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Committee Member

Assoc. Prof. Dr. M. Salih Dinleyici
Committee Member

5 October 2009
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ABSTRACT

PHOTONIC CRYSTAL ASSISTED L-SHAPED WAVEGUIDE BEND

Photonic crystals are periodic dielectric structures. This periodicity allow us to

manipulate light in ways that have not been possible before.As a result, photonic crystal

waveguide components play a significant role in integrated optical circuit design because

waveguides allow only certain electromagnetic wave modes to propagate inside the struc-

ture. There are many corresponding applications that rely on total internal reflection.

However, with total internal reflection, there is a problem in guiding light through sharp

corners, large optical losses occur around tight curves with a small bending radius. A

simple explanation for these losses is that the angle of the incident light too low for total

internal reflection when wave turns through a sharp corner. Thus, an unacceptable frac-

tion of the electromagnetic energy is radiated out of the waveguide. To overcome this

difficulty, in this thesis, we demonstrate a novel method forguiding light through sharp

corners, using a 1 photonic crystal slab waveguide for the straight sections, and assisted

by 2D Line Defect Waveguide at the corners.

Plane Wave Method and Supercell Method are used to Figure outparameters

and obtain the guided mode for our proposed structure. Then,numerical simulations

(FDTD) reveal nearly perfect transmission at certain frequency ranges. Also, in this

thesis different corner elements are used to show highly efficient transmission of light

through sharp corners. Thus, light can be guided through a 90◦ corner, almost without

loss, by using different corner elements.

“Crystals are like people, it is the defect in them which tenddo make them interesting.”

Colin Humphreys
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ÖZET

FOTOṄIK KRİSTAL DESTEKLİ L ŞEKLİNDEKİ DALGA

KILAVUZU D ÖNÜŞÜ

Fotonik kristaller periyodik dielektrik yapılardır. Bu periyodiklik sayesinde

ışığın yayılmasına, önceden mümkün olamayan değişik yöntemlerle müdahele etmek

mümkün hale gelmiştir. Bu yüzden fotonik kristal dalgakılavuzları optik entegre de-

vre uygulamalarında önemli rol oynamaktadır çünkü dalga kılavuzları belli frekans bant-

larındaki elektromanyetik dalgaların yayılmasını engelleyebilirler. Geleneksel dalga

kılavuzları toplam iç yansima prensibi ile çalışırlar.Fakat bu yapılarda problem ışığı

döndürmek istediğimizde oluşmaktadır, çünkü dönüş esnasında kabul edilemeyecek oran-

larda kayıplar oluşur. Bunun en basit açıklaması, dönüş esnasında gelen ışığın açısının

toplam iç yansımanın gerçekleşebilmesi için gerekli olan değerden daha küçük olmasıdır

ve bu yüzden de dönüş esnasında kayıplar artmaktadır. Bütün bunlardan dolayı dönüş

esnasında oluşan kayıpları azaltabilmek için öngörd¨uğümüz modelleme ile tek boyutlu

dalga kılavuzunun dönüş kısmını iki boyutlu çizgisel kusurlu dalga kılavuzu ile ay-

nen devam ettirerek farklı yarıcaplarla döndürdük. Düzlem dalga açılım ve süperhücre

yöntemiyle öngördüğümüz yapıya uygun parametreleri belirleyip, hangi frekanslarda

kılavuzlanma olucağını elde ettikten sonra sonlu farklaryöntemiyle belli frekanslar için

95 üzerinde iletim elde ettik. Aynı zamanda, farklı köşeyapıları deneyerek iletimin

900’lik bir dönüşe rağmen ne kadar kayıpsız ilerleyebildiğini gösterdik.
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CHAPTER 1

INTRODUCTION

PHOTONIC CRYSTALS, also known as photonic band gap (PBG) materials,

are artificial dielectric or metallic structures in which the refractive index modulation

gives rise to stop bands for electromagnetic waves (EM) within a certain frequency range

(Yablonovitch 1987, John 1987). Essentially, a photonic crystal (PhC) contains regularly

repeating internal regions of high and low dielectric constant. Photonic crystals affect the

propagation of EM waves in the same way as the periodic potential in a semiconductor

crystal affects the electron motion by defining allowed and forbidden electronic energy

bands. As a result, the easiest way to understand the behaviour of light in a photonic

crystal is to compare it to the movement of electrons in semiconductors.

The Schrödinger equation describes behaviour of electrons in a space variant po-

tentialV (r)

− ~
2

2m∗
∇2 + V (r)ψ(r) = Eψ(r) (1.1)

The periodicity of atoms in a crystal structure is somethingthat is formed natu-

rally. This periodicity, entering the Schrödinger equation as a periodic potential explains

what was once a great mystery of physics and plays the major role in this century’s most

important development in technology: introduction of semiconductor devices. The peri-

odicity resulted in an energy band gap, meaning that electrons are forbidden to propagate

with certain energies and certain directions. No electronswill be found in an energy range

called the forbidden energy gap or simply band gap. Using these properties, people were

able to control and manipulate the flow of electric charge in semiconductors.

Now consider photons, which are of course waves, moving through a block of

transparent dielectric material. Similarly, propagationof EM waves can be blocked by

using a periodic structure, in which the periodic potentialV (r) in the Schrödinger equa-
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Figure 1.1. A one-dimensional PhC: a multilayer film. The system consists of alternating
layers of materials (gray and white) with different dielectric constants and its
periodicity along the z-axis. A two-dimensional PhC. The material is homo-
geneous along thez-direction—we imagine the cylinders are very tall—and
periodic along thex andy directions.

tion is essentially replaced by a periodic dielectric function ǫ(r), or equivalently, a peri-

odic index of refractionn(r) (Joannopoulos, et al. 2008). To a photon, this contrast in

refractive index looks very much like the periodic potential that an electron experiences

travelling through a silicon crystal.

Simply, in PhCs the electrons are replaced by EM waves and photons can be de-

scribed in terms of a band structure, as in the case of electrons. It means that, EM waves

are allowed to propagate through the structure, or not, depending on their frequency. Prop-

agating wave solutions to Maxwell’s equations with frequencies that are allowed to travel

are known asmodes, and groups of allowed modes with contiguous frequencies form

bands. Disallowed bands of frequencies are called photonic band gaps.

Now that we know what PhCs are, the next question that needs tobe answered is

what makes PhCs desired materials. This question can be answered in part by demonstrat-

ing computationally that certain systems exhibit novel properties made possible by using

PhCs. In Chapter 4, through a combination of theoretical analysis and numerical calcu-

lations, we propose optical designs for L-shaped waveguidebends assisted by PhCs. We

demonstrate highly efficient transmission of light around sharp corners by using different

corner elements, and the band gap of PhCs.
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CHAPTER 2

ONE DIMENSIONAL PERFECT PHOTONIC

CRYSTALS

This chapter presents some theoretical concepts that are essential in understand-

ing PhCs. The derivation presented in this chapter closely follows the derivation in the

lecture notes of the course“Photonic Structures”given in Spring 2008 at Izmir Institute

of Technology (Sözüer 2008).

It is well known that the perfect PhC,i.e. an infinite medium with a perfectly pe-

riodic dielectric constantǫ(r ), can exhibit forbidden bands, so the first point of reference

is the band structure. Among the different techniques, the Plane Wave Method (PWM)

(Meade, et al. 1992, Benisty 1996, Villeneuve, et al. 1996) and the Finite Difference

Time Domain Method (FDTD) approach (Taflove 1995, Yee 1966, Fogli, et al. 2000,

Kafesaki et al. 2002) are probably the most important techniques to obtain the dispersion

relation.

In this thesis, both time domain and frequency domain techniques have been used

and results from both methods have been compared. The key with both methods is to

determine the dispersion diagram. To obtain dispersion diagram, firstly we have to write

Maxwell’s equations, because all the theory is built on it.

2.1. Maxwell’s Equations and Plane Wave Method

In order to study light propagation in photonic crystals, webegin with the Maxwell

equations. But before, firstly we have to understand why we use plane wave expansion

method.

The plane wave method is often used for PhC modelling since itcan yield accurate

and reliable results if a sufficiently large number of terms are kept in the Fourier expan-

sion. Besides, the programming is relatively straightforward, which makes this technique
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a very popular one in solving electromagnetic problems in periodic media (Satpathy, et al.

1990, Ho, et al. 1990, Meade, et al. 1993). With this method, one expands the solutions

of Maxwell’s equations in a periodic structure into a superposition of plane waves with

unknown coefficients.

Under this expansion, the characteristic equation obtained from Maxwell’s Equa-

tions can be transformed into an eigenvalue problem. By solving this eigenvalue problem,

the frequencies and the modes can be obtained. Furthermore,this method is only used for

an infinite perfectly periodic structure.

Now, our starting point Maxwell’s equations in linear media, where the standard

notation are used in SI

D = Electric Displacement

E = Electric Field

B = Magnetic Induction

H = Magnetic Field

ρf = Free Charge density

Jf = Free Current Density

ǫ(r ) = Dielectric Permittivity

µ0 = Free Space Magnetic Permeability

∇ · D = ρf (2.1)

∇ · B = 0 (2.2)

∇× E = −∂B
∂t

(2.3)

∇× H = Jf +
∂D
∂t

(2.4)

We will restrict our attention to linear, non-dispersive, non-lossy materials for

which there is a relation betweenE andD, and alsoH andB. They can be written as,

B = ǫ0ǫ(r )E and B = µ0µ(r)H. For simplicity, we can setB = µ0H because, for
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most dielectric materials of interest the relative magnetic permeabilityµ(r) is very close

to unity. In that case,ǫ is the square of the refractive index. Moreover, in a material

medium, in which light propagates but there are no sources oflight, we can setρf = 0

andJf = 0. With all of these assumptions in place, the Maxwell equations Equation 2.1

to 2.4 become;

∇ · D = 0 (2.5)

∇ · B = 0 (2.6)

∇× E = −∂B
∂t

(2.7)

∇× H =
∂D
∂t
. (2.8)

Taking the curl of both sides of Equation (2.7), where we interchange the order of time

and space derivatives, and put the equations then we can find the following equivalent

form for E;

∇× (∇× E) = −∇×
(

∂B
∂t

)

= − ∂

∂t
∇× B

= − ∂

∂t
µ0 ∇× H

= −µ0
∂

∂t

(

∂D
∂t

)

= −µ0ǫ0
∂2

∂t2
ǫ(r ) E (2.9)

As a result we obtain the general formula of the electromagnetic wave equation in real

space Equation (2.10), where the constantsǫ0 andµ0 can be combined to yield the vacuum

speed of light,c = 1/
√
ǫ0µ0.

∇×∇× E +
1

c2
ǫ(r)

∂2E
∂t2

= 0 (2.10)
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Before solving Equation (2.10), let’s look at our periodic dielectric functionǫ(r ) in more

detail.

2.1.1. Periodic Dielectric Media

The dielectric functionǫ(r) is periodic on a lattice with lattice vectorsR, i.e.,

ǫ(r ) = ǫ(r + R) ; µ(r) = 1 (2.11)

where the vectorR is a linear combination of three non-collinear basis vectorsa1, a2 and

a3

R = n1a1 + n2a2 + n3a3 where n1, n2, n3 = 0,±1,±2,±3 . . . (2.12)

A periodic function in 3D space can be expressed as

f(r) = f(r + R) =
∑

R

f0(r + R) (2.13)

We now seek a Fourier basis for a periodic function in 3D real space. As a trial

we try the basis functionsexp(i G · r) with reciprocal lattice vectorG can be written as

G = m1b1 + m2b2 + m3b3 for some basis vectorsbi to be determined by imposing the

periodicity off(r) in Equation (2.13).
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f(r) = f(r + R) (2.14)
∑

G

f(G)ei(G·r) =
∑

G

f(G)eiG·(r+R) (2.15)

∑

G

f(G)eiG·r =
∑

G

f(G)eiG·r ei G·R (2.16)

∑

G

f(G)eiG·r [1 − eiG·R] = 0 (2.17)

Hence1 = eiG·R or, equivalently,G · R = 2Nπ for all G andR with N an integer

like N = 0,±1,±2,±3.... Our requirement thatG · R = 2Nπ boils down to

G · R = (n1a1 + n2a2 + n3a3) · (m1b1 +m2b2 +m3b3) = 2Nπ (2.18)

For all choices ofmi andni, the above must hold for some integerN and this

condition can be satisfied by an infinite number of choices forbi, as the set of points{G}
form another Bravais lattice.

A little thought will reveal that we could satisfy the above if we construct thebi

so thatai ·bj = 2πδij , i.e. ai ·bj = 2π if i = j, and0 if i 6= j. More compactly, given the

set{a1, a2, a3}, our task is to find a corresponding set{b1, b2, b3} such that

G · R = 2π(m1n1 +m2n2 +m3n3) (2.19)

One can directly verify that the following choice forbi does indeed satisfy this condition,

although this choice is clearly not unique:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
(2.20)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
(2.21)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
(2.22)
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Since for any vectorsa andb, a·(a×b) = 0, we construct the primitive reciprocal

lattice vectors as above. Also,a1 · (a2 × a3) = Vcell, in whichVcell is the volume of the

primitive unit cell and that cell contains only one lattice point.

To findf(G), we write

f(r) =
∑

G

f(G)eiG·R (2.23)

Multiplying both sides bye−iG’ ·R, whereG’ is an arbitrary reciprocal lattice vector, and

integrate over the primitive cell,

∫

cell

f(r)e−iG
′

·r d3r =
∑

G

f(G)

∫

cell

ei(G−G
′

)·rd3r (2.24)

To evaluate the integral, we consider a primitive cell of parallelepiped formed by

the vectorsa1 , a2, anda3 , a 2D version of which is depicted in Figure 2.1.

Figure 2.1. The primitive lattice cell and the basis vectorsa1 anda2.
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We can set up an oblique coordinate system for this purpose, that consists of the

coordinates u, v, w along thea1 , a2 , anda3 directions, respectively. Then a point r can

be written as

r = xx̂ + yŷ + zẑ = uû + vv̂ + wŵ (2.25)

whereû = a1

a1
, v̂ = a2

a2
,ŵ = a3

a3
and so the volume of the parallelepiped by the vectors can

be written as;

d3r = dxdydz = û · (v̂ × ŵ)dudvdw =
a1 · (a2 × a3)

a1a2a3

dudvdw (2.26)

For the argument in Equation 2.24 at the right side of the exponential we have

(G−G
′

)·r = G
′′ ·r = (n

′′

1b1+n
′′

2b2+n
′′

3b3)·(u
a1

a1

+v
a2

a2

+w
a3

a3

) = 2π(
n

′′

1u

a1

+
n

′′

2v

a2

+
n

′′

3w

a3

)

(2.27)

where, in the last step we used the defining relationbi · aj = 2πδij. Then the integral

Equation 2.24 is written as;

∫

cell

ei(G−G
′

) · rd3r =
Vcell

a1a2a3

∫ a1

0

du e
(i

2πn1u

a1
)

∫ a2

0

du e
(i

2πn2v

a2
)

∫ a3

0

du e
(i

2πn3w

a3
)

= Vcellδn10δn20δn30

= VcellδG
′′

0

= VcellδGG
′ (2.28)

where we have introduced the notationδGG
′ to denote the product of three Kronecker-δ

symbols. WithG
′′

= 0 andG−G
′

= G
′′

soG = G
′

. Putting this back into Equation 2.24

and dropping the primes, we obtain
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f(G) =
1

Vcell

∫

cell

f(r)e−iG·rd3r (2.29)

We can now tackle any partial differential equation that contains a periodic func-

tion in it. This could be the Schrödinger equation with periodic potential, or Maxwell’s

equation in a periodic dielectric medium.

In summary, when we take the FT of a function that is periodic on a lattice, we

need only include terms with wave vectors that are reciprocal lattice vectors.

2.1.2. 1D Electromagnetic Equation in Reciprocal Space

Now, lets go back our problem in Equation 2.10. The simplest possible PhC,

shown in Figure 2.2, consists of alternating layers of material with different dielectric

constants: a multilayer film.

Figure 2.2. One dimensional photonic crystal formed of dielectric slabs of alternating
dielectric constantǫa andǫb.

In general, in a 1D structure, the dielectric constant woulddepend only on one
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coordinate so the term one dimensional is used. In this figurethe dielectric function

ǫ(r ) = ǫ(z) varies along one direction (z) only.

We can takeE along x-axis,E(r , t) = Ex(z, t)x̂, andH(r , t) = Hy(z, t)ŷ so that

Ey = Ez = 0 andHx = Hz = 0, so the Equation 2.10 becomes;

∇×∇× E = ∇(∇ · E) −∇2E (2.30)

∇ · E = 0 → ∇×∇× E = −∇2E (2.31)

∂2Ex

∂z2
= ǫ(z)

1

c2
∂2Ex

∂t2
(2.32)

Ex(z, t) =

∫ ∞

−∞

dωEx(z, ω)e−iωt (2.33)

∫ ∞

−∞

dωe−iωt{∂
2Ex(z, ω)

∂z2
+
ω2

c2
ǫ(z)Ex(z, w)} = 0 (2.34)

Time FT of the term in curly braces, so the term in curly bracesmust be zero for all

possibleω

∂2Ex(z)

∂z2
+
ω2

c2
ǫ(z)Ex(z) = 0 (2.35)

We found 1D wave equation in real space.(Equation 2.35), nowconsidera linear,

isotropic and positive definite medium. We have expand bothEx(z) andǫ(x) in terms of

Bloch plane-waves. Transformation from real space to reciprocal space;

q = k + G (2.36)
∫

all q
dqf(q) →

∫

BZ

dk
∑

G

f(k + G) (2.37)

Substitutingǫ(z) andE(z) into Equation 2.35
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Table 2.1. 1D EM wave equation in reciprocal space

ǫ(z) =
∑

G ǫ(G)eiGz ⇒ Bloch Plane Waves ǫ(G) = 1
Vcell

∫

ǫ(z)e−iGzdz

Ex(z) =
∫

dqeiqzE(q) ⇒ Bloch Plane WavesE(q) = 1
Vcell

∫

Ex(z)e
−iqzdz

∂2

∂z2

∫

all q
dq E(q) eiqz +

ω2

c2

∑

G

ǫ(G) eiGz

∫

all q
dq E(q) eiqz = 0 (2.38)

∫

all q
dq (−q2) E(q) eiqz +

ω2

c2

∑

G

ǫ(G) eiGz

∫

allq
dq E(q) eiqz = 0 (2.39)

and we rewrite the integral over all q as an integral over BZ and summation over reciprocal

lattice vectorG;

−
∫

BZ

dk
∑

G
′

(k + G
′

)2E(k + G
′

)ei(k+G
′

)z

+
ω2

c2

∑

G

ǫ(G)eiGz

∫

BZ

dk
∑

G
′

E(k + G
′

)ei(k+G
′

)z = 0 (2.40)

TakingG
′′

= G
′

+ G

∫

BZ

dk eikz



−
∑

G′

(k + G
′

)2E(k + G
′

)eiG
′

z +
ω2

c2

∑

G
′

∑

G
′′

−G
′

ǫ(G
′′ − G

′

)E(k + G
′

)eiG
′′

z



 = 0

(2.41)

We can rewrite this equation as;
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∫

BZ

dk eikz



−
∑

G
′

(k + G
′

)2E(k + G
′

)eiG
′

z+
ω2

c2

∑

G
′

∑

G
′′

ǫ(G
′′ − G

′

)E(k + G
′

)eiG
′′

z



 = 0

(2.42)

Now we would like to return firstG
′

andG. Changing our summation indices asG
′ → G

andG
′′ → G

′

in Equation (2.42)

∫

BZ

dkeikz[−
∑

G′

(k + G
′

)2E(k + G
′

)eiG
′

z +
ω2

c2

∑

G

∑

G
′

ǫ(G
′ − G)E(k + G)eiG

′

z] = 0

(2.43)
∫

BZ

dkeikz
∑

G
′

eiG
′

z

[

−(k + G
′

)2E(k + G
′

) +
ω2

c2

∑

G

ǫ(G
′ − G)E(k + G)

]

= 0

(2.44)

or using Equation 2.36 again;

∫

all q
dqeiqz{−|k + G

′ |2E(k + G
′

) +
ω2

c2

∑

G

ǫ(G
′ − G)E(k + G)} = 0 (2.45)

Since the FT of the expression in the parenthesis above (Equation 2.45) must be zero for

all k it must be zero.

−|k + G|2E(k + G) +
ω2

c2

∑

G
′

ǫ(G − G
′

)E(k + G
′

) = 0 (2.46)

|k + G|2E(k + G) =
ω2

c2

∑

G
′

ǫ(G − G
′

)E(k + G
′

) (2.47)
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If the primitive lattice vector isaẑ then the primitive reciprocal lattice vector is

G = Gn = n(2π/a)ẑ with k = kẑ, and the BZ is−π/a < kz 6 π/a. Also G
′

=

Gm = m(2π/a)x̂ andEn = En(k + G) this defines an infinite-dimensional generalized

eigenvalue value problem of the form;

Ax = λBx (2.48)

Anm = δnm|k + n
2π

a
|2 (2.49)

xn = Ek(Gn) (2.50)

λ =
ω2

c2
(2.51)

Bnm = ǫ(Gn − Gm) (2.52)

We note that at this point,ǫ(r) is real so the matrix B is Hermitian, and also it has inversion

symmetry about the origin, i.e ifǫ(r) = ǫ(−r ).

For now, Equation 2.47 can be solved numerically using standard techniques to

give all the allowed frequenciesω for a given wave vectork. However, before that we

can do one thing which is better due to computer limited resources, both in terms of

memory and in terms of computing time. We can convert generalized eigenvalue equation

to ordinary eigenvalue equation. Let’s defineSnm ≡ |k + G|δnm thenA = S2 and we

have

SSx = λBx (2.53)
(

SB−1S
)

(Sx) = λ (Sx) (2.54)

Ãx̃ = λx̃ (2.55)

Multiplying both sides withSB−1 we obtain an ordinary eigenvalue equation with;
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Ãnm = (SB−1S)nm

=
∑

j

∑

t

|k + Gn|δnj(B
−1)jt|k + Gm|δtm

= |k + Gn|(B−1)nm|k + Gm| (2.56)

x̃n = (Sx)n =
∑

j

|k + Gn|δnjxj = |k + Gn|xn (2.57)

Figure 2.3.ǫ(z) in one unit cell for the slab structure shown.

The dielectric function has the form

ǫ(z) = ǫb + (ǫa + ǫb)
∑

R

Θ(
d

2
− |r − R|) = ǫb + (ǫa + ǫb)

∞
∑

−∞

Θ(
d

2
− |n− na|) (2.58)

with r = zẑ , R = naẑ, andΘ(z) is the step function, ifz > 0 → Θ(z) = 0 or

z < 0 → Θ(z) = 1. For 1D structureǫ(Gn) can be calculated using Equation 2.29.

ǫ(Gn) =
1

Vcell

∫

cell

dr ǫ(r)e−Gn·r (2.59)

In order to simplify, we use Euler’s Formula:eiθ = cos θ + i sin θ.
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ǫ(Gn) =
1

a

∫ a/2

−a/2

dz ǫ(z)e−i2πnz/a

=
1

a

∫ a/2

−a/2

dz ǫ(z)

[

cos
2πnz

a
+ i sin

2πnz

a

]

=
1

a

∫ a/2

−a/2

dz ǫ(z) cos
2πnz

a

=
1

a

[

∫ a/2

−a/2

dz ǫb cos
2πnz

a
+

∫ R

−R

dz(ǫa − ǫb) cos
2πnz

a

]

=
1

a

[

ǫb
a

2πn
sin

2πnz

a
|a/2
−a/2 +

1

a
(ǫa − ǫb)

a

2πn
sin

2πnz

a
|R−R

]

(2.60)

where the sine term vanishes because the integrand is odd. For n 6= 0, the first term

evaluates zero. Forn = 0, we can go back to one step earlier and insertcos 2πnz
a

= 1 and

it evaluates to a. Thus we obtain

ǫ(Gn) = ǫbδn0 + (ǫa − ǫb)

(

2R

a

)

sinGnR

GnR
(2.61)

2.1.3. Band Structure

For a givenk, the generalized eigenvalue problem Equation 2.47, or its ordinary

variant Equation 2.56 can be solved by using a finite basis ofN G points. As a result one

findsN frequenciesωnk, n = 1, ..., N and the hermiticity of the matrices the matrices in

Equations 2.47, 2.56 ensures that the eigenvaluesω2
nk will be real. Furthermore, because

these matrices are positive-definite, we’re assured thatωnk will be non-negative, and hence

thatωnk will be real. Sincek may assume any value in the Brillouin Zone of the periodic

lattice, we can varyk and for each value, find the frequenciesωnk. When these frequencies

are plotted for each value ofk, we obtain what is known as the band structure for photons,

or the photonic band structure for the periodic material, referred to as a photonic crystal

or as an electromagnetic crystal.
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Figure 2.4. The photonic band structures for two different multilayer films. In both cases,
each layer has a width0.5a. For 1st band structure layers alternate between
ǫ = 13 andǫ = 12. And for 2nd one layers alternate betweenǫ = 13 and
ǫ = 1.

Figure 2.5. The photonic band structure of a multilayer film with a dielectric constant a.
The width of theǫ = 13 layer is0.2a and the width of theǫ = 1 layer0.2a.

There is a gap in frequency between the upper and lower branches of lines. There

is no allowed mode in the crystal that has a frequency within this gap, regardless of k. The

gap between bandsn = 1 andn = 2 occurs at the edge of the BZ, atk = π/a. We called

such a gap a photonic band gap (Joannopoulos, et al. 2008). For second plot shows that

the gap widens considerably as the dielectric contrast is increased.

The bands above and below the gap can be distinguished by where the energy

of their modes is concentrated in the high-ǫ regions, or in the low-ǫ. The band above a

photonic band gap as the air band, and the band below a gap as the dielectric band. So,

air band means electric field concentrated in air region and dielectric band means electric

field concentrated in dielectric region.
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CHAPTER 3

TWO-DIMENSIONAL PHOTONIC CRYSTALS

In Chapter 2, we have analysed properties of one-dimensional PhCs, in this chap-

ter we will see how the situation changes when the crystal is periodic in two directions

and homogeneous in the third (Meade, et al. 1992). No surprise that 2D systems exhibit

most of the important characteristics of PhCs, from non-trivial Brillouin zones to topo-

logical sensitivity to a minimum index contrast, and can also be used to demonstrate most

proposed photonic-crystal devices (Johnson and Joannopoulos 2002). So, the resulting

two-dimensional PhCs are suitable for applications such asfilters, cavities or microlasers

in photonic integrated circuits. They can either be used to decrease the dimensions of

existing components, or they can add new functionalities tothe optical circuits (Johnson,

et al. 2000).

The key to understanding PhCs in two dimensions is to realizethat the fields in

2D can be divided into two independent polarizations by symmetry: transverse electric

(TE) and transverse magnetic (TM) modes.

3.1. Photonic Crystals with Square Lattice

Considering a 2D PhC with a square or triangular lattice, butit can easily be

extended to any lattice shape and to 3D structures. We consider first the ideal 2D PhC

made by cylinders with square lattice. The rods have their axes parallel to the z direction,

lattice constanta and radius R.

A two-dimensional PhC is periodic along two of it axes and homogeneous along

the third axis (Meade, et al. 1992) also for the material properties, such as the dielectric

permittivity depends only on two of the three coordinates, like ǫ(r ) = ǫ(ρ) = ǫ(x, y),

whereρ ≡ xx̂ + yŷ. PBG appear in the plane of periodicity.

For light propagating in this plane, the harmonic modes by separating them into
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Figure 3.1. A two-dimensional photonic crystal is homogeneous along the z direction (the
cylinders are very tall and their radius R), and periodic along x and y with
lattice constant a. The rods have a dielectric constantǫa and the background
medium has a dielectric constant ofǫb.

two distinct polarizations; TE, in which the electric field is in the plane and the magnetic

filed is perpendicular; and TM , in which the magnetic field is in the (xy) plane and electric

field is perpendicular.

Figure 3.2. Two-dimensional photonic crystals formed in a square lattice. Low-index
holes in high index (Right picture). High index rods surrounded by low index
(Left picture).

Corresponding to the polarizations, there are two basic topologies for 2D PhCs:

hole-type structures consisting of cylinders of low dielectric constant embedded in a

medium of high dielectric constant and rod-type structuresconsisting of rods of high

dielectric constant surrounded by a low dielectric (Johnson, et al. 2000).

For these structures, we again start with Maxwell’s equations in a macroscopic

medium, purely dielectric (i.e.µ(r) = 1);

19



E(r , t) = E(ρ, t) =

∫ ∞

−∞

dωE(ρ, ω)e−iωt (3.1)

∫ ∞

−∞

dωe−iωt

{

∇× [∇× E(ρ, ω)] − ω2

c2
ǫ(ρ)E(ρ, ω)

}

= 0 (3.2)

∇×∇× E(ρ) − ω2

c2
ǫ(ρ)E(ρ) = 0 (3.3)

E(ρ) =

∫

all q
d2q E(q)eiq·ρ (3.4)

∇×∇×
[
∫

all q
d2q E(q)eiq·ρ

]

− ω2

c2
ǫ(ρ)

∫

all q
d2q E(q)eiq·ρ = 0 (3.5)

∇×
∫

all q
d2q ∇×

[

eiq·ρE(q)
]

− ω2

c2
ǫ(ρ)

∫

all q
d2q E(q)eiq·ρ = 0 (3.6)

To evaluate the curl of the integral containingE(ρ), use the vector identity where∇
operates only onρ;

∇× (fA) = f(∇× E) − E(∇f)

∇×
[

eiq·ρE(q)
]

= eiq·ρ (∇× E(q)) − E(q)
(

∇eiq·ρ
)

→ ∇× E = 0

= E(q) × (iqeiq·ρ) (3.7)

Rewrite Equation 3.7 into Equation 3.5, we obtain;

∇×
∫

all q
d2q iq × E(q)eiq·ρE(q) − ω2

c2
ǫ(ρ)

∫

all q
d2q E(q)eiq·ρ = 0 (3.8)

Sinceǫ(ρ) is periodic function, and our purpose is to generalize the Equation 3.8 in re-

ciprocal space, for doing this we know that (in the previous chapter);
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q = k + G (3.9)
∫

all q
dqf(q) →

∫

BZ

dk
∑

G

f(k + G) (3.10)

So Equation 3.8 becomes

∇×
(
∫

all q
d2q iq × E(q)eiq·ρ

)

−ω2

c2

(

∑

G

ǫ(G)eiG·ρ

)

∫

all q
d2q eiq·ρE(q) = 0 (3.11)

∫

all q
d2q

[

−q × q × E(q)eiq·ρ
]

− ω2

c2
ǫ(ρ)

∫

all q
d2q E(q)eiq·ρ = 0 (3.12)

∫

BZ

d2k
∑

G

ei(k+G)·ρ [(k + G) × (k + G) × E(k + G)]

+
ω2

c2

∑

G
′

eiG
′

·ρǫ(G
′

)

∫

BZ

d2k
∑

G
′′

ei(k+G
′′

)·ρE(k + G
′′

) = 0 (3.13)

G
′

+ G
′′

= G Equation 3.13 becomes;

∫

BZ

d2k
∑

G

ei(k+G)·ρ



(k + G) × (k + G) × E(k + G) +
ω2

c2

∑

G
′′

ǫ(G
′′

)E(k + G
′′

)



 = 0 (3.14)

or we can writeG
′′ → G

′

because it is dummy variable and the F.T of the term in curly

braces vanishes, which is implies that the term itself must vanish, or Equation 3.14 be-

comes;

(k + G) × (k + G) × E(k + G) +
ω2

c2

∑

G
′

ǫ(G − G
′

)E(k + G
′

) = 0 (3.15)
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As a result we found the Equation 3.15, which is quite generaland is valid for any

medium that consists of linear, lossless, locally isotropic materials. It is again infinite-

dimensional generalized eigenvalue problems of the formAx = λBx.

The last step is to calculate theǫ(G). In Figure 3.1, the rods have their axes

parallel to the z direction, lattice constanta, radius R, and dielectric constantǫa. The

dielectric constant of the background material isǫb.

ǫ(r ) =
∑

G

ǫ(G)ei G·r (3.16)

beingr is the spatial vector position andG = nxb1 + nyb2 with nx, ny arbitrary integer

numbers. The coefficientsǫ(G) are calculated as

ǫ(G) =

∫

cell

ǫ(r ) e−i G·r d2r

=
1

a2

[

∫ a/2

−a/2

ǫb e
−i G·r d2r +

∫ R

−R

(ǫa − ǫb)e
−i G·r d2r

]

=
1

a2

[

ǫb

∫ a/2

−a/2

dx

∫ a/2

−a/2

dy e−i2π/a(nxx+nyy) + (ǫa − ǫb)

∫ R

0

r dr

∫ 2π

0

dθ e−iGr cos θ

]

=
1

a2

[

ǫb

[(

e−i2nxπ/a

−i2nxπ/a
|a/2
−a/2

)(

e−i2nyπ/a

−i2nyπ/a
|a/2
−a/2

)]

+ (ǫa − ǫb)

∫ R

0

r dr J0(GR) 2π

]

=
1

a2

[

ǫb

(

eiπnx − e−iπnx

i2nxπ/a

)(

eiπny − e−iπny

i2nyπ/a

)

2π(ǫa − ǫb)

∫ R

0

r J0(GR) dr

]

=
1

a2

[

ǫb a
2δnx0 δny0 +

2π

G2
(ǫa − ǫb)

∫ GR

0

x J0(x) dx

]

= ǫb δG0 + (ǫa − ǫb)
πR2

a2

2J1(GR)

GR
(3.17)

where, in the last step, we made use of the identityd
dx

[xnJn(x) = xnJn−1(x)] to evaluate

the integral andJ1 is the first order Bessel function.
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Figure 3.3. The lattice vectorsa1 = ax̂ anda2 = aŷ and the reciprocal lattice vectors
b1 = 2π/ax̂ andb2 = 2π/aŷ.

Figure 3.4. Circular rods have a dielectric constantǫa and the background medium has a
dielectric constant ofǫb.

The square lattice has a square Brillouin zone, which is illustrated in Figure 3.5.

The irreducible Brillouin zone is the triangular wedge in the upper right corner; the rest

of the Brillouin zone can be related to this wedge by rotational symmetry. In fact, the

Γ, X, M points in Figure 3.5 denote(0, 0), (±π
a
, 0) (±π

a
,±π

a
), respectively. These two

X points, and four M points are equivalent to each other, since the differences between

them is just a linear combination of the reciprocal lattice vectors (Sakoda 2001).

Figure 3.5. The1st Brillouin zone construction and detail of the irreducible part. The
symmetry pointsΓ = (0, 0), X = (0, π/a), andM = (π/a, π/a) and the
pathΓ-X-M-Γ traversed to plot the band structure.
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Figure 3.6 shows the dispersion diagram of a two-dimensional square crystal.

Both the TE and the TM band structures are shown for the crystal consisting of dielectric

rodsǫa = 8.9 in air ǫb = 1, with radiusR = 0.2a.

 0

 0.2

 0.4

 0.6

 0.8

 1

ω
a/

2π
c

Γ X M Γ
Figure 3.6. The photonic band structure for a square array ofdielectric columns with

R = 0.2a. The blue bands represent TE modes and the green bands represent
the TM mode.

The frequency is expressed as a dimensionless ratioωa/2πc. The horizontal axis

shows the value of the in-plane wave vectork||. The convention for drawing the band

structure is to traverse the boundary of the irreducible BZ,since this path covers the

critical symmetry points of the BZ. As we move from left to right, k|| moves along the

triangular edge of the irreducible BZ, fromΓ to X to M. Therefore, we have plottedk||

only along the edge of the BZ, thus minima and maxima of the band almost always occur

at the zone edges, and often at a corner. However, the band structures for the TE and TM

modes are completely different. It is possible that there are PBGs for one polarization

but not for the other polarization. And, Figure 3.6 shows that there is no gap for TE

polarizations.
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CHAPTER 4

LINE DEFECT WAVEGUIDE

One particularly interesting aspect of PhCs is the possibility of creating defects

because a defect in a PhC can be a very significant and useful tool in controlling the

behaviour of light (Joannopoulos 2001, Wu, et al. 2006). In this sense, a defect is a good

thing in PhCs, and therein lies the exciting potential of these novel materials.

If we have a band gap, we can introduce a defect inside the crystal to trap or

localize light (Ren, et al. 2004, Joannopoulos, et al. 2008). The local defect breaks the

periodicity of the structure, so with proper engineering, defect modes can be created with

frequencies within the PBG, and which are strongly localized around the defects (John

1987).

4.1. 1D Waveguide

Up to now, plane wave method, which is a frequency-domain approach, was used

to find the eigenmodes of PhCs which are perfectly periodic and infinite in size. However,

when we introduce a defect into the periodic dielectric structure, we have to modify our

method to account for the broken periodicity. The theoretical analysis of the localized

defect modes can be carried out by the supercell method (Meade, et al. 1993, Sözüer

2008). This method is again a frequency domain method and is very similar to the plane

wave method. Basically, the method employs a sufficiently large supercell which contains

the defect, so one is effectively solving a periodic structure again, but with a large unit

cell. Thus the single most important parameter for calculating the band structures with

supercell method is the supercell size. Since the modes of interest,i.e. defect modes,

will decay exponentially away from the defects or cavities,the size of the supercell must

be chosen large enough to ensure that the defect mode has decayed sufficiently at the

boundary of the supercell. Thus, coupling between neighbouring cells become negligible,
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db/2db/2 da

db

Unit Supercell

Figure 4.1. 1D PhC with a defect, one supercell contains the defect in several periods of
the WG on either side of it.

and the results can be considered accurate.

The band structure of the 1DWG portion is modeled by assuminga wave of the

form

Ez(x, y, t) = E0z(y)e
i(βx−ωt) (4.1)

for TE modes (Ex = Ey = 0, Ez 6= 0) propagating in thex-direction with propagation

vectorβ = βx̂. Inserting this into Maxwell’s equations, and using a supercell of size

(2M + 1)a along they-axis, one obtains the generalized eigenvalue equation

(β2 +G2)Ez(G) =
ω2

c2

∑

G′

ǫ(G−G′)Ez(G
′) (4.2)

whereG = 2π
(2M+1)a

i and i = 0,±1,±2, . . .. This can be converted into an ordinary

eigenvalue problem of the formAx = (ω2/c2)x with

AGG′ =
√

β2 +G2 [ǫ−1]GG′

√

β2 +G′2 (4.3)

xG =
√

β2 +G2Ez(G) (4.4)
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whereǫ−1 is the inverse of the matrixǫGG′ = ǫ(G−G′), with

ǫ(G) = ǫbδG0 + (ǫa−ǫb)
d

(2M+1)a

sin(Gd/2)

(Gd/2)
(4.5)

+ (ǫd−ǫb)
da

(2M+1)a

sin(Gda/2)

(Gda/2)

[

M
∑

j=1

2 cos(Gaj)

]

(4.6)

where the second term is due to the core region at the center ofthe waveguide, and the

term in square brackets is the structure factor for the supercell. ǫd is the dielectric constant

of the defect region, or the core.

The LDWG is formed by removing one row of Si rods and replacingwith a Si slab

of normalized thickness̃d = 2 is shown in Fig. 4.1. We use the plane wave method to

calculate the band structure for TE waves. The method and some of the pitfalls have been

discussed elsewhere (Sözüer, et al. 1992). We obtain satisfactory convergence for about

100 plane waves per unit cell for the LDWG and for 25 plane waves per unit cell for the

1DWG.

4.1.1. 1D Silica Waveguide

As an example we consider a 1D silica-air waveguide.

We conclude from the band diagram Figure 4.2;

• 0 < ω < 0.41667 there is no guidance.

• 0.41667 < ω < 0.95 just one mode is supported, and the guide is then called

single-moded.

• 0.95 < ω < 1.5 there is no guidance.

• 1.15 < ω < 1.5 a finite number of modes can propagate, so the guide ismulti-

moded.

Next chapter, the simulations results will be given for thisstructure (for TE

modes), so that we can understand better to effect of frequencies.
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Figure 4.2. Calculated dispersion relation for the TM modes(top) and the TE modes
(bottom) in a 1D WG in which WG made of silica slabs of thickness da =

1.256637 = 0.1a and with dielectric constant ofǫa = 2.25 immersed in air
backgroundǫb = ǫair = 1, at the center one row is removed.
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4.2. 2D Waveguide

The simplest WG in a 2D PhC is again the one-missing-row scheme Figure 4.3.

b

b

R

x

y

a

a/2-a/2

Figure 4.3. Top view of the 2D square array of circular rods,and one row remove. When
the regular lattice consists of circular rods, linear defect means that the cir-
cular rods are not processed along a line. Thus, by using a proper excitation
field whose energy is within the bandgap frequency range, a wave propagating
along this linear defect is produced.

The LDWG is modeled by again using a supercell. We use a supercell of size

1 × (2M + 1) with M sufficiently large, to calculate the dispersion relation inFig. 4.4.

For TE modes (Ex = Ey = 0, Ez 6= 0), propagating along thex-axis with propagation

vectorβ = βx̂, the solutions are of the formEz(x, y, t) = E0z(x, y) exp[i(βx− ωt)].

This yields the generalized eigenvalue equation

|β + G|2Ez(G) =
ω2

c2

∑

G′

ǫ(G −G′)Ez(G
′) (4.7)

whereG = 2π
a
nxx̂ + 2π

(2M+1)a
nyŷ andnx, ny = 0,±1,±2, . . .. This can be converted into

an ordinary eigenvalue problem of the formAx = (ω2/c2)x with
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AGG′ = |β + G| [ǫ−1]GG
′ |β + G′| (4.8)

xG = |β + G|Ez(G) (4.9)

whereǫ−1 is the inverse of the matrixǫGG′ = ǫ(G − G′), with

ǫ(G) = ǫbδG0 + (ǫa − ǫb)
d

(2M + 1)a

sin(Gyd/2)

(Gyd/2)

+ (ǫa − ǫb)
πR2

(2M + 1)a2

2J1(GR)

GR

[

M
∑

j=1

2 cos(Gyaj)

]

(4.10)

where the second term is due to the core region at the center ofthe waveguide, and the

term in square brackets is the structure factor for the cylinders.

To model the guided wave propagation inside the LDWG, we use the supercell

method, with a supercell size ofAx ×Ay, whereAx = a andAy = 61a to ensure that the

guided mode is well contained within the supercell.
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Figure 4.4. Band Diagram for the 2D LDWG. The circular rods have a radiusR =

2.24 = 0.356a and have a dielectric constantǫa = 2.25 embedded in an air
background (ǫb = 1).
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CHAPTER 5

FINITE DIFFERENCE TIME DOMAIN METHOD

Many applications in science and technology rely on em computations in either

man-made or natural environments. One of the popular computational electrodynam-

ics modelling technique is the Finite Difference Time Domain (FDTD) method (Taflove

1995, Yee 1966). This technique has emerged as a primary means to computationally

model many scientific and engineering problems dealing withem wave interactions with

material structure which is based on discretization of Maxwell’s equations in the time

domain. The time-dependent Maxwell’s equations in partialdifferential form are dis-

cretized using central-difference approximations to the space and time partial derivatives.

The electric field vector components in a volume of space are solved at a given instant;

then the magnetic field vector components in the same volume are solved at the next in-

stant in time; and the process is repeated over and over againuntil the desired transient or

steady-state em field behaviour is fully evolved (Sevgi 2003).

Since FDTD is a time-domain technique which finds theE/H fields everywhere

in the computational domain, it lends itself to providing animation displays (movies) of

the E/H field throughout the model(Taflove 1995, Yee 1966). This typeof display is

extremely useful in understanding exactly what is going on in the model, and to help

insure that the model is working correctly. In this chapter,we’ll focus on some examples

that illustrate the basic ideas behind the FDTD method before using the freely available

MEEP software, which is a FDTD simulation software package developed at MIT (it can

be accessed from: http://ab-initio.mit.edu/wiki/index.php/Meep).

5.1. Analysis of the FDTD Method

Before looking at the simulation results, we must understand how the FDTD algo-

rithm works. Indeed, FDTD allows us to solve models that would be difficult or impossi-
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ble to solve with analytical methods. However, it is necessary that one define some basic

elements in an analytical em problems; in the FDTD method oneshould do the same, too.

These elements are;

• Maxwell’s equations; this item is split to extract basic equations used in the Yee

Cell.

Yee’s Cell is the key to the FDTD algorithm. This method was first introduced in 1966 by

Yee but because of huge memory size and high computational requirements, initially it

had limited application. However, with the rapid development in technology, FDTD can

now be readily applied to a variety of em problems. As a result, in the field computation

the regular FDTD algorithm based on Yee’s cell is used.

As shown in Figure 5.1, the electric and magnetic fields are calculated at different

points, such that every position on the electric field grid issurrounded by magnetic field

points. This makes the calculation of curl equations very simple.

Figure 5.1. A typical schematic Yee cell. The electric and magnetic fields are calculated
on separate interspersed grids.H field component is surrounded by 4E field
components and vice versa.

Maxwell’s curl equations in free space are;

∂E
∂t

=
1

ǫ0
∇× H (5.1)

∂H
∂t

= − 1

µ0
∇× E (5.2)
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whereE andH are vectors in 3 dimensions. Equations 5.1 and 5.2 represent3 equations

each. If we consider a one-dimensional system for simplicity, using onlyEx (electric

field is oriented in the x-direction) andHy (magnetic field is oriented y-direction), Equa-

tions 5.1 and 5.2 become;

∂Ex

∂t
= − 1

ǫ0

∂Hy

∂z
(5.3)

∂Hy

∂t
= − 1

µ0

∂Ex

∂z
(5.4)

These are the equations of a plane wave with the electric fieldoriented in thex-

direction, the magnetic field oriented in they-direction, and travelling in thez-direction.

• Spatial and Temporal Grids; this item is used to separate time and space in order

to interleave Maxwell’s equations in space and time.

After, we have to take the central difference approximationEquation 5.3 and 5.4 for both

temporal (n) and spatial (k) derivatives gives;

Figure 5.2. Approximation of the derivative by a central difference.
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Ex(z, t) = Ex(k, n) = En
x (k) (5.5)

Hy(z, t) = Hy(k, n) = Hn
y (k) (5.6)

∂Hy(z)

∂z
⇒

Hn
y (z + ∆z/2) −Hn

y (z − ∆z/2)

∆z
(5.7)

∂Hy(k)

∂z
⇒

Hn
y (k + 1/2) −Hn

y (k − 1/2)

∆z
(5.8)

∂Ex

∂t
⇒ E

n+1/2
x (k) − E

n−1/2
x (k)

∆t
(5.9)

where time is specified by the superscripts,n means a timet = n∆t andn + 1 means

one time step later.∆z is space increments in thez direction, andk means the distance

z = k∆z. And we obtain;

E
n+1/2
x (k) − E

n−1/2
x (k)

∆t
= − 1

ǫ0∆z
[Hn

y (k + 1/2) −Hn
y (k − 1/2)] (5.10)

Hn+1
y (k + 1/2) −Hn

y (k + 1/2)

∆t
= − 1

µ0∆z
[En+1/2

x (k + 1) − En+1/2
x (k)] (5.11)

or, rearranging

En+1/2
x (k) = En−1/2

x (k) − ∆t

ǫ0∆z
[Hn

y (k + 1/2) −Hn
y (k − 1/2)] (5.12)

Hn+1
y (k + 1/2) = Hn

y (k + 1/2) − ∆t

µ0∆z
[En+1/2

x (k + 1) −En+1/2
x (k)] (5.13)

Thus, using the first equation, the value of the E field at the next time step,En+1/2
x

can be calculated using the values of the H fields in the previous timeHn
y . In the next
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equation, the value of H in the next time step,Hn+1
y is calculated usingEn+1/2

x calculated

in the first equation. Thus all the fields can be calculated marching in time by a time step

∆t.

As a result, both Equations 5.10 and 5.11 show thatE andH fields are interleaved

in both space and time .H uses the argumentsk + 1/2 andk − 1/2 to indicate that the

H field values are assumed to be located between theE field values. Similarly,n + 1/2

or n− 1/2 superscripts indicates that it occurs slightly after or beforen, respectively. For

instance, to calculateHn
y (k + 1/2), the neighbouring values ofEx at k andk + 1 are

needed. Similarly, the values of electric field are calculated from the previous values of

the electric field and the neighbouring values of the magnetic field. Thus, to calculate

the electric field at any point in space, we need to know the surrounding magnetic field

values. This is the fundamental paradigm of the FDTD method (Sullivan 2000).

These can be extended to full three dimensional form using the same approach.

The important point in these equations is that∆t and∆z cannot be arbitrary, instead,

they are linked by the Courant stability condition. Essentially ∆z cannot be greater than

the distance that light can propagate in time∆t, in the appropriate medium. In other

words,∆t can at most be∆t = ∆z/(c/n) wheren is the smallest refractive index in the

computational domain. For a one dimensional problem in freespace, Courant stability is

determined by∆t ≤ ∆z/c.

• Constitutive parameters which include permittivity, permeability, conductiv-

ity ; this item defines the medium and boundary conditions.

In order to use this method a computational domain must be established. In general, due

to limited computational resources, the simulations can bedone for a limited region and

in limited time. No matter how fast our computers are, the computational domain has to

be finite.

Because of the finite computational domain, the values of thefields on the bound-

aries must be defined so that the solution region appears to extend infinitely in all direc-

tions.

For example, to do in FDTD simulation at a specified point, we need to know the

values of the fields at the right and left sides (seen in Equation 5.12 and 5.13). It means

that, if we want to calculate electric field or magnetic field at k = 2, we need to use the
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Figure 5.3. Space has been truncated to some computational region and PML is used for
ignoring the reflections.

values adjacent pointsk = 1 andk = 3. This causes a problem at the boundaries, because

there are no available values before the initial and final points.

As a result, with no truncation conditions, the scattered waves will be artificially

reflected at the boundaries leading to inaccurate results. To avoid this problem what we

must done? The answer to this question lies in the application of boundary conditions.

If space has been truncated to some computational region, anabsorbing layer

is placed adjacent to the edges of the computational region.Absorbing boundaries in

FDTD are handled by Perfectly Matched Layers (PML), which are not really a boundary

condition at all, but rather an artificial absorbing material added around the edges of the

computational domain (Berenger 1994)(Johnson 2003, Meep).

When a wave enters the PML, it is attenuated by the absorptionand decays ex-

ponentially; even if it reflects off the boundary, the returning wave after one trip through

the absorbing layer is exponentially tiny. The PML layer inside the cell, overlaps what-

ever objects we have. So that, it properly absorbs WG modes. Aproper choise for the

thickness of the PML is thus important reducing numerical reflections (Johnson 2008).

FDTD is a very versatile modelling technique. Calculationscan be set up quickly,

and changing systems is easy. Furthermore, this method is well suited for studying unfa-

miliar irregular geometries, such as PhCs with complicatedlattice defects.
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• Sources;the last item is used to simulate a physical source or excite astructure to

obtain the desired response.

The computational domain is simply the physical region overwhich the simulation

will be performed. In general, the modelling scheme can be considered as a ”virtual

measurement setup”. There must be a source, that is, a field excitation, for which time

and spatial dependency is properly chosen.

Choosing the Excitation Field

There are different kinds of sources that can be used. However, in our simulations,

we paid special attention to choose an appropriate source, one that will excite only a

particular guided mode of the structure.

Figure 5.4. FDTD simulation space. A current source createsEM fields which then propa-
gate in the space. The boundary region is PML to avoid numerical reflections.

The source class is used to specify the current sources (via the sources input vari-

able), and only the real part of the current source is used in MEEP. Furthermore, all

sources in MEEP are separable in time and space, i.e. of the form J(x, t) = A(x) ·f(t) for
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some functionsA andf that can be chosen from a predefined set, or can be custom-written

in SCHEME, the scripting language used by MEEP for input.

For example,f(t) can be chosen as a continuous sine wave, or a sine wave with

a gaussian time envelope, or some other function oft. When the temporal part of the

source,f(t), is a sine wave with a Gaussian envelope, then a wide frequency range is

solved with only one simulation. This is extremely useful inapplications where resonant

frequencies are not known exactly, or any time that a broadband result is desired.

The important point here is that these are current sources (theJ term in Maxwell’s

equations), even though they are labelled by electric/magnetic field components. They do

not specify a particular electric/magnetic field, which would be what is called a ”hard”

source in the FDTD literature. There is no fixed relationshipbetween the current source

and the resulting field amplitudes; it depends on the surrounding geometry.
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Figure 5.5. 1D WG band structure for TE modes. The red curves are bands for localized

propagation modes, while the black curves are radiation modes.
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Now let’s look at the simulations by using MEEP, for a 1D WG. Inthe previous

chapter we obtained the band structure for TE modes for a 1D WG, Figure 5.5, made of

silica slabs of thicknessda = 1.256637 = 0.1a and with dielectric constant ofǫa = 2.25

immersed in air backgroundǫb = ǫair = 1. At the center one row is removed to obtain a

line defect to serve as the waveguide.

We conclude from the band diagram Figure 5.5;

• 0 < ω < 0.41667 there is no guidance.

• 0.41667 < ω < 0.95 just one mode is supported, and the guide is then called

single-moded.

• 0.95 < ω < 1.5 there is no guidance.

• 1.15 < ω < 1.5 a finite number of modes can propagate, so the guide ismulti-

moded.

At the frequencyω = 0.6, horizontal green-line cuts the red curve at a single point,so

at this frequency, the waveguide is single-mode. Whenω = 1.4, on the other hand, the

horizontal blue-line cuts the red curves at two points, meaning that propagation at this

frequency is multimode. Also, the group velocity,dω/dβ, of the two modes are different.

The dispersion, proportional tod2ω/dβ2, for each mode at this frequency are also different

so each mode spreads at a different rate at this frequency.

In the following FDTD simulations for this structure, performed using MEEP, we

used a Gaussian point source for TE modes (Ez 6= 0). As expected, the waveguide is

single-mode at the lower frequencies, while at higher frequencies it becomes multimode,

with each mode moving with a different velocity and dispersion (Figures 5.6-5.8).
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Figure 5.6. Thez-component of the electric field,Ez(x, y) at different times for
ω = 0.41 ± 0.1. The group velocity is zero at this frequency, so the center of
the gaussian wave packet does not move, but expands in size because of high
dispersion at this frequency.
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Figure 5.7. Thez-component of the electric field,Ez(x, y) at different times
for ω = 0.60 ± 0.1. The group velocity is now non-zero, so the center of the
gaussian wave packet moves at the group velocity, and expands very little in
size becauseω(β) has very little curvature at this frequency.
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Figure 5.8. Thez-component of the electric field,Ez(x, y) at different times for
ω = 1.40 ± 0.1. The waveguide is now multimode, with each mode moving
at its own group velocity and spreading in size with its own dispersion.
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CHAPTER 6

90◦ PHOTONIC CRYSTAL WAVEGUIDE BEND

The 90◦ waveguide bend plays an important role in optical circuits.Large op-

tical losses occur around sharp corners and tight curves. Tosolve this problem various

alternative approaches for bend designs have been done theoretically and experimentally

(Charlton, et al. 2000, Leonard, et al. 2000, Xiao and Qui 2005). Most of these

studies for WG bend were done by using triangular lattices due to the possibility of cre-

ating bandgap for TE and TM polarizations within the same frequency range (Baba, et al.

1999, Oliver, et al. 2002, Notomi, et al. 2005). However, in an integrated circuit one

would eventually want to bend light through a90◦ angle due to the confined geometry.

Therefore, it is not possible to use a triangular lattice dueto triangular lattice symmetry.

Other studies are based on the optimization method for the bends (Chow, et al.

2001, Oliver, et al. 2001, Borel, et al. 2004, Jensen and Siamund 2004). Adding or

removing some rods in the bending region (Chutinan, et al. 2002, Talneau, et al. 2002,

Ntakis, et al. 2004) is an easy way of improving the transmission, but it is not suitable

to guide light over long distances because of the high lossesdue to manufacturing errors.

Moreover, deforming the PhCs lattice near the bend to optimize the WG bends would

make the structure geometry rather complicated.

We propose improved designs in order to increase the transmission level through

90◦-bend PhC WGs. We demonstrate a novel method for guiding light through such a

bend, using1 dimensional WG assisted by a2 dimensional LDWG. The results reveal

very high transmission (≈ 99%) over a wide range of frequencies.

6.1. Single Slab WG

Before we present our model systems, it is useful to considerguided modes in a

uniform dielectric waveguide. A schematic 1D waveguide is shown in Figure 6.1.
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If we look at the dispersion relation for a 1D WG in Figure 6.1,modes above the

light line are radiating modes, with a continuous spectrum and the solid curves below the

light line are guided modes Figure 6.2.

Figure 6.1. Single slab with a thicknessd̃ and has a dielectric constant ofǫa = 13 em-
bedded in a silica backgroundǫb = 2.25. FDTD simulation for a continuous
monochromatic wave travelling through the 1D slab WG.
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Figure 6.2. Dispersion relation for TE modes in the 1D WG structure with Si core and
silica cladding. The shaded regions represent extended, orradiating modes,
and the solid green curves are guided modes. The light line isshown is red.
The thickness of the slab is takeñd ≡ 2πd/a = 2 and with a dielectric
constantǫa = 13. The dielectric constant of the silica cladding isǫa = 2.25

Then, we obtain simulation results by using band diagram andeasily see that EM

wave is forced to propagate in the high-index portion of the WG in Figure 6.2. Here, the

guidance relies purely on Total Internal Reflection (TIR).
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Figure 6.3. The single slab with a thicknessd̃with a 90◦ bend, whereRbend is the bending
radius.

To bend light in such a WG in a trivial way would lead to unacceptably high

bending losses. There is serious leakage problem for EM waves travelling around sharp

corners and tight curves, because most of the EM field is radiated and lost. The main

reason is that the angle of the incident light is too low for TIR when the wave impinges

on a sharp corner (Figure 6.4).

Figure 6.4. When a uniform dielectric WG is bent very tightly(bending radius is equal to
thickness of the slabRbend = d̃ and same frequency is usedωa/2π = 0.2667),
light escapes at the bend.

So, we can solve this problem by increasing the bending radius, but to obtain a

sufficiently low bending loss, the bending radius would haveto be unacceptably large.
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6.2. 1D Photonic Crystal Waveguide

One can instead consider a 1D photonic crystal waveguide as the guiding mecha-

nism with a circular bend again. Since the photonic crystal guidance is different from in-

dex guidance based on total internal reflection, this initially appears to hold some promise.

t=10

t=14

t=16

t=18

t=20

Figure 6.5. 1D silica/air photonic crystal WG with a circular bend. Nearly all of the ra-
diation is lost at the bend.
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We have done simulations of a 1D PhC waveguide made of silica/air structures

with one row of silica slab removed to guide the light. The thickness of the slabs were

chosen the same as those of the quarter wavelength stack, which is known to posses the

maximum bandgap for a given index contrast. However, this type of a corner element fails

to guide the light around the corner as well, with virtually all of the radiation escaping at

the bend as can be seen in Figure 6.5.

To overcome this difficulty, a 2D LDWG can be used, both for guiding the light

for the straight segment and for steering it around the corner (Mekis, et al. 1996, Chuti-

nan, et al. 2002, Roh, et al. 2003, Malkova, et al. 2003, Kim, et al. 2004, Lee, et

al. 2006). The problem with these structures, however, is that even small defects dur-

ing manufacturing can greatly increase attenuation thus limiting the usefulness to guide

light over long distances. Furthermore, the high dispersion of 2D LDWGs also limits the

bandwidth over which they can be used.

Instead, Notomi et. al. proposed using a 1D Slab WG which is not periodic in

the direction of propagation, to reduce dispersion and attenuation. This WG has a much

simpler geometry and has a much flatter dispersion. Moreover, it is much less lossy

because of the simpler geometry, manufacturing errors can be made smaller, resulting

in significantly reduced attenuation (Notomi, et al. 2005).However, this 1D structure

would be unable to properly guide light around sharp corners, resulting in high bending

loss.

As a result an effective way of bending light through 90◦ with little loss can be

achieved by using a 1D slab WG for straight sections, but witha 2D LDWG as the corner

element.

To accomplish this, light enters a 1D slab WG and passes from a1D slab WG to

the corner element 2D LDWG, turns sharp corners with required angle and then, reenters

the 1D slab WG region to travel for another long straight segment. So, the EM wave

would travel with little loss through the straight sections, and can be bent through sharp

turns with little bending loss as well.
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6.3. Why use a 2D Square Photonic Crystal at the Corner?

For a 2D PhC as the corner element, one has several choices forthe 2D lattice,

the most appealing being the hexagonal lattice, since it possesses a common bandgap for

both the TE and the TM modes. This lattice is most convenient for 60◦ and120◦ turns but

for a90◦ turn, the hexagonal lattice and its variant, the honeycomb lattice, are not suitable

by virtue of the geometry of the crystal as can be seen in Figure 6.6.

Figure 6.6.60◦, 120◦, and90◦ bends in the hexagonal lattice. Notice how the line defect
geometry changes after the bend for the90◦ case.

Thus, the most convenient geometry for a 90◦ turn would be that of a square lat-

tice. After turning through 90◦, the line defect waveguide would be the same as before.

Because one would want to switch to a 2D PhC LDWG, bend the light through the re-

quired angle, and then switch back to the 1D slab WG again. To accomplish this, we use

two-dimensional photonic crystal (2D PhC) for our corner element, because we can turn

the waveguide and preserve the line defect waveguide geometry. If the PhC has a triangu-

lar lattice the bend could only be 60◦ or 120◦ due to the triangular lattice symmetry.

6.4. Corner Element

In light of the previous discussion, there are many possiblecandidates for the corner

element, some of which we tabulate below:
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6.5. Silica Rods in Silicon

Due to the large set of possibilities for the corner element,in this study, we tried

only some of the several corner elements to create a line defect waveguide, and looked
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for the structure with the highest transmission.

The first 2D lattice we investigated was the square lattice with silica rods embed-

ded in Si background. The largest bandgaps for this structure is obtained for TE modes

when the silica rods have the largest possible radius,Rrod = π. For practical limitations

we chooseRrod = 3.
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Figure 6.7. The band structure for TE modes for a 2D square lattice with silica rods of
radiusRrod = 3 in a Si background.

The 2D LDWG is formed by removing a row of silica rods. The bandstructure

for the LDWG is shown in Figure 6.8. Within the bandgap, the LDWG supports guided

modes, but for the most part the guidance is multimode, with anarrow frequency windows

in which it is single mode. This is where the lowest index-guided mode and the lowest

gap-guided mode intersect at an “anticrossing” thus creating a small frequency window

where the waveguide is single mode.

The parameters of the 1D PhC WG are obtained by choosing the same filling

ratio for the Si as the 2D LDWG. The band structure for the 1D PhC WG is shown in

Figure 6.9. Although the bandgaps of the 1D and the 2D structures do not match, it’s still

possible for the light to be guided in both structures.
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Figure 6.8. Band structure for the 2D LDWG formed by removinga row of silica rods in a
square lattice.Rrod = 3. The band anticrossing is indicated by the red circle.
The green line and the green dot mark the operating frequencyω = 0.232 and
the wave vector with an unfolded value ofβ = 0.54.
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Figure 6.9. Matching 1D PhC WG band structure with various modes shown.
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6.5.1. Options for The Corner Geometry

Having chosen the 2D LDWG and the matching 1D PhC WG, the precise ge-

ometry for the corner still remains to be determined. Possible cases include the ones in

(Mekis, et al. 1996) with extended diagonal segments. Although introducing a diagonal

segment seems, at first, to be a good idea, it actually resultsin increased bending loss.

The reason can be understood if one takes a close look at the simulation results in Fig-

ures A.3-A.6. In the diagonal segment, the line defect geometry is altered and the parity

of the modes in that segment are different from those in the straight segment: While the

mode in the straight segment is odd, the mode in the diagonal segment is even, making

the coupling from the straight portion to the diagonal portion rather poor, resulting in

significant bending loss.

Figure 6.10. Some of the possibilities referred to in the text as Option 0 to Option 4.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.226  0.228  0.23  0.232  0.234  0.236  0.238

F
lu

x

ωa/2πc

Straight 1D WG
Option 0
Option 1
Option 2
Option 3
Option 4

Figure 6.11. Fluxes for each of the options in Figure 6.10. Option 0 clearly has the highest
transmission.
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This is quite apparent from Figure 6.11 where the fluxes afterthe bend are pre-

sented for each of the cases, as well as the incident flux for comparison. The best option

seems to be Option 0, for which there is no diagonal segment.

6.6. Silicon Rods in Silica

With less than stellar success with silica rods in silicon, we next considered the

inverse structure with silicon rods in silica. Our first choice for the lattice was the square

lattice with circular silicon rods embedded in silica. We look for the 2D lattice with the

largest gap, because the 2D PhC cornering element yield the least bending loss if it has a

large photonic band gap at the range of operating frequencies. To obtain this, we vary the

radius of the rods for a given index contrast. Among all possibilities, this structure has

the largest bandgap for the square lattice as seen in Figure 6.12.
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Figure 6.12. The relative gap width vs the normalized radiusR̃ for a 2D photonic crystal
made of silicon rods of dielectric constant ofǫa = 13 in a silica background
with ǫb = 2.25. The maximum bandgap occurs atR̃ = 1.5 for circular rods.

53



The circular Si rod structure has the highest bandgap with the square Si rod struc-

ture coming a close second. Thus the best candidate for the corner element seems to be

the circular rod structure.

The next thing to consider is how to open a line defect in this photonic crystal to

serve as a waveguide. One could remove one or two rows of Si rods, leaving the low index

silica as the core. This would yield a purely gap-guided waveguide as the core refractive

index would be less than that of the medium.

Another possibility is to remove a row of Si rods, and insert acore of silicon to

yield a photonic crystalassistedLDWG. This choice would also make the coupling to the

1D PhC WG suggested by Notomi much easier, so we take this route. Fifure 6.13 shows

our choice for the corner element, together with the 1D straight sections.

Figure 6.13. The corner geometry (inset) and the geometrical details of the interface
between the 1DWG and the LDWG. The values for the various normalized
parameters used in this work are,d̃a = 1.125, d̃ = 2, R̃ = 1.5, d̃sep = 5.655.
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Our structure then has three essential elements:

1. 1D PhC WG for the straight sections

2. 2D LDWG with a core for the corner element.

3. 2D PhC to keep the light from escaping at the corner

The geometry of these three elements must be carefully adjusted to yield the minimum

bending loss. In what follows, we will consider only TE waves(Ez 6= 0) and find the

band structure and present FDTD simulations for the optimalgeometry.

6.6.1. Bands for the 2D Photonic Crystal

Now we can use the plane wave expansion which is quite satisfactory for 2D

problems to model the 2D square lattice. For TE modes (Ez 6= 0), the solutions are of the

form Ez(x, y, t) = E0z(x, y) exp[i(k · r − ωt)]. This yields the generalized eigenvalue

equation;

|k + G|2Ez(G) =
ω2

c2

∑

G’

ǫ(G − G′)Ez(G
′) (6.1)

whereG =
2π

a
nxx̂ +

2π

a
nyŷ (nx, ny = 0,± ± 2, . . .) is a reciprocal lattice vector andk

is a vector in the first Brillouin zone. This can be converted into an ordinary eigenvalue

problem of the formAx = (ω2/c2)x with

AG G’ = |k + G| [ǫ−1]GG′ |k + G′| (6.2)

xG = |k + G|Ez(G) (6.3)
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whereǫ−1 is the inverse of the matrixǫGG’ = ǫ(G − G’). For circular rods,

ǫ(G) = ǫbδG0 + (ǫa − ǫb)
πR2

a2

2J1(GR)

GR
(6.4)

whereJ1(x) is the Bessel function of order 1.
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Figure 6.14. The band structure for a 2D photonic crystal made of silicon rods of ra-
dius R̃ = 1.5 and with a dielectric constant ofǫa = 13 immersed in a silica
background withǫb = 2.25. The relative gap width is≈ 20% centered at
ωa/2π = 0.26673 shown with a horizontal dashed line. The inset shows the
Brillouin zone, with the irreducible zone.

After creating the maximum PBG, the second step is to find the band-structure

diagram for 1D slab WG and 2D LDWG due to the comparison modal match between

the incident lights and the guided modes. Since light entersa 2D LDWG from a 1D slab

WG and, after turning reenters the 1D slab WG, so if the mode frequency falls inside the

gap then a linear defect in a waveguide can support only linearly localized mode (Meade,

et al. 1991), such as extended modes can not coupled the propagating modes. Light

will be either transmitted or reflected, only back reflectionis hinder at the entry and exit
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interfaces thus, the spacing between the 1D slab WG and 2D corner element has to be

carefully adjusted.

6.6.2. 2D Line Defect Waveguide

The band structure of the LDWG is modelled by using a supercell as shown in

Figure 6.15. We use a supercell of size1x(2M+1) with M sufficiently large, to calculate

dispersion relation in Figure 6.16.

Figure 6.15. Top figure shows the supercell geometry for the line defect waveguide. Here
a supercell of size ax8a is shown. The line defect is formed byremoving one
row of dielectric rods. And the bottom figure shows that 2D PhCmade of
silicon rods of dielectric constantǫa = 13 immersed in a silica background
ǫb = 2.25. The line defect is formed by removing one row of dielectric rods
and by placing a dielectric slab of thicknessd̃ ≡ 2πd/a = 1.125.

For TE modes (Ex = Ey = 0, Ez 6= 0), propagating along thex-axis

with propagation vectorβ = βx̂, the solutions are of the form;Ez(x, y, t) =

E0z(x, y) exp[i(βx− ωt)]. We calculated before, this yields the generalized eigenvalue

equation;
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|β + G|2Ez(G) =
ω2

c2

∑

G’

ǫ(G − G′)Ez(G′) (6.5)

whereG =
2π

a
nxx̂ +

2π

(2M + 1)a
nyŷ. This can be converted into an ordinary eigenvalue

problem of the formAx = (ω2/c2)x with

AG G’ = |β + G| [ǫ−1]GG′ |β + G′| (6.6)

xG = |β + G|Ez(G) (6.7)

whereǫ−1 is the inverse of the matrixǫGG’ = ǫ(G − G’), with

ǫ(G) = ǫbδG0 + (ǫa − ǫb)
d

(2M + 1)a

sin(Gyd/2)

(Gyd/2)

+ (ǫa − ǫb)
πR2

(2M + 1)a2

2J1(GR)

GR

[

M
∑

j=1

2 cos(Gybj)

]

(6.8)

where the second term is due to the core region at the center ofthe waveguide, and the

term in square brackets is the structure factor for the cylinders. For a lattice with n basis

vectorsbj , j = 1, 2, ..., n with identical “atoms” at each side. For n=2, a lattice with a

two-point basis such as the diamond structure, the basis vectors can always be chosen

equal and opposite,b1,2 = ±b (Sözüer, et al. 1992).

Dispersion relation for 2D LDWG supports single localized mode at the optimum

frequency of operationωa/2π = 0.26673. Now the last thing we have to calculate the

dispersion relation for 1D slab WG. Thus, if we can find singlelocalize mode for this

structure at the frequency range of interest, we will provide the necessary condition for

perfect transmission.
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Figure 6.16. The localized propagation modes of a line defect waveguide for a 2D pho-
tonic crystal. Silicon rods of radius̃R = 1.5, and dielectric constant of
ǫa = 13 .The background is silica with dielectric constantǫb = 2.25. The
line defect is formed by omitting one row of circular dielectric rods and re-
placed by a dielectric slab which has thicknessd̃ ≡ 2πd/a = 2.

6.6.3. 1D Slab Waveguide

The dispersion relation of the 1D slab WG portion is modelledby assuming a wave

of the form for TE modes (Ex = Ey = 0, Ez 6= 0) propagating in the x-direction with

propagation vectorβ = βx̂. Inserting this into Maxwell’s equations, and again using a

supercell of size2M+1 along they-axis, one obtains the generalized eigenvalue equation

(β2 +G2)Ez(G) =
ω2

c2

∑

G′

ǫ(G−G′)Ez(G
′) (6.9)

whereG =
2π

(2M + 1)a
i, (i = 0,±1,±2, . . .). This can be converted into an ordinary

eigenvalue problem of the formAx = (ω2/c2)x with

AGG′ =
√

β2 +G2 [ǫ−1]GG′

√

β2 +G′2 (6.10)
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xG =
√

β2 +G2Ez(G) (6.11)

whereǫ−1 is the inverse of the matrixǫGG′ = ǫ(G−G′), with

ǫG = ǫbδG0 + (ǫa − ǫb)
d

(2M + 1)a

sin(Gd/2)

(Gd/2)

+ (ǫa − ǫb)
da

(2M + 1)a

sin(Gda/2)

(Gda/2)

[

M
∑

j=1

2 cos(Gbj)

]

(6.12)

where the second term is due to the core region at the center ofthe waveguide, and the

term in square brackets is the structure factor for the supercell.
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Figure 6.17. The propagation modes for the 1DWG made of silicon slabs of thickness
d̃Si = 1.125, and with dielectric constant ofǫa = 13 immersed in a silica back-
ground withǫb = 2.25. The defect is formed by removing one row of dielec-
tric slabs and by placing a dielectric slab of thicknessd̃ ≡ 2πd/a = 2. The
finely spaced gray bands are those of unguided radiation modes. The center-
gap frequencyωa/2π = 0.2667 and the corresponding propagation constant
βa/2π = 0.78 are indicated by the cross-hair. The gray bands correspond to
non-localized radiation modes. The solid curves are bands for the localized
propagation modes.
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Among the choices we studied, we found that the highest transmission is obtained

when we omit one row of rods (L-shaped) from a square lattice of Si rods embedded in

a silica background. We also looked for the structure which yields only a single guided

mode in the bandgap. For instance when two rows of rods are removed from the 2D PhC

to form a LDWG, the propagation becomes multi-modal inside the LDWG at the gap

frequencies, leading to poor transmission because of increased scattering due to mode

mismatch at the interface.

Now, the necessary condition is satisfied for perfect transmission because the 2D

LDWG and 1D slab WG be single localized mode in the frequency range of interest. We

found a single localized mode for optimum frequency that falls within the 2D bandgap

of 2D PhC. As a result, the guided defect mode passes through the sharp corner without

being scattered into the 2D PhC.

To sum up,

• 0.240426 < ω < 0.293049, EM wave can be guided and not scattered into the 2D

PhC.

• 0.241977 < ω < 0.292176, EM wave, is a single localized mode, which travels

without lost around sharp corners.

• 0.210212 < ω < 0.23889 and0.295036 < ω < 0.32884, EM wave is still single

localized mode for LDWG structures, however the frequency ranges out of the 2D

PhC PBG, as a result the mode can not be confined.

6.6.4. Mode Profile Matching

Furthermore, since light enters a 2D LDWG from a 1D slab waveguide and, after

turning reenters the 1D slab waveguide, matching the mode profile of the LDWG with

that of the 1D slab waveguide is of utmost importance to ensure low reflection/diffraction

at the entry and exit interfaces. Thus the spacing between the 1DWG and the 2D corner

element has to be carefully adjusted to ensure minimum reflection at the entry and exit

interfaces.
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We define the relative mode mismatch between the two media as

δ(x0) ≡

√

√

√

√

√

∫ Ay/2

−Ay/2
dy[E1z(y) −E2z(x0, y)]

2

∫ Ay/2

−Ay/2
dy[E1z(y)]2

(6.13)

whereE1z(y) is the mode profile of the 1DWG andE2z(x0, y) is the mode profile of the

LDWG at fixedx0. We search for a value ofx0 that minimizesδ(x0). Because of the

periodicity in thex-direction,x0 can assume values in the interval(−a/2, a/2). A plot of

δ(x) is shown in Figure 6.18b. The value ofδ(x) is minimum at the pointx = −a/2, and

a plot of the two modes is shown in Figure 6.18a. So it seems that setting the separation

between the end of the 1DWG and the center of the first column ofrods in the 2DWG,dsep

toa/2 would yield the best match, but we can do even better. We made FDTD calculations

for various separations and found that the maximum transmission is obtained by setting

dsep = 0.9a.
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Figure 6.18. The relative mode mismatch between the modes ofthe 1D waveguide and
that of 2D LDWG as a function ofx. The mismatch is smallest atx = −a/2.
Maximum coupling is obtained when the spacing between the 1Dwaveguide
and the center of the rods in the 2D structure is≈ 0.9a.
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6.6.5. FDTD Simulation Results

The band structures calculated so far can be used to gain insight into the problem

and decide which structures hold promise, but the final step has to be the actual time

domain simulation to prove, without a doubt, that the cornerdesign actually works.

Above, we can figure out parameters for our proposed structure and also we know

now which frequencies are guided and which are not. We would like to know exactly

how much power makes it around the bend, the rest being eitherreflected or radiated

away. For that we need to compute the fluxes through a line segment with the width of the

waveguide. We do this once for the straight 1D PhC WG, and onceagain after the bend,

as shown schematically in Figure 1d-eps-2. The FDTD simulations have been performed

using MEEP, which allows great flexibility in using custom sources.

Figure 6.19. Our reference frame is 1D PhC WG, and our proposed structure photonic
crystal assisted bend. Same source and flux-region is chosenfor both simula-
tions.

To obtain accurate transmission results, we made sure the straight sections of the

bend are identical to the reference 1D PhC WG. Since we are primarily interested in TE
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modes for whichEz 6= 0, as the source, we use a current source of the form

J(r , t) = δ(x− xs)E1z(y, w) exp

[−(t− t0)
2

2σ2

]

exp(−iωt) k (6.14)

which is a monochromatic source of frequencyω, located atx = xs and enveloped in a

Gaussian packet with width∆ω = 1/σ in the frequency domain.E1z(y, w) is the guided

mode of the 1D PhC WG at the center frequencyω Its Fourier coefficients are obtained by

solving the eigenproblem Equation 6.9, and its inverse FT iscalculated as either a sine or

a cosine series depending on whether the source is even or odd. The current source must

be in thez-direction in order to excite TE modes.1

It’s tempting to instead use a point source for even modes andtwo antisymmetric

point sources for odd modes, for the sake of simplicity. However, depending on the

frequency, one could then have to use an unusually long straight segment for the 1D PhC

WG before the bend, in order to have all of the unguided modes radiate out of the 1D PhC

WG. Our mode source excites only one mode, just itself, so theinitial straight segment

can be made very short, thereby significantly reducing the simulation time, in addition to

yielding much more accurate results.

The transmission of the bend then can be defined as the ratio ofthe total output flux

Po measured after the bend, to the reference total fluxPi for the corresponding straight

WG, which is given byT = −10 log10
Po

Pi
.

Since the source is Gaussian, in principle it would never “end” and the simulation

would take forever! For the flux calculations, we ran our simulations until well after the

fields have decayed to 1/10,000th of their peak values at the end of the waveguide where

the flux-regions have been placed.

Since the imaginary part of the wave vector is maximum near the center of

the bandgap, the operating frequency is expected to be around the centergap value of

ω̃ = 0.2667. However, since the incident wave is along theX-direction, and confining

light in this direction would require a large imaginary partfor the wave vector, an op-

erating frequency near the center of the gap at theX-point yields a bending loss that is

appreciably less than that at the centergap frequency.

1For TM modes one would use a current source in thex-direction with E1x(y, ω) substituted for

E1z(y, ω) in Equation 6.14. However we will not be concerned with TM modes in this thesis.
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In Figure 6.21, we present several snapshots from our simulation of the corner

structure when the frequency,w̃ = ωa/2π = 0.23889 is outsidethe band gap0.240426 <

ω < 0.293049 of the 2D square lattice. The radiation penetrates the 2D structure and

there is serious leakage.

By contrast, Figure 6.22 shows snapshots at the same times asin Figure 6.21, but

this time the frequency is the centergap frequencyω̃ = 0.23889. This time, there is no

visible penetration into the 2D corner element, and the transmission is nearly lossless.

Figures 6.21 and 6.22 are in good agreement with what band diagrams provide us. We

present the calculated transmission for different bendingradii in Figure 6.23.

Figure 6.20. Photonic crystal assisted bend and single slabwaveguide bend at the cen-
tergap frequency of̃ω = 0.2667. The bending radius of the core centerline
is just the width of the core. The wave is a Gaussian with width∆ω̃ = 0.1,
and the 1D slab waveguide is excited with a current source that matches the
guided mode at the given frequency.
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t=10

t=13

t=17

t=21

Figure 6.21. FDTD simulations of the photonic crystal assisted bend at a frequency out
of the photonic band gap,̃ω = 0.23889. The bending radius of the core
centerline is equal the width of the coreRbend = d̃. The wave is a Gaussian
with width ∆ω̃ = 0.1.
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t=10

t=13

t=17

t=21

Figure 6.22. FDTD simulations of the photonic crystal assisted bend at the centergap
frequent ofω̃ = 0.2667, again Gaussian source with width∆ω̃ = 0.1 and
the radius of the bendRbend = d̃. The pictures are taken same time in Fig-
ure 6.21.
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Figure 6.23 shows that, transmission through the photonic crystal assisted 90◦

bend as a function of frequencyRbend = d (blank squares), and forRbend = 2d (blank

circles), where d is the width of the core region. Also shown are the transmission curves

for a slab WG without photonic crystal assistance forRbend = d (filled squares) and

for Rbend = 2d (filled circles). The transmission of the photonic crystal assisted bend

is largest for frequencies inside the 2D photonic crystal bandgap which lies in the range

0.240426 < ω̃ < 0.293049.

In conclusion, for TE modes in a square lattice 2D setting, wehave shown that

low-loss occur for 90◦ corner by using 1D-2D system. Thus, photonic crystal assisted

bend system is realizable for consideration in photonic integrated circuits. Furthermore,

we change corner element and obtain the transmission results by applying the same order.

-7

-6

-5

-4

-3

-2

-1

 0

 0.2  0.22  0.24  0.26  0.28  0.3  0.32  0.34

T
ra

ns
m

is
si

on
 (

dB
)

ωa/2πc

Photonic Crystal Assisted Rbend=2d
Photonic Crystal Assisted Rbend=d

Single Slab Rbend=2d
Single Slab Rbend=d

Figure 6.23. Transmission through the bend as a function of normalized frequency for
different radii of curvature.

6.6.6. Rods with a Square Cross Section

It might be interesting to modify this structure a bit, for example by changing

circular rods with square rods, and observe if any significant changes would occur. So
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the only difference is that in Figure 6.13 circular rods are replaced by square rods, and

we again find that transmission is very high for the frequencyrange between0.241977 <

ω < 0.292176. This can also be interpreted as evidence of the robustness of the corner

element.

Figure 6.24. Replacing the circular rods with square rods ofthe same cross-section. The
bending radius is equal to normalized thickness of the slab at the core.
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Figure 6.25. Transmission through the bend as a function of normalized frequency for
different radius of curvature. The red curve is forRbend = 2d̃, the green curve
for Rbend = d̃ and the circular rods are replaced by square rods. Also, the red
curve and pink curve is a single slab without photonic crystal at the corner,
which has bending radiusRbend = 2d̃ andRbend = d̃ respectively.
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6.7. Alternate Corner Element: The Checkerboard Lattice

An alternate way of carving a line defect out of the square lattice can be to remove

a row along a line that makes a45◦ angle with the line defect in the previous section.

The square lattice, when rotated by45◦ can be viewed as a distinct “checkerboard lattice”

lattice,i.e. a square lattice with a two point basis.

R

a

a
a

a
a

dsep

d a
d

Rben
d

Figure 6.26. The corner geometry (inset) and the geometrical details of the interface
between the 1DWG and the LDWG. The values for the various normalized
parameters used in this work are,d̃a = 1.125, d̃ = 2, R̃ = 1.5, d̃sep = 5.655.

Considering the success with the square lattice, this type of a corner element,

depicted in Figure 6.26 seems worth investigating. Again, we will use circular rods in the

2D PhC, and since this is physically the same structure as thesquare lattice, only rotated

by 45◦ to form the line defect, it has the same bandgap and so Si rods with the same radius

will be used. However, the line defect is now created by removing one row of rods and by

placing a silicon slab.

Now the lattice constant of the checkerboard lattice isa =
√

2asq so the maximum

band gap occurs when the radius of the pillars is takenR̃ = Ra/2π = 1.06.
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Figure 6.27. Band structure of circular silicon pillars with aR̃ = 1.06 embedded in silica
again, but the 2D square lattice rotated by 45◦.

For a 2D PhC made of silicon pillars of dielectric constantǫa = 13 in a silica

background with dielectric constantǫb = 2.25, the maximum band gap is still≈ 19.7%

for TE modes (Ez 6= 0).

Because the frequencies are scaled by a different lattice constanta now, the gap

is between0.170 < ω̃ < 0.207 centered at the frequencỹω = 0.1886. After that, we

should calculate dispersion relation for 2D LDWG to obtain single localize mode at the

range of band gap. Here, 2D LDWG has different supercell the only differences not only

parameters and alsoǫ(G).

Before, we calculated for TE modes (Ex = Ey = 0, Ez 6= 0), propagating

along thex-axis with propagation vectorβ = βx̂, ordinary eigenvalue problem with a

1x(2M + 1) supercell size;Ax = (ω2/c2)x with

AG G’ = |β + G| [ǫ−1]GG′ |β + G′| (6.15)

xG = |β + G|Ez(G) (6.16)
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whereǫ−1 is the inverse of the matrixǫGG’ = ǫ(G − G’), with

ǫ(G) = ǫbδG0 + (ǫa − ǫb)
πR2

(2M + 1)a2

2J1(GR)

GR

×
[

M
∑

j=1

2 cos(Gybj)+
M−1
∑

k=1

2 cos(Gxbk +Gybk)

]

(6.17)

where the second term is due to the core region at the center ofthe waveguide, and the

term in square brackets is the structure factor for the cylinders.
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Figure 6.28. The localized propagation modes of a line defect waveguide for a 2D pho-
tonic crystal. Silicon rods of radius̃R = 1.06, and dielectric constant of
ǫa = 13 . The background is silica with dielectric constantǫb = 2.25. The
line defect is formed by omitting one row of circular dielectric rods and re-
placed by a dielectric slab which has thicknessd̃ ≡ 2πd/a = 2.12.

Secondly, we should calculate the dispersion relation for 1D slab WG, using same

supercell size and same parameters in the section 1D slab WG,the only difference is the

thickness of the defect.
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Figure 6.29. The localized propagation modes of a line defect waveguide for a 1D SWG.
Silicon slabs of thickness̃d = 1.125, and dielectric constant ofǫa = 13 .The
background is silica with dielectric constantǫb = 2.25. The line defect is
formed by omitting one row of dielectric slabs and replaced by a dielectric
slab which has thickness̃d ≡ 2πd/a = 4.
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Figure 6.30. Transmission through the photonic crystal assisted 90◦ bend as a function
of frequencyRbend = d (blank squares), and forRbend = 2d (blank circles),
where d is the width of the core region. Also shown are the transmission
curves for a slab WG without photonic crystal assistance forRbend = d (filled
squares) and forRbend = 2d (filled circles). The transmission of the photonic
crystal assisted bend is largest for frequencies inside the2D photonic crystal
bandgap which lies in the range0.170006 < ω < 0.207217.
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A critical and necessary condition for high transmission issatisfied that the pho-

tonic crystal waveguide be single-mode in the frequency range of interest. Now if we look

at the simulation results at the center frequency;

t=10

t=13

t=17

t=21

Figure 6.31. FDTD simulations of the photonic crystal assisted bend at the centergap
frequency ofω̃ = 0.188, again gaussian source with width∆ω̃ = 0.1 and
the radius of the bendRbend = d̃. The pictures are taken same time in Fig-
ure 6.21.
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Lastly, transmission is calculated (Figure 6.30) same way,by using a reference 1D

slab WG due to the perfect guidance. The transmission of the bend then can be defined as

the ratio of the total output fluxP0 for the waveguide bend to the reference total fluxPi

for the corresponding straight WG, which is given byT = 10 log10
Pi

P0
.

6.7.1. Coupling

With the checkerboard lattice, transmission is less than circular rods in a square

lattice. The basic reason is that the reflections occur at theentry and exit interfaces. Thus,

it might be worth varying the spacing between the 1D slab WG and 2D LDWG and see if

this improves the coupling efficiency.

Since the separation between the rods of the 2D WG and the slabs of the 1DWG

are different, this might be the reason for the poor efficiency. So we tried extending each

slab so that they would all be at the same distance to the rods of the 2D WG.

Figure 6.32. The separation between 1D slab WG and 2D LDWG is taken equal for every
slab, which is calleddsep = 0.4.

So it seems that the separation between the 1D slab WG and 2D LDWG, changing

dsep has little effect. Second choice, we can take the separationbetween the 1D-2D system

is taken equal. Because, for circular rods in a square array the distance between the 1D

slab WG and 2D LDWG is same. However, in here, for circular rods in a square array but

rotated 45◦, the separation between them is not same for every slabs (Figure 6.26).
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Figure 6.33. Transmitted power for photonic crystal assisted bend of bending radius
Rbend = d̃. Gaussian source with a frequencyw̃ ≡ 0.185 and with width
∆ω̃ = 0.1 is used and the spacing between 1D slab WG and 2D LDWG is
changed between0.4 ≤ dsep ≤ 1.5.
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Figure 6.34. To compare the separation effect for 90◦ with different bending radius. The
red curve shows that photonic crystal assisted bend with a bending radius
Rbend = 2d̃, and the blue curve for photonic crystal assisted bend with a
bending radiusRbend = 2d̃ but the separation between 1D slab WG and 2D
LDWG is equal for every slabs, which isdsep = 0.4. The green curve shows
that photonic crystal assisted bend with a bending radiusRbend = d̃, and the
pink curve for photonic crystal assisted bend with a bendingradiusRbend = d̃

but the separation between 1D-2D system is equal for every slabs.
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If the separation between them is taken equal for every slabsFigure 6.32 and the

other parameters are kept same (like thickness of the slabs,defect and radius of the rods

etc.), transmission is not changed.
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CHAPTER 7

CONCLUSION

In this thesis, a90◦ waveguide bend based on a hybrid of 1D and 2D photonic crys-

tals is presented. The theoretical modelling and real time simulations are presented. At

the beginning the background theory, which is necessary to understand photonic crystals

and waveguides is presented. One and two dimensional photonic crystal waveguides are

investigated by using both time and frequency domain method. The dispersion relation

of the perfect PhCs are obtained by using the PWM. After comparing these results, de-

fects are introduced into the photonic crystals, which is done by removing one row at the

center to create line defect waveguide. Supercell method isused to obtain the dispersion

relations for the line defect waveguide, Since the mode of interest will decay exponen-

tially away from waveguides, therefore supercell size is chosen large enough for every

calculations.

The finite difference time domain method is used to obtain simulations. The focus

of the work is the improvement of the transmission for the bend. So, in this thesis, a new

type of90◦ WG bend is proposed by using different corner elements.

We demonstrated a novel method for guiding light through sharp corners by using

a 1D slab WG for straight sections and a 2D LDWG for corners. One particular structure

with Si rods in a silica background performed exceptionallywell, yielding a bending loss

as little as10−4.
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Transmission in Two-Dimensional Maroporous Silicon Photonic Crystal Waveg-
uides.Electronic Letter25:1550-1552.

Meade, R. D., K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, 1991. Photonic Bound
States in Periodic Dielectric Materials.Physical Review B44:13772.

Meade, R. D., K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, 1992. Existence of a
Photonic Band Gap in Two Dimensions.Applied Physics Letters61:495.

Meade, R. D., A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, O. L. Alerhand, 1993.
Accurate Theoretical Analysis of Photonic Band-Gap Materials.Physical Review
B 48:8434.

Mekis, A., J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J.D. Joannopoulos, 1996.
High Transmission through Sharp Bends in Photonic Crystal Waveguides.Physi-
cal Review Letters77:3787-90.

Miao, B. , C. Chen, S. Shi, J. Murakowski, D. W. Prather, 2004.High-Efficiency Broad-
Band Transmission Through a Double-60◦ Bend in a Planar Photonic Crystal Sin-
gle Line-Defect Waveguide.IEEE Photonics Technology Letters16:2469-2471.

Naka, Y., H. Ikuno, 2002. Two-Dimensional Photonic CrystalL-shaped Bent Waveguide
and its Application to Wavelength Multi/Demultiplexer.Turkish Journal of Elec-
trical Engineering and Computer Sciences10:245:256.

Notomi, M., H. Taniyama, Y. Yoshikuni, 2005. Propagation characteristic of one-
dimensional photonic crystal slab waveguides and radiation loss.Physical Review
B 71:153103-153106.

80



Ntakis, I., P. Pottier, M. De La Rue, 2004. Optimization of Transmission Properties of
Two-Dimensional Photonic Crystal Channel Waveguide BendsThrough Local
Lattice Deformation.Journal of Applied Physics96:12-18.

Ren, K., X. Ren, R. Li, J. Zhou, D. Liu, 2004. Creating ”Defects” in Photonic Crystals by
Controlling Polarizations.Physics Letters A325:415-419.

Ren, G., W. Zheng, Y. Zhang, K. Wang, X. Du, M. Xing, L. Chen, 2008. Mode Analy-
sis and Design of a Low-Loss Photonic Crystal60◦ Waveguide Bend.Journal of
Lightwave Technology80:2215-2218.

Oliver, S., H. Benisty, M. Rattier, C. Weisbuch, M. Qui, A. Karlsson, C. J. M. Smith,
R. Houdre, U. Oesterle, 2002. Resonant and Nonresonant Transmission Through
Waveguide Bends in a Planar Photonic Crystal.Applied Physics Letters79:2514-
2516.

Oliver, S., H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdre, U. Oesterle,
2002. Improved60◦ Bend Transmission of Submicron-Width Waveguides De-
fined in Two-Dimensional Photonic Crystals.Journal of Lightwave Technology
20:1198-1203.

Roh, Y., S. yoon, S. Kim, H. Jeon, S. Han, Q. Park, I. Park, 2003. Photonic Crystal
Waveguides with Multiple90◦ Bends.Applied Physics Letters83:231-233.

Sakoda, Kazuaki. 2001.Optical Properties of Photonic CrystalsNew York: Springer.

Satpathy, S., Z. Zhang, M. R. Salehpour, 1990. Theory of Photon Bands in Three Dimen-
sional Periodic Dielectric Structures.Physical Review Letters65:2478.

Sevgi, Levent, 2003.Complex Electromagnetic Problems and Numerical Simulation Ap-
proaches. USA: New Jersey.
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APPENDIX A

SIMULATIONS

This Appendix contains the simulations of the various corner elements that we

tried during the course of this study.

A.1. Corner Element with Silica Rod in Si

Figure A.1. Some of the failed attempts.
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Figure A.2. Option 0
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Figure A.3. Option 1.

85



t=50 t=55

t=60 t=65

t=70 t=75

t=80 t=85

Figure A.4. Option 2.
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Figure A.5. Option 3

87



t=50 t=55

t=60 t=65

t=70 t=75

t=80 t=85

Figure A.6. Option 4
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