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ABSTRACT 

RANDOM VIBRATION OF A ROAD VEHICLE 
 

In this study, considering four different car models, random vibration 

characteristics of a road vehicle are investigated by using Mathematica. A road vehicle 

is modeled as quarter car, half car, and bicycle car. Natural frequencies of each model 

are found in first step. Then, responses to harmonic and random base excitation for each 

models are determined. The accuracy of the developed programs for different car 

models in Mathematica is evaluated by comparing the natural frequencies available in 

the literature. The effects of modeling approach on natural frequencies and response to 

harmonic and random base excitation are obtained. The results are presented in 

graphical and functional forms. 
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ÖZET 

BİR YOL TAŞITININ RASTGELE TİTREŞİMİ 
 

Bu çalışmada, bir yol taşıtının dört değişik modelini gözönüne alarak, rastgele 

titreşim karekteristikleri Mathematica kullanılarak araştırılmıştır. Bir yol taşıtı çeyrek 

araba, yarım araba ve bisiklet modelleri ile temsil edilmişlerdir. İlk adımda her model 

için doğal frekanslar bulunmuştur. Daha sonra, harmonik ve rastgele mesnet 

zorlamalarına karşı modellerin cevapları belirlenmiştir. Mathematica’da gelişritilen 

programlar, kaynaklarda mevcut olan doğal frekans ve titreşim biçimi sonuçları 

kullanılarak doğrulanmıştır. Modellemedeki yaklaşımların, doğal frekanslara, harmonik 

ve rastgele mesnet zorlamalarına karşı oluşan cevaplara etkileri elde edilmiştir. Sonuçlar 

grafikler ve fonksiyonlar halinde sunulmuştur. 
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CHAPTER 1 

 
GENERAL INTRODUCTION 

 
In a road vehicle, mainly there are two types of vibrations. The first one is 

deterministic vibration which is caused by rotating parts of the vehicle. Vibration 

characteristic of this type can be predicted by analytical or numerical methods. At least 

approximate solutions can be found. The second type is random vibration which is 

caused by unpredicted loads such as road roughness and wind. Because of the 

unpredictable loads, future behavior of the system can not be precisely predicted. 

Responses of randomly excited systems are usually treated using statistical or 

probabilistic approaches. 

Studying random vibrations is particularly important, because practically all real 

physical systems are subjected to random dynamic envoriments. Random vibration 

analysis in some systems such as airplanes, road vehicles, and spacecraft is very critical. 

Machine elements may have several damage due to the unpredictable loads which are 

random. While fatigue is the most critical concept and vital in aeroplane design, the 

passengers comfort are very important and determine the design parameter of the 

suspension systems in road vehicles. 

In spite of the importance of the subject, there are few publications about 

mechanical random vibrations and fewer about random vibration of vehicle models. 

Selected past studies can be summarized as follows: Stochastic modeling of 

vehicles for calculation of ground vibration was presented and four degree of freedom 

half car model established. Response spectrum of ground vibration was found and 

experimental work has done (Hunt 1989). Random road surface roughness is described 

by its power spectrum, and the dynamic response of vehicles to the road roughness is 

calculated from their frequency-response functions (Hunt 1990). Usage of finite element 

method in random vibration analysis was presented for more complicated geometries. 

The results are compared by analytical results in literature. Frequencies and spectral 

density of response was obtained.(Elishakoff and Zhu 1993) The root mean square 

acceleration response of a vehicle dynamic system subjected to actual random road 

excitations is obtained so as to account for the effect of the actual power spectral density 

of road excitation and the frequent changes in vehicle velocity (Tamboli 1999). Quarter 
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car model is used to study the response of the vehicle to profile imposed excitation with 

randomly varying traverse velocity and variable vehicle forward velocity. Root mean 

square response of the vehicle to white and colored noise velocity road inputs is 

analyzed (Türkay and Akçay 2005). The history of random vibrations have been 

reviewed (Paez 2006). 

Computer programs are developed in Mathematica to calculate the natural 

frequencies, modal transformations for decoupling the equations of motions of multi 

degrees of freedom car models, and plotting the response graphs. The solutions is made 

for different car models considering different stiffness coefficients and base excitation 

frequencies. 

The accuracy and numerical precision of the developed deterministic models are 

compared by using analytical results in given in literature for all car models. 

 Chapter 1 is general introduction, basic information about what have done in this 

thesis in which methods. Also literature survey has been told in this chapter. 

 Chapter 2 is theoretical background about deterministic and random vibration 

analysis of different kinds of car models. In this chapter initial and base excitation of 

quarter, half and bicycle car model has been introduced. Then, random vibration 

analysis of single and multi degree of freedom car model has been presented.  

 Chapter 3 contains numerical examples of harmonically and randomly base 

excited car models. In this chapter natural frequencies, response of car models are 

found. Random vibration analysis is done depending on damping parameter b and white 

noise parameter S0 which are design parameters. 
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CHAPTER 2 

 

THEORETICAL BACKGROUND 
 

2.1. Introduction 

 

 In this section, theoritical background for response to harmonic and random base 

excitation of different car models are given. The single degree of freedom quarter car 

model, two degree of freedom quarter car model, bicycle car model and half car model 

are introduced. The equations of motion for the car models are expressed. The matrix 

form of the equations and their responses are written for all car models considered. 

Brief theoritical information about random vibration is given. 

 

2.2. Equations of Motion 
 

 In this section, general equations of motion will be given for different car 

models in both scalar and matrix form. Equation of motion for single degree of freedom 

system is written as, 

 

( )tfxkxcxm =++ &&&      (2.1) 

where 

( ) yckytf &+=       (2.2) 

 

 For multi degrees of freedom system, the equations of motions is expressed in 

matrix form as, 

 

[ ] { } [ ] { } [ ] { } ( ){ }tFxKxCxM =++ &&&&    (2.3) 
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2.2.1. Quarter Car Model : Single Degree of Freedom 
 

In this section, vibration analysis of a single-degree of freedom system is 

presented to model the vehicle as quarter car shown in Figure 2.1. In this model, only 

one-forth of the vehicle’s mass and suspension are considered. 

 

 
x 

 m 
 

 

k c 

 
y  

 

Figure 2.1. A quarter car model having single degree of freedom. 

 

A quarter car model having single degree of freedom is shown in Figure 2.1. 

Equation of motion of the system given by Equation 2.1 and 2.2 are written in terms of 

ξ and ωn as 

 

)(2 22 tfxxx nnn ωωξω =++ &&&     (2.4) 

where 

( ) )()(2 tytytf
n

+= &
ω
ξ      (2.5) 

 

2.2.2. Quarter Car Model : Two Degree of Freedom 
 

Tires and suspensions are considered in two degrees of freedom quarter car 

model as shown in Figure 2.2. This model is more realistic than a quarter car model 

with single degree of freedom. Equations of motions are given as, (Jazar 2009). 

 

( ) ( )ussussss xxcxxkxm &&&& −−−−=    (2.6) 
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( ) ( ) ( ) ( yxcyxkxxcxxkxm uuuuussussuu &&&&&& − )−−−−+−=  (2.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. A quarter car model having two degrees of freedom. 

 

If the Equations 2.6 and 2.7 are written in the form of Equation 2.3 depending on 

the displacement vector,  

 

( ){ } ( )
( )⎭
⎬
⎫

⎩
⎨
⎧

=
tx
tx

tx
u

s      (2.8) 

 

then mass, stiffness, damping matrices, and force vector are written as, 

 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

u

s

m
m

M
0

0
     (2.9) 

 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
+−
−

=
uss

ss

kkk
kk

K     (2.10) 

 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
+−
−

=
uss

ss

ccc
cc

C     (2.11) 

 

ms

mu

ks

xs

cs

xu

  cu ku

y
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{ } ⎥
⎦

⎤
⎢
⎣

⎡
+

=
ycyk

tF
uu &

0
)(     (2.12) 

 

2.2.3. Bicycle Car Model 
 

 Quarter car model is excellent to examine and optimize the body bounce mode 

of vibrations. However, vibration model of vehicle must be expanded for including 

pitch and other modes of vibrations. Bicycle model includes body bounce and body 

pitch which are shown in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. A bicycle car model having four degree of freedom. 

 

Equations of motion for the bicycle vibrating model of a vehicle are given as 

follows, (Jazar 2009). 

 

( ) ( )
( ) ( 0222111

222111

=−−+−−+
−−+−−+
θθ
θθ

axxkaxxk
axxcaxxcxm &&&&&&&&

)   (2.13) 

 

x

a2 a1

qm,Iy C 

c2 k2 c1 k1

kt1

x1x2
m2 m1

kt2

y2 y1
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( ) ( )
( ) ( ) 022221111

22221111

=−−+−−−
−−+−−−
θθ

θθθ
axxkaaxxka

axxcaaxxcaI z
&&&&&&&&

   (2.14) 

 

( ) ( ) ( ) 011111111111 =−−−−+−−− θθ axxkyxkaxxcxm t
&&&&&  (2.15) 

 

( ) ( ) ( ) 022222222222 =−−−−+−−− θθ axxkyxkaxxcxm t
&&&&&  (2.16) 

 

If the Equations 2.13-16 are written in the form of Equation 2.3 depending on 

the displacement vector,  

 

{ }

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

)(
)(
)(
)(

)(

2

1

tx
tx
t
tx

tx
θ

     (2.17) 

 

then mass, stiffness, damping matrices, and force vector are written as 

 

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

2

1

000
000
000
000

m
m

I
m

M z      (2.18) 

 

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−+−
−−−+

=

2222

1111

2211
2
22

2
111122

21112221

0
0
ccac

ccac
cacaacaccaca

cccacacc

C    (2.19) 

 

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−−
+−

−+−
−−−+

=

22222

11111

2211
2
22

2
111122

21112221

0
0

t

t

kkkak
kkkak

kakaakakkaka
kkkakakk

K         (2.20) 
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{ }
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

22

11

0
0

)(

t

t

ky
ky

tF      (2.21) 

 

2.2.4. Half Car Model 
 

To examine and optimize the roll vibration of a vehicle, half car vibrating model 

must be used. This model includes the body bounce and body roll. The half car model 

may be different for the front and rear half due to different suspension and mass 

distrubition. Furthermore, different antiroll bars with different torsional stiffness may be 

used in the front and rear halves (Jazar 2009). Half car model can be seen in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. A half car model having four degree of freedom. 

 

Equations of motion for the half car vibrating model of a vehicle are given as 

follows (Jazar 2009). 

 

x

b2 b1

j m,Ix C 

kt

x1

y1

x2

y2

m2 m1

k c k 

KR

c 

kt
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( ) ( )
( ) ( 02211

2211

=−−+−−+ )
−−+−−+
ϕϕ
ϕϕ

bxxkbxxk
bxxcbxxcxm &&&&&&&&

   (2.22) 

 

( ) ( )
( ) ( ) 0222111

222111

=+−−−−−+
−−−+−+

ϕϕϕ
ϕϕϕ

R

x

Kbxxkbbxxkb
bxxcbbxxcbI &&&&&&&&

  (2.23) 

 

( ) ( ) ( ) 011111111 =+−−−++−− ϕϕ bxxkyxkbxxcxm t&&&&&  (2.24) 

 

( ) ( ) ( ) 022222222 =+−−−++−− ϕϕ bxxkyxkbxxcxm t&&&&&  (2.25) 

 

 If the Equations 2.22-25 are written in the form of Equation 2.3 depending on 

the displacement vector, 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

)(
)(
)(
)(

})({

2

1

tx
tx
t
tx

tx
ϕ

     (2.26) 

 

then mass, stiffness, damping matrices, and force vector are written as 

 

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

2

1

000
000
000
000

m
m

I
m

M X      (2.27) 

 

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−+−
−−−

=

ccbc
ccbc

cbcbcbcbcbcb
cccbcbc

C

0
0

2

2

1

21
2
2

2
121

21

   (2.28) 
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[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−
+−−

−++−
−−−

=

t

t

R

kkkbk
kkkbk

kbkbkkbkbkbkb
kkkbkbk

K

0
0

2

2

1

21
2
2

2
121

21

   (2.29) 

 

{ }
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

22

1

0
0

)(

kty
ky

tF
t

     (2.30) 

 

2.3. Natural Frequincies of Car Models 

 
The natural frequency equations of different car models are introduced in this 

section. Natural frequencies of vehicle models can be found by using the undamped and 

free vibration of equations of motions. The normal mode solution of the Equation 2.3 is 

given by the following equation, 

 

( ){ } { } tieXtx ω=      (2.31) 

 

Substituting Equation 2.31 into Equation 2.3 without damping and force terms, 

the following generalized eigenvalue problem for the natural frequencies ω and their 

corresponding mode shape vectors {X} can be written, 

 

0}){][][( 2 =− XMK ω     (2.32) 

 

The natural frequencies are obtained from the following equation, 

 

0)][][det( 2 =− MK ω     (2.33) 

 

Then, the corresponding eigenvectors, mode shapes, {Xi} for natural frequencies 

ωi are found by Equation 2.32. The natural frequencies for the car models given in 

Section 2.2 will be presented in the following subsections. 
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2.3.1. Quarter Car Model: Single Degree of Freedom System 
 

 Natural frequency of a single degree of freedom quarter car model is found by 

using the following equation, 

 

mk /=ω       (2.34) 

 

2.3.2. Quarter Car Model: Two Degree of Freedom System 
 

 From Equations 2.9, 2.10, and 2.33, following equation can be written 

 

    (2.35) 0det 2

2

=⎥
⎦

⎤
⎢
⎣

⎡

−+−
−−

ω
ω

uuss

sss

mkkk
kmk

 

2.3.3. Bicycle Car Model 
 

 From Equations 2.18, 2.20, and 2,33 following equation can be written 

 

0

0
0

k

det

2
222222

2
121111

2211
2

2
2
21

2
12211

212211
2

21

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−−
−+−

−−++−
−−+−−+

ω
ω

ω
ω

mkkkak
mkkkak

kakaIkakakaka
kkkakamk

t

z

(2.36) 

 

2.3.4. Half Car Model 
 

 From equations 2.27, 2.29, and 2.33 following equation can be written 

 

0

0
0

2

det

2
12

2
11

21
22

2
2

121

21
2

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−
−+−−

−−++−
−−−−

ω
ω

ω
ω

mkkkbk
mkkkbk

kbkbIkRkbkbkbkb
kkkbkbmk

t

t

x    (2.37) 
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2.4. Response To Harmonic Base Excitation 
 

 In this section, response to harmonic base excitation of the damped car models 

are given for a single and multi degrees of freedom systems. The base excitation 

frequency ωb depending on the car velocity v and wave length of the road L can be 

written as 

 

L
v

b
πω 2

=       (2.38) 

 

2.4.1. Single Degree of Freedom System 
 

 The equation of motion for a single degree of freedom system is given by 

Equation 2.4. The base excitation function y(t) is generally given as 

 

)exp((Re)( tiYty bω=     (2.39) 

 

 The displacement response x(t) of the car model with single degree of freedom 

under the base excitaion function given in Equation 2.39 is found as 

 

( )1)( φω −= tCosXtx b     (2.40) 

where 

( )ω
ω
ωξ

HYX
n

b

2122
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=    (2.41) 

and 

( )
( ) ( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+−
= −

22

3
1

1 21

2
tan

nbnb

nb

ωωξωω

ωωξ
φ    (2.42) 

in which 

( ) 2/1222 }]2[]1{[
1)(

nbnb

H
ωωξωω

ω
+−

=   (2.43) 
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2.4.2. Multi Degree of Freedom System 
 

 The equations of motion of multi degrees of freedom models given by Equation 

2.3 generally have n coupled differential equations. To solve these n coupled equations 

for harmonic {F(t)}, they must be uncoupled by using modal transformation. The 

uncoupled equations of motions in modal coordinates are expressed as 

 

( ) ( )tNtqtqtq rrrrrrr =++ )(2)( 2ωωξ &&&  r=1, 2, . . .n  (2.44) 

 

where Nr(t) are associated generalized forces which are expressed in vector form as 

 

[ ] )}({)}({ tFutN T=    r=1, 2, . . .n  (2.45) 

 

in which [u] is modal matrix of the system. To accomplish the decoupling of the 

Equation 2.3, damping matrix [C] is assumed as 

 

[ ] [ ] [ ] [ ]KMC βαωξ +== 2      (2.46) 

 

Equation 2.46 represents the proportional damping. 

 

2.5. Fundementals of Random Vibratioıns 

 

The mean square value of x(t) is given as 

 

∫
−

∞→
=

2/

2/

22 )(1lim
T

T
Tx dttx

T
ψ     (2.47) 

 

There are two types of correlations which are named as autocorrelation and 

cross-correlation. Cross-correlation is a measure of similarity of two samples and 

defined by 
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∫
−

∞→
+=

2/

2/

)()(1lim)(
T

T
Txy dttytx

T
R ττ    (2.48) 

 

Autocorrelation is the cross-correlation of a sample with itself and provides 

information concerning properties of a random varibale in the time domain. It is 

expressed as 

 

∫
−

∞→
+=

2/

2/

)()(1lim)(
T

T
Tx dttxtx

T
R ττ    (2.49) 

 

The maximum value of the auto-correlation function is obtained at t=0 which 

can be  recognized by considering the Equation 2.47 as 

 

( ) 20 xxR ψ=      (2.50) 

 

The power spectral density is the fourier transform of the autocorrelation 

function and provides information concerning properties of a random varibale in the 

frequency domain. It is expressed as 

 

∫
∞

∞−

−= ωτω ωτdeRS i
xx )()(     (2.51) 

 

Equation 2.51 implies that the auto-correlation function can be obtained in the form of 

the inverse Fourier transform 

 

∫
∞

∞−

= ωω
π

τ ωτdeSR i
xx )(

2
1)(     (2.52) 

 

The most common excitation assumptions in random vibration analysis is ideal 

white noise which includes all frequencies. 
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2.6. Response To Random Base Excitation 
 

 In this section. the methods of random vibration analysis will be presented for 

single and multi degrees of freedom systems. The analysis assumptions are ideal white 

noise excitation, ergodic and stationary process. 

 

2.6.1. Single Degree of Freedom Systems 
 

 If the equation of motion of the single degree of freedom system given in 

Equations 2.4 and 2.5 are re-written here for convenience 

 

)()()(2)( 22 tftxtxtx nnn ωωξω =++ &&&     (2.53) 

where 

)()(2)( tytytf
n

+= &
ω
ξ      (2.54) 

 

The power spectral density of the response x(t) is given as (Meirovitch 1975) 

 

( ) ( )ωωω fx SHS 2)(=     (2.55) 

 

where Sf(ω) is the power spectral density of the forcing function f(t). In this study, Sf(ω) 

is assumed as ideal white noise which can be written as 

 

0)( SS f =ω      (2.56) 

 

Substituting Equation 2.43 and 2.56 into Equation 2.55, the following equation 

is obtained: 

 

( )
( ) 222

0

]2[]1[ nn
x

SS
ωξωωω

ω
+−

=     (2.57) 
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 The mean square value of the response x(t) is obtained by substituting Equation 

2.57 into Equation 2.52, letting τ=0 and integrating as 

 

( )
ξ
ω

4
0 0 n

x
SR =       (2.58) 

 

2.6.2. Multi Degree of Freedom Systems 
 

 Excitation spectral matrix associated with the generalized forces is given as 

(Meirovitch, 1975). 

 

( )[ ] [ ] [ ] ( )[ ][ ][ ] 1212 −−
= ωωωω uSuS F

T
f     (2.59) 

where 

]][[][][ 2 uKu T=ω      (2.60) 

and 

( )[ ] ( ) τωω τω deRS i
FF

−
∞

∞−
∫==     (2.61) 

 

The response correlation matrix is written as 

 

∫
∞

∞−

= Ti
fx udeHSHuR ][)]()][()][([][

2
1)]([ * ωωωω
π

τ ωτ   (2.62) 

 

where [H(ω)] is the diagonal matrix of the frequency response function Hr(ω) which is 

given as 

( )
rrr

r i
H

ωωξωω
ω

+−
= 2)(1

1  r=1, 2, . . .n   (2.63) 

 

and [H*(ω)] represents the complex conjugate of [H(ω)]. rξ  in Equation 2.63 can be 

found from the following equation: 

 

[ ] [ ] [ ] [ ]uCu T=ωξ2      (2.64) 
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 The autocorrelation function associated with the response random process xi(t) 

can be written denoting by [u]i for the i-th row matrix of the modal matrix [u] as 

 

[ ] ( )[ ] ( )[ ] ( )[ ] [ ]∫
∞

∞−

= T
i

i
fixi udeHSHuR ωωωω

π
τ τω*

2
1)(  (i=1, 2, . . .n) (2.65) 

 

 The mean square value of the response xi(t) is obtained from Equation 2.65 by 

letting τ=0, nameley, 

 

( ) [ ] ( )[ ] ( )[ ] ( )[ ] [ T
ifixi udHSHuR ωωωω

π ∫
∞

∞−

= *

2
10 ]  (i=1, 2, . . .n)     (2.66) 
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CHAPTER 3 

 
RESULTS OF NUMERICAL EXAMPLES  

AND DISCUSSION 

 
3.1. Introduction 
 

 In this chapter, the car models under harmonic and random base excitation will 

be analized using the numerical car parameters available in the literature. The 

calculations was carried out by using computer programs developed in Mathematica. 

The codes have been tested by natural frequencies and mode shapes available in the 

literature. 

 

3.2. Response to Harmonic Base Excitation for Different Car Models 
 

 In this section, three different car models presented in Chapter 2 will be 

examined. The single degree of freedom sytem summarized in Chapter 2 is not 

discussed here because of the simplicity. Proportional damping coefficients: for mass 

matrix α=0, for stiffness matrix β=0.08 are taken in all numerical examples in this 

section. Raod profiles are assumed that Y=0.01 m and different L which will be given in 

next subsections. Car velocity v is selected 50 km/h. 

 

3.2.1. Quarter Car Model 
 

 The quarter car model shown in Figure 2.2. is considered. The numerical values 

of the parameters used in this model is selected as follows (Jazar 2008) 

 

ms= 1085/4 kg 

mu=40 kg 

ks=10000 N/m 

ku=150000 N/m 
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 Equations 2.8-2.12 are subsituted into Equations 2.3 and solved for harmonic 

base excitation. The natural frequencies are found to be 5.87  1 =ω  rad/s and 

63.26 2 =ω  rad/s. The input and response functions are plotted in Figures 3.1-3 for 

different L values which are given in graphs. 
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Figure 3.1. Input and response functions for L=6 m 
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Figure 3.2. Input and response functions for L=18 m 
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Figure 3.3. Input and response functions for L=14.85 m  
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3.2.2. Bicycle Car Model 
 

The bicycle car model shown in Figure 2.3. is considered. The numerical values 

of the parameters used in this model is selected as follows (Jazar 2008) 

 

m= 1085/2 kg, m1=40 kg, m2=40 kg, 

Iy=1100 kg m2, 

a1=1.4 m, a2=1.47 m, 

k1=10000 N/m, kt1= kt2 =150000 N/m. 

 

 Equations 2.17-2.21 are subsituted into Equations 2.3 and solved for harmonic 

base excitation. The natural frequencies are found to be 5.376 1 =ω  rad/s, 5.829  2 =ω  

rad/s, 62.861  3 =ω  rad/s, and 63.264  4 =ω  rad/s for k2=8000 N/m and 825.51 =ω  

rad/s, 5.976  2 =ω  rad/s, 63.264  3 =ω  rad/s, and 63.265  4 =ω  rad/s for k2=10000 N/m. 

The input and response functions are plotted in Figures 3.4-9 for L=6 m and Figures 

3.10-15 for L=15 m choosing different k2 values which are given in graphs. 
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Figure 3.4. Input and response functions for k2=8000 N/m 
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 Figure 3.5. Input and response functions for k2=8000 N/m 

 20



 

1 2 3 4
t

-0.01

-0.005

0.005

0.01

θHtL
xHtL
y1HtL

 

 

 

 

 

 

Figure 3.6. Input and response functions for k2=8000 N/m 
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Figure 3.7. Input and response functions for k2=10000 N/m 
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Figure 3.8. Input and response functions for k2=10000 N/m 
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Figure 3.9. Input and response functions for k2=10000 N/m 
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Figure 3.10. Input and response functions for k2=8000 N/m 
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Figure 3.11. Input and response functions for k2=8000 N/m 

 

1 2 3 4
t

-0.01

0.01

0.02

θHtL
xHtL
y1HtL

 

 

 

 

 

 

Figure 3.12. Input and response functions for k2=8000 N/m 
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Figure 3.13. Input and response functions for k2=10000 N/m 
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Figure 3.14. Input and response functions for k2=10000 N/m 
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Figure 3.15. Input and response functions for k2=10000 N/m 

 

3.2.3. Half Car Model 
 

The half car model shown in Figure 2.4. is considered. The numerical values of 

the parameters used in this model is selected as follows (Jazar 2008) 

 

m= 1085/2 kg, m1=40 kg, m2=40 kg 

Ix=820 kg m2

b1=0.7 m, b2=0.75 m 

k1=10000 N/m, kt1= kt2 =150000 N/m 

 

 Equations 2.23-2.28 are subsituted into Equations 2.3 and solved for harmonic 

base excitation. The natural frequencies are found to be 3.465 1 =ω  rad/s, 5.879  2 =ω  

rad/s, 63.252 3 =ω  rad/s, and 63.264  4 =ω  rad/s for kR=0 and 4.917 1 =ω  rad/s, 

5.881  2 =ω  rad/s, 63.252  3 =ω  rad/s, and 63.264  4 =ω  rad/s for kR=100000 N/m. The 

input and response functions are plotted in Figures 3.16-21 for L=6 m and Figures 3.22-

27 for L=15 m choosing different kR values which are given in graphs. 
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Figure 3.16. Input and response functions for kR=0 
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Figure 3.17. Input and response functions for kR=0 
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Figure 3.18. Input and response functions for kR=0 

 

1 2 3 4
t

-0.01

-0.005

0.005

0.01

x1HtL
yHtL

 

 

 

 

 

 

Figure 3.19. Input and response functions for kR=10000 N/m 

 

 24



 

1 2 3 4
t

-0.01

-0.005

0.005

0.01

x2HtL
yHtL

 

 

 

 

 

 

Figure 3.20. Input and response functions for kR=10000 N/m 
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Figure 3.21. Input and response functions for kR=10000 N/m 
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Figure 3.22. Input and response functions for kR=0 
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Figure 3.23. Input and response functions for kR=0 
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Figure 3.24. Input and response functions for kR=0 
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Figure 3.25. Input and response functions for kR=10000 N/m 
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Figure 3.26. Input and response functions for kR=10000 N/m 
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Figure 3.27. Input and response functions for kR=10000 N/m 
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3.3. Response to Random Base Excitation for Different Car Models 

 

3.3.1. Quarter Car Model  
 

The quarter car model shown in Figure 2.2. is considered. The numerical values 

of the parameters used in this model is selected as in Section 3.2.1. Because of the white 

noise assumption for excitation, the excitation spectral matrix associtaed with the 

physical forces is expressed as 

 

( )[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

00
00S

SF ω  

 

Neglecting the off diagonal terms in the triple matrix multiplication appeared in 

Equation 2.65, the mean square value of the response in terms of damping coefficient 

and S0 are found as 

 

0
11-

0
1102.26125 ),( SSRxu β

β =  

0
11-

0
1101.95756  ),( SSRxs β

β =  

 

3.3.2. Bicycle Car Model 
 

The bicycle car model shown in Figure 2.3. is considered. The numerical values 

of the parameters used in this model is selected as in Section 3.2.2. Because of the white 

noise assumption for excitation, the excitation spectral matrix associtaed with the 

physical forces is expressed as 

 

( )[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0

0

000
000
0000
0000

S
S

SF ω  
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Neglecting the off diagonal terms in the triple matrix multiplication appeared in 

Equation 2.65, the mean square value of the response in terms of damping coefficient 

and S0 are found for k2=8000 N/m as 

 

0
11-

0
1101.11877  ),( SSRx β

β =  

0
12-

0
1105.53626   ),( SSR
β

βθ =  

0
11-

01
1101.95762    ),( SSRx β

β =  

0
11-

02
1102.0056     ),( SSRx β

β =  

 

for k2=10000 N/m as 

 

0
11-

0
1101.13129  ),( SSRx β

β =  

0
12-

0
1105.49204   ),( SSR
β

βθ =  

0
11-

01
1101.95763    ),( SSRx β

β =  

0
11-

02
1101.95742     ),( SSRx β

β =  

 

3.3.3. Half Car Model 
 

The half car model shown in Figure 2.4. is considered. The numerical values of 

the parameters used in this model is selected as in Section 3.2.3. Because of the white 

noise assumption for excitation, the excitation spectral matrix associtaed with the 

physical forces is expressed as 
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Neglecting the off diagonal terms in the triple matrix multiplication appeared in 

Equation 2.65, the mean square value of the response in terms of damping coefficient 

and S0 are found for kR=0 as 

 

0
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0
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for kR=10000 N/m as 

 

0
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β
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3.4. Discussion of Results 
 

 It can be seen from Figures 3.1-3.3 that the vibration amplitude of sprung mass 

of the quarter car model is highly effected by the base excitation frequency which is 

found to be 14.544 rad/s, 4.848 rad/s, and 5.877 rad/s for the wave lengths 6m, 18 m, 
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and 14.85 m, respectively. However, the vibration amplitude of the unsprung mass is 

lightly effected from the road profiles. 

 For bicycle car model, it is seen from Figures 3.4-9 that the translational 

vibration amplitude of the body is acceptable level since the base excitation frequency is 

far from the natural frequencies. On the other hand, when the car is excited near to 

natural frequency/frequencies, the translational vibration amplitude of the body is larger 

then the excitation amplitude. This circumstances can be seen from Figures 3.10-15. 

However, similar to quarter car model, the amplitude of unsprung mass is lightly 

effected from the road profiles. 

 For half car model, the similar tendencies to other car models can be seen from 

Figures 3.16-27. 

The mean square value of the response of the sprung mass is less than the mean 

square value of the response of the unsprung mass for bicycle and half car models but 

not for quarter car model.  
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CHAPTER 4 

 

CONCLUSIONS 

 
 Random vibration analysis of a road vehicle is investigated using different car 

models which are quarter car model, bicycle car model, and half car model. Computer 

programs in Mathematica are developed for all car models. To understand the base 

excitation response behaviors of the sprung mass in all car models, firstly deterministic 

vibration analysis are carried out and the results are presented by graphs. This graphs 

show the vibration amplitudes vs time under the excitation frequencies which are near 

to and far from the natural frequencies. To simplify the calculations, proportional 

damping is considered for damping properties in car models. 

 Car models having multi degrees of freedoms are formulated in matrix form and 

the developed computer programs are coded using matrix calculations. Random base 

excitations for all car models are assumed as white noise which gives mostly reasonable 

results. The mean square value of the response are found in terms of damping 

coefficient β and S0. Damping coefficient β is primary suspension design parameter. On 

the other hand, the value S0 can only be obtained from the actual road profiles. Because 

of the restrictions, the numerical values of this parameter is not given in this study. 

Therefore, for the sake of completeness, semi-numerical results for random vibration 

analysis of different car model’s results are presented. 

 

 

 31



REFERENCES 

 
Elishakoff, I., Zhu, L. (1992). Random vibration of structures by the finite element 
method. Computer methods in applied mechanics and engineering, 105, (pp. 259-373). 
 

Hunt, H.E.M. (1990). Stochastic modelling of vehicles for calculation of ground 
vibration, 11th IAVSD-Symposium - The Dynamics of Vehicles on Roads and Tracks.  
 
Jazar, R. (2009). Vehicle Dynamics: Theory And Applications. Springer: Business 
Media Publishing Co. 
 
Meirovitch, L. (1975). Elements of vibration analysis. McGraw-Hill, Inc. 
 
Paez, T. (2006) The history of random vibrations. Mechanical system and signal 
processing, 20, (pp. 1783-1818). 
 
Tamboli, J.A. (1999). Optimum design of a passive suspension system of a vehicle 
subjected to actual random road excitations. Journal of Sound and Vibration, 219, (pp. 
193-215). 
 
Türkay, S., Akçay, H. (2004) A study of random vibration characteristics of a quarter 
car model. Journal of Sound and Vibration, 282, (pp. 111-124). 
 
 

 32


