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Abstract

Utilizing the rainfall intensity, and slope data, a fuzzy logic algorithm was developed to estimate sediment loads from bare soil

surfaces. Considering slope and rainfall as input variables, the variables were fuzzified into fuzzy subsets. The fuzzy subsets of the

variables were considered to have triangular membership functions. The relations among rainfall intensity, slope, and sediment

transport were represented by a set of fuzzy rules. The fuzzy rules relating input variables to the output variable of sediment dis-

charge were laid out in the IF-THEN format. The commonly used weighted average method was employed for the defuzzification

procedure.

The sediment load predicted by the fuzzy model was in satisfactory agreement with the measured sediment load data. Predicting

the mean sediment loads from experimental runs, the performance of the fuzzy model was compared with that of the artificial neural

networks (ANNs) and the physics-based models. The results of showed revealed that the fuzzy model performed better under very

high rainfall intensities over different slopes and over very steep slopes under different rainfall intensities. This is closely related to the

selection of the shape and frequency of the fuzzy membership functions in the fuzzy model.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Runoff-induced sediment transport models can be

classified as black-box models [10], regression-based

models [13,17], stochastic models [14] and physics-based
models [8,22,29–33].

Although few physically-based models have analyti-

cal solutions [7,21,25], most of them involve numerical

solutions of systems of partial differential equations. For

realistic simulations, these models require data on model

parameters at each node of the computational mesh.

However, such data at a very fine scale are rarely

available. Even if they were available, numerical prob-
lems, such as related to convergence and numerical in-

stability, might occur [35]. Hence, such drawbacks have

provided impetus to look for new alternative techniques.

Intelligence methods, such as the artificial neural net-

works (ANNs) and the fuzzy logic algorithm, have been
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such new alternatives developed in this last decade in the

modeling of hydrological processes.

The ANNs have been successfully employed in

modeling a wide range of hydrologic processes, in-

cluding rainfall-runoff processes [9,37,38], stream-
flows [19,36], water quality [3,16], groundwater flow and

quality [24,42], and erosion and sediment transport [34].

The main advantage of using neural networks is that

hydrologic processes can be synthesized without making

use of the detailed and explicit knowledge of the un-

derlying physics. However, limited or noisy training

data may result in an inconsistent and meaningless

output.
The fuzzy logic algorithm, which has the ability to

describe the knowledge in a descriptive human-like

manner in the form of simple rules using linguistic

variables, has also been employed in the study of the

hydrological processes. In erosion studies, it has been

employed to predict soil erosion, to form erosion classes,

and to improve the predictions of the conventional

models. Mitra et al. [18] developed a fuzzy logic model

https://core.ac.uk/display/324143434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mail to: tayfur@likya.iyte.edu.tr


1250 G. Tayfur et al. / Advances in Water Resources 26 (2003) 1249–1256
to predict soil erosion in a relatively large watershed

using a limited number of input variables. They con-

structed two different fuzzy logic rule bases: (1) Two

inputs of slope angle and land-use ratio; and (2) Three

inputs of slope length, soil erodibility, and vegetative
cover. They pointed out that the fuzzy logic prediction

models were more successful than the USLE in locating

and differentiating areas of soil erosion with minimum

input data. Ahamed et al. [1] used a fuzzy class mem-

bership approach to assign partial grades to the erosion

classes. By doing so, they captured the loss of infor-

mation as a result of assigning a given area element,

within which the soil and other physical parameters
might vary spatially, to a single erosion class. Tran et al.

[39] developed a fuzzy-rule based model to improve the

performance of the revised universal soil loss equation

(RUSLE). Their approach consisted of two approaches:

(1) Multobjective fuzzy regression (MOFR); and (2)

Fuzzy rule-based modeling (FRBM). They first applied

MOFR to small subsets of the RUSLE factor values to

derive the relationship between the soil loss and the
rainfall erosivity factor within each subset of data. Then

they linked these simple fuzzy rules together in a FRBM

framework to form a fuzzy rule set. Thereafter, they

successfully applied the fuzzy rule set to compute the soil

loss prediction corresponding to each combination of

the RUSLE factors. They pointed out that the fuzzy

logic-based modeling approach makes the structure of

RUSLE more flexible in describing the relationship be-
tween soil erosion and other factors and in dealing with

data and model uncertainties.

The fuzzy logic algorithm has also been successfully

employed in the studies of watershed management

[4,23]; hydro-ecological modeling over watersheds of

mesoscale size [44]; rainfall-runoff processes [20,43];

flood forecasting [40]; water quality problems [15]; and

solute transport in saturated/unsaturated zones [5,6].
The objective of this study is to develop a fuzzy logic

algorithm to predict runoff-driven sediment loads from

bare soil surfaces, and to compare the performance of
Fig. 1. Schematic representa
the fuzzy model with that of ANNs and physics-based

models.
2. Mathematical development

2.1. Fuzzy logic

A general fuzzy system, as shown in Fig. 1, has the

components of fuzzification, fuzzy rule base, fuzzy

output engine, and defuzzification. Fuzzification con-
verts each piece of input data to degrees of membership

by a look-up in one or more several membership func-

tions. The key idea in fuzzy logic is the allowance of

partial belongings of any object to different subsets of a

universal set, instead of completely belonging to a single

set. Partial belonging to a set can be described numeri-

cally by a membership function, which assumes values

between 0 and 1 inclusive. Intuition, inference, rank
ordering, angular fuzzy sets, neural networks, genetic

algorithms, and inductive reasoning can be among many

ways to assign membership values or functions to fuzzy

variables. Especially, the intuitive approach is used ra-

ther commonly because it is simply derived from the

innate intelligence and understanding of human beings.

Fuzzy membership functions may take on many forms,

but in practical applications simple linear functions such
as triangular ones are preferable.

In this study, taking the experimental data into con-

sideration, rainfall intensity, slope, and sediment dis-

charge were fuzzified [27] into fuzzy subsets in order to

cover the whole range of changes. The maximum rain-

fall intensity is considered as 120 mm/h and its subdi-

vision into four subsets as low (L), medium (M), high

(H), and very high (VH) is considered to have triangular
membership functions as represented in Fig. 2a. Simi-

larly, slope is considered to have a maximum value

of 40% and its subdivision into six subsets as mild

(Ml), VMl, steep (S), LS, HS, and VS is considered to

have triangular membership functions as represented in
tion of a fuzzy system.



Fig. 2. Fuzzy subsets for (a) rainfall intensity, (b) slope, and (c) sediment load.
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Fig. 2b. Finally, sediment discharge is considered to

have a maximum of 200 kg/m/h and its subdivision into

nine subsets as VVL, VL, L, LM, M, LH, H, VH, and

VVH is considered to have triangular membership

functions as represented in Fig. 2c. Subdivisions of the

rainfall intensity (Fig. 2a) and slope (Fig. 2b) can be

considered valid for most cases encountered in practice.
However, the subsets of fuzzy changes in the sediment

load domain depend, mainly, on the soil type and sur-

face cover conditions and accordingly the fuzzy parti-

tions can be different for different sites. Note that this

study attempts to model the runoff-induced sediment

transport from bare soil surfaces by a fuzzy logic algo-

rithm. Hence, the fuzzification of the sediment load in

this study (Fig. 2c) is accomplished by considering many
experimental data sets of runoff-driven sediment trans-

port from bare soil surfaces.

The sediment load domain is fuzzified in a way to

have more subsets. This is because Sen [26] points out
that the more subsets there are the greater is the accu-

racy. Fuzzy rule base contains fuzzy rules that include all

possible fuzzy relations between inputs and outputs.

These rules are expressed in the IF-THEN format. In

the fuzzy approach there are no mathematical equations

and model parameters, however, all the uncertainties

and model complications are included in the descriptive
fuzzy inference procedure in the form of IF-THEN

statements.

In this study, fuzzy rules relating the rainfall intensity

and slope to sediment discharge were inferred from the

experimental data. The antecedent part of the rule (the

part starting with IF, up to THEN) included a statement

on the rainfall intensity and slope while the consequent

part (the part starting with THEN, up to the end) in-
cluded a statement on sediment discharge. For example

�IF the rainfall intensity is high, and the slope is very

steep, THEN the sediment discharge is very high’. Table

1 summarizes the fuzzy rules constructed in this study



Table 1

Fuzzy rules relating rainfall and slope to sediment load (L¼Low;

M¼Medium; H¼High; V¼Very; Ml¼Mild; S¼Steep)

IF Rainfall and Slope THEN Sediment

load

L VMl VVL

L Ml VVL

L LS VL

L S VL

L HS VL

L VS VL

M VMl VVL

M M VL

M LS L

M S LM

M HS M

M VS M

H VMl VL

H M L

H LS LM

H S LH

H HS H

H VS VH

VH VMl VL

VH Ml LM

VH LS LH

VH S H

VH HS VH

VH VS VVH
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for sediment transport from a bare soil surface. Al-

though these rules, in general, might be considered as

valid for the sheet sediment transport mechanism, they

may slightly vary depending on the soil type and surface

cover conditions.

Fuzzy inference engine takes into account all the

possible fuzzy rules in the fuzzy rule base and learns how

to transform a set of inputs to corresponding outputs.
For example, let us assume that the rainfall intensity is

80 mm/h and the slope is 22%, and we want to find out

what the fuzzy outputs of sediment discharge under

these variables would be. As seen in Fig. 2a, 80 mm/h is

a part of �medium’, and �high’ subsets of rainfall inten-

sity with lðrÞ ¼ 0:30, and lðrÞ ¼ 0:70 membership de-

grees, respectively. Similarly, as seen in Fig. 2b, 22%

slope is a part of �steep’, and �high steep’ subsets of slope
with membership degrees of lðsÞ ¼ 0:85, and lðsÞ ¼
0:15, respectively. The fuzzy inference engine would

consider the following rules from the fuzzy rule base

related to the above example and find the degrees

of membership of sediment discharge outputs by min

operation [27].

IF rainfall intensity is �high’ (lðrÞ ¼ 0:70) and slope is

�high steep’ (lðsÞ ¼ 0:15) THEN sediment discharge is
�high’ ðlðsedÞ ¼ minð0:70; 0:15Þ ¼ 0:15Þ.

IF rainfall intensity is �medium’ (lðrÞ ¼ 0:30) and

slope is �steep’ (lðsÞ ¼ 0:85) THEN sediment discharge

is �low medium’ ðlðsedÞ ¼ minð0:30; 0:85Þ ¼ 0:30Þ.
Fig. 2c shows the output values of 58 and 142 cor-

responding to 0.15 degree of membership in the �high’

subset of sediment load and also the output values of 13

and 27 corresponding to 0.30 degree of membership in

the �low medium’ subset of sediment load (Fig. 2c).
Defuzzification converts the resulting fuzzy outputs

from the fuzzy inference engine to a number. There are

several defuzzification methods, such as the weighted-

average, maximum membership, average maximum

membership, and center of gravity, etc. In this study, the

weighted-average method is employed and it is ex-

pressed as [26,27]:

sed� ¼
P

i lðsediÞsediP
i lðsediÞ

ð1Þ

where sed� ¼ defuzzified sediment load; sedi ¼ average-

sediment load in the ith subset; and lðsediÞ ¼ the mem-

bership degree of the sediment load for the ith subset.

When one employs Eq. (1) for the above example, the

following output value would be obtained by the

weighted-average defuzzification:

sed� ¼ 0:15 � ð58 þ 142Þ=2 þ 0:3 � ð13 þ 27Þ=2

ð0:15 þ 0:30Þ
¼ 46:7 kg=m=h ð2Þ

The details on fuzzy logic are given by Sen [26,27] and

Jantzen [11].

2.2. Artificial neural networks (ANNs)

In this study, the common three layer-feedforward

type of an artificial neural network, as shown in Fig. 3, is

constructed. In a feedforward network, the input

quantities are fed into input layer neurons, which, in

turn, pass them on to the hidden layer neurons after

multiplication by a weight. A hidden layer neuron adds

up the weighted input received from each input neuron,
associates it with a bias, and then passes the result on

through a non-linear transfer function. The output

neurons do the same operation as that of a hidden

neuron. In this study, the sigmoid function, as given in

ASCE Task Committee [2], is employed as an activation

function.

A back-propagation algorithm accomplishes the

learning of ANNs. In the back-propagation algorithm,
the optimal weights are found by minimizing a prede-

termined error function, which has the following form

[2]:

E ¼
X
P

X
p

ðyi � tiÞ2 ð3Þ

where yi ¼ component of an ANN output vector Y ;

ti ¼ component of a target output vector T; p¼ number

of output neurons; and P ¼ number of training patterns.

The optimal weights would generate an output vector



Fig. 3. Schematic representation of feed-forward three layer ANNs.
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Y ¼ ðy1; y2; . . . ; ypÞ as close as possible to target values of

the output vector T ¼ ðt1; t2; . . . ; tpÞ with a selected ac-
curacy.

The-gradient descent method, along with the chain

rule of differentiation, is employed to modify the net-

work weights as [2]:

vnew
ij ¼ vold

ij � d
oE
ovij

ð4Þ

where d is the learning rate. The network learns by ad-

justing the biases and weights that link its neurones.

However, before the training can begin, the weights and

biases of the network must be set to small random val-

ues. In this study, random values of 0.2 and )1.0 were

assigned to network weights and biases, respectively.

Also, due to the nature of the sigmoid function, all ex-

ternal inputs and outputs were converted to the range
ð0; 1Þ before passing them into a neural network.

The details on ANNs can be obtained from ASCE

Task Committee [2] and the details of sediment trans-

port modeling by ANNs can be obtained from Tayfur

[34].
2.3. Physics-based model

A pair of differential equations mathematically ex-

presses erosion and sediment transport dynamics. These

equations, based on the kinematic wave approximation

in one dimension, can be expressed as [33]:

oh
ot

þ o

ox

ffiffiffi
S

p

n
h5=3

� �
¼ ðr � iÞ ð5Þ

o hcð Þ
ot

þ o

ox

ffiffiffi
S

p

n
h5=3c

� �
¼ 1

qs

Drdð þ DfdÞ ð6Þ
where

Drd ¼ arb 1
�

� zw

6:69r0:182

�
ð7Þ

Dfd ¼ u Tc

�
� qsc

ffiffiffi
S

p

n
h5=3

�
ð8Þ

where h¼ the flow depth; S¼ the bed-slope; n¼Man-

ning’s roughness coefficient; r¼ the rainfall intensity;

and i¼ the infiltration rate; c¼ the sediment concen-

tration by volume; qs ¼ the sediment particle density;

Drd ¼ the soil detachment rate by raindrops; Dfd ¼ the

soil detachment/deposition rate by sheet flow; a is the

soil detachability coefficient whose range is 0.0006–

0.0086 kg/m2/mm; b is an exponent whose range is 1.0–
2.0; zw is the flow depth plus the loose soil depth; and u
is the transfer rate coefficient (1/L) whose range is 3–33

m�1, and Tc is the flow transport capacity.

The flow transport capacity can be based on one of

the dominant variables of shear stress, stream power,

unit stream power, and velocity. In two different studies,

Tayfur [33,34] investigated the applicability of these

approaches to the sheet sediment transport. His results
indicate that the velocity approach, in general, performs

better than do other models. For that reason, in this

study, the fuzzy model will be tested against the physics-

based model whose transport capacity is based on the

velocity approach. The velocity approach is expressed as

[41]:

Tc ¼ gvðV � VcÞkv ð9Þ

where gv ¼ the soil erodibility coefficient which takes on

values between 0 and 1; kv ¼ an exponent whose range is

1.0–2.5; V ¼ the flow velocity; and Vc ¼ the critical flow

velocity defined as a function of particle terminal fall

velocity and shear velocity Reynolds number in Yang

[41].
Using an implicit centered finite-difference method,

Eqs. (5) and (6) were solved numerically. The Newton–

Raphson iterative technique was used to solve the set of

nonlinear equations resulting from the implicit proce-

dure. The zero-depth and zero-concentration were taken

as the upstream boundary conditions while zero-depth-

gradient and zero-concentration-gradient were taken as

the downstream boundary conditions. From the solu-
tion of Eq. (5) flow variables were computed. The

computed flow variables were, in turn, used in the nu-

merical solution of Eq. (6) where sediment discharges

and concentrations were computed. The details are

presented by Tayfur [32,33].
3. Application part

The developed fuzzy logic algorithm was applied to

predict the mean sediment discharge data and compare



Table 2

Prediction results of the measured mean loads by three models (g/m/s)

5.7% 10% 15% 20% 30% 40%

32 mm/h

Observed 0.10 0.29 0.56 0.63 0.93 1.35

ANNs 0.35 0.46 0.66� 0.96� 2.18 5.27

Fuzzy 0.11� 0.13 1.03 1.08 1.09� 1.35�

Physics-based 0.06 0.23� 0.82 1.56 3.19 4.89

57 mm/h

Observed 0.30 1.50 2.81 5.71 10.17 13.08

ANNs 0.74 1.02 1.53 2.33 5.67 13.85�

Fuzzy 0.26� 1.19� 3.57� 5.95� 11.42� 15.0

Physics-based 0.50 1.97 3.89 5.89 � 9.83� 13.68�

93 mm/h

Observed 0.65 3.68 7.11 14.95 23.10 37.96

ANNs 2.60 3.80� 5.96 9.37 21.80� 41.22�

Fuzzy 1.59� 4.68 7.81� 19.5 33.3 45.4

Physics-based 2.37 5.78 9.78 13.68� 22.07� 28.16

117 mm/h

Observed 1.48 5.97 12.89 26.55 37.53 65.11

ANNs 6.57 9.68 14.98� 22.42� 41.96� 58.85�

Fuzzy 2.11� 6.37� 10.61 23.60� 42.74� 60.14�

Physics-based 3.95 8.69 14.07� 19.25 28.96 38.19

* Good estimates of the related observed data.
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Fig. 4. Performance of ANNs model predicting measured 221 sedi-

ment data at the end of training period.

Table 3

Comparison of the three models with respect to different rainfall and

slope conditions

Mild slope Steep slope Very steep

slope

Low intensity Physics-based ANN Fuzzy

Fuzzy

High intensity Fuzzy Physics-based Physics-based

Fuzzy Fuzzy

Very high

intensity

Fuzzy Fuzzy ANN

ANN Fuzzy

Physics-based
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with the measured sediment discharge values. For this

purpose, the experimental data from Kilinc and Rich-

ardson [12] were used, who performed experimental
studies by using a 1.52 m wide · 4.58 m long flume with

an adjustable slope. Six bare slopes of 5.7%, 10%, 15%,

20%, 30% and 40% were tested with four different

rainfall intensities of 32, 57, 93, and 117 mm/h. On the

average, the constant infiltration rate for each run was

about 5.3 mm/h.
Taking experimental data into consideration, rainfall

intensity, slope, and sediment load, were fuzzified into

fuzzy subsets as shown in Fig. 2a, b, and c, respectively.

Rainfall intensity and slope are the input variables while

the sediment load is the output variable. The fuzzy rules

relating the rainfall intensity and slope to the sediment

load were inferred from the experimental data and are

summarised in Table 1. The prediction of the mean
sediment loads from the 24 runs by the fuzzy model is

summarised in Table 2. As seen, the fuzzy model, in

general, performs satisfactorily in predicting sediment

loads from different slopes under different rainfall in-

tensities. The prediction of the loads, especially, under

rainfall intensities of 57 and 117 mm/h are quite satis-

factory (Table 2).

The fuzzy model was also compared with the physics-
based and ANN models. Before comparison, the cali-

bration of the physics-based model and the training of

the ANN model were performed. For the physics-based

model calibration, one of the data sets from 20%

slope under 57 mm/h rainfall intensity was used. The

measured mean sediment load from this experiment is

5.71 g/m/s. The calibration run-predicted mean load

is 5.89 g/m/s. The error is about 3.2%. The cali-
brated values of the model parameters which resulted in
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this best fit are n ¼ 0:012; a ¼ 0:0012; b ¼ 1:0;

gv ¼ 0:10; and kv ¼ 2:36. These values are within

the ranges suggested in the literature [7]; [28]; [30]. Note

that the calibrated physics-based model is applied to

predict the mean loads from the other 23 data sets
(Table 2).

The ANN model was trained by employing the total

number of 221 measured sediment discharge data from

the 24 runs. The slope and rainfall intensity data were

fed into the system as input while the sediment discharge

data were the target output. Fig. 4 shows the observed

sediment discharge data versus the sediment data esti-

mated by the ANN model at the end of the training
period. As can be seen from Fig. 4, the correlation co-

efficient (R2) for this case is about 0.96 and the slope of

the related regression equation is almost one and the y-

intercept of the equation is very close to zero. These

results indicate that the training of the ANN model is

successfully done. Note that, in the training period, the

mean load data from the 24 runs were not used. The

trained the ANN model is applied to predict the mean
loads of the 24 runs (Table 2).

Table 2 shows the measured mean sediment loads and

those predicted by the three models. In order to further

summarise the results in Table 2, the following classifi-

cation is considered:

Low rainfall intensity : r < 40 mm=h

High rainfall intensity : 40 < r < 80 mm=h
Very high rainfall intensity : r > 80 mm=h

Mild slope : S < 10%

Steep slope : 10 < S < 20%

Very steep slope : S > 20%

Table 3 summarises the results of Table 2 by con-

sidering the above classification. Table 3 shows which

model performs better depending on the slope and

rainfall intensity conditions. The better model is the one

which predicts the measured mean load with minimum
error. According to Table 3, the fuzzy model, clearly,

performs better than do other models in predicting the

sediment loads from mild slopes under high and very

high rainfall intensities and from very steep slopes under

low rainfall intensities. On the other hand, the ANN

model performs better than do other models in pre-

dicting sediment loads from steep slopes under low

rainfall intensities.
4. Concluding remarks

In this study, a fuzzy logic algorithm is developed to

predict the mean sediment loads from bare soil surfaces

subjected to rainfall/runoff-driven sediment transport.

The satisfactory prediction of the mean sediment loads

by the proposed fuzzy algorithm from the 24 different
experimental runs indicate that practitioners for sedi-

ment transport studies can reliably employ the fuzzy

model. Also, in this study, the fuzzy model is tested

against both the ANN and the physics-based models.

The models predict the mean sediment loads better,
depending on the rainfall and slope conditions, as

summarised in Table 3. Hence, one should take the re-

sults in Table 3 into consideration when choosing an

appropriate model for predicting the mean sediment

loads from bare soil surfaces.

The physics-based model requires data on many

model parameters. Further, it involves non-linear partial

differential equations whose solution requires complex
numerical techniques. In addition, such numerical

schemes require iterative methods for the solution of

non-linear difference equations and are prone to con-

vergence and instability problems. As such, the simpler

fuzzy and ANN models are useful tools today in hy-

drology especially where the physical parameters are

unknown. The ANNs can be synthesised without mak-

ing use of the detailed and explicit knowledge of the
underlying physics and a fuzzy logic algorithm has the

ability to describe the knowledge in a descriptive

human-like manner in the form of simple rules using

linguistic variables.

It should be, however, noted that, as opposed to the

physics-based models, the intelligence models of ANN

and fuzzy models do not involve by definition any

mathematical expressions describing the physics of the
process. They are constructed and trained based on

available measured data. As such, they perform better in

the confines of the training data and poorer anywhere

else, where the models are not trained for. This is a

major drawback in the case of extrapolating a value of

model output from input data that are beyond the range

of the training data set. In addition, the intelligence

models are not also appropriate for the cases where the
space-time distributions of the state variables of interest

are required. In engineering problems, however, often

such information is required and therefore such draw-

backs of the intelligence models are overcome by the

physics-based models.
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