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ABSTRACT

RANDOM VIBRATION OF A ROAD VEHICLE

In this study, considering four different car models, random vibration
characteristics of a road vehicle are investigated by using Mathematica. A road vehicle
is modeled as quarter car, half car, and bicycle car. Natural frequencies of each model
are found in first step. Then, responses to harmonic and random base excitation for each
models are determined. The accuracy of the developed programs for different car
models in Mathematica is evaluated by comparing the natural frequencies available in
the literature. The effects of modeling approach on natural frequencies and response to
harmonic and random base excitation are obtained. The results are presented in

graphical and functional forms.
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OZET

BIR YOL TASITININ RASTGELE TIiTRESIMI

Bu calismada, bir yol tasitinin dort degisik modelini gdzoniine alarak, rastgele
titresim karekteristikleri Mathematica kullanilarak aragtirllmigtir. Bir yol tasiti ¢eyrek
araba, yarim araba ve bisiklet modelleri ile temsil edilmislerdir. ilk adimda her model
icin dogal frekanslar bulunmustur. Daha sonra, harmonik ve rastgele mesnet
zorlamalarina karst modellerin cevaplari belirlenmistir. Mathematica’da gelisritilen
programlar, kaynaklarda mevcut olan dogal frekans ve titresim bi¢imi sonuglar
kullanilarak dogrulanmistir. Modellemedeki yaklasimlarin, dogal frekanslara, harmonik
ve rastgele mesnet zorlamalarina karsi olusan cevaplara etkileri elde edilmistir. Sonuglar

grafikler ve fonksiyonlar halinde sunulmustur.
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Figure 3.27. Input and response functions for Ag=10000 N/m
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CHAPTER 1

GENERAL INTRODUCTION

In a road vehicle, mainly there are two types of vibrations. The first one is
deterministic vibration which is caused by rotating parts of the vehicle. Vibration
characteristic of this type can be predicted by analytical or numerical methods. At least
approximate solutions can be found. The second type is random vibration which is
caused by unpredicted loads such as road roughness and wind. Because of the
unpredictable loads, future behavior of the system can not be precisely predicted.
Responses of randomly excited systems are usually treated using statistical or
probabilistic approaches.

Studying random vibrations is particularly important, because practically all real
physical systems are subjected to random dynamic envoriments. Random vibration
analysis in some systems such as airplanes, road vehicles, and spacecraft is very critical.
Machine elements may have several damage due to the unpredictable loads which are
random. While fatigue is the most critical concept and vital in aeroplane design, the
passengers comfort are very important and determine the design parameter of the
suspension systems in road vehicles.

In spite of the importance of the subject, there are few publications about
mechanical random vibrations and fewer about random vibration of vehicle models.

Selected past studies can be summarized as follows: Stochastic modeling of
vehicles for calculation of ground vibration was presented and four degree of freedom
half car model established. Response spectrum of ground vibration was found and
experimental work has done (Hunt 1989). Random road surface roughness is described
by its power spectrum, and the dynamic response of vehicles to the road roughness is
calculated from their frequency-response functions (Hunt 1990). Usage of finite element
method in random vibration analysis was presented for more complicated geometries.
The results are compared by analytical results in literature. Frequencies and spectral
density of response was obtained.(Elishakoff and Zhu 1993) The root mean square
acceleration response of a vehicle dynamic system subjected to actual random road
excitations is obtained so as to account for the effect of the actual power spectral density

of road excitation and the frequent changes in vehicle velocity (Tamboli 1999). Quarter



car model is used to study the response of the vehicle to profile imposed excitation with
randomly varying traverse velocity and variable vehicle forward velocity. Root mean
square response of the vehicle to white and colored noise velocity road inputs is
analyzed (Tirkay and Akcay 2005). The history of random vibrations have been
reviewed (Paez 2006).

Computer programs are developed in Mathematica to calculate the natural
frequencies, modal transformations for decoupling the equations of motions of multi
degrees of freedom car models, and plotting the response graphs. The solutions is made
for different car models considering different stiffness coefficients and base excitation
frequencies.

The accuracy and numerical precision of the developed deterministic models are
compared by using analytical results in given in literature for all car models.

Chapter 1 is general introduction, basic information about what have done in this
thesis in which methods. Also literature survey has been told in this chapter.

Chapter 2 is theoretical background about deterministic and random vibration
analysis of different kinds of car models. In this chapter initial and base excitation of
quarter, half and bicycle car model has been introduced. Then, random vibration
analysis of single and multi degree of freedom car model has been presented.

Chapter 3 contains numerical examples of harmonically and randomly base
excited car models. In this chapter natural frequencies, response of car models are
found. Random vibration analysis is done depending on damping parameter 5 and white

noise parameter Sp which are design parameters.



CHAPTER 2

THEORETICAL BACKGROUND

2.1. Introduction

In this section, theoritical background for response to harmonic and random base
excitation of different car models are given. The single degree of freedom quarter car
model, two degree of freedom quarter car model, bicycle car model and half car model
are introduced. The equations of motion for the car models are expressed. The matrix
form of the equations and their responses are written for all car models considered.

Brief theoritical information about random vibration is given.
2.2. Equations of Motion

In this section, general equations of motion will be given for different car
models in both scalar and matrix form. Equation of motion for single degree of freedom

system is written as,

mi+cx+kx=f(t) 2.1)
where

f(t)=ky+cp (2:2)

For multi degrees of freedom system, the equations of motions is expressed in

matrix form as,

] {zj+[Cl{ )+ K] {x ) ={F ()} (2.3)



2.2.1. Quarter Car Model : Single Degree of Freedom

In this section, vibration analysis of a single-degree of freedom system is
presented to model the vehicle as quarter car shown in Figure 2.1. In this model, only

one-forth of the vehicle’s mass and suspension are considered.

. L

| Ly

Figure 2.1. A quarter car model having single degree of freedom.

A quarter car model having single degree of freedom is shown in Figure 2.1.

Equation of motion of the system given by Equation 2.1 and 2.2 are written in terms of

&and w, as

¥ +280,5+ 0 x = o) f (1) (2.4)
where

10)=22 50+ 50 2.5)

n

2.2.2. Quarter Car Model : Two Degree of Freedom
Tires and suspensions are considered in two degrees of freedom quarter car

model as shown in Figure 2.2. This model is more realistic than a quarter car model

with single degree of freedom. Equations of motions are given as, (Jazar 2009).

m, X :—ks(xs—xu)—cs(fc —)'cu) (2.6)
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Figure 2.2. A quarter car model having two degrees of freedom.

If the Equations 2.6 and 2.7 are written in the form of Equation 2.3 depending on

the displacement vector,

wor={ ) 28

[M]= {m 0 } (2.9)

[K]{ Lok } (2.10)

[C]{ “oTe } @.11)



{F(t)}{ } 2.12)

ky+c,y

u u

2.2.3. Bicycle Car Model

Quarter car model is excellent to examine and optimize the body bounce mode
of vibrations. However, vibration model of vehicle must be expanded for including
pitch and other modes of vibrations. Bicycle model includes body bounce and body

pitch which are shown in Figure 2.3.
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Figure 2.3. A bicycle car model having four degree of freedom.

Equations of motion for the bicycle vibrating model of a vehicle are given as

follows, (Jazar 2009).

m)'é+cl()'c—)'c1 —-a, 6")-1—02()&—)&2 —-a, 6’)

+k1(x—xl—a1 9)+k2(x—x2—a2 9)20 (2.13)



]zé_al Cl(jc—xl _al 9)4‘612 CZ ().C_).Cz _(12 9)
_alk1(x_x1 —a, (9)+ a2k2(x—x2 —a, 9):0 (2.14)
mljél _cl(x—xl _al 9)"‘ k[l(xl —yl)—kl(x—xl _al 0): 0 (215)

m,x, _cz(x_xz —4a, 9)"' kzz(xz _yz)_kz(x_xz —a, 9)20 (2.16)

If the Equations 2.13-16 are written in the form of Equation 2.3 depending on

the displacement vector,

x(?)
o(t
(1)) = (1) (2.17)
x, (1)
x,(?)
then mass, stiffness, damping matrices, and force vector are written as
m 0 0 O
0 7. 0 O
[M]: (2.18)
0 0 m O
0 0 0 m,
¢ +c, e, =46 —6 TG
[c]= 4,0, —@iC, a0+ 0, e —axc, (2.19)
— Cl alcl cl 0
— CZ — a202 0 CZ
k, +k, ak, —ak, -k —k,
[x]= ak, —ak, kal +hka;  ak  -ak, (2.20)
- kl a1k1 kl + ktl 0
—k, —a,k, 0 ky +k,



{F(0)}= (221)
Nk,

J’2kz2

2.2.4. Half Car Model

To examine and optimize the roll vibration of a vehicle, half car vibrating model
must be used. This model includes the body bounce and body roll. The half car model
may be different for the front and rear half due to different suspension and mass
distrubition. Furthermore, different antiroll bars with different torsional stiffness may be

used in the front and rear halves (Jazar 2009). Half car model can be seen in Figure 2.4.

N
>

A
Y
A

A

mx CGj_‘p

52% XI

Figure 2.4. A half car model having four degree of freedom.

Equations of motion for the half car vibrating model of a vehicle are given as

follows (Jazar 2009).



mjc'+c()'c—5cl —b, (b)"'c(x_xz _b2¢)
(-, b )i kx5, b, )=0 s
1x¢+blc()'c—xl +b, (p)_bzc ()'c—)'cz —b, (P)

+bk(x—x, —b,@)—bk(x—x, —b, )+ K =0 (2.23)

m,x, _C(x_xl +b, ¢)+kt(xl _J’1)_k(x_x1 + b, ¢7): 0 (2.24)
m,x, —c()'c—)'cz +b, go)+ kt(x2 —)/2)—k()c—)c2 +b, (p)z 0 (25

If the Equations 2.22-25 are written in the form of Equation 2.3 depending on

the displacement vector,

x(¢)

(1)} = f((?) (2.26)

x,(?)

then mass, stiffness, damping matrices, and force vector are written as

m 0 0 O
M= 0 7, 0 O 537

= (2.27)
0 0 m O
0 0 0 m,

2c cb—cb, —-c -—c

[C] | ¢b—cb, cb’ +cb; —cb, cb, (2.28)
- —c —cb, c 0 '
-c cb, 0 c



2k kb, — kb, ~k -k
kb —kb, kbl +kb:+k, —kb kb,

[X] (2.29)
—k — kb, k+k 0
—k kb, 0 k+k
0
0
{F(t)}= (2.30)
ik,
V,kt,

2.3. Natural Frequincies of Car Models

The natural frequency equations of different car models are introduced in this
section. Natural frequencies of vehicle models can be found by using the undamped and
free vibration of equations of motions. The normal mode solution of the Equation 2.3 is

given by the following equation,
{x()}={x }e (2.31)
Substituting Equation 2.31 into Equation 2.3 without damping and force terms,
the following generalized eigenvalue problem for the natural frequencies w and their
corresponding mode shape vectors {X} can be written,
([K]-@’[M]){X}=0 (2.32)
The natural frequencies are obtained from the following equation,
det( [K]-@’[M])=0 (2.33)
Then, the corresponding eigenvectors, mode shapes, {X;} for natural frequencies

w; are found by Equation 2.32. The natural frequencies for the car models given in

Section 2.2 will be presented in the following subsections.

10



2.3.1. Quarter Car Model: Single Degree of Freedom System

Natural frequency of a single degree of freedom quarter car model is found by

using the following equation,

w=-Jk/m (2.34)

2.3.2. Quarter Car Model: Two Degree of Freedom System

From Equations 2.9, 2.10, and 2.33, following equation can be written

k —m.o —k
det| " T =0 (2.35)
k. k otk —mao

N

2.3.3. Bicycle Car Model

From Equations 2.18, 2.20, and 2,33 following equation can be written

k, +k, —ma’ —ak, +a,k, —k, —k,
detl ~ ak +ak, alk +ak, -1 ak, —a,k, _0
—k, ak, k, +k, —m o’ 0
—k, —a,k, 0 k, +k, —m,0’
(2.36)
2.3.4. Half Car Model
From equations 2.27, 2.29, and 2.33 following equation can be written
2k —ma’ bk —b,k -k -k
bk—bk blk+bk+kR-1 o’ —-bk b,k
def| TN OrAT O ETHEELO e : —0 (237)
-k —bk k+k, —mao 0
-k b,k 0 k+k —mo’

11



2.4. Response To Harmonic Base Excitation

In this section, response to harmonic base excitation of the damped car models
are given for a single and multi degrees of freedom systems. The base excitation
frequency @, depending on the car velocity v and wave length of the road L can be

written as

(2.38)

2.4.1. Single Degree of Freedom System

The equation of motion for a single degree of freedom system is given by

Equation 2.4. The base excitation function y(¢) is generally given as

y(t) =Re(Y exp(iwt) (2.39)

The displacement response x(¢) of the car model with single degree of freedom

under the base excitaion function given in Equation 2.39 is found as

x(t) = X Cos(w, 1 - ¢,) (2.40)
where
5 52
X—Y[H( gwb” IH (o) (2.41)
a)}‘l
and
o 2;‘(a)b/a)n)3
% =tan {1—((017/0)”)2 +(2§a)b/a)n)2 (242)
in which

1
M-(0,/0,)1? +12¢ 0, /0,17

H ()| = (2.43)

12



2.4.2. Multi Degree of Freedom System
The equations of motion of multi degrees of freedom models given by Equation
2.3 generally have n coupled differential equations. To solve these n coupled equations
for harmonic {F(#)}, they must be uncoupled by using modal transformation. The
uncoupled equations of motions in modal coordinates are expressed as
G, +2& @, q,(t)+o} q,()=N,(t) r=1,2,...n (2.44)
where N,(¢) are associated generalized forces which are expressed in vector form as

(N =[u] {F(0)} r=1,2,...n (2.45)

in which [u«] is modal matrix of the system. To accomplish the decoupling of the

Equation 2.3, damping matrix [C] is assumed as

[Cl=[2¢ w]=a[m]+ p[K] (2.46)
Equation 2.46 represents the proportional damping.
2.5. Fundementals of Random Vibratioins

The mean square value of x(¢) is given as

T/2

w? = Jim j X2 (t)dt (2.47)

T—o T i

There are two types of correlations which are named as autocorrelation and

cross-correlation. Cross-correlation is a measure of similarity of two samples and

defined by

13



. 1 T/2
R, (7)= lim T Tj/;c(z) W(t+7)dt (2.48)

Autocorrelation is the cross-correlation of a sample with itself and provides
information concerning properties of a random varibale in the time domain. It is

expressed as

T/2
R.(7)= lim = [x(@6)x(t+7)dt (2.49)
T—o T 72

The maximum value of the auto-correlation function is obtained at 7=0 which

can be recognized by considering the Equation 2.47 as
R, (0)=y; (2.50)
The power spectral density is the fourier transform of the autocorrelation

function and provides information concerning properties of a random varibale in the

frequency domain. It is expressed as

S (o) = TRx(r)e‘f“”da) (2.51)

—00

Equation 2.51 implies that the auto-correlation function can be obtained in the form of

the inverse Fourier transform
1 T it
R (7)== [S (@) do (2.52)
27 =

The most common excitation assumptions in random vibration analysis is ideal

white noise which includes all frequencies.

14
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2.6. Response To Random Base Excitation

In this section. the methods of random vibration analysis will be presented for
single and multi degrees of freedom systems. The analysis assumptions are ideal white
noise excitation, ergodic and stationary process.

2.6.1. Single Degree of Freedom Systems

If the equation of motion of the single degree of freedom system given in

Equations 2.4 and 2.5 are re-written here for convenience

5(0) + 2, (1) + @ x(1) = @2 £ (£) (2.53)
where
fm=§§ﬂ0+ﬂ0 (2.54)

The power spectral density of the response x() is given as (Meirovitch 1975)
2
S (0)=|H(o)"S /(o) (2.55)

where S{(w) 1s the power spectral density of the forcing function f{¢). In this study, S{w)

is assumed as ideal white noise which can be written as
S (w)=S, (2.56)

Substituting Equation 2.43 and 2.56 into Equation 2.55, the following equation

is obtained:

S (0)= % (2.57)

[1-(w/@,1* +[2¢0/®,]?

15



The mean square value of the response x(t) is obtained by substituting Equation

2.57 into Equation 2.52, letting =0 and integrating as

R, (0)= SZ—? (2.58)

2.6.2. Multi Degree of Freedom Systems

Excitation spectral matrix associated with the generalized forces is given as

(Meirovitch, 1975).

s, (@)= [0*]"[u] IS, (@)u]le?]" (2.59)

where
[0 ]=[u] [K][u] (2.60)

and

[S-(@)]= [Rp(w)e ™ dz (2.61)
The response correlation matrix is written as
[R (D=l [[H @IS @ H(@)]e do [u]! (2.62)

where [H(w)] is the diagonal matrix of the frequency response function H(w) which is

given as

1 —
H.(0)= ey iiale r=1,2,...n (2.63)

and [H*(w)] represents the complex conjugate of [H(w)]. £, in Equation 2.63 can be

found from the following equation:
2¢ w]=[u]" [C][u] (2.64)

16



The autocorrelation function associated with the response random process xi(¢)

can be written denoting by [u]; for the i-th row matrix of the modal matrix [u] as
1 % * iot .
R(0)=5—lu] | 1" (0)|[s, (@) [H (@)l dolu]”  (=1,2,..n) (2.65)

The mean square value of the response x,(¢) is obtained from Equation 2.65 by

letting =0, nameley,

Rx,-(0)=§[u]i_]o 1 )]s, @)H@dol]]  (-1.2...0) @66

17



CHAPTER 3

RESULTS OF NUMERICAL EXAMPLES
AND DISCUSSION

3.1. Introduction

In this chapter, the car models under harmonic and random base excitation will
be analized using the numerical car parameters available in the literature. The
calculations was carried out by using computer programs developed in Mathematica.
The codes have been tested by natural frequencies and mode shapes available in the

literature.

3.2. Response to Harmonic Base Excitation for Different Car Models

In this section, three different car models presented in Chapter 2 will be
examined. The single degree of freedom sytem summarized in Chapter 2 is not
discussed here because of the simplicity. Proportional damping coefficients: for mass
matrix a=0, for stiffness matrix f=0.08 are taken in all numerical examples in this
section. Raod profiles are assumed that ¥=0.01 m and different L which will be given in

next subsections. Car velocity v is selected 50 km/h.

3.2.1. Quarter Car Model

The quarter car model shown in Figure 2.2. is considered. The numerical values

of the parameters used in this model is selected as follows (Jazar 2008)

mg=1085/4 kg
m,~40 kg
ks~=10000 N/m
k,~150000 N/m
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Equations 2.8-2.12 are subsituted into Equations 2.3 and solved for harmonic

base excitation. The natural frequencies are found to be @, = 5.87

rad/s and

@®, =63.26 rad/s. The input and response functions are plotted in Figures 3.1-3 for

different L values which are given in graphs.
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Figure 3.1. Input and response functions for L=6 m
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Figure 3.2. Input and response functions for L=18 m
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Figure 3.3. Input and response functions for L=14.85 m
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3.2.2. Bicycle Car Model

The bicycle car model shown in Figure 2.3. is considered. The numerical values

of the parameters used in this model is selected as follows (Jazar 2008)

m=1085/2 kg, m;=40 kg, m»=40 kg,
1,=1100 kg m’,
a1=1.4 m, a2=1.47 m,

k1=10000 N/m, k= kr, =150000 N/m.

Equations 2.17-2.21 are subsituted into Equations 2.3 and solved for harmonic

base excitation. The natural frequencies are found to be w, =5.376 rad/s, @, = 5.829
rad/s, w;= 62.861 rad/s, and @, = 63.264 rad/s for k,=8000 N/m and @, =5.825
rad/s, @, = 5.976 rad/s, w; = 63.264 rad/s, and @, = 63.265 rad/s for k&;=10000 N/m.

The input and response functions are plotted in Figures 3.4-9 for L=6 m and Figures

3.10-15 for L=15 m choosing different k, values which are given in graphs.
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Figure 3.4. Input and response functions for £,=8000 N/m
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Figure 3.5. Input and response functions for £,»=8000 N/m
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Figure 3.6. Input and response functions for £,=8000 N/m
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Figure 3.7. Input and response functions for £,=10000 N/m
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Figure 3.8. Input and response functions for £,=10000 N/m
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Figure 3.9. Input and response functions for £,=10000 N/m
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Figure 3.10. Input and response functions for £,=8000 N/m
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Figure 3.11. Input and response functions for £,=8000 N/m
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Figure 3.13. Input and response functions for £,=10000 N/m
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Figure 3.14. Input and response functions for £,=10000 N/m
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Figure 3.15. Input and response functions for £,=10000 N/m

3.2.3. Half Car Model

The half car model shown in Figure 2.4. is considered. The numerical values of

the parameters used in this model is selected as follows (Jazar 2008)

m= 1085/2 kg, m;=40 kg, m,=40 kg
=820 kg m”

b1=0.7 m, b,=0.75 m

k1=10000 N/m, k= k, =150000 N/m

Equations 2.23-2.28 are subsituted into Equations 2.3 and solved for harmonic

base excitation. The natural frequencies are found to be @, =3.465 rad/s, @, = 5.879
rad/s, w;=63.252 rad/s, and @, = 63.264 rad/s for kz=0 and @, =4.917 rad/s,
@, = 5.881 rad/s, w; = 63.252 rad/s, and w, = 63.264 rad/s for kz=100000 N/m. The

input and response functions are plotted in Figures 3.16-21 for L=6 m and Figures 3.22-

27 for L=15 m choosing different kr values which are given in graphs.
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Figure 3.16. Input and response functions for kg=0
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Figure 3.17. Input and response functions for kg=0
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Figure 3.18. Input and response functions for kg=0

0.01 ﬂ ﬁ

0.005 || |/
| | \‘ |
\na

T
005 | (UL LYY
\ k \j M \| Ef \f \J W

| / \)

-0.01 VUl

Figure 3.19. Input and response functions for kg=10000 N/m
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Figure 3.20. Input and response functions for kg=10000 N/m
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Figure 3.21. Input and response functions for kg=10000 N/m
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Figure 3.22. Input and response functions for kg=0
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Figure 3.23. Input and response functions for kg=0
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Figure 3.24. Input and response functions for kg=0
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Figure 3.25. Input and response functions for Ag=10000 N/m
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Figure 3.26. Input and response functions for Ag=10000 N/m
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Figure 3.27. Input and response functions for Ag=10000 N/m



3.3. Response to Random Base Excitation for Different Car Models

3.3.1. Quarter Car Model

The quarter car model shown in Figure 2.2. is considered. The numerical values
of the parameters used in this model is selected as in Section 3.2.1. Because of the white
noise assumption for excitation, the excitation spectral matrix associtaed with the

physical forces is expressed as

5|y o]

Neglecting the off diagonal terms in the triple matrix multiplication appeared in
Equation 2.65, the mean square value of the response in terms of damping coefficient

and Sy are found as

R, (S,,)=2.26125 107" %SO

R (Sy, )= 1.95756 107" %SO

3.3.2. Bicycle Car Model

The bicycle car model shown in Figure 2.3. is considered. The numerical values
of the parameters used in this model is selected as in Section 3.2.2. Because of the white
noise assumption for excitation, the excitation spectral matrix associtaed with the

physical forces is expressed as

o o o o
o X7 o o
N o o o
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Neglecting the off diagonal terms in the triple matrix multiplication appeared in
Equation 2.65, the mean square value of the response in terms of damping coefficient

and Sy are found for £,=8000 N/m as

R.(S,,)=1.11877 10" %SO

R,(S,, )= 5.53626 10" %SO

R, (Sy,8) = 195762 10" %SO

R, (S,,B)= 20056 10" %So

for £,=10000 N/m as

R.(S,, ) =1.13129 10" %SO

R,(S,,8) = 5.49204 107" %SO

R, (S,,8) = 195763 10 lS0

R, (S,,B8) = 195742 10" %SO

3.3.3. Half Car Model

The half car model shown in Figure 2.4. is considered. The numerical values of
the parameters used in this model is selected as in Section 3.2.3. Because of the white
noise assumption for excitation, the excitation spectral matrix associtaed with the

physical forces is expressed as
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o X2 o o
2o o o

Neglecting the off diagonal terms in the triple matrix multiplication appeared in

Equation 2.65, the mean square value of the response in terms of damping coefficient

and S, are found for kz=0 as

R.(S,,8)=1.13195 107" %SO

R,(Sy,B)= 2.12666 10'“%50

R, (Sy, ) = 1959 10" %SO

R,(Sy,)= 1.9589 10'“%50

for kz=10000 N/m as

R.(S,, ) =1.12579 10" %SO

R,(Sy.B) = 530603 107 %SO

R, (S,, )= 195551 10'“%50

R,(Sy,p)= 195577 107" %SO

3.4. Discussion of Results

It can be seen from Figures 3.1-3.3 that the vibration amplitude of sprung mass
of the quarter car model is highly effected by the base excitation frequency which is
found to be 14.544 rad/s, 4.848 rad/s, and 5.877 rad/s for the wave lengths 6m, 18 m,
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and 14.85 m, respectively. However, the vibration amplitude of the unsprung mass is
lightly effected from the road profiles.

For bicycle car model, it is seen from Figures 3.4-9 that the translational
vibration amplitude of the body is acceptable level since the base excitation frequency is
far from the natural frequencies. On the other hand, when the car is excited near to
natural frequency/frequencies, the translational vibration amplitude of the body is larger
then the excitation amplitude. This circumstances can be seen from Figures 3.10-15.
However, similar to quarter car model, the amplitude of unsprung mass is lightly
effected from the road profiles.

For half car model, the similar tendencies to other car models can be seen from
Figures 3.16-27.

The mean square value of the response of the sprung mass is less than the mean
square value of the response of the unsprung mass for bicycle and half car models but

not for quarter car model.
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CHAPTER 4

CONCLUSIONS

Random vibration analysis of a road vehicle is investigated using different car
models which are quarter car model, bicycle car model, and half car model. Computer
programs in Mathematica are developed for all car models. To understand the base
excitation response behaviors of the sprung mass in all car models, firstly deterministic
vibration analysis are carried out and the results are presented by graphs. This graphs
show the vibration amplitudes vs time under the excitation frequencies which are near
to and far from the natural frequencies. To simplify the calculations, proportional
damping is considered for damping properties in car models.

Car models having multi degrees of freedoms are formulated in matrix form and
the developed computer programs are coded using matrix calculations. Random base
excitations for all car models are assumed as white noise which gives mostly reasonable
results. The mean square value of the response are found in terms of damping
coefficient f and Sy. Damping coefficient f is primary suspension design parameter. On
the other hand, the value Sy can only be obtained from the actual road profiles. Because
of the restrictions, the numerical values of this parameter is not given in this study.
Therefore, for the sake of completeness, semi-numerical results for random vibration

analysis of different car model’s results are presented.
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