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Abstract The purpose of the study is to address and quantify the increase in urban

expansion and carbon (C) metabolism burden on ecosystem service value (ESV), net

ecosystem productivity (NEP), and C storage of urban footprint. Urban footprint is

required to meet the demands arising from economic consumption and production as well

as waste accumulation and assimilation. Spatiotemporal changes in main land covers (LCs)

were detected using remotely sensed data (Landsat 5 and 8, and digital elevation model)

between 1987 and 2016. Changes in ESV and C influx, efflux and pools associated with LC

dynamics were approximated using global proxies for a western Mediterranean region in

Turkey of 54,162 km2. Urban expansion over the 29-year period decreased ESV by 22%

($7.28 ± 0.4 billion), NEP by 4.3% (2.3 ± 9 Gg C), and total ecosystem C pool by 10.9%

(1008.3 ± 1006 Gg C) and led to a 62.8% appropriation of the total NEP

(50.1 ± 51 Gg C) of the urban footprint in 2016. The main cause of the environmental

degradation across the study region was the loss of the seminatural areas. Our findings

emphasize that the deterioration rate of ecosystems should be slowed down by natural

capital-friendly decisions and should not exceed rehabilitation rate of damaged ecosystems

in the face of rapidly increasing burdens of the cities on their footprint.
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1 Introduction

Natural capital is the inevitable foundation on which socioeconomic systems depend for

their survival, well-being and health since its severe scarcity can seriously undermine those

(Costanza et al. 2014). Natural capital provides socioeconomic systems with a wide range

of ecosystem goods and services (hereafter called ecosystem services) which can be cat-

egorized into production, regulation, information, and protection (de Groot et al. 2012).

The recognition of this vital role of natural capital has led to a rapidly growing body of

research on how to quantify, monitor and secure the natural capital. For example, the

ecological footprint was devised as a measure of the amount of biologically productive

terrestrial and aquatic areas required to sustain a specific human activity for resource

consumptions/productions and waste generations/absorptions (Rees and Wackernagel

1996). This concept has also highlighted that socioeconomic systems can appropriate

carrying capacity from not only within but also outside of their own territorial boundaries

of natural capital (Ehrlich 1982).

One of the most significant driving forces behind the degradation and destruction of

ecosystem services has been the urban expansion and its increased metabolism, with

significant implications for natural capital security which encompasses a wide spectrum of

securities such as food (biosphere) security, water (hydrosphere) security, energy (geo-

sphere) security, climate (atmosphere) security, and geopolitical (anthroposphere) security.

Based on median population projections, the total global human population is most likely

to range from 8.1 to 10.6 billion by 2050, with about 6.3 billion expected to inhabit urban

areas (UNDP 2015). Globally, the total urban land cover was reported to increase to

58,000 km2 at an annual rate of ca. 1933 km2 between 1970 and 2000 and was projected to

rise in the range of 430,000–12,568,000 km2 by 2030 based on a meta-analysis (Seto et al.

2011). In order to reduce our ecological footprint to a globally sustainable level, it makes

most sense to secure natural capital with a local focus on urban ecosystems where the most

environmentally degradative and destructive changes originate in. The urban ecosystems

continue to expand in terms of their spatial extent, population density, metabolism and

impervious cover intensity, thus increasing tensions both within themselves and between

the urban land and its footprints as well as threatening the Earth’s life-support capabilities

in urban footprints locally, regionally and globally (Ehrlich et al. 2012).

Wolman (1965) first conceived the concept of urban metabolism to determine per capita

inflow and outflow rates for a hypothetical American city (with one million people) using

national data on water, food and fuel uses, and generation rates of sewage, waste and air

pollutants. Urban metabolism dynamics is generally concerned with the spatiotemporally

dynamic quantification of inflow and outflow rates and stocks of energy and biogeo-

chemical cycles for an urban ecosystem (Chen 2015). In practice, however, there still

remains an urgent need for an effective tool to integrate spatiotemporal dynamics of natural

capital security into land-use planning given the unprecedented rapid growth rates of

urbanization and industrialization. In this respect, there exist a limited number of studies

about how to harmonize socioeconomic systems and natural capital. For example, various

simulation models such as Integrated Valuation of Ecosystem Services and Tradeoffs

(InVEST) (Tallis et al. 2013) and land-use scenario dynamics-urban (LUSD-urban) (He

et al. 2005) were developed to assist in decision-making process through the quantification

and mapping of what-if analyses to explore environmental, economic and social impacts,

trade-offs and conflicts of critical policy and management decisions. Global and regional

maps of biodiversity hotspots and their ESV estimates were overlapped to assess
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opportunities and limitations of their concordance (Chan et al. 2006; Turner et al. 2007).

On the other hand, the increasing availability and accessibility of remotely sensed data, and

geographic information systems (GIS) have considerably facilitated spatiotemporal anal-

yses of urban land across different resolutions. Therefore, the objective of the present study

was to quantify spatiotemporal dynamics and impacts of urban expansion on ESV and C

metabolism for both urban land and its footprint in a Mediterranean region of Turkey.

2 Description of the study region

The study region located between 36� and 39�N latitudes and 29�–33�E longitudes

occupies a terrestrial extent of ca. 54,162 km2, with an elevation range of sea level to

3067 m, the peak of Mountain Kizlar Sivrisi (Antalya) of the western Taurus mountain

range running parallel to the Mediterranean coast of Turkey (Fig. 1). The administrative

units of the study region consist of nine provinces and 59 districts with a total of ca.

9,697,856 people (9,124,144 urban plus 573,712 district dwellers), 12.3% of the national

population. Average population density and population growth rate were estimated at 128

people/km2 and 0.67% over the study region in 2015, and for comparison, were 102

people/km2 and 0.71% in 2015 at the national scale, respectively (TSI 2015). The pre-

vailing climate is characterized by a Mediterranean warm climate and a temperate semiarid

climate with long, dry summers and short rainy seasons during the autumn and winter.

Fig. 1 Location map of the study region with its 13 watersheds in Turkey
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According to long-term meteorological data (1968–2013) from 44 stations (TSMS 2013),

the mean annual ranges of the major climatic characteristics across the study region

included 300–1200 mm for rainfall or precipitation, -4 �C for minimum air temperature to

30.6 �C for maximum air temperature, 5.4–8.5 h for sunshine duration, 10.5–17.5 MJ/

m2/day for solar radiation, 17.9–97.5% for relative humidity, and 988–2190 mm for

potential evapotranspiration.

3 Materials and methods

3.1 Data collection

The following three stages were adopted in this study: (1) selection of proxy variables, (2)

detection of their spatiotemporal trends, and (3) raster overlay analysis. Natural capital

characterization of the study region was carried out using the following remotely sensed

variables: (1) digital elevation model (DEM), (2) slope, (3) watershed boundaries, and (4)

spatiotemporal trends of NDVI and land surface temperature (LST) in August between

1987 and 2016. Time and space series data of the variables were used to integrate spa-

tiotemporal dynamics of environmental conflicts, ESV, and ecosystem C metabolism into

the urban land and its footprint. Finally, a raster overlay analysis was carried out by which

the individual maps were compared per pixel to detect the location, severity, amount, and

rate of spatiotemporal changes.

3.2 Data processing

Spatiotemporal trends of August LST between 1987 and 2016 over the study region were

derived fromsix frames (paths/rows = 177-178-179/33-34) of eachof the twoLandsat images:

Landsat 5 thematic mapper (TM) in 1987 and Landsat 8 operational land imager (OLI) and

thermal infrared sensor (TIRS) in 2016 (http://earthexplorer.usgs.gov/). The Level 1 terrain-

corrected Landsat 5 and 8 images were acquired on August 26, 1987 and 2016, respectively,

which included atmospheric correction, georectification, and georeferencing to the Universal

Transverse Mercator (UTM) projection system with 36 N zone and WGS84 datum.

The dates of Landsat 5 and 8 data were selected according to the least possible degree of

cloud cover, cloud shadows or snow cover over the study region. The August LST maps

were derived from the thermal infrared (TIR) bands 6 (10.4–12.5 lm) (120 m) and 10

(10.6–11.19 lm) (100 m) of the Landsat 5 and 8 images, respectively, using the following

sequential stages: (1) calculation of land surface emissivity (e), (2) conversion of digital

numbers (DN) to spectral radiance (Lk), (3) conversion of Lk to brightness temperature

(Tb), and (4) conversion of Tb to LST (Sobrino et al. 2004; Weng et al. 2004; Chander et al.

2009; Coll et al. 2010; Barsi et al. 2014). The Landsat TIR data were geometrically

transformed to real-world coordinates and converted to 30 m using UTM projection with

36 N zone and WGS84 datum.

3.3 Quantification of environmental conflicts between urban ecosystem
and natural capital

The resulting spatiotemporal trends of the differenced August LST images were reclas-

sified identifying natural class breaks that group similar pixel values through the graphical
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tool of histogram equalization and were assigned the following five classes of climate

change vulnerability index (CCVI): 0 = not vulnerable, 1 = less vulnerable, 2 = mod-

erately vulnerable, 3 = highly vulnerable, and 4 = extremely vulnerable. Hotspots (ex-

tremely vulnerable areas) and coldspots (not vulnerable areas) of CCVI were determined as

areas where the highest increases and no or slight changes in the August LST temperature

between 1987 and 2016 occurred, respectively. Slope, watershed boundaries, and DEM

classification were derived from the Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) (30-m resolu-

tion) acquired from http://gdex.cr.usgs.gov/gdex/. A total of 13 watersheds were delineated

in the study region as the most natural spatial scale for the quantification of harmonization

between urban metabolism and its footprint. A shapefile consisting of administrative

boundaries (province and district) of the study region was also obtained as ancillary data

from the General Command of Mapping (http://www.hgk.msb.gov.tr/).

29-year spatiotemporal trends of LCs were derived from the two images identifying the

following five terrestrial LCs: built-up land (BUL), agricultural land (AL), seminatural

land (SNL), water body (WB), and bareland (BL). The multispectral image LC classifi-

cation was performed using the maximum likelihood algorithm. Accuracy of the LC

classifications on a per pixel basis was measured using the matrix of producer’s and user’s

accuracies, and Kappa statistics (Demirkesen 2008). All spatiotemporal analyses and

statistics including the final CCVI calculation were calculated using ArcGIS 10.4 and

IDRISI Selva 17.0 software.

Agricultural land was defined to include cropland, pasture, orchards, groves, vineyards,

and nurseries and was classified as prime farmland according to the slope classes of 0�–6�
and other agricultural land according to the slope classes of 6�–12� and[12�, respectively.
Seminatural land was defined to include Mediterranean and warm-temperate semiarid

evergreen forests, shrubland, grassland, and environmental protection areas according to

NDVI value C0.4. Buffer zones against flood and geologic hazards, and deterioration of

coastal land and water resources were created to avoid environmental conflicts in the face

of urban encroachments. Buffer zones were determined isolating a safe minimum area of

specified widths of 60 m on the side of the lakes, and each side of the river, of 300 m along

the coastline, and of 90 m on each side of the faults. Built-up land included both urban

settlements and roads. Urban encroachments into prime farmland, other agricultural land,

buffer zones, and the classes of CCVI in this study were considered to be the main

environmental conflicts not appreciating natural capital security and were detected between

1987 and 2016.

3.4 Quantification of ecosystem service value

An approximation of annual ESV for the study region was carried out relating the observed

LC dynamics to the 2011 global averages of unit values for a total of 17 ecosystems

services according to proxy biomes reported in Table 1 by Costanza et al. (2014) and de

Groot et al. (2012) as follows:

ESV ¼
X

ðAi � UViÞ; ð1Þ

where ESV denotes the total mean annual ESV ($/year) expressed in 2007$US, Ai is the

area (km2) of LC type i, and UVi is the global average unit value ($/km
2/year) of a total of

17 ecosystems services for a proxy LC type I reported in Table 1. Mean UVi was used

when multiple proxy values were available for each LC of the study region. Uncertainties
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associated with ESV estimates for each LC of the study region were quantified using proxy

standard deviations (SD) where possible based on related literature.

3.5 Quantification of urban ecosystem carbon metabolism

Such components as influxes, effluxes, net ecosystem exchange, and pools of C cycle in the

study region were approximated using global averages reported in related literature.

Carbon inflows not only by urban vegetation but also by vegetation of the urban footprint

considered in this study consisted of net primary productivity (NPP) and gross primary

productivity (GPP). Total GPP is the sum of NPP and autotrophic respiration (Ra), or as the

sum of net ecosystem productivity (NEP) and ecosystem respiration (Re). Carbon efflux

taken into account in this study consisted of Re as the sum of Ra and soil (Rh) respiration for

the urban footprint (non-urban LCs) and additionally included human respiration, waste

decomposition at landfills, burning of fossil fuels for energy needs, and urban expansion

into urban footprint for the urban land. Global averages of GPP, NPP, NEP, and Re values

(g C/m2/year) for Mediterranean and warm-temperate semiarid evergreen vegetation of

SNL were derived from Luyssaert et al. (2007), Haberl et al. (2007), Gilmanov et al.

(2010), and Raich et al. (1991) as proxies for the present study (Table 2). Carbon pools

Table 1 Global average unit values (UV, $/km2/year) and standard deviations (SD) in 2011 of a total of 17
ecosystem services expressed in 2007 $US for land covers (LCs) used as proxies in this study

LC Urban footprint BUL

UV SNL AL WB BL

Proxy
biome

Temperate
forest;
grass;
floodplain

Cropland,
rangeland

Lakes/
rivers

Ice/rock/sparse
vegetation

Urban

References Costanza
et al.
(2014)

Costanza
et al.
(2014)

Costanza
et al.
(2014)

Costanza et al. (2014) Costanza et al. (2014)

Proxy 2011
UV
(2007$/
km2/year)

313,700;
416,600;

2,568,100

556,700;
416,600

1,251,200 2598 666,100

References Costanza
et al.
(2014)

Costanza
et al.
(2014)

Costanza
et al.
(2014)

Costanza et al. (1997)
and Portela and
Rademacher (2001)

Costanza et al. (2014)

Proxy SD 543,700;
386,000;
504,500

386,000 277,100 0 118,936

References de Groot
et al.
(2012)

de Groot
et al.
(2012)

de Groot
et al.
(2012)

Costanza et al. (1997)
and Portela and
Rademacher (2001)

Costanza et al. (1997),
Shrestha and Loomis
(2003), Li et al. (2010)
and Liu et al. (2010)

Adopted
UV
(2007$/
km2/year)

1,099,467 486,650 1,251,200 2598 666,100

Adopted SD 504,500 386,000 277,100 0 118,936
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were assumed to include the stocks of aboveground biomass C (AGC), belowground

biomass C (BGC), soil organic C (SOC), and litter organic C (LOC) for the urban footprint

and the additional stocks of landfill waste C (LWC), building C (BC), and human C (HC)

for the urban land (Table 2). Carbon fluxes and pools and their uncertainties in this study

were quantified using means of high- and low-bound estimates or SD wherever possible

based on related literature.

Urban appropriation of its hinterland natural capital is needed to sustain urban

ecosystems and was referred to as appropriated urban footprint (AUF) in this study.

Appropriated urban footprint was quantified as the sum of human-induced losses of NEP

due to both destructive (quantitative) and degradative (qualitative) changes in SOC, AGC,

and BGC (by harvests, biomass burning, and LULC conversions) based on the concept of

human appropriation of NPP (HANPP). Estimates of AUF were calculated modifying the

equation reported by Churkina (2016) thus:

AUF ¼ fHANPPurb �
NEP

NPP
� HANPPuv � Areaurb; ð2Þ

where fHANPPurb is the fraction of HANPP caused by urban ecosystems (%). The low,

best, and high values of fHANPPurb were assumed as 6.2, 33.1, and 60%, respectively,

based on the low and high values by Churkina (2016) and Plutzar et al. (2016) who

reported to vary between 50 and 70% globally and between 2.7 and 9.7% in the EU,

respectively. NEP/NPP is a study region-specific conversion factor from NPP to NEP for

HANPPuv. HANPPuv is the unit value (t C/ha/year) of HANPP which was used as the EU-

specific HANPPuv (3 ± 1 t C/ha/year) reported by Plutzar et al. (2016) instead of using the

global HANPPuv average (1.2 t C/ha/year, or 15.6 Pg C/year) (Pg = 1015 g) stated by

Haberl et al. (2007). Areaurb is the study region-specific urban area (ha).

4 Results and discussion

4.1 Spatiotemporal changes in environmental conflicts

Among all the LC expansions, the urban expansion across the study region experienced the

maximum increase by 137% over the 29-year period at an annual rate of 10.3 km2

(Table 3). The only decrease took place with SNL by 48% (Table 3; Fig. 2). The minimum

increase occurred by 10% with the LC class of water body (rivers and lakes) (Table 3).

Urban encroachments into the prime farmland, the other agricultural land, the buffer zones,

and the classes of CCVI were considered to be the critical environmental conflicts that

threatened not only the well-being and health of the urban ecosystem but also its footprint

(natural capital security) and were also detected over the period of 1987–2016 (Figs. 3, 4,

5). The entire area for each of the buffer zones in 2016 constituted 298 km2 along the

shoreline, 339.6 km2 around the water bodies, and 196.3 km2 around the faultlines

(Fig. 3). The total area of the urban encroachments into the buffer zones in 2016 was

estimated at 18.8 km2, 4.3, 27.7, and 68.1% of which were related to the faultlines, the

water body, and the coastline, respectively (Fig. 3). The entire agricultural land in the

study region covered 18,766 km2 (35% of the study region) which were partitioned into

1795 km2 for the prime farmland with a slope range of 0�–6�, and 3152 and 13,819 km2

for the remaining agricultural land with a slope range of 6�–12o, and[12�, respectively
(Fig. 4). The 29-year urban encroachment into the agricultural land amounted to a total of

241.9 km2 18.3, 31.2, and 50.5% of which corresponded to the prime farmland, and the
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other agricultural land with a slope range of 6�–12o, and[12�, respectively (Fig. 4). Our

CCVI showed that the areas of the study region ranked in not, less, moderately, highly and

extremely vulnerable were 51,892, 347, 278, 1197 and 18 km2, respectively (Fig. 5). The

total area of the urban encroachment according to the CCVI classes was 27.7 km2, 0.4, 1.1,

and 98.5% of which belonged to the classes of less, extremely and highly vulnerable,

respectively (Fig. 5).

The 29-year spatiotemporal changes in LCs, and urban expansions into environmentally

sensitive and risky zones, the agricultural land, and the five classes of the CCVI are

presented in Figs. 2, 3, 4, and 5, respectively, according to the 13 watersheds. The loss of

SNL was concentrated primarily in the watersheds directly adjacent to the Mediterranean

coastline and secondarily in Beysehir and Burdur watersheds (Fig. 2). The highest increase

in the urban expansion occurred with Antalya (Antalya watershed) and Konya (Beysehir

watershed). The maximum shares of the urban encroachments belonged to Antalya and

Bickici watersheds for the shoreline, to Beysehir watershed for the water body and to

Antalya watershed for the faultline (Fig. 3). Beysehir and Antalya watersheds were

Table 3 Amount and rate of spatiotemporal changes in land covers (LCs) of the study region between 1987
and 2016, and accuracy metrics of Landsat-derived LC classification

LC 1987
(km2)

% of
total land

2016
(km2)

% of
total land

Amount of
change

Rate of
change

PA
(%)

UA
(%)

Kappa
(%)

(km2) (%) (km2/
year)

AL 19,008.3 35.0 25,779.9 47.5 6771.7 36 233.5 85 85 85

WB 919.1 1.9 1007.1 2.0 88.1 10 3.0 98 98 98

SNL 20,630.1 38.0 10,721.6 19.8 -9908.6 -48 -341.7 90 90 90

BUL 217.2 0.4 515.2 0.9 298.0 137 10.3 95 95 95

BL 13,387.6 24.7 16,138.5 29.7 2750.9 21 94.9 85 85 85

Total 54,162.3

Negative values denote a decrease

PU producer’s accuracy, UA user’s accuracy

Denizli Afyonkarahisar Konya
Isparta

Burdur

Antalya

Mugla

Karaman

Mersin

Aksu Burdur Egirdir Beysehir

Golhisar

Antalya

Goksu

Esencay     Akcay

Gevner
Alakir Demre

Bickici

(1987) (2016)

50 km

Agricultural land
Water body
(Semi-)natural land
Built-up land
Bareland

Fig. 2 Changes in land covers (LCs) between 1987 and 2016 according to 13 watersheds of the study
region used to elucidate spatiotemporal dynamics of urban expansions, environmental conflicts, ecosystem
service values, and ecosystem C metabolism for urban land and its footprint. The names of nine provinces
and 13 watersheds are presented in the 1987 and 2016 maps, respectively
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responsible for most of the encroachment into the prime farmland (Fig. 4) and were found

to contain all the extremely vulnerable areas (hotspots) and most of the highly vulnerable

areas of the CCVI, respectively (Fig. 5).

4.2 Spatiotemporal changes in ecosystem service value

The aggregate regional monetary value including both market and non-market values

expressed in 2007 $US was approximated for a total of 17 ecosystem services of the study

region in 1987 and 2016 (Table 4). Spatiotemporal changes in the ESV of the (non-)urban

LCs in the study region were estimated multiplying the area of each of the five LC classes

in 1987 and 2016 by the related unit value in Table 1. The total ESV of the study region

was found as $25.98 ± 17.6 billion in 2016 and declined by 22% ($7.28 ± 0.4 billion) at

an annual rate of $251 million over the 29-year period (Table 4). The decrease in SNL by

48% alone resulted in this ESV loss despite the increased ESV of the other LCs (Table 4).

Likewise, the total global monetary value expressed in 2007 $US was on average

estimated at $124.8 trillion/year as a function of a total of 17 ecosystem services in 2011

No change
Water body buffer zone (WBBZ)
Shoreline buffer zone (SBZ)
Faultline buffer zone (FBZ)
Built-up land
Urban expansion into WBBZ
Urban expansion into SBZ
Urban expansion into FBZ

50 km

Denizli Afyonkarahisar
Konya

Isparta
Burdur

Antalya

Mugla

Karaman

Mersin

Fig. 3 Urban expansion into environmentally sensitive and risky zones over the period of 1987–2016
according to 13 watersheds of the study region used to elucidate environmental conflicts between urban
ecosystem and its footprint
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for 16 main biomes by Costanza et al. (2014) and at $165 trillion/year as a function of a

total of 22 ecosystem services in 2012 for 10 main biomes by de Groot et al. (2012). The

total regional ESV estimate in 2016 of this study constituted 0.2% of the total global ESV

estimate of $124.8 trillion/year by Costanza et al. (2014). Given the total land area of

51,625 9 104 km2 used in the total global ESV estimate by Costanza et al. (2014), the unit

ESV estimate across all the ecosystem types was 2.54 times higher in the study region

($614,115/km2/year) than globally ($241,743/km2/year).

4.3 Spatiotemporal changes in ecosystem carbon metabolism of urban land
and its footprint

4.3.1 Influx, efflux, and net ecosystem exchange of carbon

The loss of SNL more than offset the increase in C sequestration by GPP or NPP associated

with the increased areas of the other LCs over the 29-year period (Tables 5, 6) and caused

an overall decline by 19.3 ± 8 and 15.3 ± 3 Gg C for the total GPP and NPP, respectively

50 km

Denizli Afyonkarahisar
Konya

Isparta
Burdur

Antalya

Mugla
Karaman

Mersin

Non-agricultural land (NAL)

Urban expansion into NAL

Prime farmland with a slope of 0 to 6o (PFL)

Urban expansion into PFL

Agricultural land with a slope of 6 to 12o (AL6-12)

Urban expansion into AL6-12

Agricultural land with a slope > 12o (AL12+)

Urban expansion into AL12+

Fig. 4 Urban expansions into prime farmland, other agricultural land, and non-agricultural land between
1987 and 2016 according to 13 watersheds of the study region used to elucidate environmental conflicts
between urban ecosystem and its footprint
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(Table 7). The agricultural land and SNL dominated C removal through GPP and NPP

from the atmosphere in 1987, respectively, whereas the dominance of C removal by both

GPP and NPP shifted to the agricultural land alone in 2016. Urban vegetation accounted

for 0.5% of the total GPP, while urban vegetation and soil contributed to 5.6% of the total

Re across the LCs in 2016.

Overall C release by Re from the LCs to the atmosphere decreased by 15.7 ± 5 Gg C

over the same period (Table 7). The second highest increase in Re over the 29-year period

occurred with the built-up land after the agricultural land. The overall NEP for the study

region decreased from 52.4 ± 42 Gg C/year in 1987 to 50.1 ± 51 Gg C/year in 2016

during which the agricultural land and the water bodies were the only LCs with the

increased NEP by 17.6 ± 9 and 0.1 ± 0.1 Gg C/year, respectively. This big difference

between urban GPP and Re caused the urban ecosystem to be responsible for the highest

decrease by 21% in the total NPP in 2016. Unlike the urban land, the agricultural land

exerted the greatest influence on the increased NEP over the 29-year period. Despite the

50 km

Not vulnerable (NV)
Urban expansion into NV land
Less vulnerable (LV)
Urban expansion into LV land
Moderately vulnerable (MV)
Highly vulnerable (HV)
Urban expansion into HV land
Extremely vulnerable (EV)
Urban expansion into EV land

Denizli Afyonkarahisar
Konya

Isparta
Burdur

Antalya

Mugla

Karaman

Mersin

Fig. 5 Urban expansion into the five classes of climate change vulnerability index (CCVI) between 1987
and 2016 according to 13 watersheds of the study region used to elucidate environmental conflicts between
urban ecosystem and its footprint
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decreasing NEP by 2.3 Gg C over the study period, the study region acted as a C sink.

Ecosystem respiration of the global urban footprint (outside of the city limits) from all the

activities by urban dwellers including production and consumption of food, fiber, and

energy was estimated to constitute 10–35% of the global terrestrial Re (107.2 Pg C/year)

(Churkina 2016).

4.3.2 Ecosystem carbon pools

Total ecosystem C pool considered in this study consisted of the individual stocks of AGC,

BGC, SOC, and LOC for the urban footprint and included the additional LWC, BC, and

HC stocks for the urban land. The entire study region lost a total ecosystem C stock of

1008.3 ± 1006 Gg C over the study period of 29 years due to the loss of SNL (Table 7).

The biggest share (41%) of this loss stemmed from the loss of AGC storage across the LCs.

The primary role in the maintenance of the total ecosystem C storage was also shifted from

SNL in 1987 to the agricultural land in 2016 (Tables 5, 6). The urban landfill wastes

(1.0%), urban buildings (small and slow C sequestration in concrete buildings through

carbonation) (0.4%), and urban dwellers (0.01%) explained 1.4% of the total ecosystem C

pool of 8219.0 ± 2301 Gg C in 2016. The SOC pool to a depth of 0–1 m (sediment C pool

in case of water body) was greater than the total biomass C pool of AGC plus BGC (sum of

phytoplankton and zooplankton biomass C in case of water body) for SNL and agricultural

lands, and the water bodies in 1987 and 2016 unlike for the bareland and the urban land.

The most recent global estimates of urban C storage ranged from 4 to 29 Pg C (excluding

LWC) or 59 Pg C (including LWC) with the best estimate of 16 Pg C based on a global

assessment by Churkina (2016) and from 4.4 to 56.4 Pg C based on the product of the

minimum and maximum global urban extents (276,000–3,524,000 km2) by the global

average of urban-specific C density (16 kg C/m2) by Zhao et al. (2013).

Table 4 Amount and rate of spatiotemporal changes in ecosystem service value (ESV) according to land
covers (LCs) of the study region between 1987 and 2016

LC Year ESV SD Amount of change Rate of change

(109 9 2007$) (109 9 2007$) % (106 9 2007$)

SNL 1987 22.68 10.41 -10.9 ± 3.1 -48 -375.7

2016 11.79 7.34

AL 1987 9.25 7.34 3.3 ± 2.6 36 113.6

2016 12.55 9.95

WB 1987 1.15 0.25 0.11 ± 0.02 10 3.8

2016 1.26 0.28

BL 1987 0.03 0.0 0.01 ± 0.0 21 0.2

2016 0.04 0.0

BUL 1987 0.14 0.03 0.2 ± 0.04 137 6.8

2016 0.34 0.06

Total 1987 33.26 18.0 -7.28 ± 0.4 -22 -251.1

2016 25.98 17.6

Negative values denote a decrease
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4.4 Spatiotemporal changes in appropriated urban footprint

The urban ecosystem in this study was assumed to be responsible for a minimum of 6.2%

to a maximum of 60% (with a mean of 33.1%) of HANPPuv based on the most recent

estimates of 3.0 ± 1 t C/ha/year for HANPPuv, 2.7–9.7% for the minimum fHANPPurb for

the EU in 2006 by Plutzar et al. (2016), and of 50–70% for the maximum fHANPPurb
globally in 2000 by Haberl et al. (2007). The AUF value across the study region was

estimated at 13.3 ± 10.8 Gg C in 1987 and 31.5 ± 25.6 Gg C in 2016. The AUF esti-

mates in 1987 and 2016 accounted for 25.3 and 62.8% of the total NEP values (52.4 ± 42

and 50.1 ± 51 Gg C) in 1987 and 2016, respectively. Over the 29-year period, the AUF

rose by 18.2 ± 14.8 Gg C at a rate of 0.63 ± 0.51 Gg C/year. If the current AUF trends of

the study region persist with the entire regional NEP in 2016 remaining the same, then it

would take about 33 years in order for the entire urban footprint to be appropriated by the

cities. This suggests that the loss and degradation rates of the local non-urban ecosystems

within the urban footprint should be slowed down by the harmonization of urban expansion

and natural capital security and should not exceed rehabilitation rate of damaged

ecosystems, in particular, given the rapidly increasing demands of the cities for their

footprint locally. Globally, GPP by the urban footprint was reported to amount to 22 and

24% of the entire terrestrial GPP (112 Pg C/year) and C emissions (117 Pg C/year) in

2006 (Churkina 2016).

5 Conclusion

The novelty of the present study lies, for the first time, in its spatiotemporally dynamic

analyses on a regional scale of (1) urban expansion into environmentally vulnerable and

risky footprint; (2) ESV of natural capital and (3) ecosystem C metabolism (C fluxes and

pools) for urban land and its footprint; and (4) urban appropriation of C metabolism in its

footprint. Our spatiotemporal analysis showed a significantly decreasing trend in the

overall ESV between 1987 and 2016 by 22% ($7.28 ± 0.4 billion in 2007$ value) pri-

marily caused by the loss of SNL, thus indicating the severity of the environmental

degradation and destruction of the study region. During this period, all the LC areas

expanded with the highest increase exhibited by the rapid urban expansion by 137% whose

increasing ESV rate of $6.8 million/year was ranked second. However, the highest

increasing rate ($113.6 million/year) of the ESV occurred with the agricultural land fol-

lowed by the bareland and the inland water bodies. LC-induced impacts on the urban

footprint over the 29-year period led to the decreases in NEP by 4.3% (2.3 ± 9 Gg C) and

a total ecosystem C pool by 10.9% (1008.3 ± 1006 Gg C). Urban-related activities were

estimated to control and appropriate 62.8% of the total NEP (50.1 ± 51 Gg C) in 2016.

The ecosystem analysis of temporal as well as spatial changes in C metabolism of the

urban land and the urban footprint, urban appropriation of C metabolism in the urban

footprint, ESV, environmental conflicts, and their interacting hotspots and coldspots may

provide significant contributions to how to integrate natural capital security into socioe-

conomic development policies across a wide range of spatiotemporal scales. In particular,

the direction of local urban growth and development can be adjusted in a natural capital-

friendly way. As with the other studies in the related literature, the proxies and the

assumptions were adopted in this study, due to data limitations and/or lack of local esti-

mates of ESV, and C fluxes and pools. In the future studies, the integration of field data
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collection from different biomes into remotely sensed data remains to be explored to better

understand and predict spatiotemporal dynamics of how urban expansion affects ESV and

C cycle within the urban footprint in a changing global climate.
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