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a b s t r a c t

In this paper, we prove the exponential stabilization of solutions for complex Ginzburg–Landau equations
using finite-parameter feedback control algorithms, which employ finitely many volume elements,
Fourier modes or nodal observables (controllers). We also propose a feedback control for steering so-
lutions of the Ginzburg–Landau equation to a desired solution of the non-controlled system. In this latter
problem, the feedback controller also involves the measurement of the solution to the non-controlled
system.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study the complex Ginzburg–Landau equation
(CGLE), which is a mathematical model to describe near-critical
instability waves such as a reaction–diffusion system near a Hopf-
bifurcation. Specific applications of this equation include nonlinear
waves, second-order phase transitions, superconductivity, super-
fluidity, Bose–Einstein condensation and liquid crystals. See [1]
and the references therein for an overview of several phenomena
described by the CGLE.

The general form of the CGLE is written as

ut − (λ + iα)∆u + (κ + iβ)|u|pu − γ u = 0, x ∈ Ω, t > 0, (1.1)

where u denotes the complex oscillation amplitude, andβ ∈ R and
α ∈ R are the (nonlinear) frequency and (linear) dispersion param-
eters, respectively. The constants λ and κ are assumed to be strictly
positive.Ω is a general domain inRn and p > 0 is the source-power
index. (1.1) can be associatedwith Dirichlet, Neumann, periodic, or
mixed boundary conditions depending on the physical situation.
Note that Eq. (1.1) simultaneously generalizes the real reaction–
diffusion equation and the nonlinear Schrödinger equation, which
can be obtained in the limit as the parameter pairs (α, β) and (λ, κ)
tend to zero, respectively.

It is well-known that if the Benjamin–Feir–Newell stability cri-
teria (αβ > −1) fail to hold, then CGLE might possess unstable
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solutions such as the trivial solution and chaos might be observed.
The Stoke’s solution u(x, t) ≡

√
γ

κ
e−i βγ

κ t is another example of a
space independent periodic solution (for p = 2) whose perturba-
tions might be unstable [2]. Motivated by these observations, we
want to study the stabilization problem for the CGLE. We will be
interested only in the case γ > 0, since otherwise solutions already
decay to zero, and there is no room for instability.

Controlling chaotic behavior has been one of the major sub-
jects in the theory of evolution equations, and many approaches
have been developed. One such approach involves using local or
global interior control terms. Others involve external (boundary)
controls, especially in models where it is difficult or impossible
to access the medium. Using feedback type controls is a common
tactic to suppress the chaotic behavior and bring solutions back
to a stable state. However, non-feedback type controls (open loop
control systems) are also used for steering solutions to or near a
desired state. Exact, null, or approximate controllabilitymodels are
some examples.

Regarding the stabilization of the unstable solutions of the
Ginzburg–Landau equation, using an internal feedback has been
a common technique. From this point of view, both global (space
independent) and local (space dependent) controls were used. At
the beginning, time-delay local feedback controlmechanismswere
used (see [3–6]). Then, a linear combination of spatially translated
and time-delay local feedback control terms were introduced. For
example [7] and [8] used this technique to stabilize the one and two
dimensional Ginzburg–Landau equations with cubic nonlinearity,
respectively. There are also some works which combine both local
and global type feedback controls where a local control is by
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itself not sufficient to control the turbulence (see, for example [9]
and [10]). However, in some studies (e.g., [11,12]), only global
feedback controls were shown to be effective, too.

Contrary to the internal feedback control mechanisms men-
tioned above, boundary controls which are obtained by using
the so called ‘‘back-stepping’’ methodology were also used to
stabilize the solutions of Ginzburg–Landau evolutions, see for
instance [13] and [14] for stabilization of the linearized one-
dimensional Ginzburg–Landau equation from the boundary.

Using non-feedback type controls (i.e., open loop control sys-
tems) is another method to steer solutions of a system to a desired
state preferably in small time. One such choice for the desired
state is the zero state in which case one talks about the null-
controllability. For example, [15] proved the null-controllability
of the solutions of the Ginzburg–Landau equation both from the
interior and the boundary via a non-feedback type control.

It is well-known that the Ginzburg–Landau equation has a finite
dimensional asymptotic in-time behavior [16]. In other words,
there is a finite number of degrees of freedom for the Ginzburg–
Landaumodel. There has been some recent work utilizing this type
of finite dimensionality for other dissipative systems to construct
feedback controls that only use finitely many volume elements,
finitely many Fourier modes, or finitely many nodal observables.
For example, [17] studied the one dimensional cubic reaction–
diffusion equation, also known as the Chafee–Infante equation. The
authors presented a unified approach that can be applied to a large
class of nonlinear partial differential equations including the CGLE
that we study here. The study carried out in [17] was important
since it pointed out to the fact that the finite-dimensional asymp-
totic behavior is sufficient for constructing feedback controls for
most dissipative dynamical systems. See also [18] for a similar dis-
cussion of the nonlinear wave equation. Motivated by these recent
works, we study the complex Ginzburg–Landau equation subject
to a feedback control which uses only finitely many determining
systems of the parameters mentioned above.

More precisely, we study the following feedback control prob-
lems in this work:

(1) L2-stabilization of the one dimensional CGLE model with
finitely many volume elements.

(2) Both L2 and H1-stabilization of the CGLE model with finitely
many Fourier modes.

(3) Steering solutions of the CGLE model: (i) to any solution (ii)
to exponentially decaying solutions.

(4) L2-stabilization of the one dimensional CGLE model with
finitely many nodal observables.

Remark 1.1 (A Few Words on the Global Well-Posedness). Our
proofs are based on the multiplier technique and intrinsic prop-
erties of the feedback control. The multiplier method in our proofs
can be easily justified by classical methods where one works on
approximate solutions first and then passes to the limit in the
energy estimates. The approximate solutions as well as the global
solvability of the original models we study here can be obtained
by using different techniques. One method is to use the maximal
monotone operator theory where various terms in the equation
are first replaced by their Yosida approximations; see [19] and
the references therein. Another approach is of course using the
Galerkin procedure where the infinite dimensional model is pro-
jected on a finite dimensional subspace. Most recently, some Lp −

Lq estimates have been proved on the corresponding evolution
operator of the Ginzburg–Landau equation [20], from which one
can also obtain the solvability of solutions.Wewill omit the details
of these procedures in this paper, since the additional feedback
control terms that we use here do not add any extra difficulties
to the well-posedness problem. Hence, in all of our results we
will simply assume the existence of a sufficiently nice solution (in
time and space). Depending on the model posed, solutions will be
assumed to be at L2, H1, or H2 levels in space.

2. L2-stabilization with finite volume elements

In this section,we consider the Ginzburg–Landau equationwith
finite volume elements feedback control on a bounded interval
(0, L) with homogeneous Neumann boundary conditions at both
ends of the domain:

ut − (λ + iα)uxx + (κ + iβ)|u|pu − γ u

= −µ

N∑
k=1

ukχJk (x), x ∈ (0, L), t > 0, (2.1)

ux(0, t) = ux(L, t) = 0, t > 0, (2.2)

u(x, 0) = u0(x), x ∈ (0, l), (2.3)

where λ, κ, γ > 0, α, β ∈ R, Jk ≡
[ (k−1)L

N , kL
N

)
, uk ≡

1
|Jk|

∫
Jk
udx,

and χJk is the characteristic function on Jk for k = 1, 2, . . . ,N . The
right-hand side,which involves the local averages (observables) uk,
is regarded as a feedback controller.

In what follows, we will use the following equivalent definition
of H1(0, L)-norm for convenience.

∥u∥2
H1(0,L) ≡

1
L2

∥u∥2
L2(0,L) + ∥ux∥

2
L2(0,L).

Theorem 2.1. Let u be a sufficiently smooth solution of (2.1)–(2.3)
with
1
N2 < min

{
1 −

4γ
µ

,
4λ
µL2

}
. (2.4)

Then

∥u(t)∥2
L2(0,L) ≤ e−µ

(
1
2 −

2γ
µ −

1
2N2

)
t
∥u0∥

2
L2(0,L)

for t ≥ 0.

Proof. Taking the L2-inner product of (2.1) with uwe get∫ L

0
ut ūdx + (λ + iα)

∫ L

0
|ux|

2dx + (κ + iβ)
∫ L

0
|u|p+2dx

− γ

∫ L

0
|u|2dx = −µ

∫ L

0
Ih(u)ūdx, (2.5)

where Ih(u) ≡
∑N

k=1ukχJk (x). The feedback operator Ih is indeed
an interpolant operator approximating the inclusion H1(0, T ) ↪→
L2(0, L). More precisely, the following Bramble–Hilbert type in-
equality (see [17, Proposition 2.1]) holds true.

∥u − Ih(u)∥L2(0,L) ≤ h∥u∥H1(0,L) (2.6)

where h =
L
N is the step size. Writing

Ih(u)u = (Ih(u) − u)ū + |u|2,

taking two times the real part of (2.5), and using the Cauchy–
Schwartz inequality, we obtain

d
dt

∫ L

0
|u|2dx + 2λ

∫ L

0
|ux|

2dx + 2κ
∫ L

0
|u|p+2dx − 2γ

∫ L

0
|u|2dx

≤ −µ

∫ L

0
|u|2dx + µ

(∫ L

0
|u|2dx

) 1
2
(∫ L

0
|u − Ih(u)|2dx

) 1
2

. (2.7)

Applying Young’s inequality,

d
dt

∫ L

0
|u|2dx + 2λ

∫ L

0
|ux|

2dx + 2κ
∫ L

0
|u|p+2dx − 2γ

∫ L

0
|u|2dx

≤ −µ

∫ L

0
|u|2dx +

µ

2

∫ L

0
|u|2dx +

µ

2
∥u − Ih(u)∥2

L2(0,L). (2.8)
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Using the definition of the H1(0, L)-norm and the inequality (2.6)
we obtain,

d
dt

∫ L

0
|u|2dx + 2λ

∫ L

0
|ux|

2dx + 2κ
∫ L

0
|u|p+2dx − 2γ

∫ L

0
|u|2dx

≤ −
µ

2

∫ L

0
|u|2dx + µ

h2

2

(
1
L2

∫ L

0
|u|2dx +

∫ L

0
|ux|

2dx
)

. (2.9)

Summing up the terms in the above inequality, we get

d
dt

∫ L

0
|u|2dx +

(
2λ −

µh2

2

)∫ L

0
|ux|

2dx

+

(
−2γ +

µ

2
−

µh2

2L2

)∫ L

0
|u|2dx

≤ −2κ
∫ L

0
|u|p+2dx. (2.10)

Since κ > 0, we have

d
dt

∫ L

0
|u|2dx + µ

(
−

2γ
µ

+
1
2

−
h2

2L2

)∫ L

0
|u|2dx

+ µ

(
2λ
µ

−
h2

2

)∫ L

0
|ux|

2dx ≤ 0. (2.11)

Setting ν := −
2γ
µ

+
1
2 −

h2

2L2
, and m :=

2λ
µ

−
h2
2 , we can write

d
dt

∥u(t)∥2
L2(0,L) + µν

(
∥u(t)∥2

L2(0,L) +
m
ν

∥ux(t)∥2
L2(0,L)

)
≤ 0. (2.12)

By assumption (2.4), we can drop the last term at the left-hand side
of the above inequality and deduce the rapid decay of solutions in
the L2-sense:

∥u(t)∥2
L2(0,L) ≤ e−µνt

∥u(0)∥2
L2(0,L)

for t ≥ 0. □

Remark 2.2. Note that the Neumann boundary condition does not
play a major role here. The same result also holds for Dirichlet or
mixed boundary conditions.

3. Stabilization with finitely many Fourier modes

In this section, we consider the Ginzburg–Landau equation
with finitely many Fourier modes feedback control on a bounded
domainΩ ⊂ Rn with homogeneous Dirichlet boundary conditions
at both ends of the domain:

ut − (λ + iα)∆u + (κ + iβ)|u|pu − γ u

= −µ

N∑
k=1

(u, ωk)ωk, x ∈ Ω, t > 0, (3.1)

u|∂Ω = 0, x ∈ ∂Ω, t > 0, (3.2)

u(x, 0) = u0(x), x ∈ Ω, (3.3)

where λ, κ, γ > 0, α, β ∈ R and ωk’s denote the orthonormal set
of eigenfunction of −∆ in L2(Ω) with the respective eigenvalues
λk. It is well known that λk’s satisfy 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤

λk+1 ≤ · · · and λk → ∞ as k → ∞.
We prove the stabilization at both L2 and H1 levels.

Theorem 3.1 (L2-Decay). Let u be a sufficiently smooth solution of
(3.1)–(3.3) with µ ≥ γ , and N be big enough that λN+1 >

γ

λ
. Then,

there exists ω > 0 such that

∥u(t)∥2
L2(Ω) ≤ e−ωt

∥u0∥
2
L2(Ω)

for t ≥ 0. Indeed, we have ω = 2(λ − γ λ−1
N+1)λ1.

Theorem 3.2 (H1-Decay). Let u be a sufficiently smooth solution of
(3.1)–(3.3) with µ ≥ γ and N be big enough that λN+1 >

γ

λ
. Then,

for all 0 < δ < ω = 2(λ − γ λ−1
N+1)λ1 we have

∥∇u(t)∥2
L2(Ω) ≤ e−δt

∥∇u0∥
2
L2(Ω)

for t ≥ 0 provided that p < 4/n. On the other hand, if p = 4/n, the
same result holds true if ∥u0∥L2(Ω) is sufficiently small.

3.1. Proof of L2-stabilization

Taking the L2-inner product of (3.1) with uwe get

(ut , u) + (λ + iα)
∫ L

0
|∇u|2dx + (κ + iβ)

∫ L

0
|u|p+2dx

− γ

∫ L

0
|u|2dx

= −µ

N∑
k=1

(u, ωk)
∫ L

0
ωkūdx = −µ

N∑
k=1

(u, ωk)(ωk, u)

= −µ

N∑
k=1

|(u, ωk)|2.

Taking two times the real part of the above and using Parseval’s
identity, we obtain

d
dt

∫
Ω

|u|2dx + 2λ
∫

Ω

|∇u|2dx + 2κ
∫

Ω

|u|p+2dx

− 2γ
N∑

k=1

|(u, ωk)|2 − 2γ
∞∑

k=N+1

|(u, ωk)|2

≤ −2µ
N∑

k=1

|(u, ωk)|2. (3.4)

Therefore, assuming µ ≥ γ , we have

d
dt

∫
Ω

|u|2dx + 2λ
∫

Ω

|∇u|2dx + 2κ
∫

Ω

|u|p+2dx

− 2γ
∞∑

k=N+1

|(u, ωk)|2

≤ −2(µ − γ )
N∑

k=1

|(u, ωk)|2 ≤ 0. (3.5)

Since, κ > 0, the above inequality reduces to

d
dt

∥u(t)∥2
L2(Ω) + 2λ∥∇u∥2

L2(Ω) − 2γ
∞∑

k=N+1

|(u, ωk)|2 ≤ 0. (3.6)

Using the following Poincaré type inequality,
∞∑

k=N+1

|(u, ωk)|2 ≤ λ−1
N+1∥∇u∥2

L2(Ω),

we get from (3.6):

d
dt

∥u(t)∥2
L2(Ω) + 2(λ − γ λ−1

N+1)∥∇u(t)∥2
L2(Ω) ≤ 0. (3.7)

We use the Poincaré inequality ∥∇u∥2
L2(Ω) ≥ λ1∥u∥2

L2(Ω) to get

d
dt

∥u(t)∥2
L2(Ω) + 2(λ − γ λ−1

N+1)λ1∥u(t)∥2
L2(Ω) ≤ 0. (3.8)

Thus we have

∥u(t)∥2
L2(Ω) ≤ e−2(λ−γ λ−1

N+1)λ1t∥u0∥
2
L2(Ω). (3.9)
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3.2. Proof of H1-stabilization

Wewill consider the case p < 4
n . Taking the L2-inner product of

(3.1) with −∆uwe get

−

∫
Ω

ut∆ūdx + (λ + iα)
∫

Ω

|∆u|2dx − (κ + iβ)
∫

Ω

|u|pu∆ūdx

+ γ

∫
Ω

u∆ūdx = µ

N∑
k=1

(u, ωk)
∫

Ω

ωk∆ūdx. (3.10)

Integrating by parts and using the fact that wk is an eigenfunction
of the −∆ under homogeneous Dirichlet boundary condition with
eigenvalue λk, we have∫

Ω

∇ut∇ūdx + (λ + iα)
∫

Ω

|∆u|2dx

+ (κ + iβ)
∫

Ω

(
p + 2
2

|u|p|∇u|2 +
p
2
|u|p−2u2(∇ū)2

)
dx

− γ

∫
Ω

|∇u|2dx = −µ

N∑
k=1

|(u, ωk)|2λk, (3.11)

where (∇ū)2 := ∇ū · ∇ū.
Taking two times the real part of both sides of (3.11),

d
dt

∫
Ω

|∇u|2dx + 2λ
∫

Ω

|∆u|2dx

+ 2κRe
∫

Ω

(
p + 2
2

|u|p|∇u|2 +
p
2
|u|p−2u2(∇ū)2

)
dx

− 2βIm
∫

Ω

(
p + 2
2

|u|p|∇u|2 +
p
2
|u|p−2u2(∇ū)2

)
dx

− 2γ
∫

Ω

|∇u|2dx = −2µ
N∑

k=1

|(u, ωk)|2λk. (3.12)

Note that since κ > 0, we have

κRe
∫

Ω

(
p + 2
2

|u|p|∇u|2 +
p
2
|u|p−2u2(∇ū)2

)
dx

≥ κ

∫
Ω

(
p + 2
2

−
p
2

)
|u|p|∇u|2dx ≥ 0. (3.13)

On the other hand,

− βIm
[∫

Ω

(
p + 2
2

|u|p|∇u|2 +
p
2
|u|p−2u2(∇ū)2

)
dx
]

= −
pβ
2

Im
∫

Ω

|u|p−2u2(∇ū)2dx ≤
pβ
2

∫
Ω

|u|p|∇u|2dx

≤
pβ
2

∥u∥p
Lp+2(Ω)

∥∇u∥2
Lp+2(Ω). (3.14)

We recall the following Gagliardo–Nirenberg inequalities
which are true for p ≤

4
n−2 in dimensions n ≥ 3 and for p < ∞ in

dimensions n ≤ 2:

∥u∥Lp+2(Ω) ≤ C∥u∥θ

H2(Ω)∥u∥
1−θ

L2(Ω)

where θ =
np

4(p + 2)
∈

(
0,

1
2

]
, (3.15)

∥∇u∥Lp+2(Ω) ≤ C∥u∥ξ

H2(Ω)
∥u∥1−ξ

L2(Ω)

where ξ =
(n + 2)p + 4
4(p + 2)

∈

[
0,

1
2

)
. (3.16)

Now, we use (3.15) and (3.16) in (3.14). We get
pβ
2

∥u∥p
Lp+2(Ω)

∥∇u∥2
Lp+2(Ω) ≤ C∥u∥1+a

H2(Ω)
∥u∥1+b

L2(Ω)
(3.17)

where

a = pθ + 2ξ − 1 =
np
4

∈ (0, 1]

and

b = (1 − θ )p + 2(1 − ξ ) − 1 =
(4 − n)p

4
∈ (−1, 3].

It is well known that

∥u∥H2(Ω) ≤ C∥∆u∥L2(Ω), (3.18)

from which it follows that

∥u∥1+a
H2(Ω)

≤ C∥∆u∥1+a
L2(Ω)

. (3.19)

Hence, the right-hand side of (3.17) is bounded by

C∥∆u∥1+a
L2(Ω)

∥u∥1+b
L2(Ω)

. (3.20)

Combining thiswith L2-stabilization resultwe canbound the above
by

C∥∆u∥1+a
L2(Ω)

∥u0∥
1+b
L2(Ω)

e−ω(1+b)t .

Now, if p < 4
n , then 1 + a < 2 and the above term can be

estimated as

C∥∆u∥1+a
L2(Ω)

∥u0∥
1+b
L2(Ω)

e−ω(1+b)t

≤ ϵ∥∆u∥2
L2(Ω) + Cϵ∥u0∥

2(1+b)
1−a

L2(Ω)
e−

2ω(1+b)
1−a t

where ϵ > 0 denotes a fixed generic constant which can be chosen
as small as we wish.

Hence, (3.17) becomes

pβ
2

∥u∥p
Lp+2(Ω)

∥∇u∥2
Lp+2(Ω)

≤ ϵ∥∆u∥2
L2(Ω) + Cϵ∥u0∥

2(1+b)
1−a

L2(Ω)
e−

2ω(1+b)
1−a t

≤ ϵ∥∆u∥2
L2(Ω) + Cu0e

−ωζ t , (3.21)

where

ζ ≡
2(1 + b)
1 − a

> 2.

Using (3.21) and employing Parseval’s identity for the deriva-
tive and using the fact that both p and κ are positive in (3.11), we
obtain

d
dt

∫
Ω

|∇u|2dx + (2λ − ϵ)

∫
Ω

|∆u|2dx − 2γ
N∑

k=1

|(u, ωk)|2λk

− 2γ
∞∑

k=N+1

|(u, ωk)|2λk ≤ −2µ
N∑

k=1

|(u, ωk)|2λk + Cu0e
−ωζ t .

(3.22)

Summing up the terms and assuming µ ≥ γ , we have
d
dt

∫
Ω

|∇u|2dx + (2λ − ϵ)

∫
Ω

|∆u|2dx

≤ 2(γ − µ)
N∑

k=1

|(u, ωk)|2λk + 2γ
∞∑

k=N+1

|(u, ωk)|2λk + Cu0e
−ωζ t

≤ 2γ λ−1
N+1∥∆u∥2

L2(Ω) + Cu0e
−ωζ t .

Hence, using the Poincaré like inequality ∥∇u∥2
L2(Ω) ≤ λ−1

1

∥∆u∥2
L2(Ω), we obtain

d
dt

∫
Ω

|∇u(x, t)|2dx + (ω − ϵ)∥∇u(t)∥2
L2(Ω) ≤ Cu0e

−ωζ t . (3.23)
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Integrating this inequality and using the fact that ζ > 2, the above
yields∫

Ω

|∇u(x, t)|2dx ≤ e−(ω−ϵ)t
∫

Ω

|∇u0(x)|2dx + Cu0e
−(ω−ϵ)t (3.24)

which proves the H1 decay. Note that the decay rate can be made
arbitrarily close to ω but not exactly ω.

Now, let us consider the case p = 4/n. In this case, 1 + a = 2
and we can choose ∥u0∥L2(Ω) small enough that

C∥∆u∥1+a
L2(Ω)

∥u0∥
1+b
L2(Ω)

e−ω(1+b)t
≤ ϵ∥∆u∥2

L2(Ω) (3.25)

for t ≥ 0. Now, we can complete the rest of the proof similar to the
case p < 4/n. Hence, the same decay rate estimate also holds for
this case.

4. Steering solutions

In this section, we consider steering solutions of the CGLE via
finite parameter feedback controllers to other solutions of the
CGLE. Of course, here the feedback controller depends on the
target system. In Section 4.1, we prove that an appropriate finite-
parameter control can steer the solutions to any desired solution
of the uncontrolled system. This has been recently shown in the
context of damped wave equations [21]. In Section 4.2, we choose
the target system slightly different in such a way that its solution
exponentially decays. We show that the controlled solution also
decays exponentially.

4.1. Steering solutions to any solution

Suppose that v be a desired solution of the non-controlled
Ginzburg–Landau model below.

vt − (λ + iα)△v + (κ + iβ)|v|
pv − γ v = 0, x ∈ Ω, t > 0, (4.1)

v(x, t) = 0, x ∈ ∂Ω, t > 0, (4.2)

where Ω ⊂ Rn is a bounded domain with regular boundary,
λ, κ, γ > 0, α, β ∈ R, and p > −1.

Our aim is to find appropriate conditions on λ and N so that the
solution of the controlled problem

ut − (λ + iα)△u + (κ + iβ)|u|pu − γ u

= −µ

N∑
k=1

(u − v, wk)wk, x ∈ Ω, t > 0, (4.3)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (4.4)

approaches v in the long-time.

Theorem 4.1 (Steering I). Let v be a solution of the non-controlled
system (4.1)–(4.2) and suppose µ ≥ γ , λN+1 >

γ

λ
, and κ ≥ C−1

p |β|

for Cp ≡
|p|

2
√
p+1 . Then the solution of the controlled system u (4.3)–

(4.4)must converge to v as t increases in the sense

∥u(t) − v(t)∥2
L2(Ω) ≤ e−ωt

∥u0 − v0∥
2
L2(Ω),

where ω = 2(λ − γ λ−1
N+1)λ1 > 0.

Proof. Subtracting (4.1) from (4.3) we get

zt − (λ + iα)△z + (κ + iβ)(|u|pu − |v|
pv) − γ z

= −µ

N∑
k=1

(z, wk)wk, x ∈ Ω, t > 0, (4.5)

z(x, t) = 0, x ∈ ∂Ω, t > 0, (4.6)

where z = u − v.

Multiplying Eq. (4.5) by z, integrating over Ω , and then taking
two times the real part:

d
dt

∥z(t)∥2
L2(Ω) + 2λ∥∇z∥2

L2(Ω) + J0 − 2γ ∥z∥2

= −2µ
N∑

k=1

|(z, wk)|2, (4.7)

where

J0 = 2Re
(
(κ + iβ)

∫
Ω

(|u|pu − |v|
pv)z̄dx

)
.

It is clear that

J0 = 2κRe
(∫

Ω

(|u|pu − |v|
pv)z̄dx

)
− 2βIm

(∫
Ω

(|u|pu − |v|
pv)z̄dx

)
. (4.8)

Applying the inequality (see [22, Lemma 2.1])

|Im
(
|u|pu − |v|

pv, u − v
)
| ≤

Cp  
|p|

2
√
p + 1

Re
(
|u|pu − |v|

pv, u − v
)
,

we see that if κ ≥ |β|C−1
p then J0 ≥ 0. Hence we obtain (using

Parseval’s once again)

d
dt

∥z(t)∥2
L2(Ω) + 2λ∥∇z∥2

L2(Ω) + 2(µ − γ )
N∑

k=1

|(z, wk)|2

− 2γ
∞∑

k=N+1

|(z, wk)|2 ≤ 0. (4.9)

Using the following inequality,
∞∑

k=N+1

|(z, wk)|2 ≤ λ−1
N+1∥∇z∥2

L2(Ω)

we get

d
dt

∥z(t)∥2
L2(Ω) + 2λ∥∇z(t)∥2

L2(Ω) − 2γ λ−1
N+1∥∇z(t)∥2

L2(Ω)

≤ 0. (4.10)

Therefore
d
dt

∥z(t)∥2
L2(Ω) + 2(λ − γ λ−1

N+1)∥∇z(t)∥2
L2(Ω) ≤ 0. (4.11)

Now, by Poincaré inequality,

d
dt

∥z(t)∥2
L2(Ω) + ω∥z(t)∥2

L2(Ω) ≤ 0. (4.12)

Thus, we have

∥z(t)∥2
L2(Ω) ≤ e−ωt

∥z0∥2
L2(Ω). □ (4.13)

4.2. Steering solutions to an exponential decay

Note that there is no guarantee that the solution of the uncon-
trolled system in (4.1) is a decaying or even a stable solution since
we do not know the relationship among the given parameters.
Therefore, a better approach might be to start with a solution
which is already known to be stable, e.g., an exponentially decaying



J. Kalantarova, T. Özsarı / Systems & Control Letters 106 (2017) 40–46 45

solution. Therefore, we can start with first considering the system
below

vt − (λ + iα)△v + (κ + iβ)|v|
pv − γ̃ v = 0, x ∈ Ω, t > 0,

(4.14)

where γ̃ < λλ1, again under the homogeneous Dirichlet boundary
condition. It is easy to see that multiplying (4.14) by v̄, integrating
over Ω , and taking two times the real part, one obtains

d
dt

∫
Ω

|v|
2dx + 2λ

∫
Ω

|∇v|
2dx + 2κ

∫
Ω

|v|
p+2dx

− 2γ̃
∫

Ω

|v|
2dx = 0.

Now, using the Poincaré inequality and the fact that κ > 0, it
follows that
d
dt

∫
Ω

|v|
2dx + 2 (λλ1 − γ̃ )

∫
Ω

|v|
2dx ≤ 0,

from which it is easy to deduce the exponential decay estimate

∥v(t)∥L2(Ω) ≤ ∥v0∥L2(Ω)e
−(λλ1−γ̃ )t

for t ≥ 0. Now, let us consider the feedback control system (4.3)
where v is a solution of (4.14) instead of (4.1). In this case, (4.12)
takes the form
d
dt

∥z(t)∥2
L2(Ω) + ω∥z(t)∥2

L2(Ω) ≤ −2(γ̃ − γ )Re
∫

Ω

vz̄dx.

Now, using ϵ-Young’s inequality at the right-hand side, we get

d
dt

∥z(t)∥2
L2(Ω) + ω∥z(t)∥2

L2(Ω)

≤ ϵ∥z(t)∥2
L2(Ω) +

|γ̃ − γ |
2

ϵ
∥v(t)∥2

L2(Ω),

where ϵ > 0 is a fixed, small number. Multiplying both sides by
e(ω−ϵ)t , using the decay estimate on v, and then integrating over
(0, t), we obtain

∥z(t)∥2
L2(Ω)

≤ e−(ω−ϵ)t

⎛⎜⎜⎜⎜⎜⎝∥z0∥2
L2(Ω) +

|γ̃ − γ |
2

ϵ
∥v0∥

2
L2(Ω)

1
(ω̃−ϵ) [e

(ω̃−ϵ)t
−1]  ∫ t

0
e(ω̃−ϵ)sds

⎞⎟⎟⎟⎟⎟⎠ ,

where ω̃ := 2(γ̃ − γ λ−1
N+1λ1). That is,

∥z(t)∥2
L2(Ω) ≤ ∥z0∥2

L2(Ω)e
−(ω−ϵ)t

+
|γ̃ − γ |

2

ϵ
∥v0∥

2
L2(Ω)

1
(ω̃ − ϵ)

[e2(γ̃−λλ1)t − e−(ω−ϵ)t
] (4.15)

for t ≥ 0.
Now, there are two cases: Case I (ω̃ > 0) and Case II (ω̃ ≤ 0).

Case I is satisfied if γ̃ > γ λ−1
N+1λ1 and Case II is satisfied if γ̃ ≤

γ λ−1
N+1λ1. It is easy to observe that the previous assumptionλN+1 >

γ

λ
implies γ λ−1

N+1λ1 < λλ1. Now, recalling that we also have γ̃ <

λλ1, we can say that Case I is satisfied if γ̃ ∈
(
γ λ−1

N+1λ1, λλ1
)
and

Case II is satisfied if γ̃ ∈
(
−∞, γ λ−1

N+1λ1
]
. Hence, we have the

following theorem.

Theorem 4.2 (Steering II). Let v be an (exponentially decaying)
solution of (4.14) where γ̃ < λλ1 and suppose µ ≥ γ , λN+1 >

γ

λ
,

and κ ≥ C−1
p |β| for Cp ≡

|p|
2
√
p+1 . Then the solution u of the controlled

system (4.3)–(4.4)must converge to v as t increases. More precisely,

(1) If γ̃ ∈
(
γ λ−1

N+1λ1, λλ1
)
, then

∥u(t) − v(t)∥2
L2(Ω) ≤ e−(ω−ϵ)t

∥u0 − v0∥
2
L2(Ω)

+
|γ̃ − γ |

2

ϵ
∥v0∥

2
L2(Ω)

1
(ω̃ − ϵ)

e2(γ̃−λλ1)t . (4.16)

(2) If γ̃ ∈
(
−∞, γ λ−1

N+1λ1
]
, then

∥u(t) − v(t)∥2
L2(Ω) ≤ e−(ω−ϵ)t

∥u0 − v0∥
2
L2(Ω)

+
|γ̃ − γ |

2

ϵ
∥v0∥

2
L2(Ω)

1
(ϵ − ω̃)

e−(ω−ϵ)t (4.17)

for t ≥ 0, where ϵ is a fixed (can be chosen arbitrarily small)
number, ω = 2(λ − γ λ−1

N+1)λ1, and ω̃ = 2(γ̃ − γ λ−1
N+1λ1).

Corollary 4.3. In particular, the controlled solution in Theorem 4.2
exponentially decays to zero under the same assumptions. More pre-
cisely,

(1) If γ̃ ∈
(
γ λ−1

N+1λ1, λλ1
)
, then

∥u(t)∥2
L2(Ω) ≤ e−(ω−ϵ)t

∥u0 − v0∥
2
L2(Ω)

+ ∥v0∥
2
L2(Ω)

(
|γ̃ − γ |

2

ϵ

1
(ω̃ − ϵ)

+ 1

)
e2(γ̃−λλ1)t . (4.18)

(2) If γ̃ ∈
(
−∞, γ λ−1

N+1λ1
]
, then

∥u(t)∥2
L2(Ω)

≤ e−(ω−ϵ)t

[
∥u0 − v0∥

2
L2(Ω) +

|γ̃ − γ |
2

ϵ
∥v0∥

2
L2(Ω)

1
(ϵ − ω̃)

]
+ ∥v0∥

2
L2(Ω)e

−2(λλ1−γ̃ )t (4.19)

for t ≥ 0, where ϵ is a fixed (can be chosen arbitrarily small)
number, ω = 2(λ − γ λ−1

N+1)λ1, and ω̃ = 2(γ̃ − γ λ−1
N+1λ1).

Proof. Follows by Theorem 4.2 and the inverse triangle inequality⏐⏐∥u(t)∥L2(Ω) − ∥v(t)∥L2(Ω)

⏐⏐ ≤ ∥u(t) − v(t)∥L2(Ω). □

5. L2-stabilization with nodal observables

In this section, we consider the Ginzburg–Landau equation
where the right-hand side is considered as a feedback control
described by finitely many nodal valued observables.

ut − (λ + iα)△u + (κ + iβ)|u|pu − γ u

= −µ

N∑
k=1

hu(x̄k)δ(x − xk), x ∈ Ω = (0, L), t > 0, (5.1)

u(0, t) = u(L, t) = 0, t > 0, (5.2)

with xk, x̄k ∈ Jk.
We prove the following theorem.

Theorem 5.1. Let u be a solution of (5.1)–(5.2) with λ ≥ µh2 and
µ

4 > γ . Then,

∥u(t)∥L2(Ω) ≤ e−

[
λ1

(
λ−µh2

)
+( µ

4 −γ )
]
t
∥u0∥L2(Ω)

for t ≥ 0.
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Proof. We first compute the action of the H−1 functionals at both
sides of (5.1) on u ∈ H1

0 (0, L), so we have

1
2

d
dt

∥u(t)∥2
L2(Ω) + λ∥ux(t)∥2

L2(Ω) + κ∥u(t)∥p+2
Lp+2(Ω)

− γ ∥u(t)∥2
L2(Ω)

= −µhRe
N∑

k=1

u(x̄k)ū(xk). (5.3)

Writing u(x̄k)ū(xk) = (u(x̄k) − u(xk)) ū(xk)+|u(xk)|2, using the basic
inequality |a · b| ≤

|a|2
2 +

|b|2
2 , and employing [17, Lemma 6.1] we

obtain⏐⏐⏐⏐⏐−µhRe
N∑

k=1

u(x̄k)ū(xk)

⏐⏐⏐⏐⏐ ≤
µh
2

N∑
k=1

|u(x̄k) − u(xk)|2

−
µh
2

N∑
k=1

|u(xk)|2

≤ µh2
∥ux(t)∥2

L2(Ω) −
µ

4
∥u(t)∥2

L2(Ω). (5.4)

Using the above estimate in (5.3) yields
1
2

d
dt

∥u(t)∥2
L2(Ω) + λ∥ux(t)∥2

L2(Ω) + κ∥u(t)∥p+2
p+2 − γ ∥u(t)∥2

L2(Ω)

≤ µh2
∥ux(t)∥2

L2(Ω) −
µ

4
∥u(t)∥2

L2(Ω). (5.5)

Summing up the terms and dropping the term κ∥u∥p+2
p+2, we obtain

1
2

d
dt

∥u(t)∥2
L2(Ω) +

(
λ − µh2)

∥ux(t)∥2
L2(Ω)

+

(µ

4
− γ

)
∥u(t)∥2

L2(Ω) ≤ 0. (5.6)

Assuming λ ≥ µh2, µ

4 > γ , and using the Poincaré inequality,
we obtain
1
2

d
dt

∥u(t)∥2
L2(Ω) +

[
λ1
(
λ − µh2)

+

(µ

4
− γ

)]
∥u(t)∥2

L2(Ω)

≤ 0, (5.7)

which implies

∥u(t)∥L2(Ω) ≤ e−

[
λ1

(
λ−µh2

)
+( µ

4 −γ )
]
t
∥u0∥L2(Ω)

for t ≥ 0. □
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