATP synthase, required for ATP synthesis  
STF1 Protein involved in regulation of the mitochondrial F1F0-ATP synthase 

 
A

T
P 

Sy
nt

ha
se

 

STF2 Protein involved in regulation of the mitochondrial F1F0-ATP synthase 
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Figure 3.1. Replicative life span analysis of WT and mutant cells which grown in 2% 
                  glucose media (YPD). 
 
 
 

Table 3.2. Percent reduction of lifespan of the mutant cells compared to the WT 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Mutants 
 
 

Average 
Lifespan 

% reduction in replicative 
lifespan 

nde1∆ 16.3 39.6 
tcm62∆ 19.4 28.1 
rip1∆ 12.0 55.4 
cyt1∆ 18.4 31.8 
qcr8∆ 17.9 33.5 
pet117∆ 17.5 34.7 
cox11∆ 18.5 31.2 
atp11∆ 15.0 44.0 
fmc1∆ 19.7 26.5 
WT 26.9  
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3.2. Oxidative Stress Tolerance of Short Living ETC Mutants 
 

 

In order to test whether these short living mutants were sensitive to oxidants, we 

treated them with diamide and hydrogen peroxide (H2O2). Exogenous treatment of 

hydrogen peroxide and diamide determines possible superoxide sites in ETC. These 

oxidants accept electrons without blocking electron transport resulting with increase in 

steady-state concentration of superoxide and cytotoxicity levels. Determining mutations 

that cause sensitivity to these oxidants gives the possible electron leakage sites. In this 

study we wanted to determine diamide and hydrogen peroxide sensitive mutants which 

could be the reason of shorter lifespan. To compare the oxidant sensitivity of the short 

living ETC mutants, dose-responses to diamide were generated by spotting cells onto 

YPD with 2mM and 2.5mM diamide. The result of this study showed that pet117∆ 

exhibited strong sensitivity both concentrations of diamide. Other mutants which were 

cox11∆, atp11∆, and fmc1∆ exhibited sensitivity only to 2,5mM diamide. However, 

nde1∆, tcm62∆, rip1∆, cyt1∆, and qcr8∆ tolerated both concentrations (Figure 3.2).  

 

 
 

Figure 3.2. Diamide resistance of short living ETC mutants 
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In order to see the effect of exogenous H2O2 treatment, mutants treated with 

8.8M hydrogen peroxide which determines which mutations related to aging. The more 

sensitivity amount showed more ROS accumulation and premature aging. In this study 

sensitivity amount was measured by Halo assay (measuring diameter of the zone) 

(Figure 3.3). According to Halo assay results sensitivity to H2O2 changed from 8% and 

37% compared to the wild-type cells (Table 3.3). 

 

 

 
 

Figure 3.3. Hydrogen peroxide resistance of short living ETC mutants. 

 

 
Table 3.3. Hydrogen Peroxide Sensitivity in % 

 
Mutants Average % of sesitivity 

nde1∆ 3.3 8.3 

tcm62∆ 3.5 15.0 

rip1∆ 3.9 31.7 

cyt1∆ 3.6 21.7 

qcr8∆ 3.7 25.0 

pet117∆ 4.0 33.3 

cox11∆ 3.3 10.0 

atp11∆ 4.1 36.7 

fmc1∆ 3.7 25.0 

WT 3.0  
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3.3. Determination of Respiratory-Deficient Strains in Short Living 
ETC Mutants 

 

 

 In YPD media yeast cells do not use their mitochondria actively because of the 

tendency to producing ethanol via fermentation. When YPG used as a carbon source 

yeast cells can use their mitochondria actively. Besides determining which mutants use 

their mitochondria actively for respiration and which mutations essential when glycerol 

used as a carbon source were the third part of our study. In order to determine 

respiratory-deficient strains, mutant strains were grown on YPG media (3% glycerol) 

and spotting assay were performed with serial dilutions. According to spotting assay 

results, four mutants could grow on glycerol media which means that they could use 

their mitochondria actively and these mutations were not essential for growing in YPG 

media. These mutants were nde1∆, tcm62∆, qcr8∆, and fmc1∆. Other mutants which 

could not be grown on YPG showed that short lifespan of these mutants may be that 

reason (Figure 3.4). 

 

 

 

Figure 3.4. Determination of the respiratory deficient mutants by spotting assay. 
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3.4. Measurement of Intracellular Superoxide Levels 
 
 

The relative levels of cellular ROS in mitochondria were determined following 
exposure to fluorescent probe MitoSOX Red. Superoxide specific MitoSOX react with 
it and show which mutation cause elevated level of superoxide and facilitates the 
indication that which mutation in ETC cause shorter lifespan. In this part of the study 
we expected to see that respiratory deficient strains produced low level of superoxide 
and results confirmed our analysis. In pet117∆, rip1∆, cox11∆, atp11∆ and cyt1∆ 
strains, superoxide production was relatively low compared to wild-type cells, as we 
expected. Analysis of cells revealed that nde1 and fmc1 mutations were resulted in 
elevated levels of mitochondrial superoxide compared to wild-type (with MitoSOX red) 
strain (Figure3.5). These results showed that nde1, fmc1 and qcr8 mutations could 
related to aging due to detected superoxide.  

   

 
 

Figure 3.5. Flourometric analysis of ROS levels in mutants. Cells were incubated      
with MitoSOX Red to assess the levels of mitochondrial superoxide levels. 

 

3.5. Aging Analyses of Cells Over-expressing ETC Genes that are 
Important for Aging  

 

 In this part we wanted to confirm that if deletion of ETC genes resulted in 

shorter lifespan, overexpression of these ETC genes should be resulted in longer 

lifespan. Thus, electron transport chain genes that we thought to be important for aging 



     
 

24

were overexpressed by Gateway cloning system. In order to confirm overexpression 

either cause longer lifespan or not aging assay performed again.  According to aging 

assay results, aging profile of these strains exhibited longer lifespan as we expected 

except RIP1 and PET117. Cells overexpressing COX11, CYT1 and QCR8 exhibited a 

longer lifespan as 55%, 51% and 48% (Table 3.4) compared to the wild-type including 

empty vector (pAG423) (Figure 3.6). Cells overexpressing NDE1 exhibit slightly 

increase in lifespan which were previously proposed by Lin (Lin et al. 2004).  

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Generations

V
ia

bi
lit

y

NDE1
TCM62
RIP1
CYT1
QCR8
PET117
COX11
ATP11
FMC1
pAG423

 
 
Figure 3.6. Repicative life-span analysis of wild-type strain that over-expressing FMC1, 

COX11, TCM62, CYT1, QCR8, ATP11, NDE1, PET117 and RIP1 grown in 
2% glucose containing YNB-His selective media. Wild-type strain carrying 
control vector (pAG423). 

 
Table 3.4. Lifespan increase of the ETC over-expressed genes compared to the WT 

(pAG423 only) 
 

ETC over-expressed genes Average Lifespan % increase compared 
with WT (pAG423 only) 

FMC1-ove 9.4 15.9 
COX11-ove 12.6 55.0 
TCM62-ove 9.2 12.5 
CYT1-ove 12.3 51.0 
QCR8-ove 12.1 48.3 
ATP11-ove 9.1 11.9 
NDE1-ove 9.3 13.7 

PET117-ove 8.2 0.6 
RIP1-ove 7.4 -9.1 

WT (pAG423 only) 8.1   
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In order to confirm the idea that high copy plasmids cause lifespan reduction and 

compensation of that problem with low copy plasmids, ETC genes were overexpressed 

by using pAG413 vector which is a low copy plasmid. According to aging assay results 

overexpression of COX11, NDE1 and QCR8 cause lifespan extension compared to the 

WT including sham vector (Figure 3.7) approximately 22%, 9% and 7% respectively 

(Table 3.5). In addition average lifespan of strains extended unlike in strains which 

include high copy plasmid (Table 3.5). Overexpression of other 5 genes with pAG413 

expression vector did not cause lifespan extension (Table 3.5). Overexpression ATP11 

was not implemented.  
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Figure 3.7. Repicative life-span analysis of wild-type strain that over-expressing FMC1, 

COX11, TCM62, CYT1, QCR8, NDE1, PET117 and RIP1 grown in 2% 
glucose containing YNB-His selective media. Wild-type strain carrying 
control vector (pAG413). 
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Table 3.5. Lifespan increase of the ETC over-expressed genes compared to the WT 
(pAG413 only). 

 

ETC-ove genes Average 
Lifespan % increase compared with WT 

NDE1-pAG413 17.45 9.404388715 

TCM62-pAG413 14.7 -7.836990596 

RIP1-pAG413 15.7 -1.567398119 

CYT1-pAG413 15.25 -4.388714734 

QCR8-pAG413 17.1 7.210031348 

PET117-pAG413 14.1 -11.59874608 

COX11-pAG413 19.6 22.88401254 

FMC1-pAG413 11.85 -25.70532915 

pAG423 only 15.95   
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CHAPTER 4 

 

 

DISCUSSION 

 

 

The current model for reactive oxygen species production by electron transport 

chain explains Complex I, II, III are the possible sites. However, which mutations 

induce ROS production and aging is the question mark. Although there are several 

studies about this issue, there is no valuable evidence. We have characterized electron 

transport chain mutations in order to learn more about which mutations are important 

for aging process. 

In order to do this, we analyzed all nonessential ETC mutations and found out 

that nine of them were related to lifespan reduction. These were shown in Table 3.1 

marked with red. According to aging assay results we proposed that besides Complex I, 

II and III; Complex IV and V could be responsible for aging process.  

The second step of our study was identification of hydrogen peroxide and 

diamide sensitivity in ETC mutants, in order to test whether they were sensitive to 

oxidative stress or not. Thus, sensitivity phenotypes allowed indication about age-

related sites in ETC. Although we tested short living ETC mutants against a range of 

oxygen radical-generating compounds, we only observed sensitivity in pet117∆, 

cox11∆, atp11∆ and fmc1∆ which were displayed hypersensitivity phenotype when 

treated with diamide. rip1∆, cyt1∆, pet117∆, atp11∆ and fmc1∆  mutants exhibited 

hypersensitivity to hydrogen peroxide treatment. These sensitivities to diamide and 

hydrogen peroxide appear to be linked to the respiratory deficient characteristics of 

rip1∆, cyt1∆, pet117∆, and atp11∆ mutants (no growth on YPG) which can not protect 

themselves against oxidative stress. Aging profile of those mutants including cox11∆ 

showed lifespan reduction on YPD media. After glucose was consumed, cells could not 

respire and lifespan was reduced could be the one possible explanation. Relative levels 

of superoxide in these mutants were much lower than the wild-type. Low levels of 

mitochondrial superoxide production in these mutants supported the idea that mutants 

which could not use respiratory chain efficiently and produce low level of superoxide. 
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Our results therefore suggest that hypersensitivity to exogenous oxidative stress, 

elevated levels of superoxide production in mitochondria may cause reduction in 

lifespan profile. These indications were not enough to say that these mutations cause 

shorter lifespan. In order to prove that the mutations of genes that cause shorter lifespan 

should be overexpressed to see the lifespan extension. Our results showed that 

overexpression of these genes to the wild-type cells with high copy plasmid exhibited 

increase in replicative lifespan compared to the wild-type strain carrying sham vector as 

we expected. Unexpected result of this study although deletion of these genes caused 

respiratory deficient phenotype; COX11, CYT1 and ATP11 genes were increased the 

lifespan 55%, 51% and 12%, respectively. Instead of completely deleting these genes, 

site directed mutations to specific residues can be the solution. Because, they are seem 

to be the important in aging according to their increased lifespan due to overexpression 

results. However; another respiratory deficient strains PET117 and RIP1 and their 

overexpression did not caused lifespan extension, this result showed that these two 

genes did not related to aging process. Previous report showed that the NDE1 

overexpression largely promote the replicative lifespan extension in 2% glucose (Lin et 

al. 2004). Consistent with previous report about NDE1 overexpression, it increased 

replicative lifespan approximately 13% (Table 3.4). Another study about the NDE1 

showed that nde1 mutation resulted in reduction of chronological lifespan (Li et al. 

2006). These two indications exhibit contradictions each other. However, they study 

two different aging mechanisms and their interpretations about that chronological aging 

and replicative aging mechanisms different from each other. Overexpression of other 

genes FMC1 (encode ATP synthase subunit) and TCM62 (encode Complex II subunit) 

resulted with extension in lifespan which is unique for FMC1 and complex V because; 

there is any information about its relation to aging. Another gene QCR8 which encodes 

Complex III subunit 8 exhibited 48% lifespan extension as a result of overexpression 

and confirming the idea that Complex III is the site of ROS production.  Surprisingly, 

average lifespan of all strains which include overexpressed genes were very short 

including wild-type strain with empty vector. Previous studies about this issue proposed 

that high copy plasmids are the reason for reduction in lifespan. High copy plasmids 

inside the cell may behave like extra-chromosomal rDNA circles which are responsible 

for premature aging due to loss of asymmetry. Autonomously replicating sequence 

elements with or without rDNA locus reduce replicative lifespan (Steinkraus, 

Kaeberlein, and Kennedy 2008). Because of this reason, we transformed ETC genes to 
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low copy plasmid. The results showed that low copy plasmids did not cause reduction in 

the average lifespan that overcome the premature aging problem. This result exhibited 

consistency about the inducing effect of high copy plasmids in lifespan reduction.  
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CHAPTER 5  

 

 

CONCLUSION  

 

 

Electron transport chain seems to be the largest production site of reactive 

oxygen species. This feature makes it very attractive to study oxidative stress and aging 

relation. Our study aimed to find which mutations in ETC related to aging process. For 

this reason we first screened all nonessential ETC mutants and found out nine of them 

exhibited shorter lifespan from 26% to 55%. After finding that, deletion of those genes 

concluded with short lifespan, we treated them with diamide and hydrogen peroxide in 

order to determine is there any relation between reduction of lifespan and oxidant 

hypersensitivity phenotypes of mutants. Consistent with previous studies about 

oxidative stress and free radical theory of aging, we found out that reactive oxygen 

species oriented hypersensitivity of mutants might be the reason for reduced lifespan. 

However, these strains were respiratory deficient and they could not use their 

mitochondrial respiratory chain efficiently. Thus, weak possibility of those genes was 

responsible for a reduction in lifespan. The measuring relative levels of superoxide 

produced in mitochondria showed that mutants have hypersensitivity to oxidizing 

agents, those produced low levels of superoxide. Other mutants that have ability to 

grown on YPG which were exhibited less diamide and hydrogen peroxide sensitivity 

increase the possibility of their role in aging process. After combining those data we 

decided to overexpress the genes that cause reduction in lifespan. If the absence of those 

genes caused lifespan reduction, then we expected that overexpression of them might 

increase the lifespan. According to all data, we proposed that deletion of genes may 

induce the electron leakage not only from complex I, II, III but also from complex IV 

and V; thus, lifespan may reduce due to reactive oxygen species accumulation. In order 

to say that which specific residue in subunits of complexes (encoded by those nine 

genes) causes electron leakage, random or site-directed mutagenesis can be performed. 

It brings information about ETC-derived genetic disorders, mechanism of the premature 

aging and age-related degenerative diseases.       
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APPENDIX 
 

COMPOSITION of MEDIA and STOCK SOLUTION 

 

1. Media  
 
a. Glucose (YPD) medium, per liter  
1% yeast extract, 2% peptone, 2% glucose (Sterilization by autoclaving at 121 °C for 

15’) 

 
b. Glucose (YPD) agar medium, per liter 

1% yeast extract, 2% peptone, 2% glucose, 2% agar (Sterilization by autoclaving at 121 

°C for 15’) 

 
c. Glycerol (YPG) medium, per liter 

1% yeast extract, 2% peptone, 3% glycerol (v/v) (Sterilization by autoclaving at 121 °C 

for 15’) 

 
d. Glycerol (YPG) agar medium, per liter 

1% yeast extract, 2% peptone, 3% glycerol(v/v), 2% agar (Sterilization by autoclaving 

at 121 °C for 15’) 

 
e. YNB Media, per liter 

6.7 g Yeast Nitrogen Base with ammonium sulfate, 2% Glucose, w/wo 2% agar, CSM 

(complete synthetic media) without histidine (20ml/L) 

 

2. Solutions 

 
a. 1XPBS (Phosphate Buffered Saline), per liter 

8g of NaCl, 0.2g of KCl, 1.44g of Na2HPO4, 0.24g of KH2PO4 (pH 7.4; sterilization by 

autoclaving at 121 °C for 15’) 
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