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Abstract

In this paper, structural synthesis of serial platform manipulators is considered. Serial platform manipulators are cre-
ated according to the development of the platforms and closed loops. Also a new structural formula of mobility of parallel
Cartesian platform robot manipulators is presented. Structural synthesis of serial platform manipulators with lower and
higher kinematic pairs with respect to their structures are also examined. Structural synthesis of parallel Cartesian platform
robot manipulators is also introduced. History of structural formulas DOF are presented as a table with equations,
authors, years and some commentaries. New and revised methods for structural synthesis of serial platform manipulators
and parallel Cartesian platform robot manipulators are illustrated along with examples.
� 2006 Elsevier Ltd. All rights reserved.
Pep.ve

ı gpelcnabkeyyoq pa,one paccvanpbba.ncz ıogpocs cnpyrnypyouo cbynepa gkanaopveyysx vaybgykznopob
gockelobaneksyoq cnpyrnyps. Coplaybe gkanaopveyysx vaybgylznopob goclelobanelsyoq cnpyrnyps ocyobaya ya
papbbnbb gkanaopv b pavryynsx roynypob. ı pa,one gpelcnabgeya yobaz cnpyrnypyaz aopvyka, a nar;e
paccvanpbba.ncz bogpocs cnpyrnypyouo cbynepa gkanaopveyysx vaybgykznopob gockelobaneksyoq cnpyrnyps c
ybpobvb b bscobvb gapavb c noxrb ppeybz bx cnpryrnyps. Bcnopbz cnpyrnypys aopvyk cnegeyb golbb;yocnb
gpelcnabkeya b bble na,kbws c ypabyeybzvb, aınopavb, uolavb b yeronopsvb roveynapbzvb. Hobse b gepecvonpeyyse
venols cnpyrnypyouo cbynepa gkanaopveyysx vaybgykznopob gockelobaneksyoq cnpyrnyps bkk.cnpbpy.ncz papkbxsvb
gpbvepavb.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Structural groups; Mobility loop-legs equation; Serial platform manipulators; Parallel Cartesian manipulators
0094-114X/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.mechmachtheory.2006.05.005

* Corresponding author. Tel.: +90 232 750 6544; fax: +90 232 750 7890.
E-mail addresses: rasimalizade@iyte.edu.tr, alizada_rasim@hotmail.com (R. Alizade).

https://core.ac.uk/display/324143835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rasimalizade@iyte.edu.tr
mailto:alizada_rasim@hotmail.com


R. Alizade et al. / Mechanism and Machine Theory 42 (2007) 580–599 581
1. Introduction

Structural synthesis problem is the first step in the design of new robot manipulators and the fundamental
concept in robot design. The mobility of robotic mechanical system describes the number of actuators needed
to define the location of end-effectors. It is important that the mobility or the degrees of freedom of robot
manipulators (M > 1) indicates the number of independent input parameters to solve the problem of all the
configuration of robots or a kinematic chain with several actuators. If mobility of the kinematic chain is equal
to zero (M = 0) and cannot be split into several structural groups, we will get a simple structural group. Com-
bining the simple structural groups with actuators, we can get serial or parallel robot manipulators. IFToMM
terminology defines ‘‘manipulator that controls the motion of its end-effector by means of at least two kine-
matic chains going from the end-effector towards the frame’’ as parallel manipulator. In parallel manipulators,
two platforms cannot be connected by kinematic pairs to each others.

Serial platform manipulators control the motion of the platforms by means of at least two platforms, which
are connected by kinematic pairs, and other kinematic chains going from the platforms towards the frame.
Several connections of the links in series for gripping and the controlled movement of objects are called serial
manipulators. Combination of serial and parallel manipulators gives hybrid robot manipulators. Complex
robot manipulators consist of independent loops with variable general constraint (k = 2, 3, 4, 5, 6).

The history of works about the number of independent loops was done by Euler [1]. Then in the second half
of the 19th century, the first structural formulas of mechanisms by Chebyshev [2], Sylvester [3], Grübler [4],
Somov [5], Gokhman [6] were created. As shown in Table 1, in the mobility equations we can find concepts
of the number of independent loops (L), degrees of freedom or mobility of mechanisms (M), the loop motion
parameters (k), the number of joints (j), number of moving links (n), number of mobility of kinematic pairs (f)
and independent joint constraints (s), number of passive mobilities (jp), and the number of overclosing con-
straints (q). To describe and compare the structural formulas and the parameters in structural analysis and
synthesis of robotic mechanical system, the unique key controlling parameters are used as shown in Table 1.

Furthermore, the concepts of the structural formulas and simple structural groups were developed in the
first half of the 20th century by Koeings [7], Assur [8], Muller [9], Malushev [10], Kutzbach [11], Kolchin
[12], Artobolevskii [13], Dobrovolskii [14]. As shown in Table 1, some new concepts in the problem of struc-
tural analysis and synthesis of mechanisms had been reached as number of screw pairs (Sc), simple structural
groups with zero mobility (M = 0), number of kinematic pairs with i class (pi, where i is the number of joint
constraint), number of links with variable length (nv), variable general constraint (kK), and the family of the
elementary closed loop (dK = 6 � kK).

During the second half of the 20th century, the productive results to find general methods for determination
of the mobility of any mechanisms had been obtained by Moroshkin [15], Voinea and Atanasiu [16], Paul [17],
Rössner [18], Boden [19], Ozol [20], Waldron [21], Manolescu [22], Bagci [23], Antonescu [24], Freudenstein
and Alizade [25], Hunt [26], Herve [27], Gronowicz [28], Davies [29], Agrawal and Rao [30], Dudita and Dia-
conescu [31], Angeles and Gosselin [32], Alizade [33], McCarthy [34]. In the calculation of mechanism mobil-
ity, the following new parameters were used (Table 1), as the rank of linear independent loop equations or the
order of the equivalent screw system of the closed loop (r), relative displacements of the joint (m), number of
independent, scalar, differential loop-closure equations (kK), the rank of the coefficient matrix (r(j)), finite
dimensional vector space (d(v)), new formula of the number of independent loops (L = jB � B � cb, where
jB is the total number of joints on the platforms, and cB is the total number of branches between moving plat-
forms and B is the number of moving platforms), serial open chains connecting to ground or total number of
robot legs (cl), and the degree of constraint of the platform (U). It should be noted that, branches are the kine-
matic chains that connects mobile platforms to each others, and legs are the kinematic chains that connects
mobile platforms to the fixed frame.

In the beginning of 21st century, further developments of robotic science has arisen the interest in scientific
investigations. New parameters in the structural formulas describing the real physical essences should be cre-
ated in the new investigations and be more suitable for the use in practice in new subjects. In this direction, last
investigations can be introduced as Huang [35], Alizade and Bayram [36], Gogu [37], Alizade, Bayram and
Gezgin (formulas #38 in Table 1). In the calculation of degrees of freedom of mechanisms, the following
new parameters are used in the structural formulas, as a new formulation of the number of independent loops



Table 1
Formulas for structural analysis and synthesis

Equations Authors Commentary

1 L = j � l + 1 Euler [1] L is the number of independent loops
l is the number of links; j is
the number of joints

2 3lm � 2j � 1 = 0 Chebyshev [2] Equation for planar mechanisms
with 1 dof

0 < j� jm < 1þ 1
2 l jm is the number of moving joints

jm > l � 3 lm = n = l � 1 lm = n is the number of moving links

3 3l � 2j � 4 = 0 Sylvester [3] Equation for planar mechanisms
with 1 dofj = n � 1

4 (a) M = 3l � 2j � 3 Grübler [4] M is mobility of mechanisms. dof
depends from the rank of functional
determinant (r = 3, 2)

(b) 3l � 2j � 4 + q = 0 (a) dof for planar mechanisms
(c) 2l � j � 3 = 0 (b) Equation for kinematic chains

with revolute R and prismatic P pairs
(d) 3l � 2j � 4 + q � C = 0 (c) Equation for plane mechanisms

just with prismatic P pairs
(e) 5H � 6l + 7 = 0 (d) Equation for kinematic chains

with revolute, prismatic and cam pairs
or M = 6(l � 1) � 5p1 (e) dof of spatial mechanisms with

helical joints
q is the number of overclosing constraints
p1 is the one mobility joints
C is the number of cam pairs
H is the number of helical joints

5 (a) l � (k � 1)(m + 1) = 2 Somov [5] (a) Equation for plane (k = 3) and spatial
(k = 6) mechanisms (M = 1)

ðbÞ lþ qþ
P

Ku � ðk� 1Þðmþ 1Þ ¼ 2 (b) Equation for plane and spatial
mechanisms (M = 1)

ðcÞ M ¼ ðl� 1Þ þ
P

fi � j� 5Lþ q (c) Somov’s universal structural formula
l = 5m + 7, k = 6, m = L � 1, k is the number of independent parameters

describing the position of rigid body
(general constraint parameter)P

Ku ¼ jp � 1
jp is the passive mobilities in the joints
fi is the mobility of kinematic pairs

6 (a) k(l � 1) � S = 1 Gokhman [6] (a) Equation for plane and spatial
mechanisms (M = 1)

S ¼
P
ðk� iÞfi is the total number

of independent joint constraints
(b) Loop mobility criterion (M = 1)

ðbÞ
P

fi � kL ¼ 1 (c) Equation for mechanisms (M = 1) Eqs.
(a) and (c) gives Euler’s equation

(c) k(j � L) � S = 1

7 M = 6n � S Koeings [7] Mobility equations for spatial mechanisms
(similar to Gokhman equation)

8 3n � 2j = 0 Assur [8] Equation for simple structural groups

9 (k � 1)Ss � kl + (k + 1) = 0 Muller [9] Equation for kinematic chains with screw pairs
(similar to M. Grubler equation)M = kn � (k � 1)Ss

Ss is the number of screw pairs

10 M ¼ 6ðl� 1Þ �
P5

i¼1ipi þ q� nv Malushev [10] Universal Somov-Malushev’s mobility equation
pi is the kinematic pairs with i class nv is the number of links with variable length
i = number of joint constraint
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Table 1 (continued)

Equations Authors Commentary

11 M ¼ kðl� j� 1Þ þ
Pj

i¼1fi Kutzbach [11] Other form of universal mobility equation
M ¼ kðl� 1Þ þ

Pj
i¼1ðk� iÞfi

12 M = 3(l � 1) � 2(P + R + K) � p2 Kolchin [12] Structural formula for planar mechanisms.
P is the number of prismatic pairs K is the number of higher pairs with pure

roll or pure slippage
R is the number of revolute pairs p2 is the number of higher pair with rolling

and slipping

13 M ¼ 6n�
Pj

i¼1Sj þ
PL

K¼1dK þ q Artobolevskii [13] Other form of universal mobility equation first
time in mobility equation, it is used variable
general constraint as variable number of
independent close loops family

dK = 6 � kK is the family of the
elementary closed loop or the number
of independent constraints in the loops

kK is the variable general constraint

14 M ¼ kn�
Pk�1

i¼1 ðk� iÞpi þ q Dobrovolskii [14] Other form of universal structural formula
k = 2, . . . ,6

15 ðaÞ M ¼
P

iipi � r Moroshkin [15] (a) Structural equation of system with the
integrable joining

ðbÞ M ¼
P

iipi �
P

kkLk (b) Equation of the dof with variable
general constraint

i = 1, . . . ,5 k = 2, . . . ,6 (c) Number of independent close loops
(c) L = j � n r = k is the rank of linear independent loop

16 M ¼
Pj

i¼1fi �
PL

K¼1rK � jp Voinea and
Atanasiu [16]

Mobility equation of a complex mechanismsPj
i¼1fi is the total number

dof of joints with revolute,
prismatic and helical joints

1 6 rK 6 6 is the rank of screw system

17 L = j � l + 1 Paul [17] Using formula #1, it was created topological
condition of criterion for the degree of
constraint of plane kinematic chains

18 M ¼
Pj

i¼1fi � 6ðj� lþ 1Þ Rössner [18] The mobility equation taking into consideration
Euler’s formula #1

19 M ¼
Pj

i¼1fi � 6ðj� lþ 1Þ � 3ðj� lþ 1Þ Boden [19] Mobility equation, consisting from the planar
and the spatial loops

20 ðaÞ M ¼
Pj

i¼1fi � 6Lþ q Ozol [20] (a), (b), and (c) mobility equations for variable
general constraint, as k = 6, 3, 2 with
excessive constraints

ðbÞ M ¼
Pj

i¼1fi � 3Lþ q (d) mobility equation for cylindrical
mechanisms (k = 2)

(c) M = 2(l � 1) � j + q

(d) M = j � 2L + q

21 M = F � r Waldron [21] Mobility equation of closed loop r is the order of
the equivalent screw system of the closed loopF is the relative freedom between links

22 M ¼
P5

i¼rþ1ð6� iÞpi � ð6� dÞL Manolescu [22] Mobility equation with the parameter of the family
of the elementary closed loop

23 M ¼ 6ðl� 1Þ �
P5

i¼1ð6� iÞfi

þ
PL

K¼1dK þ
P

q�
P

jp

Bagci [23] Mobility equation to calculate dof of motion in a
mechanism similar to equation #13 by
adding parameter jp

24 M ¼ ð6� daÞðl� 1Þ �
P5

i¼1ði� daÞpi Antonescu [24] Mobility formulas with different values for the
motion coefficient k (formula #14)

(continued on next page)
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Table 1 (continued)

Equations Authors Commentary

25 ðaÞ M ¼
PE

i¼1mi �
PL

K¼1kK Freudenstein and
Alizade [25]

Mobility equations without exception

ðbÞ M ¼
Pj

i¼1fi �
PL

K¼1kK
(a) and (b) mobility equations are used for
mechanisms which contain mixed independent
loops with variable general constraint.

ðcÞ M ¼
PE

i¼1mi � kL (c) and (d) Mobility equations of mechanisms with
the same number of independent, scalar loop closure
equations in each independent loop.

ðdÞ M ¼
Pj

i¼1fi � kL kK is the number of independent, scalar, differential
loop closure equations

k = 2,3,4,5,6 k is the dof of space where the mechanism operates
E is the total number of independent
displacement variable
mi is the relative displacements of the joints
fi is the relative joint motion
when mi correspond in 1:1 with dof in joints

26 M ¼ kðl� j� 1Þ þ
Pj

i¼1fi Hunt [26] Mobility equation coming from
Eq. (25d) using Eq. (1)

27 M ¼ kðl� 1Þ �
Pj

i¼1ðk� fiÞ Herve [27] Mobility formula based on the algebraic
group structure of the displacement set

28 M ¼
P

kK �
PL�1

K¼1

PL
j¼Kþ1F Kj Gronowicz [28] Mobility equation for multi loop kinematic chains

FKj is the mobility of the joints that
is common between any two loops K

and j, and the mobility of the joints in the
L loops can be counted once or twice

29 M ¼
Pj

i¼1fi � r Davies [29] Mobility equations similar to Eq. (#15a) r is the rank
of the coefficient matrix of constraint equations

30 M ¼
PL

K¼1kK �
PL�1

K¼1

PL
j¼Kþ1F Kj

þ
PN1

i¼1
1
2 ð~n2

i þ ~ni � 2ÞF ~ni

þ
PN2

i¼1
1
2 ðn2

i � 3ni þ 2ÞF ni

Agrawal and
Rao [30]

Mobility equation to any general mechanism
with constant or variable general constraints with
simple or multiple joints
N1,N2 is the total number of internal and external
multiple joints, respectively
~ni; F ~ni; ni; F ni is the number of links and the
mobility of simple joints forming the ith internal
and external multiple joints, respectively

31 ðaÞ M ¼
Pj

i¼1f e
i �

PL
K¼1k

e
K Dudita and

Diaconescu [31]
Equation of a elementary or a complex (multi loop)
mechanisms

ðbÞ M ¼
PL

K¼1kK �
P

jðLcomj � 1Þf e
comj f e

i is the active mobilities in ith joint
Lcomj is the number of loops
with common joint j

ke
K is the dimension of the active motion space

f e
comj is the active degree of mobility

of the jth common joint

32 M = nullity(J) Angeles and
Gosselin [32]

The mobility equation by using the Jacobian matrix
of a simple or multi loop closed kinematic chain
without exception

nullity(J) = d(v) � r(J)
J is the Jacobian matrix;
r(J) is the rank of
the Jacobin matrix; d(v) is the
finite dimensional vector space v

33 (a) L = jB � B � cb Alizade [33] (a) A new formula of number of independent loops
ðbÞ M ¼

PE
i¼1mi � kðjB � B� cbÞ þ q� jp (b) and (c) are structural formulas as a function

of number of branches, platforms and sum of
mobility of kinematic pairs and other parameters

ðcÞ M ¼
Pj

i¼1fi � kðjB � B� cbÞ þ q� jp (d) Equation for simple structural groups
(k = 6,5,4,3,2)

ðdÞ
Pj

i¼1fi ¼ kðjB � B� cbÞ cb is the total number of branches between
mobile platforms
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Table 1 (continued)

Equations Authors Commentary

B is the number of mobile platform; jB is the
total number of joints on the mobile platforms

34 M ¼ k�
Pcl

i¼1ðk� fiÞ (k � fi) is the degree
of constraint of the platform

McCarthy [34] Mobility equation of a parallel manipulator

35 M ¼ ð6� dÞðl� j� 1Þ þ
Pj

i¼1fi þ q Huang and Li [35] Structural formula for parallel mechanisms

36 ðaÞ M ¼
Pj

i¼1fi � kðc� BÞ Alizade and
Bayram [36]

(a) Mobility equation of mechanisms
ðbÞ

Pj
i¼1fi ¼ kðc� BÞ (b) Equations for simple structural groups

(c) L = c � B, c = cl + cb, cl = jB � 2cb (c) New formula of the number of independent loops
c is the sum of legs and branches, cl is the total
number of legs, connecting mobile
platforms to ground

37 M ¼
Pj

i¼1fi �
Pl

j¼1Sj þ Sp Gogu [37] Mobility equation for parallel mechanisms
Sp and Sj are spatialities of mobile
platform and legs, respectively

38 ðaÞ M ¼ ðB� cÞkþ
Pj

i¼1fi þ q� jp Alizade, Bayram
and Gezgin

(a) Mobility equation for robotic systems with
independent loops with variable general constraint

ðbÞ M ¼ ðkþ 3Þ þ
Pcl

l¼1ðdl � DÞ
þ
Pcl

l¼1ðfl � klÞ þ q� jp; c ¼ cl þ cb þ ch

(b) A new structural formula of mobility
loop-legs equation for parallel Cartesian
platform manipulators.

D is number of dimensions of
vectors in Cartesian space

k is the general constraint parameters of
simple structural group

dl is number of dimensions of
vectors in subspace

ch is the number of hinges
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(L = c � B) and new formulation for simple structural groups (
P

fi = k(c � B)), where c = cb + cl + ch, ch is
the number of hinges between moving platform, and c is the total number of connections. Also note that,
hinges are the revolute pairs that connect mobile platforms to each others. For describing and comparing
structural formulas and parameters in structural analysis and synthesis of robotic mechanical system the
unique key controlling parameters are used as shown in Table 1.

The basis of structural synthesis of manipulators are based on the principles of truss kinematical unchang-
ing. Determination of indivisible groups as simple structural groups and creating different new manipulators
by using their combination had been done by striving to systematize investigation methods of manipulators.

Firstly, Assur [8] developed the concept of the open chain and utilized this concept for plane structure clas-
sification. Secondly, the problem of structural synthesis and analysis was investigated by Malushev [38]. The
problem of structural synthesis for spatial mechanisms was introduced by Artobolevskii [39]. The task of
structural synthesis was solved by using method of developing closed loops. The classes of structural groups
are defined by the number of links of the closed loops and the order is equal to the number of legs.

According to the method of structural synthesis that is given by Baranov [40] spatial and plane structural
groups have been created from correspond trusses, and class of simple structural groups are defined by the
number of closed loops. Prof. Kolchin [41] has introduced concept of passive constraints to account for exis-
tence of the paradoxical mechanisms. That concept has not presented any means for identifying the geometric
conditions that determine the general constraints. The problem of general constraint parameter was done by
Voinea and Atanasiu [42] as the rank of the matrix of coefficients of the unknowns in a system of equations
describing the angular velocities of the relative helicoidal movements. Ozol [43] was taken as a straight point in
the theory of structural synthesis by the topological property of mechanisms.

The methods of structural synthesis reported by Davies and Crossley [44], Dobrjanskyi [45], Buchsbaym
[46], Freudenstein [47], Dobrjanskyi and Freudenstein [48], Manolescu [49] were based on graph theory to find
the set of kinematic chains and mechanisms.

The problems of structural analysis and synthesis of plane and spatial structural groups of higher classes
were done by Djoldasbekov and Baygunchekov [50] also. Determination of structural groups by using the
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principles of dividing joints and the method of developing joints were done by Dobrovolskii [14] and Kojevni-
kov [51], respectively.

The structure theory of parallel mechanisms based on the unit of single-open chains was done by Yang
[52,53], and the type synthesis of spatial mechanisms on the basis of spatial single loop was introduced by
Alizade, Hajiyev and Sandor [54]. The concept of dual graphs and their applications to the automatic
generation of kinematic chains was done by Sohn and Freudenstein [55].

A computer-aided method for structural synthesis of spatial manipulators by using method of developing
mobile platforms and branches was done by Alizade [36,56]. Class of the structural group is defined by the
number of mobile platforms, kind is defined by the set of joints on the mobile platforms, type of the structural
group is determined by the number of branches between mobile platforms, and order describes the number of
legs that connect mobile platforms to the ground. A computer-aided method for structural synthesis of planar
kinematic chains was introduced by Hwang and Hwang [57], and the concept of loop formation which cancels
the necessity of the test for isomorphism was also introduced by Rao and Deshmukh [58].

According to the structural synthesis of parallel mechanisms based on the unit of single-open chains, a class
of 3 dof (3 translation motion), 5 dof (3 translation and 2 rotation), and 6 dof (3 translation and 3 rotation)
parallel robot manipulators were analyzed by Yang et al. [59–61].

The parallel robot manipulators have precise positioning capability, good dynamic performance and high
load carrying capacity. However, the 6 dof parallel structures have poor workspace and the direct kinematic
solution gives high coupling degree between independent loops. On the other hand, we need to design the
given translation and rotation motion of mobile platform. Analysis of research topics mentioned above show
that the systematic study of mobility equations of mechanical systems have been described from different
points of view, but systematic study of structural synthesis is relatively weak.

Furthermore, this paper enunciates a new structural formula of mobility and new method of designing
robot manipulators, the mobile platform that can generate general motion in space, and also generate con-
straint motion in subspaces. In the meantime, the structural synthesis of serial platform manipulators is iden-
tified according to the new equations for simple serial platform structural groups. General guidelines are
presented with nine new robot manipulators and tables of serial platform structural groups for designing
new several serial platform manipulators.

2. Structural formula

An important class of robotic mechanical system consists of parallel platform manipulators, serial platform
manipulators, multiple serial chains, and hybrid robotic mechanical systems. One or more grippers can be con-
nected to one or several platforms. That system will describe one or more gripper robotic system. All platform
robotic mechanical systems constructed from the actuators and simple structural groups consist of one or
more platforms, legs, branches and hinges. Usually actuators are connected to legs. For these robotic mechan-
ical systems loop mobility equations have been used [25,33,36]. Other new method of structural synthesis of
robot manipulators consists from connecting the simple structural groups to actuators and moving platform.
Therefore, if the platform moves in Cartesian system coordinates, simple structural groups will be constructed
in the orthogonal planes separately. For these robotic mechanical systems a new loop-legs mobility equation
has been used (formulas #38 in Table 1). In this section, the mobility of these systems are determined. The
structural synthesis of serial platform manipulators is based on the structural synthesis of parallel platform
manipulators that was described in [36].

Moving platforms that are supported by cl legs, cb branches, and ch hinges, will have the total number dof
of joints of the legs as

PCl
i¼1fli, branches as

PCb
i¼1fbi, and the hinges as

PCh
i¼1fhi, respectively. The total number of

legs, branches and hinges gives:
c ¼ cl þ cb þ ch ð1Þ

And, the total number dof of joints of all legs, branches and hinges would be:
XC

i¼1

fci ¼
XCb

i¼1

fbi þ
XCl

i¼1

fli þ
XCh

i¼1

fhi ð2Þ
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All branches, legs and hinges of the manipulators create independent loops as Lb = cb � B + 1, Ll = cl � 1 and
Lh = ch, respectively, the number of independent loops in closed kinematic chains as shown in [36] can be
introduced as:
L ¼ Lb þ Ll þ Lh ¼ cb þ cl þ ch � B ¼ c� B ð3Þ

Using Eqs. (1)–(3) we can formulate the following.

Definitions

• Total number of connection chains is the sum of the number of branches’, legs’, and hinges.
• Number of independent loops in closed branches’ kinematic chains is the difference of the number of

branches and platforms plus one.
• Number of independent loops in closed legs’ kinematic chains is one less of the number of legs.
• Two platforms that are connected by a hinge will create independent loop.
• Number of independent loops in a closed kinematic chain is the difference of the number of the connection

chains and platforms.

Rejoining the moving platforms of these branches, legs, and hinges to form separate B platforms in a space
with kB dof, is the same as removing L = c � B independent loops from the system to form kinematic chains
with

PC
i¼1fci ¼

Pj
i¼1fi. Using structural formula [33], we can describe the mobility loop equation in the follow-

ing form:
M ¼
Xj

i¼1

fi � kðjB � B� cbÞ þ q� jp ¼
XC

i¼1

fci � kðc� BÞ þ q� jp ¼ kBþ
XC

i¼1

ðfci � kÞ þ q� jp ð4Þ
where, kB = MB is the sum of mobilities of all platforms in the unconstrained space or subspace, andPc
i¼1ðfi � kÞ ¼ Mc is the sum of constraints imposed by the legs, branches and hinges.
Each leg, branch, and hinge separately introduces an insufficient (fci � k < 0), sufficient (fci � k = 0), or a

redundant (fci � k > 0) kinematic chain. Sum of degrees of freedom of all platforms and the degrees of con-
straint that is imposed by kinematic chains describe the mobility of serial platform and parallel platform
manipulators.

Mobility loop Eq. (4) for robotic systems with independent loops with variable general constraint could be
described as follows:
M ¼ ðB� cÞkþ
XC

i¼1

fci þ q� jp ð5Þ
where, k = 2,3,4,5,6.
Different new platform manipulators could be designed in subspaces k = 2,3,4,5 and in general space

k = 6.
The aim of the new method of structural synthesis is:

• Using formula (5) we can describe the simple structure groups (M = 0) for subspaces k = 2,3,4,5 and for
general space k = 6 as shown in [36]. A classification of sets of lines linearly dependent on one, two, three,
four and five given lines have been introduced by McCarthy notation in [34, pp. 272–282].

• Simple structural groups can be connected to the general moving platform and the actuators that are posi-
tioned in the orthogonal Cartesian planes.

• Each actuators will moved (or rotated if it is possible) along the orthogonal Cartesian coordinate system.

Now, our problem is to describe a new structural formula for platform manipulators which operates in
Cartesian space or subspace and its legs consist from simple structural groups and actuators operates in
orthogonal planes.

Euclidian space geometry introduces that any three vectors that are not on the same plane define a space
with dimension D = 3, also any two non-zero independent vectors define a plane with dimension d = 2, and in
the end, one vector define a line passing through origin of coordinate system d = 1.
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Let the number of independent parameters describing the structural groups of three legs cl = 3 that are
placed in three orthogonal planes is k. The general moving platform and the actuators, positioned along
orthogonal axis, are connected by simple structural groups with general constraint parameters k = 3,4,5,6.
Each simple structural group creates the legs and introduces the plane or line with two or one dimensions,
thus the total number of leg dimensions are

PCl
l¼1dl, where d = 1 or d = 2. The dimension of constraint of

the general moving platform that is imposed by dimensions of each leg can be written as
PCl

l¼1ðdl � DÞ. Thus,
the motion of the general moving platform in Cartesian orthogonal system will be in the following form:
mp ¼ ðkþ 3Þ þ
XCl

l¼1

ðdl � DÞ ð6Þ
The mobility of legs of the general moving platform is:
Ml ¼
XCl

l¼1

ðfl � klÞ þ q� jp ð7Þ
where kl is the general leg constraint, fl is dof of leg kinematic pairs.
As a result, the mobility of parallel Cartesian platform robot manipulators consist from the motion of the

general moving platform mp, and the mobility of legs Ml moving in orthogonal planes
M ¼ mp þMl ð8Þ

Combining the Eqs. (6)–(8) we can describe the new structural formula of mobility loop-legs equations as
follows:
M ¼ ðkþ 3Þ þ
XCl

l¼1

ðdl � DÞ þ
XCl

l¼1

ðfl � klÞ þ q� jp ð9Þ
Example 1. Let us design three parallel Cartesian platform manipulators, where the motion of the general
moving platform has translational motions Pz, Py–Pz, and Px–Py–Pz, respectively.
(A) For the first orthogonal robot manipulator we will take three simple structural groups RRR from the

subspace k = 3, one linear actuator moving along z-axis, and for symmetry two links rotating around
x and y-axes (Table 2.1). In each orthogonal plane, simple structural groups will be connected to the
general moving platform, actuator and two rotation links. Using mobility loop-legs Eq. (9) we can cal-
culate the mobility of the type PRR-[RRR]-2RRR parallel orthogonal robot manipulator as:
q ¼ 0; jp ¼ 0; k ¼ 3; kl ¼ ð3; 3; 4Þ; dl ¼ ð1; 1; 2Þ;

P
fl ¼ 12;M ¼ 3. By using Eqs. (6) and (7) the

motion of the general moving platform and the mobility of legs will be mp = 1 and Ml = 2, respectively.
(B) For the second orthogonal robot manipulator we will take three simple structural groups (n = 4, p1 = 6,

M = 0, k = 3) which will be connected to the general moving platform, two linear actuators along y and
z-axes, and for symmetry one link rotating, around x-axis (Table 2.2). Using the same procedure we can
calculate the structural parameters of the type 2PR(RRR)[RR-RR-RR]-(RRR)RR parallel orthogonal
robot manipulator as: M = 3, mp = 2, Ml = 1. Note that the mobility of each leg will be calculated from
two loops as: Ml = [(4 � 3)+(3 � 4)]+[(4 � 3)+(3 � 4)]+[(4 � 3)+(3 � 3)]=1.

(C) For the third orthogonal manipulator we will follow the same steps in Example 1(B) except three actu-
ators will be used along the x, y, and z-axes (Table 2.3). The structural parameters for 3PR(RRR)[RR-
RR-RR] parallel orthogonal manipulator will be M = 3, mp = 3, Ml = 0.
Example 2. Let us design two parallel Cartesian platform manipulators, where, in first, the motion of the
general moving platform has three rotational motions Rx, Ry, Rz and one translational motion on the line in
x–y plane (Pxy) and in second, the motion of the general moving platform has one rotational motion Rz and
three translational motions Px, Py and Pz.
(A) For the first orthogonal robot manipulator we will take three simple structural groups RRRR from the
subspace k = 4, and three linear actuators moving along x, y and z-axes (Table 2.4). In each orthogonal
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New parallel Cartesian robot manipulator types
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� Ml = �3 comes from the passive degrees of freedom, jp = 3.
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plane, simple structural groups will be connected to the general moving platform and actuators. Using
mobility loop-legs Eqs. (9), (7) and (6) we can calculate the structural parameters of the type
3PRRR[RRR] parallel orthogonal robot manipulator as: M = 4, mp = 4, Ml = 0. Note that to reach
the given motion of the general moving platform we need to add one more actuator.

(B) For the second orthogonal robot manipulator we will take three simple structural groups RCR from the
subspace k = 4, which will be connected to the general moving platform, three rotational actuators in x,
y and z-axes (Table 2.5). Using the same procedure we can calculate the structural parameters of the type
3RRC[RRR] parallel orthogonal robot manipulator as: M = 4, mp = 4, Ml = 0. We need additional one
actuator to reach the given motion of the general moving platform.
Example 3. Let us design a parallel Cartesian platform manipulator, where the motion of the general moving
platform has three rotational motions Rx, Ry, Rz and three translational motions Px, Py and Pz. First we will
take three simple structural groups STR from the space k = 6, and three linear actuators moving along x, y

and z-axes (Table 2.6). In each orthogonal plane, simple structural groups will be connected to the general
moving platform and actuators. Using mobility loop-legs Eqs. (9), (7) and (6) we can calculate the structural
parameters of the type 3PRT[SSS] parallel orthogonal robot manipulator as: M = 9, mp = 6, Ml = 3. Note
that to reach the given motion of the general moving platform we need to add six more actuators. Also to get
rid of excessive mobility (M = 6, mp = 6, Ml = 0) we can connect each k = 6 structural group directly to the x,
y and z-axes (Table 2.6–2.7–2.9).

Note: Due to the fact that, using the same analogy, in all our trials with k = 5 structural groups, the legs of
the parallel Cartesian platform manipulators are converted to k = 6 structural groups, the motion of the
manipulators is transformed into Rx, Ry, Rz, Px, Py and Pz (Table 2.6–2.9). So that investigation for
mp = 5 with k = 5 structural groups will be continued in future.

3. Structural synthesis and classification of simple serial platform structural groups

Serial platform kinematic chains means that, at least two platforms are connected by hinge kinematic pairs
(and, therefore, zero number of branches as well) and all legs are going from the mobile platforms to the
frame.

The problem of creating simple structural groups for plane and spatial serial platform kinematic chains is
considered by developing platforms and closed loops. Simple serial platform structural group is the one that
cannot be splitted into several other structural groups with smaller number of links. A simple serial platform
structural group have the mobility equal to zero (M = 0), thus the number of input parameters are zero.

The plane simple structural groups can be created by lower and higher kinematic pairs, and spatial struc-
tural groups by hinge, revolute, spheric and slotted spheric kinematic pairs. Using exchangeability of kine-
matic pairs we can describe different structure of simple structural group (and, therefore, the hinge joint
between mobile platforms is not changed, as well).

For creating simple structural platform structural groups, mobility loop Eq. (5) could be described as
follows:
ðB� cÞkþ
Xc

i¼1

fci ¼ 0 ð10Þ
where c = cl + ch, as cb = 0.
Simple structural group Eq. (9) for subspace k = 3, and for general space k = 6 can be introduced, respec-

tively as:
Xclþch

i¼1

fci ¼ 3ðcl þ ch � BÞ ð11Þ

Xclþch

i¼1

fci ¼ 6ðcl þ ch � BÞ ð12Þ
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Simple structural groups of serial platform manipulators in subspace k = 3
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Simple structural groups of serial platform manipulators in space k = 6
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The additional conditions of structural synthesis of serial platform kinematic chains can be introduced as
following equalities and inequalities:
ðaÞ L ¼ cl þ ch � B; ðbÞ cl ¼ jB � 2ch; ðcÞ j ¼ 3L; j ¼ 6L

ðdÞ jl ¼ j=cl; ðeÞ 3 6 jB 6 6; ðf Þ c ¼ cl þ ch; ðgÞ B P 2
ð13Þ
Using objective functions (10)–(12) and additional equality and inequality constraint conditions (13), com-
puter software of structural synthesis of simple serial platform structural groups has been created. Results of
plane and spatial simple serial structural groups are presented in the following Tables 3 and 4.

The algorithm of structural synthesis of serial platform simple structural groups can be summarized step by
step as follows:

• Take subspace k = 3, or general space k = 6.
• Select values for B and jB Eqs. (13e) and (13g).
• Select value for hinge joints ch and calculate the number of legs cl Eq. (13b).
• Calculate the number of independent loops L Eq. (13a).
• Calculate the number of joints j with one dof Eq. (13c).
• Place the joints on legs Eq. (13d) and selected hinge joints ch between mobile platforms.
• Using the principle of exchangeability of kinematic pair, replace the joints with one dof with higher and

other kinematic pairs.
• The mobility of manipulator is equal to the number of actuators (Eq. (5)) added to the legs of simple serial

platform structural group.

The simple serial platform structural groups in subspace k = 3 and in general space k = 6 has been intro-
duced by serial platform kinematic chains with open loops Bo, closed loops Bc, and mixed open and closed
loops Bo+Bc, as shown in Tables 3 and 4, respectively.

Example. To design spatial robot manipulator with 6 dof and two grippers placed on two mobile platforms.
Select from Table 4 simple serial platform structural group with cl = 6, and ch = 1, which consist from two
mobile platforms B = 2, and one hinge joint ch = 1, thus c = cl + ch=7 and joints on triangular platform
jB1 = 3, and on pentagonal platform jB2 = 5, and jB = jB1 + jB2 = 8. The number of joints of simple structural
group is

P
fi ¼ 30. Six actuators will be placed on six legs and spherical, prismatic, and revolute pairs are used
Fig. 1. 6 dof spatial serial platform robot manipulator.
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in this structure. Using Eq. (5) gives, M ¼ ðB� cÞkþ
PC

i¼1fci ¼ ð2� 7Þ6þ 36 ¼ 6 . The structure of serial
platform robot manipulator is introduced in Fig. 1.
4. Structural synthesis parallel cartesian platform robot manipulators

Kinematic chain shown in Table 5.1 is referred as a simple Cartesian structural group. Simple Cartesian struc-
tural group can be obtained by successive coupling of the three simple structural groups in the orthogonal planes
Table 5
Variations of actuators for simple structural group RRR (k = 3) of parallel Cartesian platform robot manipulators

Type di kl fl mp Ml M

1 1,1,1 3,3,3 3,3,3 0 0 0

2 1,1,1 3,3,3 3,3,4 0 1 1

3 1,1,2 3,3,4 3,3,4 1 0 1

4 1,1,1 3,3,3 3,4,4 0 2 2

5 1,1,2 3,3,4 3,4,4 1 1 2

6 1,2,2 3,4,4 3,4,4 2 0 2

7 1,1,1 3,3,3 4,4,4 0 3 3

8 1,1,2 3,3,4 4,4,4 1 2 3

9 1,2,2 3,4,4 4,4,4 2 1 3

10 2,2,2 4,4,4 4,4,4 3 0 3
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to the general moving platform. Thus, simple Cartesian structural group is one of the orthogonal parallel groups
that cannot be split into several orthogonal parallel structural groups with smaller members of links. A simple
Cartesian structural group has zero number of mobility (Eq. (9)), that is number of input links equals to zero.
ðkþ 3Þ þ
XCl

l¼1

ðdl � DÞ þ
XCl

l¼1

ðfl � klÞ ¼ 0 ð14Þ
Such structural group can be reached from Eq. (14) if and only if the motion of the general moving plat-
form mp = 0 and the leg mobility Ml = 0:
ðkþ 3Þ þ
XCl

l¼1

ðdl � DÞ ¼ 0 ð15Þ

XCl

l¼1

ðfl � klÞ ¼ 0 ð16Þ
The kinematic chain shown in Table 5.1 is the first simple Cartesian structural group that was constructed
in each orthogonal plane by simple structural group RRR, with the general constraint parameter kl = 3, and
the number of dimension d = 1.

The result of the generation principle of parallel Cartesian platform robot manipulators is shown in Table 5.
Every Cartesian robot manipulator was generated by the successive joining of orthogonal simple structural
groups to the actuators on the orthogonal frames. Table 5.2, 5.4, and 5.7 shows Cartesian robots with mobility
of legs Ml = 1,2,3 (Eq. (16)), motion of the general moving platform mp = 0 (Eq. (15)), and mobility of robot
manipulator M = 1,2,3 (Eq. (14)), respectively.

The generation of a parallel Cartesian platform robot manipulator with one motion of the general moving
platform mp = 1 can be generated by three kinematic chains as was shown in Table 5.3, 5.5 and 5.8. The
mobilities of legs are Ml = 0,1 and 2, and the mobilities of manipulators are M = 1, 2, and 3, respectively.

Table 5.6 and 5.9 indicates the two motions of the general moving platform mp = 2 with other parameters
as Ml = 0, 1 and M = 2, 3. The generation of the Cartesian robot manipulator with three motion of the
general moving platform mp = 3, mobility of legs Ml = 0, and the mobility M = 3 with three linear actuators
moving along the orthogonal axes was shown in Table 5.10.

In the end, generation of the variations of actuators for simple structural group RRR (k = 3) in the ortho-
gonal planes gives five parallel Cartesian platform robot manipulators (Table 5.5, 5.6, 5.8–5.10).

5. Conclusions

A new structural formula for spatial parallel manipulators having one general moving platform, working in
Cartesian space, having three legs that are placed in orthogonal planes introducing simple structural groups in
subspaces k = 3, 4 and general space k = 6, and connected to actuators and to the general moving platform is
introduced. History of formulas dof is presented as 38 equations with the unique key controlling parameters.
Nine new parallel Cartesian platform robot manipulators are introduced by applying new mobility loop-legs
equation. Structural synthesis of serial platform manipulators and parallel Cartesian platform manipulators
are considered. Simple serial platform structural groups in subspace k = 3, and general space k = 6 are presented
along with examples.
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