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The existence of the Hamiltonians of the renormalized point interactions in two and
three dimensional Riemannian manifolds and that of a relativistic extension of this
model in two dimensions are proven. Although it is much more difficult, the proof of
existence of the Hamiltonian for the renormalized resolvent for the non-relativistic
Lee model can still be given. To accomplish these results directly from the resolvent
formula, we employ some basic tools from the semigroup theory. C© 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4705291]

I. INTRODUCTION

Typical field theory problems require a concept known as renormalization, which is a way of
rendering infinite quantities to finite values to get physically meaningful results. This is a very hard
problem, and it would be interesting to find some simple models in which the ideas can be tested
in depth and a mathematically sound description can be presented as much as possible. This will
illuminate the underlying mathematical and physical ideas in more complicated models.

There are indeed some simple models introduced in the past. One of them is the Dirac-delta
potentials in quantum mechanics which was first studied rigorously by Berezin and Fadeev1 and
later discussed extensively by Albeverio et al.2, 3 These works show that Dirac-delta potential can be
understood from the self-adjoint extension point of view, hence all could be made mathematically
sound. Many body version of this problem on R2 is known as the formal non-relativistic limit of
the λφ4 scalar field theory in (2 + 1) dimensions. All these are extensively discussed first in the
unpublished thesis of Hoppe.4 A similar model is the non-relativistic Lee model, which exhibits
an additive divergence. We are not aware of a mathematically rigorous discussion of this model.
Physically the relativistic simplified version of the Lee model is more important and there is quite
of a bit of work from a nonperturbative point of view to understand the physics behind it (see the
references in Ref. 5). The approach we follow is introduced in Ref. 11 by Rajeev, and recently we have
introduced the generalizations of these models on to manifolds.6–10 The rigorous understanding of
the existence of the Hamiltonian left aside in our previous works. We would like to address this issue
in the present work. There is a general approach which is exposed in the excellent book by Albeverio
and Kurasov,3 and it should be applicable in the Dirac-delta functions case for the manifolds. The self-
adjoint extension point of view becomes complicated when we discuss field theories, it is usually hard
to give a meaning to operator valued distributions and their extension theory is even more delicate.
The other alternative which uses resolvent convergence of cut-off Hamiltonians is problematic when
we use other regularization schemes, e.g., the powerful dimensional regularization. However, we
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will use an alternative approach. In the problems that we deal with, the resulting operator is not
given but instead the resolvent is renormalized.

To answer the existence we use the following theorem taken from semigroup theory. Let � be a
subset of the complex plane. A family J(E), E ∈ � of bounded linear operators on the Hilbert space
H under consideration, which satisfies the resolvent identity

J (E1) − J (E2) = (E1 − E2)J (E1)J (E2) (1)

for E1 , E2 ∈ � is called a pseudo resolvent on �.12

The following corollary (Corollary 9.5 in Ref. 12) gives the condition for which there exists a
densely defined closed linear operator A such that J(E) is the resolvent family of A: Let � be an
unbounded subset of C and J(E) be a pseudo resolvent on �. If there is a sequence Ek ∈ � such that
|Ek| → ∞ as k → ∞ and

lim
k→∞

−Ek J (Ek)x = x, (2)

for all x ∈ H, then J(E) is the resolvent of a unique densely defined closed operator A. As we will
see in our case, the family satisfies J(E)† = J(E*) so it is a holomorphic family of type (A) in the
sense of Kato.13 Hence, it defines a self-adjoint operator.

Let us mention the possibility of using the results from Ref. 3 in the case of Dirac-delta functions.
In the approach of Ref. 3, we consider an operator A with a dense domain, and consider the singular
perturbation by an element φ in some dual space, formally,

A− = A + λ〈φ, .〉φ, (3)

here the bracket refers to dual pairing. The interesting case is when we have φ ∈ H−2(A), where

φ ∈ H−2(A) if || 1

1 + |A|φ|| < ∞ (4)

and ||.|| refers to the usual norm in the Hilbert space. Then the theorem in Ref. 3 states that the
operator A− provides a self-adjoint extension with a new domain. In our case,

|| 1

1 + (−∇2
g )

δg(a, .)|| =
∫ ∞

0
ds s e−s Ks(a, a; g) < ∞, (5)

thus we have the same type of singular perturbation—so called form unbounded one. It is interesting
to see how the conditions on Ricci curvature we found will arise in this approach.

In our presentation, by following the Rajeev’s idea developed for the renormalization of several
models (point interactions in quantum mechanics, Lee model, etc.), we will rigorously prove the
existence of Hamiltonians for each model after the renormalization procedure in compact manifolds,
whereas the noncompact case will be heuristically given by using the spectral theorem for the
Laplace-Beltrami operator defined on it.

Our approach here is not to investigate the spectral properties of the models that we are dealing
with. They have been already discussed in our previous works.6–10

The paper is organized as follows. In Sec. II, we give the proof of existence of Hamiltonian for
the point interactions in two and three dimensional Riemannian manifolds. The analysis for two and
three dimensional cases are different, so we show the calculations separately. In Sec. III, we give the
same proof for the relativistic point interactions on two dimensional Riemannian manifolds. Finally,
Sec. IV presents a short review of non-relativistic Lee model from our point of view and give the
lower bound of the ground state energy of the system in three dimensional Riemannian manifolds.
Then, the the proof of the existence of Hamiltonian for this model is given but it requires a little
more work.

II. POINT INTERACTIONS IN TWO AND THREE DIMENSIONAL RIEMANNIAN
MANIFOLDS

We adopt the natural units � = 1 in the non-relativistic models discussed in this paper for
simplicity. In Ref. 8, after the renormalization we have found the resolvent kernel corresponding to
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the Hamiltonian for the N point interactions (Dirac-delta interactions) in two and three dimensional
Riemannian manifolds as

R(x, y|E) = R0(x, y|E) +
N∑

i, j=1

R0(x, ai |E)�−1
i j (E)R0(a j , y|E), (6)

where

�i j (E) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

0
dt Kt (ai , ai ; g)

(
e−tμ2

i − et E
)

if i = j

−
∫ ∞

0
dt Kt (ai , a j ; g) et E if i �= j.

(7)

Here R(E) < 0 and Kt(x, y; g) is the heat kernel on the Riemannian manifold, which is defined as
the fundamental solution to the heat equation

1

2m
∇2

g Kt (x, y; g) = ∂Kt (x, y; g)

∂t
. (8)

In order to show that the resolvent kernel given in Eq. (6) corresponds to a unique densely defined
closed operator H, we need to first prove that it satisfies the resolvent identity, i.e.,

R(x, y|E1) − R(x, y|E2) = (E1 − E2)
∫
M

dD
g z R(x, z|E1)R(z, y|E2). (9)

A detailed proof as well as all properties of the heat kernel that we use in this paper, are given in our
previous work8 and the relevant literature is also given there. Here we will just give the main idea of
the proof for the completeness of this paper. If we substitute Eq. (6) into Eq. (9), we obtain

R0(x, y|E1) − R0(x, y|E2) +
N∑

i, j=1

R0(x, ai |E1)�−1
i j (E1)R0(a j , y|E1)

−
N∑

i, j=1

R0(x, ai |E2)�−1
i j (E2)R0(a j , y|E2)

= (E1 − E2)
∫
M

dD
g z

[
R0(x, z|E1)R0(z, y|E2)

+
N∑

i, j=1

R0(x, z|E1)R0(z, ai |E2)�−1
i j (E2)R0(a j , y|E2)

+
N∑

i, j=1

R0(x, ai |E1)�−1
i j (E1)R0(a j , z|E1)R0(z, y|E2)

+
N∑

i, j=1

N∑
r,l=1

R0(x, ai |E1)�−1
i j (E1)R0(a j , z|E1)

×R0(z, ar |E2)�−1
rl (E2)R0(al, y|E2)

]
. (10)

The term R0(x, y|E1) − R0(x, y|E2) equals to the first term in the right-hand side of the equation
above since the free resolvent kernel R0(x, y|E) must satisfy the resolvent identity (9). If we add and
subtract the terms

N∑
i, j=1

R0(x, ai |E1)�−1
i j (E1)R0(a j , y|E2), (11)

N∑
i, j=1

R0(x, ai |E1)�−1
i j (E2)R0(a j , y|E2), (12)
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to the remaining terms in the equation above and rearrange, one can complete the proof for the
resolvent identity (9) by showing that the difference of the principal matrix �ij(E2) − �ij(E1)
equals to the difference of free resolvent kernels R0(ai, aj|E1) − R0(ai, aj|E2). It is easy to show this
by using the formula expressing the free resolvent kernel as a Laplace transformation of the heat
kernel and semigroup property of the heat kernel following a change of variable for the time variable
in the heat kernel.8 Equation (2) requires the following condition to complete the second part of the
proof,

||Ek R(Ek) f + f || → 0, (13)

as k → ∞, where f belongs to the Hilbert space H = L2(M) and the norm is the usual L2(M) norm.
Let us choose the sequence Ek = − k|E0|, where E0 is below the lower bound E* on the ground state
energy which has been found in Ref. 8. Then, we must show that

|||Ek |R(Ek) f − f || → 0, (14)

as k → ∞. Using Eq. (6) and separating the free part, we get

|||Ek |R(Ek) f − f || ≤ |||Ek |R0(Ek) f − f ||

+ |Ek |||R0(Ek)�−1(Ek)R0(Ek) f ||. (15)

It is well known that the first part of the sum converges to zero as k → ∞, that is, the free
resolvent corresponds to a densely defined closed operator (Laplacian). Moreover, the Laplacian on
geodesically complete Riemannian manifolds is essentially self-adjoint in L2(M).14, 15 Therefore,
we are going to investigate only the second term in two and three dimensions separately. Two
dimensional analysis has been already worked out in Ref. 8 and we will just review it here and then
give the detailed proof for the three dimensional case. Since the norm of an operator is smaller than
its Hilbert-Schmidt norm: ||A|| ≤ Tr1/2(A†A) with A = R0(Ek)�− 1(Ek)R0(Ek), we have

|Ek |||R0(Ek)�−1(Ek)R0(Ek) f ||

≤ |Ek |
[

N∑
i, j,r,l=1

∫
M

dD
g x R0(ai , x |Ek)R0(x, al |Ek)

×
∫
M

dD
g y R0(a j , y|Ek)R0(y, ar |Ek)|�−1

i j (Ek)| |�−1
rl (Ek)|

]1/2

. (16)

Let us first consider the diagonal case l = i and r = j for the terms inside the bracket above.

|Ek |
[

N∑
i, j=1

∫
M

dD
g x R0(ai , x |Ek)R0(x, ai |Ek)

×
∫
M

dD
g y R0(a j , y|Ek)R0(y, a j |Ek)|�−1

i j (Ek)| |�−1
j i (Ek)|

]1/2

≤ |Ek |
[

N 2 max
1≤i≤N

αi (Ek) max
1≤ j≤N

α j (Ek) max
1≤i, j≤N

|�−1
i j (Ek)|2

]1/2

, (17)

where we have defined αi (Ek) = ∫
M dD

g y R0(ai , y|Ek)R0(y, ai |Ek) for simplicity. It is easy to see
that ∫

M
dD

g x R0(ai , x |Ek)R0(x, al |Ek)

=
∫ ∞

0

∫ ∞

0
dt1 dt2 Kt1+t2 (ai , al ; g)e−(t1+t2)|Ek |

=
∫ ∞

0
dt t Kt (ai , al ; g)e−t |Ek | (18)
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by using the fact that the free resolvent kernel is just the Laplace transform of the heat ker-
nel. The upper bound of the heat kernel was given in Refs. 16 and 17 and summarized in
Ref. 8 for compact (with bounded Ricci) and Cartan-Hadamard manifolds.9 We shall use the
notation for the dimensionless constants coming from the bounds of the heat kernel as C with sub-
scripts for simplicity since the exact form of these constants do not play any role here. The upper
bound of the heat kernel for compact (with bounded Ricci) and Cartan-Hadamard manifolds is given
in the following form

Kt (x, y; g) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
C1

V (M)
+ C2

(t/2m)D/2

]
exp

(
−md2(x, y)

C3t

)
for compact manifolds

C4

(t/2m)D/2
exp

(
−md2(x, y)

C5t

)
for Cartan-Hadamard manifolds,

(19)

where V (M) is the volume of the manifold and d(x, y) is the geodesic distance between the point
x and y. Then, on-diagonal upper bound of Eq. (18) for compact manifolds (with bounded Ricci)
becomes

max
1≤i≤N

αi (Ek) ≤ C1

V (M)|Ek |2 + C6(2m)
D
2 |Ek | D

2 −2, (20)

where C6 = C2	(2 − D/2). For Cartan-Hadamard manifolds, we get

max
1≤i≤N

αi (Ek) ≤ C4 (2m)
D
2 |Ek | D

2 −2. (21)

We have also

max
1≤i, j≤N

|�−1
i j |2 ≤ max

1≤i≤N

N∑
j=1

|�−1
i j |2 = max

1≤i≤N
(�−1(Ek)�−1(Ek))i i ≤ ρ(�−2(Ek))

≤ ||�−2(Ek)|| ≤ ||�−1(Ek)||2, (22)

where we have used �†(Ek) = �(Ek) for Ek ∈ R and ρ is the spectral radius.
In order to find the upper bound for the norm of the inverse principal matrix, we first decompose

the principal matrix into two positive matrices

� = D − K , (23)

where D and K stand for the on-diagonal and the off-diagonal part of the principal matrix, respectively.
Then, it is easy to see � = D(1 − D− 1K). The principal matrix is invertible if and only if
(1 − D− 1K), and (1 − D− 1K) has an inverse if the matrix norm satisfies ||D− 1K|| < 1. Then, we
can write the inverse of � as a geometric series

�−1 = (1 − D−1 K )−1 D−1

= (
1 + (D−1 K ) + (D−1 K )2 + ...

)
D−1, (24)

and the norm has the following upper bound

||�−1|| = ||(1 − D−1 K )−1 D−1|| ≤ ||(1 − D−1 K )−1|| ||D−1||

≤ 1

1 − ||D−1 K || ||D−1||. (25)

Since we are not concerned with the sharp bounds on the norm of �− 1 for this problem, we can
choose |Ek| sufficiently large such that ||D− 1K|| < 1/2 without loss of generality and get

||�−1(Ek)|| ≤ 2||D−1(Ek)||. (26)

Whenever D−1 = diag(�−1
11 ,�−1

22 , . . . , �−1
N N ), then

||D−1|| = max
1≤i≤N

|�−1
i i |. (27)
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The lower bound of the diagonal principal matrix for compact and Cartan-Hadamard manifolds,
which was given in Ref. 8 leads to the upper bound of the inverse of the diagonal part of the principal
matrix. Hence, we find

max
1≤i≤N

|�−1
i i (Ek)| ≤

⎧⎪⎨
⎪⎩

C7(2m)−1 ln−1
(|Ek |/μ2

)
if D = 2

C8(2m)−3/2

[
|Ek |1/2 − μ

]−1

if D = 3,
(28)

for compact manifolds and

max
1≤i≤N

|�−1
i i (Ek)| ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C9(2m)−1 ln−1

( |Ek | + ξ

μ2 + ξ

)
if D = 2

C10(2m)−3/2

[
(|Ek | + ξ )1/2 − (

μ2 + ξ
)1/2

]−1

if D = 3,

(29)

for Cartan-Hadamard manifolds. Here ξ is a positive constant and defined in Ref. 8.
If we substitute the results of (20), (21) and (28), (29) into (17) for D = 2, and take the limit k

→ ∞, the result goes to zero. Since the norm is always positive, we prove

|||Ek |R(Ek) f − f || → 0, (30)

as k → ∞. For the off-diagonal terms, we do not have to make a separate detailed analysis since one
can easily show that these terms are essentially exponentially suppressed by the factor e−√

2m|Ek |d(ai ,a j )

due to the upper bounds of the modified Bessel functions which are given in Ref. 8. Therefore, all
off-diagonal terms exponentially vanish when we take the limit k → ∞, which is enough for our
purposes.

Summary for the two dimensional case: We have first proven that the resolvent for this
system after the renormalization satisfies the resolvent identity. Then, by using the fact that the
norm of an operator is smaller than its Hilbert-Schmidt norm, we have completed the second part
of the proof that |||Ek|R(Ek)f − f|| → 0 as k → ∞. This tells us that the Hamiltonian after the
renormalization procedure is densely defined self-adjoint operator due to the theorem given explicitly
in the introduction part of our paper.

We now move on to the three dimensional case for the second part of our proof, that is, we show
that |||Ek|R(Ek)f − f|| → 0 as k → ∞ in the three dimensional case, as well. However, this proof
requires more delicate analysis. We now return to the second term in (15), and show that

|Ek |
[ ∫

M
d3

gx
N∑

i, j,r,l=1

R0(x, ai |Ek)�−1
i j (Ek)

∫
M

d3
gz R0(a j , z|Ek) f ∗(z)

× R0(x, ar |Ek)�−1
rl (Ek)

∫
M

d3
g y R0(al , y|Ek) f (y)

]1/2

(31)

goes to zero as k → ∞ for any f ∈ L2(M). From our previous argument, we know that the inverse
of the principal matrix � satisfies for three dimensional compact and Cartan-Hadamard manifolds,

max
1≤i, j≤N

|�−1
i j (Ek)| ≤ C11(2m)−3/2

|Ek |1/2
, (32)

where we define all the constant terms coming from the bounds of the heat kernel as C11 and ignore
the term in the denominator for large values of |Ek| for simplicity. Moreover, we can combine the
two resolvents with the common variable x in Eq. (31). As a result, we can express this combination
as in Eq. (18) and the diagonal upper bounds of it for D = 3 have been given in Eqs. (20) and (21) for
compact and Cartan-Hadamard manifolds, respectively. Once again, we skip the detailed calculations
for the off-diagonal terms (i �= r) in the above sum since they are exponentially suppressed by
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the factor e−√
2m|Ek |d(ai ,ar ). We always concentrate on the least convergent part in the terms. Once we

have achieved our goal for these terms, we are done.
Therefore, it is sufficient to deal with only the diagonal term (r = i) in Eq. (31). It is easy to

show that it is smaller than the following term:

N 3/2|Ek |
[

max
1≤i≤N

αi (Ek)

]1/2[
max

1≤i, j≤N
|�−1

i j (Ek)| max
1≤i,l≤N

|�−1
il (Ek)|

]1/2

×
[

max
1≤ j≤N

( ∫
M

d3
gz R0(a j , z|Ek)| f (z)|

)
max

1≤l≤N

( ∫
M

d3
g y R0(y, al |Ek)| f (y)|

)]1/2

. (33)

Using Eqs. (20), (21), and (32) in the above equation, we get the upper bound of (33) for three
dimensional compact manifolds

N 3/2|Ek |
[

C1

V (M)|Ek |2 + C6(2m)
3
2

|Ek |1/2

]1/2[
C11(2m)−3/2

|Ek |1/2

]

×
[

max
1≤ j≤N

(∫
M

d3
gz R0(a j , z|Ek)| f (z)|

)
max

1≤l≤N

( ∫
M

d3
g y R0(y, al |Ek)| f (y)|

)]1/2

(34)

and for three dimensional Cartan-Hadamard manifolds

N 3/2|Ek |
[

C4(2m)
3
2

|Ek |1/2

]1/2[
C11(2m)−3/2

|Ek |1/2

]

×
[

max
1≤ j≤N

( ∫
M

d3
gz R0(a j , z|Ek)| f (z)|

)
max

1≤l≤N

( ∫
M

d3
g y R0(y, al |Ek)| f (y)|

)]1/2

. (35)

All these imply that the term ∫
M

d3
g y R0(a j , y|Ek)| f (y)| (36)

must decay at least faster than |Ek|− 1/4. We now recall that the free resolvent kernel is just the
Laplace transform of the heat kernel

R0(a j , y|Ek) =
∫ ∞

0
dt e−t |Ek |Kt (a j , y; g), (37)

so that we can find an upper bound for it by using Eq. (19) and evaluating the integrals over t,

R0(a j , y|Ek) ≤ mC12

d(a j , y)
exp

[
−2

(
md2(a j , y)|Ek |

C3

)1/2]

+ C13d(a j , y)
√

m

V (M)
√|Ek |

[
1 +

(
C3

md2(a j , y)|Ek |

)1/2]
exp

[
−2

(
md2(a j , y)|Ek |

C3

)1/2]
, (38)

for three dimensional compact manifolds and

R0(a j , y|Ek) ≤ mC14

d(a j , y)
exp

[
−2

(
md2(a j , y)|Ek |

C5

)1/2]
, (39)

for three dimensional Cartan-Hadamard manifolds. Here we have used the upper bound of the
modified Bessel function K1(x) given in Ref. 8.

For simplicity, let us first consider the generic term which is common for both compact and
Cartan-Hadamard manifolds and keep the inverse volume term aside for the moment. Then, we find
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for the generic term

∫
M

d3
g y R0(a j , y|Ek)| f (y)| ≤ mC12

∫
M

d3
g y exp

[
−2

(
md2(a j , y)|Ek |

C3

)1/2] | f (y)|
d(a j , y)

. (40)

We now divide the integration region into two pieces:

∫
Bδ(a j )

d3
g y exp

[
−2

(
md2(a j , y)|Ek |

C3

)1/2] | f (y)|
d(a j , y)

+
∫
M\Bδ(a j )

d3
g y exp

[
−2

(
md2(a j , y)|Ek |

C3

)1/2] | f (y)|
d(a j , y)

, (41)

where Bδ(aj) is the geodesic ball of radius δ centered at aj. It is easily seen that

∫
M\Bδ(a j )

d3
g y exp

[
−2

(
md2(a j , y)|Ek |

C3

)1/2] | f (y)|
d(a j , y)

≤ 1

δ
exp

[
−

(
mδ2|Ek |

C3

)1/2] ∫
M\Bδ(a j )

d3
g y exp

[
−

(
md2(a j , y)|Ek |

C3

)1/2]
| f (y)|

≤ 1

δ
exp

[
−

(
mδ2|Ek |

C3

)1/2] ∫
M

d3
g y exp

[
−

(
md2(a j , y)|Ek |

C3

)1/2]
| f (y)|

≤ 1

δ
exp

[
−

(
mδ2|Ek |

C3

)1/2][ ∫
M

d3
g y exp

[
−2

(
md2(a j , y)|Ek |

C3

)1/2]]1/2

|| f ||, (42)

where we have used the fact that d(aj, y) ≥ δ for all j and y ∈ M\Bδ(a j ) in the second line. We then
find an upper bound in terms of the norm of the function f(x) by using Cauchy-Schwarz inequality
in the last line.

For compact manifolds, it is a simple matter to find the upper bound to the above integral

∫
M\Bδ(a j )

d3
g y exp

[
−2

(
md2(a j , y)|Ek |

C3

)1/2] | f (y)|
d(a j , y)

≤ 1

δ
exp

[
−

(
mδ2|Ek |

C2

)1/2][
V (M) sup

y∈M

(
exp

[
−2

(
md2(a j , y)|Ek |

C3

)1/2])]1/2

|| f ||

≤ 1

δ
exp

[
−

(
mδ2|Ek |

C2

)1/2]
V 1/2(M)|| f ||, (43)

due to the fact that the volume of a compact manifold is finite. For non-compact manifolds, it is
useful to consider the above integral in the Riemann normal coordinates near one of the centers
ai. We further assume that the radius of the ball δ is less than the injectivity radius inj(ai). Let us
recall that in Gaussian spherical coordinates, the volume integral of a function h on a D dimensional
Riemannian manifold M can be written as

∫
M

dD
g x h(x) =

∫
SD−1

d�

∫ ρ�

0
dr r D−1 J (r, θ )h(r, θ ) . (44)
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Here θ = (θ1, . . . θD − 1) denotes the direction in the tangent space around a point that we choose,
and ρ� refers to distance to the cut locus of the point in the direction θ . Hence, we get,

∫
M

d3
g y exp

[
−2

(
md2(a j , y)|Ek |

C3

)1/2

=
∫
S2

d�

∫ ρ�

0
dr r2 J (r, θ ) exp

[
−2

(
mr2|Ek |

C3

)1/2]
. (45)

To proceed further we assume that M has Ricci tensor bounded from below by K1, i.e., Ric(., .)
> K1 g(., .) everywhere and the sectional curvature is bounded from above by K2 on Bδ(ai ). The
upper bound on the sectional curvature is automatically satisfied, since there are finite number of
Dirac-delta centers and we take the metric to be C∞(M). Then Bishop-Gunther volume comparison
theorems state that the Jacobian factor of the Gaussian spherical coordinates in D dimensions
satisfies,18, 19

snD−1
K2

(r )

r D−1
≤ J (r, θ ) ≤ snD−1

K1
(r )

r D−1
, (46)

where

snK (r ) =

⎧⎪⎪⎨
⎪⎪⎩

sin(
√

Kr )√
K

if K > 0

r if K = 0
sinh(

√−Kr )√−K
if K < 0.

(47)

Then the upper bound of Eq. (45) becomes

∫
S2

d�

∫ ∞

0
dr

sinh2(
√−K1r )

(−K1)
exp

[
−2

(
mr2|Ek |

C3

)1/2]

= 1

|K1|3/2

∫
S2

d�

∫ ∞

0
dr ′ sinh2(r ′) exp

[
−2

(
mr ′2|Ek |
C3|K1|

)1/2]

≤ π

|K1|3/2

∫ ∞

0
dr ′ exp

[
−2r ′

( (
m|Ek |
C3|K1|

)1/2

− 1

)]

= π

2|K1|3/2

[ (
m|Ek |
C3|K1|

)1/2
− 1

] (48)

as long as
(

m|Ek |
C3|K1|

)1/2
≥ 1. Since we are interested in the limit k → ∞, it is satisfied for sufficiently

large values of |Ek|. Therefore, Eq. (42) is smaller than(
π
2

)1/2

(
δ|K1|3/4

) exp

[
−

(
mδ2|Ek |

C3

)1/2
][ (

m|Ek |
C3|K1|

)1/2

− 1

]−1/2

|| f ||. (49)

If we choose δ = (m
√

R)−1/3|Ek |−1/3, where R is an appropriate scale coming from the Ricci tensor
around a point, where Ricci tensor is non-zero. The prefactor multiplying the exponent goes to
infinity whereas the exponent decays rapidly. In fact, it decays fast enough to make the expression
as a whole go to zero as k → ∞.

Let us go back to the first integral in Eq. (41) and write it in the Gaussian spherical coordinates,

∫
S2

d�

∫ δ

0
dr r2 J (r, θ ) exp

[
−2

(
mr2|Ek |

C3

)1/2] | f (r, θ )|
r

. (50)



043511-10 Doǧan, Erman, and Turgut J. Math. Phys. 53, 043511 (2012)

Let us now make the observation that there are constants A+ , A− , which depend only on δ and Ki’s
such that

A−(Ki , K j ) ≤ snKi (r )

snK j (r )
≤ A+(Ki , K j ), (51)

for r ∈ [0, δ]. For this part of the integral, we use the following characterization of essential
supremum: let us define

�(ε) = μ({r ∈ [0, δ]| |r3/2 F(r )| > ε}), (52)

where μ is the standard Lebesgue measure. Then we have

Essup
r∈[0,δ]

|r3/2 F(r )| = inf
ε

{ε|�(ε) = 0}. (53)

Let us use now F(r ) = ∫
S2 d�| f (r, θ )|, and using Bishop-Gunther bound for the first part as

∫ δ

0
dr r3/2

∫
S2

d� | f (r, θ )|
exp

[
−2

(
mr2|Ek |

C3

)1/2]
r1/2

sn2
K1

(r )

r2
, (54)

which is smaller than

A2
+(K1, 0)

∫ δ

0
dr r3/2

∫
S2

d� | f (r, θ )|
exp

[
−2

(
mr2|Ek |

C3

)1/2]
r1/2

≤ A2
+(K1, 0)

(
Essup
r∈[0,δ]

|r3/2 F(r )|
)( ∫ δ

0
dr

exp
[
−2

(
mr2|Ek |

C3

)1/2]
r1/2

)

≤
(

Essup
r∈[0,δ]

|r3/2 F(r )|
) A2

+(K1, 0)

2(m/C3)1/4|Ek |1/4
. (55)

If we take the limit δ = (m
√

R)−1/3|Ek |−1/3 → 0, we claim that the essential-supremum goes to
zero. To see this, we observe by Markov inequality20 that

�(ε) ≤ 1

ε

∫ δ

0
dr |r3/2 F(r )|

≤ 1

ε

[∫ δ

0
dr r

]1/2[ ∫ δ

0
dr r2

(∫
S2

d� | f (r, θ )|
)2

]1/2

≤ 1

ε

δ√
2

[ ∫ δ

0
dr

r2

sn2
K2

(r )
sn2

K2
(r )

∫
S2

d� | f (r, θ )|2
∫
S2

d�

]1/2

≤ 1

ε

δ√
2

(4π )1/2 A+(0, K2)

[∫ δ

0
dr sn2

K2
(r )

∫
S2

d� | f (r, θ )|2
]1/2

≤ 1

ε

δ√
2

(4π )1/2 A+(0, K2)

[∫ δ

0
dr r2

∫
S2

d� J (r, θ )| f (r, θ )|2
]1/2

≤ 1

ε

δ√
2

(4π )1/2 A+(0, K2)|| f ||. (56)
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For any ε > 0, our choice of δ implies that we can make �(ε) = 0. Thus, the infimum goes to zero
in the limit as k → ∞. As a result, we see that Eq. (31) is smaller than

C15

[
A2

+(K1, 0)

2(1/C3)1/4

(
Essup
r∈[0,δ]

|r3/2 F(r )|
)

+ |Ek |1/4m1/4
exp

[
−

(
mδ2|Ek |

C3

)1/2]
(
δ|K1|3/4

) (π

2

)1/2
[ (

m|Ek |
C3|K1|

)1/2

− 1

]−1/2

|| f ||
]
,

(57)

and it goes to zero as k → ∞. The repeated application of the same analysis leads us to the same
conclusion for the other terms coming from the inverse volume term which has been omitted for
simplicity. Indeed, all these terms decay with |Ek| faster than the result that we have obtained
above. This completes the proof of the existence of the Hamiltonian for point interactions in three
dimensional Riemannian manifolds.

Before embarking on the relativistic version of this problem, we will briefly discuss about the
resonances which may possibly appear since the same problem in flat spaces R2 and R3 for even one
delta center exhibits resonances as discussed in Ref. 2. According to the definition of the resonances
defined in Ref. 2, they are identified by the poles of the resolvent in the second sheet of the complex
energy plane. We are going to investigate the resonances for the one delta center problem in two and
three dimensional non-flat spaces, namely H2 and H3. Let us first study the problem in H3.

(i) H3: The diagonal heat kernel can be explicitly calculated and given by16

Kt (a, a;H3) = e− t
2m R2

(4π t/2m)3/2
, (58)

where R is the characteristic length scale which could be taken as the inverse square root of the
absolute value of the sectional curvature (in mathematics literature, R is chosen as 1). The zeros
of the principal matrix φ(E) determines the bound state spectrum or the resonance spectrum of the
problem. The principal matrix (7) of one-center problem becomes a function since N = 1. Its explicit
form can be easily obtained by substituting (58) into (7), so we get

�(E) = (2m)3/2

4π

(√
1

2m R2
− E −

√
1

2m R2
+ μ2

)
, (59)

where R(E) < 0 in order to ensure the convergence of “time” integral in (7). In this case, the bound
state energy is readily found as E = − μ2 by assuming the fact that energy is on the real line
and negative. In Ref. 8, our main problem was to consider the bound states and we followed the
minimal renormalization prescription. In general, one can always add an arbitrary constant term to
the renormalized term. Keeping this in mind, we will choose the bare coupling constant as

1

λ(ε)
=

∫ ∞

ε

dt Kt (a, a;H3)e−tμ2 + 1

λR(μ)
, (60)

where λR(μ) is the renormalized coupling constant defined as in Ref. 8. In this prescription, the
principal function becomes

�(E) = (2m)3/2

4π

(√
1

2m R2
− E −

√
1

2m R2
+ μ2 + 1

λR(μ)

)
, (61)

for R(E) < 0. However, we can also consider here the case where the principal function can be
analytically continued into the complex energy plane. As it is clear from its explicit expression (61),
it has a branch cut from 1/R2 to the positive infinity. Therefore, the poles of the resolvent which
correspond to the solution �(E) = 0 in the second sheet of the complex energy plane appear only if

1

λR(μ)
−

√
1

2m R2
+ μ2 ≥ 0. (62)
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Otherwise, there is no solution. Hence, the solution for the resonance energy can easily be found
under the above condition as

Eres = 1

2m R2
−

(
1

λR(μ)
−

√
1

2m R2
+ μ2

)2

. (63)

(ii) H2: Since the heat kernel for H2 is well known,16 we have

Kt (a, a;H2) =
√

2

(4π/2m R2)3/2

e− t
8m R2

R2

∫ ∞

0
dr

r e− 2m R2r2

4t√
cosh r − 1

, (64)

where R is the characteristic length scale. Substituting this into the principal function, we find6

�(E) = 2m
√

2

4π

[
ψ

(
1

2
+

√
1

4
− 2m R2 E

)
− ψ

(
1

2
+

√
1

4
+ 2m R2μ2

)]
+ 1

λR(μ)
, (65)

where ψ is the digamma function. An integral representation of the digamma function21 is given by

ψ(z) =
∫ ∞

0
dt

(
e−t

t
− e−zt

1 − e−t

)
, (66)

where R(z) > 0 and it is a meromorphic function. However, due to the square root, the above
function has a branch cut from the point 1

8m R2 to infinity. Similar to the above analysis, the poles of
the resolvent appears in the second sheet of the energy plane only if

1

λR(μ)
− ψ

(
1

2
+

√
1

4
+ 2m R2μ2

)
≥ 0. (67)

Then, the resonance energy Er can be found from the solution of the equation

ψ

(
1

2
−

√
1

4
− 2m R2 Er

)
= −γ 2, (68)

where γ 2 = 1
λR (μ) − ψ

(
1
2 +

√
1
4 + 2m R2μ2

)
.

III. RELATIVISTIC POINT INTERACTIONS ON TWO DIMENSIONAL
RIEMANNIAN MANIFOLDS

The resolvent for this system have been found in Ref. 9 and it is given by

R(E) = R0(E) + R0(E)b†�−1(E)bR0(E), (69)

where

b† =
N∑

i=1

φ(−)(ai )χi (70)

and

�(E) = 1√
π

N∑
i=1

∫ ∞

0
ds e−s2/4

∫ ∞

0
du

(
esμi

√
u − es E

√
u
)

e−um2
Ku(ai , ai ; g)χ†

i χi

− 1√
π

∑
i, j

(i �= j)

∫ ∞

0
ds e−s2/4

∫ ∞

0
du es E

√
ue−um2

Ku(ai , a j ; g)χ†
i χ j . (71)

Here φ( − )(x) is the positive frequency part of the bosonic field and ai stands for the position of one
of the N Dirac-delta function potential centers and μi is the bound state energy for the single delta
center at ai. The operator χ i, called angel operator, was first introduced for this purpose by Rajeev
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in Ref. 11 and it obeys orthofermionic algebra. Kt(x, y; g) is the heat kernel on the Riemannian
manifold, which is defined as the fundamental solution to the heat equation

∇2
g Kt (x, y; g) = ∂Kt (x, y; g)

∂t
. (72)

We would like to first check whether R(E) satisfies the resolvent identity (1). If we put the form of
the resolvent in second quantized form,

R(E) = R0(E) + R0(E)b†�−1(E)bR0(E), (73)

into the above resolvent identity (1) and we simplify by purely algebraic operations to arrive at the
following identity:

�i j (E1) − �i j (E2) + bi (R0(E1) − R0(E2))b†
j = 0, (74)

where we stripped off the angels and wrote everything in terms of explicit matrix indices, and
thus �(E) = �i j (E)χ†

i χ j and also bi = φ( + )(ai) and similarly for b†
j . Let us now verify the above

identity, we note that

�i j (E1) − �i j (E2) = 1√
π

∫ ∞

0
ds e−s2/4

∫ ∞

0
du [es E2

√
u − es E1

√
u]e−um2

Ku(ai , a j ; g). (75)

Let us work out the other term, acting on no particle Fock space, this is the same calculation we have
done for the renormalized term. For simplicity, we present the calculation in a formal eigenfunction
expansion of the Laplace operator (which is rigorously valid for only compact manifolds)

bi (R0(E1) − R0(E2))b†
j =

∑
σ

f ∗
σ (ai )

aσ√
ωσ

[ 1

H0 − E1
− 1

H0 − E2

] ∑
λ

fλ(a j )
a†

λ√
ωλ

=
∑

σ

f ∗
σ (ai )

aσ√
ωσ

∑
λ

fλ(a j )
a†

λ√
ωλ

[ 1

H0 + ωλ − E1
− 1

H0 + ωλ − E2

]

=
∑

σ

∑
λ

f ∗
σ (ai ) fλ(a j )

[ a†
λ√
ωλ

aσ√
ωσ

+ δσλ√
ωλ

√
ωσ

][ 1

ωλ − E1
− 1

ωλ − E2

]

=
∑

λ

f ∗
λ (ai ) fλ(a j )

1

ωλ

[ 1

ωλ − E1
− 1

ωλ − E2

]

=
∫ ∞

0
ds s

∑
λ

f ∗
λ (ai ) fλ(a j )

∫ 1

0
dζ e−sωλ

[
esζ E1 − esζ E2

]

=
∫ ∞

0
ds s

∫ 1

0
dζ

s

2
√

π

∫ ∞

0

du

u3/2
e−s2/4u−m2u Ku(ai , a j ; g)

[
esζ E1 − esζ E2

]

=
∫ ∞

0
ds s

∫ 1

0
dζ

s

2
√

π

∫ ∞

0
du e−s2/4−m2u Ku(ai , a j ; g)

[
es

√
uζ E1 − es

√
uζ E2

]

=
∫ ∞

0
ds

1√
π

∫ ∞

0
du e−s2/4−m2u Ku(ai , a j ; g)

[
es

√
uE1 − es

√
uE2

]
. (76)

After calculating the ζ integral, we performed an integration by parts over the variable s. Hence we
have found the required result (74).

Similar to the previous problem, let us choose the sequence Ek = − k|E0| = − |Ek|, where E0

is sufficiently below the lower bound E* on the ground state energy which has been found in Ref. 9
and negative. We now want to show (30). Substituting the resolvent equation, written in the second
quantized language, in this expression we obtain the following:

lim
k→∞

||Ek[(H0 − Ek)−1 + (H0 − Ek)−1φ(−)(ai )�
−1
i j (Ek)φ(+)(a j )(H0 − Ek)−1] f + f || = 0. (77)
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The free resolvent, that is the first term in the above equation,

lim
k→∞

||Ek R0(Ek) f + f || = lim
k→∞

||Ek(H0 − Ek)−1 f + f || = 0 (78)

already satisfies the resolvent equation hence we should look only into the second part. To see this,
note that by the triangle inequality

lim
k→∞

||Ek R(Ek) f + f || ≤ lim
k→∞

(||Ek(H0 − Ek)−1 f + f ||

+ ||Ek[(H0 − Ek)−1φ(−)(ai )�
−1
i j (Ek)φ(+)(a j )(H0 − Ek)−1] f ||

)
≤ lim

k→∞
||Ek[(H0 − Ek)−1φ(−)(ai )�

−1
i j (Ek)φ(+)(a j )(H0 − Ek)−1] f ||. (79)

We choose a one-particle wave function of the form given below. Even though, this is the most
general one-particle wave function one can write down, it does not include multi-particle wave
functions. However, due to the mutually non-interacting nature of the particles involved, the total
Hamiltonian appearing in the resolvent will be a sum of n identical, individual Hamiltonians in the
case of a n-particle state and therefore will decay faster than in the one-particle case.

|ψ〉 =
∫
M

d2
gx ψ(x)φ(−)(x)|0〉 =

∑
σ

ψ̂(σ )
a†

σ√
ωσ

|0〉. (80)

A direct computation now reveals that

〈ψ |ψ〉 =
∑

σ

|ψ̂(σ )|2
ωσ

. (81)

We verify that the limit

lim
k→∞

|Ek | ||
N∑

i=1

N∑
j=1

(H0 + |Ek |)−1φ(−)(ai )�
−1
i j (Ek)φ(+)(a j )(H0 + |Ek |)−1|ψ〉|| (82)

≤ lim
k→∞

|Ek | ||
N∑

i=1

N∑
j=1

|�−1
i j (Ek)| ||(H0 + |Ek |)−1φ(−)(ai )φ

(+)(a j )(H0 + |Ek |)−1|ψ〉|| ||, (83)

converges to zero. An explicit computation reveals that

φ(+)(a j )(H0 + |Ek |)−1|ψ〉 =
∑

σ

fσ (a j )ψ̂(σ )

(ωσ + |Ek |)ωσ

|0〉. (84)

The action of (H0 + |Ek|)− 1φ( − )(ai) onto this expression leads to

(H0 + |Ek |)−1φ(−)(ai )
∑

σ

fσ (a j )ψ̂(σ )

(ωσ + |Ek |)ωσ

|0〉 =
∑

σ

fσ (a j )ψ̂(σ )

(ωσ + |Ek |)ωσ

∑
σ ′

fσ ′(ai )

(ωσ ′ + |Ek |)
a†

σ ′√
ωσ ′

|0〉.
(85)

We have now a term like |�−1
i j (Ek)| ||F(ai , a j |Ek)||, which satisfies

||
N∑

i, j=1

|�−1
i j (Ek)| ||F(ai , a j |Ek)|| || ≤

[
Tr |�−1(Ek)|2

]1/2[
Tr ||F(Ek)||2

]1/2

. (86)

This can be used in the above norm, and we get after one more use of the Cauchy-Schwarz inequality,

lim
k→∞

|Ek |||(H0 + |Ek |)−1φ(−)(ai )�
−1
i j (Ek)φ(+)(a j )(H0 + |Ek |)−1|ψ〉||

≤ N |Ek | max
1≤i, j≤N

|�−1
i j (Ek)|

[
N∑

i=1

∑
σ

| fσ (ai )|2
(ωσ + |Ek |)2ωσ

][ ∑
τ

|ψ̂(τ )|2
ωτ

]1/2

, (87)
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where we have used

∑
σ

| fσ (a j )ψ̂(σ )|
(ωσ + |Ek |)ωσ

≤
[∑

σ

| fσ (a j )|2
(ωσ + |Ek |)2ωσ

]1/2[∑
τ

|ψ̂(τ )|2
ωτ

]1/2

. (88)

We recall that by choosing k sufficiently large we can make the off-diagonal elements as small as
we like, while the diagonal elements increase. Therefore, without repeating the arguments of the
previous section for sufficiently large values of |Ek|, we can show that

max
1≤i, j≤N

|�−1
i j (Ek)| ≤ ||�−1

i j (Ek)|| ≤ 2 max
1≤i≤N

|�−1
i i (Ek)| (89)

where

max
1≤i≤N

|�−1
i i (Ek)| ≤ C16

ln(|Ek |/(m − μmin
i ))

, (90)

and the constant C16 depends on the class of manifolds under consideration. In the above equation m
should be superseded on Cartan-Hadamard manifolds by its counterpart mCH, as defined in Ref. 9.
Listed below are the values of this constant for compact Riemannian manifolds with positive Ricci
curvature for flat space and for Cartan-Hadamard manifolds:

C16 =
{

2π for flat and compact manifolds
2π
c(δ) for Cartan-Hadamard manifolds

. (91)

Thus, essentially we are faced with the sum/integral,

I =
∑

σ

| fσ (a)|2
ωσ (ωσ + |Ek |)2

. (92)

We will work this out: First we recall that

1

ωσ (ωσ + |Ek |)2
= 	(3)

	(2)	(1)

∫ 1

0
dζ

ζ

[ωσ + ζ |Ek |]3 . (93)

Let us now use the exponential form for the integrand,

	(3)

	(2)	(1)

∫ 1

0
dζ

ζ

[ωσ + ζ |Ek |]3 = 	(3)

2	(2)	(1)

∫ 1

0
dζ ζ

∫ ∞

0
ds s2e−sωσ e−ζ s|Ek | (94)

and use subordination for ωσ ,

e−sωσ = s

2
√

π

∫ ∞

0

du

u3/2
e−s2/4u−m2ue−λ(σ )u, (95)

where λ(σ ) is the eigenvalue of the Laplacian defined in Ref. 9. If we combine the last exponential
with |fσ (a)|2 terms, we get the heat kernel at the same points, Ku(a, a; g) and collecting them, we
find

I = 	(3)

4
√

π	(2)	(1)

∫ ∞

0

du

u3/2

∫ 1

0
dζ ζ

∫ ∞

0
ds s3 e−s2/4u−m2u Ku(a, a; g)e−ζ s|Ek |

= 	(3)

4
√

π	(2)	(1)

∫ ∞

0

du

u3/2

∫ ∞

0
ds s3 e−s2/4u−m2u Ku(a, a; g)

∫ 1

0
dζ ζe−ζ s|Ek |

= 	(3)

4
√

π	(2)	(1)

∫ ∞

0

du

u3/2

∫ ∞

0
ds s3 e−s2/4u−m2u Ku(a, a; g)

1

s2|Ek |2
[
1 − e−s|Ek | − s|Ek |e−s|Ek |

]

≤ 	(3)

4
√

π |Ek |2	(2)	(1)

∫ ∞

0

du

u3/2

∫ ∞

0
ds s e−s2/4u−m2u

[ C17

A(M)
+ C18

u

][
1 − e−s|Ek | − s|Ek |e−s|Ek |

]
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= 1

|Ek |2
∫ ∞

0
du

[ C19

A(M)u3/2
+ C20

u5/2

] ∫ ∞

0
ds s e−s2/4u−m2u

[
1 − e−s|Ek | − s|Ek |e−s|Ek |

]

= 1

|Ek |2
∫ ∞

0
ds s

[
1 − e−s|Ek | − s|Ek |e−s|Ek |

] ∫ ∞

0
dv

[ C19m

A(M)v3/2
+ C20m3

v5/2

]
e−(ms)2/4v−v, (96)

where A(M) is the area of the manifold. Here the most divergent contribution comes from the last
term in the above expression, so we first analyze this term. By inspecting the following integral
representation of the modified Bessel function K3/2(v):22

K3/2(ms) = 1

2

(ms

2

)3/2
∫ ∞

0

dv

v3/2+1
e−(ms)2/4v−v, (97)

we obtain the following:

I2 = m3/2C21

|Ek |2
∫ ∞

0

ds√
s

K3/2(ms)
[
1 − e−s|Ek | − s|Ek |e−s|Ek |

]
. (98)

We now use another integral representation of the modified Bessel function K3/2(x),22

K3/2(ms) = 	(2)23/2s3/2

√
πm3/2

∫ ∞

0
dt

cos(mt)

(t2 + s2)2
. (99)

As a result we see that

I2 = C22

|Ek |2
∫ ∞

0
ds s

∫ ∞

0
dr s

cos(msr )

(r2s2 + s2)2

[
1 − e−s|Ek | − s|Ek |e−s|Ek |

]

≤ C22

|Ek |2
∫ ∞

0

ds

s2

[
1 − e−s|Ek | − s|Ek |e−s|Ek |

] ∫ ∞

0

dr

(r2 + 1)2

≤ C23

|Ek |2
∫ ∞

0

ds

s2

[
1 − e−s|Ek | − s|Ek |e−s|Ek |

]

≤ C23

|Ek |
∫ ∞

0

ds

s2

[
1 − e−s − se−s

]
. (100)

We now note that the integral ∫ ∞

0

ds

s2

[
1 − e−s − se−s

]
(101)

is actually convergent. The first term instead becomes

I1 = 2
√

πC24

|Ek |2
∫ ∞

0
ds

[
1 − e−s|Ek | − s|Ek |e−s|Ek |

]
e−ms

≤ C25

|Ek |3
∫ ∞

0
ds

[
1 − e−s − se−s

]
e−ms/|Ek |

≤ C26

A(M)|Ek |3 . (102)

Hence ∑
σ

| fσ (a)|2
ωσ (ωσ + |Ek |)2

≤ C27

|Ek | + C26

A(M)|Ek |3 (103)

is shown. As a result we see that

lim
k→∞

||[1 − |Ek |R(Ek)]|ψ〉|| ≤ lim
k→∞

|Ek |
[ C28

|Ek | ln(|Ek |) + C29

A(M)|Ek |3 ln(|Ek |)
]

→ 0, (104)

which proves that our formula defines a densely defined closed operator.
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IV. NON-RELATIVISTIC LEE MODEL IN TWO AND THREE DIMENSIONAL
RIEMANNIAN MANIFOLDS

A. Introduction

Before starting directly to our proof for this model, let us summarize what the non-relativistic
Lee model is about and give the renormalization of this model form our point of view.7, 10

The Lee model23 was first introduced as a simple renormalizable model which describes the
interaction between a relativistic neutral bosonic field (e.g., “pions”), and two neutral fermionic
fields (e.g., “nucleons”). Nucleons exist in two different intrinsic states. The particle corresponding
to the Bose field is called the θ and the particles corresponding to the intrinsic states of the nucleon
are called the V and the N particles. The fermionic field corresponding to the V and N particles are
assumed to be spinless for simplicity. Only allowable process is given by

V � N + θ (105)

and the following process is not allowed:

N � V + θ , (106)

which makes the model rather simple. Although this model is not realistic, the important features
of nucleon-pion system can be understood in a relatively simple way and one can get rid of the
infinities without applying perturbation theory techniques. Moreover, the complete non-relativistic
version of this model that describes one heavy particle sitting at some fixed point interacting with
a field of non-relativistic bosons is as important as its relativistic counterpart. It is much simpler
than its relativistic version because only an additive renormalization of the mass difference of the
fermions is necessary. It has been studied in a textbook by Henley and Thirring for small number of
bosons from the point of view of scattering matrix24 and there are various other approaches to the
model.25–31 It is possible to look at the same problem from the point of view of the resolvent of the
Hamiltonian in a Fock space formalism with arbitrary number of bosons (in fact there is a conserved
quantity which allows us to restrict the problem to the direct sum of n and n + 1 boson sectors). This
is achieved in a very interesting unpublished paper by Rajeev,11 in which a new non-perturbative
formulation of renormalization for some models with contact interactions has been proposed. Our
approach to Lee model is based on that work. Let us now shortly review how we non-perturbatively
renormalize this model in this point of view, which was given in Ref. 7 and recently developed for the
two dimensional case10 and all the details about the construction of the model and the information
about the bound state spectrum can be found in these references.

We start with the regularized Hamiltonian of the non-relativistic Lee model on D = 2, 3
dimensional Riemannian manifold (M, g) with a cut-off ε. Adopting the natural units (� = c = 1),
one can write down the regularized Hamiltonian,

H ε = H0 + HI,ε, (107)

where

H0 =
∫
M

dD
g x φ†

g(x)

(
− 1

2m
∇2

g + m

)
φg(x), (108)

HI,ε = μ(ε)

(
1 − σ3

2

)
+ λ

∫
M

dD
g x Kε(x, a; g)

(
φg(x) σ− + φ†

g(x) σ+
)
. (109)

Here φ†
g(x), φg(x) is the bosonic creation-annihilation operators defined on the manifold with the

metric structure gij and λ is the coupling constant, and x, y refers to points on the manifold M . Also,
Kε(x, a; g) is the heat kernel on a Riemannian manifold with metric structure g and it converges to
the Dirac delta function δg(x, a) around the point a on M as we take the limit ε → 0+ . Similar to
the flat case, μ(ε) is defined as a bare mass difference between the V particle (neutron) and the N
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particle (proton). One can easily see that there exists a conserved quantity for this model,

Q = −
(

1 + σ3

2

)
+

∫
M

dD
g x φ†

g(x)φg(x).

Therefore, we can express the regularized Hamiltonian as a 2 × 2 block split according to C2,

H ε − E =
(

H0 − E λ
∫
M dD

g x Kε(x, a; g) φ†
g(x)

λ
∫
M dD

g x Kε(x, a; g) φg(x) H0 − E + μ(ε)

)
. (110)

Then, one can similarly construct the regularized resolvent of this Hamiltonian

Rε(E) = 1

H ε − E
=

(
αε β†

ε

βε δε

)
=

(
aε b†

ε

bε dε

)−1

, (111)

where

αε = 1

H0 − E
+ 1

H0 − E
b†

ε �−1
ε (E) bε

1

H0 − E

βε = −�−1
ε (E) bε

1

H0 − E

δε = �−1
ε (E)

bε = λ

∫
M

dD
g x Kε(x, a; g) φg(x). (112)

The operator �ε(E), called principal operator, is given as

�ε(E) = H0 − E + μ(ε) − λ2
∫
M2

dD
g x dD

g y Kε(x, a; g)Kε(y, a; g) φg(x)
1

H0 − E
φ†

g(y). (113)

We then make a normal ordering of this operator

�ε(E) = H0 − E − λ2
∫ ∞

ε/2
ds

∫
M2

dD
g x dD

g y Ks(x, a; g)Ks(y, a; g)

×φ†
g(x)e−(s−ε/2)(H0+2m−E)φg(y) + μ + λ2

∫ ∞

ε

ds Ks(a, a; g)
[
e−s(m−μ) − e−(s−ε)(H0+m−E)

]
, (114)

and then choose μ(ε) as

μ(ε) = μ + λ2
∫ ∞

ε

ds Ks(a, a; g) e−s(m−μ), (115)

where μ is defined as the physical energy of the composite state which consists of a boson and the
attractive heavy neutron at the center a. Then, we take the limit ε → 0+ and find

�(E) = H0 − E + μ + λ2
∫ ∞

0
ds Ks(a, a; g)

[
e−s(m−μ) − e−s(H0+m−E)]

− λ2
∫ ∞

0
ds

∫
M2

dD
g x dD

g y Ks(x, a; g)Ks(y, a; g) φ†
g(x)e−s(H0+2m−E)φg(y). (116)

This is the finite form of the principal operator so that we have a well-defined explicit formula for
the resolvent of the Hamiltonian in terms of the inverse of the principal operator �− 1(E). The bound
states arise from the roots of the equation,

�(E)|�〉 = 0, (117)

corresponding to the poles in the resolvent. Hence, the principal operator determines the bound state
spectrum.
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B. The lower bound on the ground state energy

In this section, we will prove that there exists a lower bound on the ground state energy of the
system for D = 2, 3 dimensional cases. The three dimensional and two dimensional cases were given
separately in Refs. 7 and 10. But we will summarize them for completeness.

We will first restrict the energy E to the real axis. In order to give the proof that the energy E is
bounded from below, we split the principal operator as

�(E) = K (E) − U (E), (118)

such that

K (E) = H0 − E + μ, (119)

and

U (E) = U1(E) + U2(E) = −λ2
∫ ∞

0
dt Kt (a, a; g)

[
e−t(m−μ) − e−t(H0+m−E)

]

+ λ2
∫ ∞

0
dt

∫
M2

dD
g x dD

g y Kt (x, a; g) Kt (y, a; g) φ†
g(x) e−t(H0+2m−E) φg(y). (120)

It follows immediately that K(E) ≥ nm − E + μ, so it is a positive definite operator from our
assumption E < nm + μ. Due to the positivity of the heat kernel and since the difference of the
two exponentials is a positive operator, the first integral term U1(E) is a negative operator. We thus
remark that

U (E) ≤ U2(E). (121)

This clearly forces

�(E) ≥ K (E) − U2(E), (122)

or rewriting it as

�(E) ≥ K (E)1/2 (
1 − Ũ2(E)

)
K (E)1/2, (123)

where Ũ2(E) = K (E)−1/2 U2(E) K (E)−1/2 and K(E), U2(E) are positive operators (so is Ũ2(E)). It
must be emphasized that the unique square root of the positive self-adjoint operators K(E) are well
defined for all real values of E below μ. We will now show that by choosing E sufficiently small it is
always possible to make the operator �(E) strictly positive, hence it becomes invertible, and has no
zeros beyond this particular value of E (in Sec. IV C, the self-adjointness will be further clarified).
Therefore, if we impose

||Ũ2(E)|| < 1, (124)

then the principal operator �(E) becomes strictly positive. For Cartan-Hadamard manifolds, we
have obtained in Ref. 7

||Ũ2(E)|| ≤ n C30m D/2 λ2 	(2)

	(1/2)2
(nm + μ − E)

D
2 −2	(2 − D

2
)

[√
π	(1 − D

4 )

	( 3
2 − D

4 )

]2

. (125)

Then the strict positivity of the principal operator (124) implies a lower bound for the ground state
energy

Egr ≥ nm + μ −
(

nC31λ
2m D/2

) 1
2− D

2

, (126)

where

C31 = C30
π	(2)	(1 − D

4 )2	(2 − D
2 )

	( 1
2 )2	( 3

2 − D
4 )2

. (127)
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For the compact manifolds with Ricci curvature bounded from below by − K ≥ 0, we have similarly
obtained

||Ũ2(E)|| ≤ n
λ2 	(2)

	(1/2)2

[
4

V (M)μ
D
2

+ 4A′1/2m D/4π1/2	(2 − D
4 )	(1 − D

4 )

μ
D
4 V (M)1/2	( 3

2 − D
4 )

+ A′m D/2π	(2 − D
2 )	(1 − D

4 )2

	( 3
2 − D

4 )2

]
1

(nm + μ − E)2− D
2

, (128)

so the lower bound of the ground state energy was found

Egr ≥ nm + μ − (
nλ2C32

) 1
2− D

2 , (129)

where

C32 = 	(2)

	(1/2)2

[
4

V (M)μ
D
2

+ 4A′1/2m D/4π1/2	(2 − D
4 )	(1 − D

4 )

μ
D
4 V (M)1/2	( 3

2 − D
4 )

+ A′m D/2π	(2 − D
2 )	(1 − D

4 )2

	( 3
2 − D

4 )2

]
. (130)

Therefore, the lower bounds on the ground state energies for different classes of manifolds (126)
and (129) are of almost the same form up to a constant factor, so the form of the lower bound has a
general character.

C. Existence of the Hamiltonian for the Lee model in two and three dimensional
Riemannian manifolds

The explicit formula for the resolvent of the Hamiltonian in terms of the inverse of the principal
operator �− 1(E) is given in Refs. 7 and 10 by

R(E) = 1

H − E
=

(
α γ

β δ

)
, (131)

where

α = 1

H0 − E
+ 1

H0 − E
b† �−1(E) b

1

H0 − E

β = −�−1(E) b
1

H0 − E

γ = − 1

H0 − E
b† �−1(E)

δ = �−1(E)

b = λφg(a). (132)

Let us check that the resolvent identity R(E1) − R(E2) = (E1 − E2)R(E1)R(E2) is satisfied, that is,
we must have(

α(E1) − α(E2) γ (E1) − γ (E2)

β(E1) − β(E2) δ(E1) − δ(E2)

)

= (E1 − E2)

(
α(E1)α(E2) + γ (E1)β(E2) α(E1)γ (E2) + γ (E1)δ(E2)

β(E1)α(E2) + δ(E1)β(E2) β(E1)γ (E2) + δ(E1)δ(E2)

)
. (133)
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We first consider the first diagonal element of the above matrix. Using the fact that free resolvent
satisfies the resolvent identity, we get

R0(E1)b†�−1(E1)

[
�(E1) − �(E2) + b(R0(E1) − R0(E2))b† + E1 − E2

]
�−1(E2)bR0(E2) = 0.

(134)

Let us look at the term in the square bracket more closely. By using the explicit expression of the
principal operator (116), this term becomes

λ2
∫ ∞

0
dt Kt (a, a; g)

[
e−t(H0+m−E2) − e−t(H0+m−E1)

]

+ λ2
∫ ∞

0
dt

∫
M2

dD
g x dD

g y Kt (x, a; g)Kt (y, a; g) φ†
g(x)

[
e−t(H0+2m−E2) − e−t(H0+2m−E1)

]
φg(y)

+ λ2φg(a)

[
(H0 − E1)−1 − (H0 − E2)−1

]
φ†

g(a). (135)

One can shift the operator φ†
g(x) to the left

1

H0 − E
φ†

g(x) =
∫
M

dD
g x ′ φ†

g(x ′)
∫ ∞

0
dt e−t(H0+m−E) Kt (x, x ′; g), (136)

and shift the operator φg(x) to the right

φg(x)
1

H0 − E
=

∫
M

dD
g x ′

∫ ∞

0
dt e−t(H0+m−E) Kt (x, x ′; g)φg(x ′), (137)

which we have also used in Ref. 7 for the renormalization. The last term in Eq. (135) can be normal
ordered as

λ2
∫ ∞

0
dt Kt (a, a; g)

[
e−t(H0+m−E1) − e−t(H0+m−E2)

]

+ λ2
∫ ∞

0
dt

∫
M2

dD
g x dD

g y Kt (x, a; g)Kt (y, a; g) φ†
g(x)

[
e−t(H0+2m−E1) − e−t(H0+2m−E2)

]
φg(y).

(138)

Then we prove that

�(E1) − �(E2) + b(R0(E1) − R0(E2))b† + E1 − E2 = 0. (139)

The other term in the matrix equality (133)

γ (E1) − γ (E2) = (E1 − E2)

[
α(E1)γ (E2) − γ (E1)δ(E2)

]
(140)

can be written as

− R0(E1)b†�−1(E1)

[
�(E1) − �(E2) + b(R0(E1) − R0(E2))b† + E1 − E2

]
�−1(E2) = 0, (141)
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due to (139). Similarly, the other terms can be put into the following forms:

�−1(E1)

[
�(E1) − �(E2) + b(R0(E1) − R0(E2))b† + E1 − E2

]
�−1(E2)bR0(E2) = 0

�−1(E1)

[
�(E1) − �(E2) + b(R0(E1) − R0(E2))b† + E1 − E2

]
�−1(E2) = 0, (142)

and they are all satisfied thanks to the equality (139). Hence, we prove that the resolvent identity is
satisfied.

We will now prove the second part of the theorem for the existence of Hamiltonian. Recall
that the resolvent for the Lee model is defined in the following Fock space FB

(n+1)(H) ⊗ χ+ ⊕
FB

(n)(H) ⊗ χ−, for any given n ∈ N, and χ ± is the spin states. In matrix form, we have R(E) :
FB

(n+1)(H) ⊕ FB
(n)(H) → FB

(n+1)(H) ⊕ FB
(n)(H). Then we must show that

||Ek R(Ek)| f 〉 + | f 〉|| = |||Ek |R(Ek)| f 〉 − | f 〉|| → 0, (143)

as k → ∞. Here | f 〉 ∈ FB
(n+1)(H) ⊕ FB

(n)(H) and the norm is taken with respect to FB
(n+1)(H) ⊕

FB
(n)(H). Let us decompose the vector |f〉 as(

| f (n+1)〉
| f (n)〉

)
, (144)

where

| f (n)〉 =
∫
Mn

dD
g x1 . . . dD

g xn f (x1, x2, . . . , xn)|x1, x2, . . . , xn〉. (145)

So we have ∣∣∣∣∣
∣∣∣∣∣
( |Ek |α(Ek) |Ek |γ (Ek)

|Ek |β(Ek) |Ek |δ(Ek)

) ( | f (n+1)〉
| f (n)〉

)
−

( | f (n+1)〉
| f (n)〉

) ∣∣∣∣∣
∣∣∣∣∣

=
[
|||Ek |α(Ek)| f (n+1)〉 − | f (n+1)〉 + |Ek |γ (Ek)| f (n)〉||2

+|||Ek |β(Ek)| f (n+1)〉 + |Ek |δ(Ek)| f (n)〉 − | f (n)〉||2
]1/2

(146)

≤
[(

|||Ek |α(Ek)| f (n+1)〉 − | f (n+1)〉|| + |||Ek |γ (Ek)| f (n)〉||
)2

+
(

|||Ek |β(Ek)| f (n+1)〉|| + |||Ek |δ(Ek)| f (n)〉 − | f (n)〉||
)2]1/2

,

since ||A + B|| ≤ ||A|| + ||B||. We shall investigate each norm separately. Let us first consider the
term |||Ek|β(Ek)|f (n + 1)〉||

||λ|Ek |�−1(Ek)φg(a)
1

H0 + |Ek | | f (n+1)〉|| ≤ λ|Ek |||�−1(Ek)||||φg(a)
1

H0 + |Ek | | f (n+1)〉||.
(147)

Using the formula (137) for E = − |Ek| and x = a, we get

||φg(a)
1

H0 + |Ek | | f (n+1)〉|| ≤ ||
∫
M

dD
g x

∫ ∞

0
dt e−t |Ek |Kt (x, a; g)φg(x)| f (n+1)〉||

≤
[ ∫

M
dD

g x

(∫ ∞

0
dt e−t |Ek |Kt (x, a; g)

)2]1/2√
n + 1|| | f (n+1)〉||.
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(148)

Let us first consider the compact manifolds. Then, one can take the integral over the variable t by
the help of the upper bound of the heat kernel (19) for compact manifolds and obtain

||φg(a)
1

H0 + |Ek | | f (n+1)〉|| ≤ √
n + 1||| f (n+1)〉||

×
[ ∫

M
dD

g x

(
md2(x, a)

|Ek |
)(

C33

V (M)
K1

(
2d(x, a)

√
m|Ek |/C3

)

+ C34

(
m|Ek |

d2(x, a)

)D/4

K D
2 −1

(
2d(x, a)

√
m|Ek |/C3

) )2]1/2

. (149)

We now choose Riemann normal coordinates around the point a, assuming that δ < inj(a). Then, we
split the integration region into the two parts as

∫
M = ∫

Bδ(a) +
∫
M\Bδ (a). Expressing the first integral

in the Gaussian spherical coordinates, we get

||φg(a)
1

H0 + |Ek | | f (n+1)〉|| ≤ √
n + 1||| f (n+1)〉||

×
[ ∫

SD−1
d�

∫ δ

0
dr r D+1

(
m AD−1

+ (K1, 0)

|Ek |

)[
C33

V (M)
K1

(
2r

√
m|Ek |/C3

)

+ C34

(
m|Ek |

r2

)D/4

K D
2 −1

(
2r

√
m|Ek |/C3

) ]2

(150)

+
∫
M\Bδ (a)

dD
g x

(
md2(x, a)

|Ek |

)[
C33

V (M)
K1

(
2d(x, a)

√
m|Ek |/C3

)

+ C34

(
m|Ek |

d2(x, a)

)D/4

K D
2 −1

(
2d(x, a)

√
m|Ek |/C3

) ]2]1/2

,

where we have used Eqs. (46) and (51). Let us now consider the first integral. It is smaller than the
following expression:∫

SD−1
d�

∫ ∞

0
dr r D+1

(
m AD−1

+ (K1, 0)

|Ek |

)[
C33

V (M)
K1

(
2r

√
m|Ek |/C3

)
(151)

+ C34

(
m|Ek |

r2

)D/4

K D
2 −1

(
2r

√
m|Ek |/C3

) ]2

.

One can evaluate the integrals32

∫ ∞

0
dr r D+1 K 2

1 (ar ) =
√

π	(1 + D
2 )	(2 + D

2 )	( D
2 )

4aD+2	( 3+D
2 )∫ ∞

0
dr r K 2

D
2 −1(ar ) = π (D − 2) csc(π D/2)

4a2
(152)

∫ ∞

0
dr r

D
2 +1 K1(ar )K D

2 −1(ar ) = 2
D
2 	( D

2 )

(D + 2)a
D
2 +2

,

where a ∈ R+ and D = 2, 3. Then the upper bound of the first integral in (150) becomes

m AD−1
+ (K1, 0)

|Ek |

(
C35

V 2(M)
(m|Ek |)−

(D+2)
2 + C36(m|Ek |) D

2 −1 + C37

V (M)
(m|Ek |)−1

)
. (153)
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For Cartan-Hadamard manifolds, we do not repeat the analysis above because the upper bound of the
heat kernel for Cartan-Hadamard manifolds given in Eq. (19) corresponds to removing the volume
term from the one for the compact manifolds. As a result, we get the upper bound of the first term
in Eq. (150) for Cartan-Hadamard manifolds

mC38

|Ek | (m|Ek |) D
2 −1. (154)

Let us now consider the second term in the Eq. (150) for compact and Cartan-Hadamard manifolds.
Due to the upper bounds of the Bessel functions used in Ref. 8, we find for compact manifolds

∫
M\Bδ(a)

dD
g x

(
md2(x, a)

|Ek |

)[
C33

V (M)
K1

(
2d(x, a)

√
m|Ek |/C3

)

+C34

(
m|Ek |

d2(x, a)

)D/4

K D
2 −1

(
2d(x, a)

√
m|Ek |/C3

) ]2

(155)

≤
∫
M\Bδ(a)

dD
g x

(
md2(x, a)

|Ek |
)[

C33

V (M)
exp

(
−d(x, a)

√
m|Ek |/C3

)

×
(

1

2d(x, a)
√

m|Ek |/C3
+ 1

2

)
+ C34

(
m|Ek |

d2(x, a)

)D/4 2 exp

(
− 2d(x,a)

(4−D)

√
m|Ek |/C3

)
(2d(x, a)

√
m|Ek |/C3)(4−D)/2

]2

.

Since d(x, a) ≥ δ for all x ∈ M\Bδ(a), the upper bound of the above equation is

exp

(
− δ

√
m|Ek |/C3

) ∫
M\Bδ(a)

dD
g x

(
md2(x, a)

|Ek |
)[

C33

V (M)
exp

(
− d(x, a)

2

√
m|Ek |/C3

)

×
(

1

2δ
√

m|Ek |/C3
+ 1

2

)
+ C34

(
m|Ek |

δ2

)D/4 2

(2δ
√

m|Ek |/C3)(4−D)/2

× exp

( (
d(x, a)

2
− 2d(x, a)

(4 − D)

)√
m|Ek |/C3

)]2

. (156)

For compact manifolds, we have a simplification. This upper bound above is smaller than

exp

(
−δ

√
m|Ek |/C3

) ∫
M

dD
g x

(
md2(x, a)

|Ek |
)[

C33

V (M)

(
1

2δ
√

m|Ek |/C3
+ 1

2

)

(157)

+C34

(
m|Ek |

δ2

)D/4 2

(2δ
√

m|Ek |/C3)(4−D)/2

]2

.

Due to the fact the geodesic distance between any two points on the manifold and the volume of the
manifold is finite, that is, d(x, a) ≤ dmax(a) = maxx d(x, a), the upper bound to the above integral
can easily be found as

(
md2

max(a)

|Ek |
)

exp

(
−δ

√
m|Ek |/C3

)
V (M)

[
C33

V (M)

(
1

2δ
√

m|Ek |/C3
+ 1

2

)

(158)

+C34

(
m|Ek |

δ2

)D/4 2

(2δ
√

m|Ek |/C3)(4−D)/2

]2

.
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For Cartan-Hadamard manifolds, we similarly find

≤ C39m D−1|Ek |D−3 exp

(
−δ (m|Ek |/C5)1/2

) ∫
M\Bδ(a)

dD
g x

exp

[
2( d(x,a)

2 − 2d(x,a)
(4−D) )

√
m|Ek |/C5

]
d2(x, a)

≤
C39m D−1|Ek |D−3 exp

(
−δ

√
m|Ek |/C5

)
δ2

∫
M

dD
g x exp

[
−d(x, a)

(
4

4 − D
− 1

) √
m|Ek |/C5

]
,

(159)

where we have used d(x, a) ≥ δ for all x ∈ M\Bδ(a). Let us write the above integral in Gaussian
spherical coordinates as we did in Sec. II,∫

SD−1
d�

∫ ρ�

0
dr r D−1 J (r, θ ) exp

[
−r

(
4

4 − D
− 1

) √
m|Ek |/C5

]
. (160)

To proceed further we assume that M has Ricci tensor bounded from below by K1. As a result of
this and using Eqs. (46) and (47), the upper bound to Eq. (159) becomes

≤
C40m D−1|Ek |D−3 exp

(
−δ

√
m|Ek |/C5

)
δ2(−K1)(D−1)/2

∫ ∞

0
dr sinhD−1(

√
−K1r )

(161)

× exp

[
−r

(
4

4 − D
− 1

) √
m|Ek |/C5

]
.

Since sinh D − 1(x) ≤ e(D − 1)x/2D − 1, we can take the integral and get

C41m D−1|Ek |D−3e−δ
√

m|Ek |/C5

(−K1)(D−1)/2δ2

[ (
4

4−D − 1
) √

m|Ek |/C5 − (D − 1)
√−K1

] , (162)

as long as

[ (
4

4−D − 1
) √

m|Ek |/C5 − (D − 1)
√−K1

]
≥ 0. But this is always satisfied for suffi-

ciently large values of |Ek|.
Therefore, if we combine the results (153) and (158) we obtain for compact manifolds that

||φg(a)
1

H0 + |Ek | | f (n+1)〉|| ≤ √
n + 1||| f (n+1)〉||

[
m AD−1

+ (K1, 0)

|Ek |

(
C33

V 2(M)
(m|Ek |)−

(D+2)
2

+C34(m|Ek |) D
2 −1 + C35

V (M)
(m|Ek |)−1

)
+

(
md2

max(a)

|Ek |
)

exp

(
−δ

√
m|Ek |/C3

)

×V (M)

(
C33

V (M)

(
1

2δ
√

m|Ek |/C3
+ 1

2

)
+ C34

(
m|Ek |

δ2

)D/4 2

(2δ
√

m|Ek |/C3)(4−D)/2

)2]1/2

,

(163)

and the results (154) and (162) for Cartan-Hadamard manifolds give

||φg(a)
1

H0 + |Ek | | f (n+1)〉|| ≤ √
n + 1||| f (n+1)〉||

[
mC38

|Ek | (m|Ek |) D
2 −1

(164)

+ C41m D−1|Ek |D−3e−δ
√

m|Ek |/C5

(−K1)(D−1)/2δ2

( (
4

4−D − 1
) √

m|Ek |/C5 − (D − 1)
√−K1

)
]1/2

.
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We are now going to find an upper bound of the inverse norm of the principal operator. In order
to do this, let us recall that we split the principal operator when we try find the lower bound
of the ground state energy. We now split the principal operator in the following way: � = (K
− U1) − U2, where U1 and U2 are defined exactly as before. Then, we have

�−1 = (K − U1)−1/2
[
1 − (K − U1)−1/2 U2 (K − U1)−1/2

]−1
(K − U1)−1/2 . (165)

Let us substitute the identity operator K1/2K− 1/2 between the operators (K − U1)− 1/2 and U2. Hence

�−1 = (K − U1)−1/2 [1 − X ]−1 (K − U1)−1/2 , (166)

where we have defined X = (K − U1)−1/2 K 1/2Ũ2 K 1/2 (K − U1)−1/2 for simplicity. Here the
following operator can be written as an infinite geometric sum

[1 − X ]−1 =
∞∑

l=0

Xl , (167)

as long as ||X|| < 1. This leads to

||[1 − X ]−1|| ≤ [1 − ||X ||]−1. (168)

Since − U1 is a positive operator, (K − U1)− 1/2 ≤ K− 1/2. Then, we have

||X || ≤ ||Ũ2||. (169)

If we make |Ek| sufficiently large, then ||Ũ2|| ≤ 1/2 and

[1 − ||X ||]−1 ≤ 2. (170)

As a result of this, we get

||�−1(Ek)|| ≤ 2||K −1/2(Ek)||2 ≤ 2

|Ek | , (171)

where we have used

K −1/2(Ek) = (H0 + μ + |Ek |)−1/2 ≤ 1

|Ek |1/2
. (172)

Then, substituting Eqs. (153) and (158) for compact or substituting Eqs. (154) and (162) for Cartan-
Hadamard manifolds into Eq. (150) and using the above upper bound for the inverse principal
operator, and taking the limit as k → ∞, we eventually obtain

|Ek | ||�−1(Ek)|| ||φg(a)
1

H0 + |Ek | | f (n+1)〉|| → 0. (173)

Let us consider the other terms in Eq. (146) now:

|||Ek |α(Ek)| f (n+1)〉 − | f (n+1)〉|| ≤ ||
( |Ek |

H0 + |Ek | − 1

)
| f (n+1)〉||

(174)

+ λ2|Ek | || 1

H0 + |Ek |φ
†
g(a)|| ||�−1(Ek)|| ||φg(a)

1

H0 + |Ek | | f (n+1)〉||.

The upper bound for the norm || 1
H0+|Ek |φ

†
g(a)|| can be similarly found, and comes out to be the same

as the one for ||φg(a) 1
H0+|Ek | ||(the norms are different in general). As a result of this, we obtain

|||Ek |α(Ek)| f (n+1)〉 − | f (n+1)〉|| → 0, (175)

as k → ∞. Similarly, the following term

|||Ek |γ (Ek)| f (n)〉|| ≤ λ|Ek | || 1

H0 + |Ek |φ
†
g(a)| f (n)〉|| ||�−1(Ek)|| (176)
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and

|||Ek |β(Ek)| f (n+1)〉|| ≤ λ|Ek | ||φg(a)
1

H0 + |Ek | | f (n+1)〉|| ||�−1(Ek)|| (177)

both vanishes as k → ∞. Moreover, we have

|| (|Ek |δ(Ek) − 1) | f (n)〉|| = || [|Ek | �−1(Ek) − 1
] | f (n)〉||

= || [|Ek | K −1/2(Ek)
[
1 + (1 − Ũ (Ek))−1 − 1

]
K −1/2(Ek) − 1

] | f (n)〉||
≤ || (|Ek |K −1(Ek) − 1

) | f (n)〉|| + |||Ek |K −1/2(Ek)
[
(1 − Ũ (Ek))−1 − 1

]
K −1/2(Ek)| f (n)〉||

= || (|Ek |K −1(Ek) − 1
) | f (n)〉|| + |||Ek |K −1/2(Ek)(1 − Ũ (Ek))−1Ũ (Ek)K −1/2(Ek)| f (n)〉||, (178)

where we have used the fact that the factor (1 − Ũ (Ek))−1 can be considered as an infinite geometric
sum. The first term goes to zero as k → ∞ since

||
( |Ek |

H0 + |Ek | + μ
− 1

)
| f (n)〉|| = ||

( |Ek | + μ − μ

H0 + |Ek | + μ
− 1

)
| f (n)〉||

≤ ||
( |Ek | + μ

H0 + |Ek | + μ
− 1

)
| f (n)〉|| + ||

(
μ

H0 + |Ek | + μ

)
| f (n)〉|| (179)

≤ ||
( |Ek | + μ

H0 + |Ek | + μ
− 1

)
| f (n)〉|| + μ

|Ek | ||| f (n)〉||,

where the term containing H0 vanishes as k → ∞ because it is the free resolvent and the second
part clearly goes to zero. This shows that the first term in Eq. (178) vanishes in the limit. As for the
second term, it is smaller than

|Ek |||K −1/2(Ek)|| [
(1 − ||Ũ (Ek)||)−1

] [||Ũ1(Ek)|| + ||Ũ2(Ek)||] ||K −1/2(Ek)|| ||| f (n)〉||. (180)

Since m > μ for bound states, one can easily see that

||Ũ1(Ek)|| ≤ C42λ
2||(H0 + m + |Ek |)−1/2

∫ ∞

0
dt Kt (a, a; g)

[
e−t(m−μ) − e−t(H0+m+|Ek |)]

× (H0 + m + |Ek |)−1/2|| (181)

≤
{

C43λ
2||(H0 + m + |Ek |)−1 ln

(
H0+m+|Ek |

m−μ

)
|| for D = 2

C44λ
2||(H0 + m + |Ek |)−1/2|| for D = 3

.

Here we use the fact that the operator in the parenthesis, which we call A(s) is positive, and for a
positive family, if two integrable functions satisfy 0 ≤ f(s) ≤ g(s), then

∫
ds f(s)A(s) ≤ ∫

ds g(s)A(s).
Moreover, for positive operators, order relation implies the same ordering for the norms of the
operators. For simplicity, we have also disregarded the term, which is more convergent in |Ek|,
coming from the volume terms of upper bound of the heat kernel for compact manifolds. We now
note that

|| 1

H0 + |Ek | + m
ln

(
H0 + |Ek | + m

m − μ

)
|| ≤ ||

∫ 1

0

dt

[H0 + |Ek | + μ]t + m − μ
||

≤ ||
∫ 1

0

dt

[H0 + |Ek | + μ]t2 + m − μ
||

(182)

≤ || 1√
m − μ[H0 + |Ek | + μ]1/2 ||

∫ ∞

0

ds

s2 + 1

≤ C45√
m − μ|Ek |1/2

.
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Hence, we get

||Ũ1(Ek)|| ≤
⎧⎨
⎩

C46λ
2√

m−μ|Ek |1/2 for D = 2

C47λ
2

|Ek |1/2 for D = 3
. (183)

Using the results (125) and (128) for E = − |Ek| with the above analysis, we finally obtain

|Ek |||K −1(Ek)|| ||Ũ (Ek)|| ||(1 − Ũ (Ek))−1|| ||| f (n)〉|| → 0, (184)

as k → ∞ and this completes the proof that our renormalized formula corresponds to the resolvent
of a densely defined closed operator.

We will further show that �(E) is a holomorphic self-adjoint family of type (A) in the sense of
Kato.13 This will in turn justify the claim that the resolvent corresponds to a self-adjoint operator.
To prove this, we will use the theorem given by Wüst.33 First, we define a holomorphic family of
type (A) as follows: Let G ⊂ C be domain and L(z) be a family of closed linear operators, acting on
a Hilbert space H, {L(z)|z ∈ G}. If

(1) the domain D(L(z)) = D is independent of z ∈ G,

(2) for any f ∈ D, and g ∈ H then 〈g|L(z)| f 〉 is holomorphic in G, (185)

then this is a holomorphic family of type (A).
An operator which is a holomorphic family of type (A) is a self-adjoint holomorphic family of

type (A) if

(1) G is a symmetric domain of the complex plane relative to the real axis,

(2) D is dense in H,

(3) D(L(z)†) = D(L(z∗)) for all z ∈ G. (186)

Theorem(Wüst): Let G be a symmetric domain of complex plane relative to the real axis, and L(z)
is a holomorphic family of type (A) defined on G. Assume

(1) D is dense in H,

(2) D(L(z)†) ⊃ D(L(z∗)). (187)

Let

M = {z ∈ G|L(z)† = L(z∗)}. (188)

If M is not the empty set then it is the whole domain G. This implies that the family is a self-adjoint
holomorphic family of type (A).

Let us consider our case. We choose the domain G as

G = {E ∈ C|�(E) < μ}, (189)

which is symmetric with respect to the real axis. The principal operator �(E) given explicitly in
(116) formally satisfies the relation �(E)† = �(E*) so this implies D(�(E)†) ⊃ D(�(E∗)). Let us
assume that the family is holomorphic for now. Note that a densely defined holomorphic family
of operators satisfying the formal relation �(E)† = �(E*) is closable. Proof: Let us consider the
common domain D, and choose |gl〉 ∈ D → 0 as l → ∞. We further assume that �(E)|gl〉 converges
to some |g(E)〉. Then we have

〈 f |�(E)gl〉 = 〈�†(E) f |gl〉 = 〈�(E∗) f |gl〉 → 0, (190)

for any | f 〉 ∈ D as l → ∞. This implies that

�(E)|gl〉 → |g(E)〉 = 0. (191)

This is the requirement of closure. Of course, we must establish this closure uniformly, that is, we
need to show that for every sequence |gl〉 converging to some element, if �(E0)|gl〉 converges for
one E0 inside the region G, then it converges for all E ∈ G. Hence, we can define a unique closure
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over G, the closures having a common domain D−. Once we determine a common domain for the
family �(E), we will prove that there is indeed a closure over a common domain.

For the family �(E), we choose D = D(H0). It is well known that if M is a geodesically com-
plete manifold then Laplacian defined on M is a closed, densely defined self-adjoint operator.14, 15

Then, the operator H0 = ∫
M dD

g x φ†
g(x)(− 1

2m ∇2
g )φg(x) defined over the direct products of n copies

of the Hilbert space L2(M) is also a densely defined (essentially) self-adjoint operator. Moreover,
the finite direct sum of such operators will preserve this property.

The first term H0 − E + μ is obviously defined over this domain D(H0) and it is a closed
operator. Note that the other term can be defined by the spectral theorem,∫ ∞

0
ds Ks(a, a; g)[e−s(m−μ) − e−s(H0+m−E)], (192)

and it is a positive operator when E is real and R(E) < μ. Its domain of definition includes D(H0),
when R(E) < μ. To see this we will use a different integral representation,∫ ∞

0
ds Ks(a, a; g)[e−s(m−μ) − e−s(H0−E+m)]

=
∫ ∞

0
ds s Ks(a, a; g)

∫ 1

0
du e−su(H0+μ−E)−s(m−μ)(H0 − E + μ). (193)

When the operator acts on an element |f (n)〉 in the domain of H0, the norm of the resulting vector is
smaller than∫ ∞

0
ds s Ks(a, a; g)

∫ 1

0
du ||e−su(H0+μ−E)−s(m−μ)||||(H0 − E + μ)| f (n)〉||. (194)

Now we can estimate the following factor using the bounds on the heat kernels given in (19),∫ ∞

0
ds sKs(a, a; g)

∫ 1

0
du||e−su(H0+μ−E)−s(m−μ)||

≤
∫ 1

0
du

∫ ∞

0
ds s

[
C1

V (M)
+ C2

(s/2m)D/2

]
e−sunme−su(μ−�(E))−s(m−μ). (195)

Thus we show that

||
∫ ∞

0
ds Ks(a, a; g)[e−s(H0−E+m) − e−s(m−μ)]|| ≤ F(μ− �(E))

(
||H0| f (n)〉|| + |μ − E |||| f (n)〉||

)
,

(196)

where

F(μ − �(E)) = C1

(nm + μ − �(E))V (M)

(
1

m − μ
+ 1

(n + 1)m − �(E)

)

+ C2(2m)D/2	(2 − D
2 )

(nm + μ − �(E)( D
2 − 1)

[
((n + 1)m − �(E))

D
2 −1 − (m − μ)

D
2 −1

]
. (197)

As a result the domain of this operator family includes D(H0). In fact, by the spectral theorem the
operators so defined are closed, when we restrict them to a smaller domain, i.e., to D(H0) they
remain closed. So the sum of the two pieces, H0 + μ − E and the term above, defined over D(H0)
is closed, since they were already closed operators defined over a common domain.

The last part requires more work, for this we will first show that U(E) is relatively bounded
with respect to H0 hence its domain includes D(H0). Moreover, if we have a holomorphic family of
operators defined over a dense domain, then they are preclosed, that is we can define the closure of
this family, as we have shown. It is easy to see that

||U (E)H−1
0 H0| f (n)〉|| ≤ ||U (E)H−1

0 || ||H0| f (n)〉||, (198)
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where the first norm can be estimated by exactly the same method developed in Ref. 7. So we are
giving the result in order not to repeat the similar calculations, for n ≥ 1,

||U (E)H−1
0 || ≤ C48n

∫ ∞

0
ds

∫ 1

0
du s K 1/2

us (a, a; g)K 1/2
s (a, a; g)e−snmesu�(E). (199)

After using the upper bound of the heat kernel given in (19) and defining new variables
p = C1/V (M) and q(s) = C2/(s/2m)D/2, we get

||U (E)H−1
0 || ≤ C48n

∫ ∞

0
ds

∫ 1

0
du s e−snmesu�(E)

[
p2 + pq(s) + pq(s)

u3/2
+ q(s)2

u3/2

+ 2pq(s)

u3/4
− 2pq(s)

u3/4

]1/2

≤ C48n
∫ ∞

0
ds

∫ 1

0
du s e−snmesu�(E)

[(
p + q(s)

u3/4

)
+

√
pq(s)

(
1 + 1

u3/2
− 2

u3/4

)]
. (200)

Taking the s and u integral, we obtain

||U (E)H−1
0 || ≤ nC49

V (M)(nm − μ)2
+ n(2m)D/2C50

(nm − μ)2−D/2
+ n(2m)D/4C51√

V (M)(nm − μ)2−D/4
, (201)

since RE < μ. Thus we choose the domain of U(E) as D(H0), and now the family is closable over
this domain. However, as a result of the closure, the domains for different values of E may become
different. In fact, this does not happen, as we will see.

Now we show that we can perform the closure uniformly, as a result of the following: for any
E1, E2 ∈ G, �(E1) − �(E2) becomes a bounded operator. A short computation shows that

||�(E1) − �(E2)|| ≤ |E1 − E2|
[
1 + (n + 1)λ2

∫ ∞

0
ds sKs(a, a; g)e−snme−s(m−μ)

]
. (202)

If |gl〉 ∈ D is convergent to a vector |f 〉, and assume that �(E1)|gl〉 converges to |g(E1)〉 for one E1,
then we set �(E1)|f〉 = |g(E1)〉 to define the closure at point E1. Then, for any E2, we have

||�(E2)|gl〉 − �(E2)| f 〉|| = ||�(E2)|gl〉 − |g(E1)〉 − [�(E2) − �(E1)]| f 〉||
= ||[�(E2) − �(E1)]|gl > +�(E1)|gl〉 − |g(E1)〉 − [�(E2) − �(E1)]| f 〉||
< ||[�(E2) − �(E1)]|| |||gl〉 − | f 〉|| + ||�(E1)|gl〉 − |g(E1)〉|| �→ 0, (203)

and this shows that whenever |gl〉 converges to |f 〉 and �(E1)|gl〉 converges to |g(E1)〉, �(E2)|gl〉
becomes convergent and the resulting vector is exactly equal to �(E2)|f 〉 as it should be for the
requirements of the closure. Hence the sum of all these three parts will make a holomorphic family
�(E) with a dense common domain D(H0). Moreover, the sum is closable over a dense common
domain which we call D(H0)−.

We would now make holomorphicity more precise, up to now we have not actually made use
of it. To prove that the family is holomorphic we will refer to the following theorem, which is stated
in a slightly simplified form according to our needs and the proof of which can be found in Ref. 34.
Assume X is a measure space with a σ -finite measure ν defined on it, let I be a measurable subset of
X. Let G be a open domain of the complex plane. Consider a function γ : I × G �→ C such that

(1) γ (x, .) ∈ L1(X, |ν|),
(2) γ (., z) is holomorphic in G,

(3)
∫

I
|dν||γ (x, z)| is bounded on all compact subsets of G. (204)

Then the function

	(z) =
∫

I
dν γ (x, z) is holomorphic in G. (205)
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To use the above theorem, let us write our family in the following form �(E) = V (E)(H0 − E
+ μ) = [1 + V1(E) + V2(E)](H0 − E + μ), where

V1(E) = λ2(H0 − E + μ)−1
∫ ∞

0
ds Ks(a, a; g)[e−s(m−μ) − e−s(H0−E+m)]

V2(E) = λ2
∫ ∞

0
ds φ†

g(x)Ks(x, a; g)e−s(H0−E+2m) Ks(a, y; g)φg(y)(H0 − E + μ)−1. (206)

By using our previous estimate in (166) and (167), we see that the first term V1(E) is indeed uniformly
bounded in RE < μ. Hence, the integrals 〈 f (n)|V1(E)|g(n)〉 for all functions f, g in the Fock space
are absolutely convergent. Moreover, any such matrix element satisfies all the other conditions on
holomorphicity and integrability. The second part, again using ideas very similar to the previous
estimates, can be written as

V2(E) = λ2
∫ ∞

0
ds s

∫ 1

0
du φ†

g(Ksu(., a; g))e−s(H0−E+m+(1−u)μ+mu)φg(Ks(., a; g)). (207)

This integrand as a function of E is holomorphic in E for RE < μ and it is absolutely integrable for
any RE < μ on [0, ∞) × [0, 1]. Similarly, it can be shown that the following bound holds

|〈 f (n)|V2(E)|g(n)〉| ≤ n
C52

(nm − �E)D/2−1
||| f (n))〉|||||g(n)〉||, (208)

which clearly shows that for RE < μ is uniformly bounded everywhere, hence on compact subsets
as well. Hence, applying the theorem stated above we see that the resulting function V2(E) is
holomorphic for RE < μ. There is one subtle point about the closure operation, but this is also
solved by the following observation. Let us consider the limit of �(E)|gl〉 as l → ∞ as a function of
E for any convergent |gl〉 sequence in the closure operation. If this sequence is uniformly convergent
on compact subsets, the limit is a holomorphic function (by an application of Morera’s theorem).
Note that this family �(E)|gl〉 is norm bounded by a constant multiple of a simple function given in
Eq. (171), |E1 − E2|. This function itself is uniformly bounded on compact sets centered around
any given point E1, hence the sequence of functions �(E)|gl〉 is a uniformly convergent sequence.
This shows that the closure remains a holomorphic function of E for RE < μ as required. Thus we
complete the proof that the closure of the family �(E) over D(H0)− is holomorphic for R(E) < μ.

Now we are ready to apply the theorem of Wüst. If we choose E ∈ R and sufficiently small
E < E*, then U(E) has relative bound with respect to K(E) which is less than 1. Hence, by Kato-
Rellich theorem13 of perturbations of self-adjoint operators, �(E) will be self-adjoint for E < E*.
By the theorem of Wüst, the family is self-adjoint everywhere as desired. This result is important to
establish that the spectrum only lies along the real axis, and justifies our search for the lower bound
of energy and shows that the resulting operator is self-adjoint as it should be.

V. CONCLUSION

In this paper, we have proven that for the three models that we have constructed, namely non-
relativistic point interactions in two and three dimensional Riemannian manifolds, relativistic point
interactions in two dimensional Riemannian manifolds and non-relativistic Lee model in two and
three dimensional Riemannian manifolds, the Hamiltonian after renormalization is a densely defined
self-adjoint operator.
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