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ABSTRACT 

 
In this study, dichlorvos (Dimethyl 2,2-dichlorovinyl phosphate - DDVP) and 

trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidin) pesticide concentration 

levels in Tahtalı Dam Water were investigated. Dichlorvos is an organophosphorus 

pesticide, whereas Trifluralin is a dinitroaniline pesticide.  

Both of these pesticides are widely used for agricultural purposes in Tahtalı 

Dam Basin. These pesticides could be carried to the Tahtalı Dam Water, and therefore 

their concentrations should be controlled. 

 Another reason why these pesticides were selected was that, their method 

of determination was not straightforward and special determination technique has to be 

used. That is why these pesticides were not studied extensively for İzmir area.  

For the determination of the above-mentioned pesticides, gas chromatography-

mass spectrometry (GC-MS) was generally preferred as reported in most papers [1,2,3]. 

The GC-MS instrument in our laboratory has an Ion Trap (IT) mass detector. Operating 

in Selected Ion Storage (SIS) or Tandem mass (MS-MS) modes can increase the 

sensitivity and selectivity of this instrument. The matrix effect coming from the aqueous 

solution was eliminated by GC-SIS-MS and GC-MS-MS. The detection limits of the 

instrument are 0.8 µg/L for trifluralin and 10.5 µg/L for dichlorvos, therefore a 

preconcentration process was required because the studied concentrations are in           

1-3 µg/L levels for surface water and 0.1 µg/L levels for drinking water.  

Liquid-Liquid Extraction (LLE) and Solid Phase Extraction (SPE) methods were 

used for sample preconcentration. Gas chromatography (GC) - Mass spectrometry (MS) 

and Tandem mass spectrometry (MS–MS) were employed for the identification and 

quantification of Trifluralin and Dichlorvos (DDVP) pesticides. For Solid Phase 

Extraction procedure ENVI-18 Disk was used, optimizing the extraction volume, pH 

and the salt concentration. Liquid-Liquid extraction procedure was also used, 

optimizing the extraction volume. In GC–MS–MS, the lowest detectable concentrations 

for the Trifluralin and Dichlorvos were found as 0.8 ng/L and 10.5 ng/L, respectively. 

Recovery of Dichlorvos for Liquid-Liquid Extraction and Solid Phase Extraction were 

86.0 (±5.4) % and 63.0 (±5.7) % in water samples spiked with 200 ng/L pesticides. 

Recovery of the Trifluralin for Liquid-Liquid Extraction and Solid Phase Extraction 
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were 90.8 (±9.4) % and 107.5 (±4.5) % in water samples spiked with 200 ng/L 

pesticides. 

Water samples, which were collected between 01 June 2002 to 30 September 

2002 by İZSU (İzmir Büyükşehir Belediyesi Su ve Kanalizasyon Genel Müdürlüğü), 

were analyzed using GC-MS system with tandem mass (MS-MS) mode after 

preconcentration process. Analysis of samples showed no detectable Trifluralin and 

Dichlorvos levels in Tahtalı Dam Water. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 
 

                                                                                  

 



 

 v 

ÖZ 
 

Bu çalışmada, Tahtalı Baraj suyunda, diklorvos (Dimetil 2,2-diklorovinil fosfat) 

(DDVP) ve trifluralin (α,α,α-trifloro-2,6-dinitro-N,N-dipropil-p-tolidin) pestisitlerinin 

derişim seviyeleri incelenmiştir. Diklorvos organofosforlu, trifluralin de dinitroanilin 

pestisitidir. 

 Bu pestisitlerin her ikisi de Tahtalı Baraj Havzasında yaygın olarak tarımsal 

amaçlarla kullanılmaktadır. Bu pestisitler Tahtalı Baraj suyuna çesitli yollarla 

taşınabilir. Bu yüzden derişimleri kontrol edilmelidir. 

 Bu pestisitlerin seçilmesinin diğer bir nedeni de, bunların doğrudan tayin 

yöntemlerinin olmaması ve özel tayin teknikleri gerektirmesidir. Bu nedenle söz konusu 

pestisitleri saptama çalışmaları İzmir bölgesinde yaygın olarak yapılmamıştır. 

 Çoğu makalede de bildirildiği gibi, yukarıda bahsedilen pestisitlerin tayininde 

Gaz Kromatografi – Kütle Spektrometrisi (GC-MS) cihazları genellikle tercih 

edilmektedir [1,2,3]. Laboratuvarımızdaki GC-MS cihazı İyon Kapanlı (IT) kütle 

dedektörüne sahiptir. Bu cihazın hassasiyeti ve seçiciliği, Seçilmiş İyon Saklama (SIS) 

ve Kütle-Kütle (MS-MS) modlarında çalışılarak artırılabilir. Yine sulu çözeltilerden 

gelen matriks etkisi GC-SIS-MS ve GC-MS-MS modlarında çalışılarak giderilebilir. 

Cihazın saptama sınırı  trifluralin için 0,8 µg/L ve diklorvos için de 10,5 µg/L’ dir. 

Yüzey suyunda çalışma seviyesi 1-3 µg/L ve içme suyunda 0,1 µg/L olduğu için hala bir 

önderiştirme basamağına ihtiyaç duyulmuştur.  

Örneklerin önderiştirilmesi amacıyla Sıvı-Sıvı Özütleme (LLE) ve Katı Faz 

Özütlemesi (SPE) metotları kullanılmıştır. Trifluralin ve diklorvos pestisitlerinin 

tanımlanması ve miktarlarının  belirlenmesi için GC-MS ve MS-MS yöntemleri 

kullanılmıştır. ENVI-18 Disk kullanılarak yapılan Katı Faz Özütlemesi işlemi için 

hacim, pH ve tuz derişimi optimize edilmiştir. Sıvı-Sıvı Özütlemesi işlemi içinde hacim 

optimize edilmiştir. GC-MS-MS ile trifluralin ve diklorvos için en düşük saptama sınırı 

sırasıyla 0,8 ng/L ve 10,5 ng/L bulunmuştur. Su örneklerine eklenen 200 ng/L 

derişimindeki pestisitlerin Sıvı-Sıvı Özütlemesi ve Katı Faz Özütlemesi kullanılarak 

yapılan diklorvosa ait geri kazanım sonuçları % 86,0 (±5,4) ve % 63,0 (±5,7)’ tür. Aynı 

şekilde Sıvı-Sıvı Özütlemesi ve Katı Faz Özütlemesi kullanılarak yapılan trifluraline ait 

geri kazanım sonuçları % 90,8 (±9,4) ve % 107,5 (±4,5)’ tir. 
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İZSU (İzmir Büyükşehir Belediyesi Su ve Kanalizasyon Genel Müdürlüğü) 

tarafından 01 Haziran 2002 ile 30 Eylül 2002 tarihleri arasında toplanan su örneklerinin 

önderiştirme işleminden sonra MS-MS modu ile GC-MS sisteminde analizleri yapıldı. 

Örneklerin analizinde, Tahtalı Baraj Suyunda ölçülebilir seviyede Trifluralin ve 

Diklorvos bulunmamıştır. 
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CHAPTER 1 

 

INTRODUCTION 
 

 Today, over 500 compounds are registered worldwide as pesticides or 

metabolites of pesticides [4]. Pesticides can be classified based on functional groups in 

their molecular structure (e.g. inorganic, organonitrogen, organohalogen, 

organophosphorus, organosulfur compounds, etc.), or their specific biological activity 

on target species (e.g. insecticides, fungicides, herbicides, acaricides, etc.) [4,5]. 

Herbicides are by far the most commonly used pesticides followed by insecticides, 

fungicides, and others. Pesticide use in agriculture has progressively increased after 

World War II, leading to increased world food production. Nevertheless, this use and 

additional environmental pollution due to industrial emission during their production 

have resulted in the occurrence of residues of these chemicals and their metabolites in 

food, water, and soil. Legislations were acted out in the USA, European Union (EU) 

and other countries to regulate pesticides in water, water supply, soil, and food. 

 The development and use of pesticides have played an important role in the 

increase of agricultural productivity. The majority of such substances are applied 

directly to soil or sprayed over crop fields and hence are released directly to the 

environment. Consequently, pesticides can enter as contaminants into natural waters 

either directly in applications or indirectly from drainage of agricultural lands. The 

amount and kind of pesticides in water of a given area depends largely on the intensity 

of production and kind of crops. However, transport of pesticides out of their area of 

application results in the presence and accumulation of these compounds in many parts 

of the hydrosphere. For example, atmospheric precipitation is an important route of 

transport of pesticides, resulting in contamination of environmental waters far away 

from agricultural areas. Substantial amounts of pesticides have been found in ice and 

water of polar regions [6,7], lakes [8], seawater [9], rainwater  [8,10–12] or potable 

water [13,14]. 

Gas chromatography (GC) using the highly sensitive electron-capture detection 

(ECD) is an analytical technique of great importance especially in the determination of 

chlorinated hydrocarbon pesticide residues in environmental waters [12,15–17]. This is 

due not only to the sensitivity and specificity of ECD, but also to the power of GC for 
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separating compounds of similar molecular structure. Consequently, multiresidue 

analysis is the most common way of determining pesticides. Once the chromatographic 

separation is reached, information regarding the complexity (number of components), 

quantity (peak height or area) and identity (retention time) of the components in a 

mixture is provided. The certainty of identification based solely on retention time value 

is poor, even for not very complex samples, therefore a supplementary confirmation of 

the residues is necessary. Only when the identity is firmly established, the quantitative 

information from the chromatogram can be correctly interpreted without producing 

false-positive results. 

Spectroscopic techniques, conversely to chromatographic techniques, present a 

rich source of qualitative information from which component identity may be deduced 

with a reasonable degree of certainty. Thus, spectroscopic and chromatographic 

techniques provide complementary information about the concentration of the 

components and their identity in a sample. 

Nowadays, GC interfaced to mass spectrometry (GC–MS) is the preferred 

analytical technique for the confirmation of residues [1]. Generally, three modes of  

GC–MS operation are available for pesticide analysis: electron impact (EI), positive 

chemical ionization (PCI) and negative chemical ionization (NCI). GC–MS in the EI 

mode is commonly used in determination of pesticides in water, and positive and 

negative chemical ionization modes are alternative methods, which depending on the 

compounds, offer better selectivity and/or sensitivity than EI. For increasing the 

sensitivity, selected ion monitoring (SIM) is commonly used in the determination of 

pesticides in waters. This mode allows the analysis of trace amounts of pesticides but 

reduces the qualitative information. The use of tandem mass spectrometry (MS–MS) 

improves the selectivity of the technique with a drastic reduction of the background 

without losing identification capability. It enables analysis of pesticides at trace levels in 

the presence of many interfering compounds [18,19]. In spite of high sensitivity and 

selectivity of the technique a reduced number of papers have applied this technique 

[20,21]. Evidently, the sensitivity is still not high enough to directly determine the trace 

amounts of pesticides in drinking and surface water samples at the level required by the 

European Community (EC) and European Union (EU) Waters Directives of 0.1 µg/L 

for each pesticide, 0.5 µg/L for total amount in drinking water and 1-3 µg/L for surface 

water [22,23].  
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Due to these low levels, a preconcentration procedure for the analytes must be 

applied. Preconcentration of contaminants from water samples, and generally sample 

preparation steps, are often accomplished by extraction techniques, based on enrichment 

on liquid (liquid–liquid extraction) or solid (solid–liquid extraction) phases [24,25]. 

Extraction procedures, optimized prior to chromatographic separation, can be coupled 

on- or off-line to the analysis, which is mainly performed, by liquid chromatographic 

(LC), gas chromatographic (GC) or gas chromatography – mass spectrometric (GC-MS) 

methods [24,25,26,27]. 
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1.1. Thesis Objective 

 

In this study, investigation of Dichlorvos (DDVP) and Trifluralin pesticide 

levels in Tahtalı Dam Water, which is the most important drinking water supply in 

İzmir were carried out. Study of the variation of Dichlorvos (DDVP) and Trifluralin 

amounts in Tahtalı Dam Water for a reasonable period was planned. 

  Mainly twenty pesticides are used for agricultural purposes in Tahtalı Dam 

Basin. Due to consumption of target pesticides in greater amounts compared to the 

others the determination of DDVP and Trifluralin pesticides and the examination of 

their levels in the Tahtalı Dam Water was studied. 

According to the literature and some official organizations [World Health 

Organization (WHO), USA Environmental Protection Agency (EPA)], the tolerance 

levels of pesticides in drinking water are 0.1 µg/L for one pesticide and 0.5 µg/L for 

total pesticide concentrations. Therefore, sensitive analytical instruments and methods 

are required for the determination of these amounts. 

For this purpose, Gas chromatography – Mass Spectroscopy (GC-MS) 

techniques are generally preferred as reported in most papers. The GC-MS instrument in 

our laboratory has an Ion Trap (IT) mass detector. Working in Selected Ion Storage 

(SIS) and Tandem (MS-MS) modes could increase the sensitivity and selectivity of this 

instrument. Nevertheless, a preconcentration process is still required. In this study, 

Liquid-Liquid Extraction (LLE) and Solid-Phase Extraction (SPE) methods were used 

for sample preconcentration process. 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 2 

 

PESTICIDES AND THEIR PROPERTIES 
 

2.1. Pesticides 

 
 Pesticides are natural or synthetic substances used to kill various kinds of animal 

and plant pests. They are used mainly in agriculture, and also in veterinary, household 

and hygiene products, and in health protection. The name is derived from the Latin 

words pestis (pestilence, plague) and caedere – to kill. 

 The first mention of pesticides was made in 1763, when an extracted solution of 

tobacco was used to control the plant louse. Later, some other uses of pesticides were 

reported; for example, in 1865, in controlling the Colorado beetle by use of Paris green 

(copper-aceto-arsenite). However, the discovery of the insecticidal properties of DDT 

(4,4-dichlorodiphenyl trichloroethane) started the era of pesticide usage on a large scale. 

DDT (as shown in Figure 2.1.) was first synthesized by Zeidler in 1874, but Müller, 

who was looking for a mothproofing agent, did not observe its insecticidal properties 

until 1939. 

 

CCl Cl
CCl3

H

 
 

Figure 2.1. Molecular Structure of DDT 
 

 The use of the DDT in agriculture and forestry also produced spectacular results. 

Over the coming years many other pesticides were developed such as organophosphorus 

compound, carbamates, and triazines. Pesticidal formulations usually contain one or 

more chemical agents which are biologically active in the mixture, along with 

subsidiary substances and a non-active matrix. The technical pesticides are available as 

solid and liquid. 
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Table 2.1. Historical Development of Pesticides 
1500 BC Egyptians produced insecticides against lice, fleas and wasps. 
1000 BC The Greek poet Homer referred to a pest-averting sulphur. 
200 BC The Roman writer Cato advises vineyard farmers to burn bitumen to remove insects. 
early 
1700’s 

John Parkinson, author of 'Paradisus, The Ordering Of The Orchard' recommended a 
concoction of vinegar, cow dung and urine to be put on trees with canker. 

1711          
 

In England, the foul smelling herb rue was boiled and sprayed on trees to  
remove canthraid flies 

1763 
 

In Marseilles, a mixture of water, slaked lime and bad tobacco was a remedy for plant lice. 
 

1800's Many developments occur. 
1821 
 

London Horticultural Society advised that sulphur is the remedy for mildew on peaches. 
 

1867 The beginning of modern pesticide use.  
  Colorado beetle invade US potatoes crops and arsenic is applied. 
1867 Professor Millardet, a French professor, discovers a copper mixture to destroy mildew. 
late  French vineyard growers have the idea of selective weed killers. 
1800's   
1892 The first synthetic pesticide, potassium dinitro-2-cresylate, marketed in Germany. 
1900's Insecticides, fungicides and herbicides have all been discovered. 
early  Inorganic substances introduced. 
1900's   
1932 Products to control house hold pests marketed. 
1939 The Second World War causes three discoveries: 1. the insecticide DDT. 
  2. the organophosphorus insecticides. 3. the selective phenoxyacetic herbicides. 
1945 After the Second World War, farming intensity intensified production. 
1950's Geigy introduces the carbamates. 

 

2.1.1. Classification of Pesticides 

 
 Pesticides can be classified according to their use and chemical structure.  

According to use, pesticides are classified as follows: 

- insecticides (insect killers) 

- herbicides (plant killers) 

- fungicides (controlling fungi) 

- molluscicides (controlling molluscs) 

- nematicides (controlling nematodes) 

- rodenticides (controlling rodents) 

- bacteriocides (bacteria killers) 

- defoliants (removing plants leaves) 

- acaricides (killers of ticks and mites) 

- wood preservatives 

- repellents (substances repugnant to pest) 

- attractants (substances attracting insects, rodents and other pests) 
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- chemosterilants (substances inhibiting reproduction of insects) 

 

According to their chemical structure, pesticides are classified as inorganic and 

organic. The inorganic pesticides now constitute only a small part of the pesticides in 

use. Examples of inorganic pesticides are: 

- arsenical pesticides : Paris green [ Cu(CH3COO)2·Cu3(AsO3)2 ] 

- fluoride insecticides : Cryotile ( Na2AlF6 ) 

- inorganic herbicides : Borax ( Na2B4O7 ) 

- inorganic fungicides : Bordeaux mixture ( 3Cu(OH)2·CuSO4·CaSO4 ) 

 

Among the organic pesticides, the following main groups are found: 

organochlorine pesticides (chlorinated hydrocarbons), organophosphorus pesticides, 

carbamates, derivatives of phenoxyacetic acid, urea pesticides, derivatives of triazines. 

Examples of main groups are: 

- Organochlorine Pesticides: Hexachlorocyclohexane, DDT, dieldrin, aldrin 

(hexachloro-hexahydro-dimethano naphtalene), endrin, chlordane, 

endsulphan (1,4,5,6,7,7-hexachloro-8,9,10-trinorborn-5-en-2,3-ylene sulfite), 

mirex, isobenzene, heptachlor, methoxychlor (1,1,1-trichloro-2,2-bis          

(p-methoxyphenyl)ethane), pentachlorophenol. 

- Organophosphorus Pesticides: Dimethoate, parathion (O, O΄-diethyl O΄΄-

nitrophenyl phosphorothioate), malathion (S-(1,2-bis[ethoxycarbonyl]ethyl)- 

O,O΄-dimethyl phosphorodithioate) , dichlorvos (Dimethyl 2,2-dichlorovinyl 

phosphate), fenthion, chlorfenvinphos, chlorpyrifos, glyphosate                     

( N-(phosphonomethyl)glycine). 

- Carbamate Pesticides: Aminocarb, propoxur, carbaryl, aldicarb, dioxacarb, 

maneb( manganese ethylenebis(dithiocarbamate)). 

- Phenoxyacetic acid Herbicides: 2,4-D (2,4-dichlorophenoxyacetic acid), 

dicamba, 2,4,5-T (2,4,5-trichlorophenoxyacetic acid), MCPA, silvex,     

2,3,6-TBA. 

- Triazine Herbicides. Simazine, atrazine, propazine. 

- Urea Pesticides: Monuron, linion, fenuron, isoproturon, chlorotoluran. 

- Pyridinium Herbicides: Diquat, paraquat. 
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In addition to these main groups there are a lot of individual chemical 

compounds that are used pesticides, such as trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-

dipropyl-p-toluidin). 

  

2.1.2. Chemical Structure of Pesticides 

 
 Pesticides are classified according to their chemical structures. The chemical 

structures of some important pesticides are given in Figure 2.2. (chlorinated pesticides), 

2.3. (organophosphorus pesticides), 2.4. (carbamates), 2.5. (chlorinated phenoxy acid 

herbicides), and 2.6. (Dinitroaniline Herbicide). 

 

- Chlorinated Pesticides  

 

Cl
Cl

Cl
Cl

Cl

Cl

CCH3O OCH3

Cl

H

Cl Cl

 
                        (a)                                                                 (b) 

 
Figure 2.2. (a) Molecular Structure of Hexachlorocyclohexane (HCH) 

       (b) Molecular Structure of Methoxychlor (DMDT) 
 

 

- Organophosphorus Pesticides 

 

C C
Cl

Cl
H

O P
O

OCH3

OCH3

C2H5O P
S

O
OC2H5

OCH3

 
                            (a)                                                                 (b) 

 
Figure 2.3. (a) Molecular Structure of Dichlorvos (DDVP) 

                                          (b) Molecular Structure of Parathion 
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- Carbamates 

O C N
H

CH3

O

 
                                    Figure 2.4. Molecular Structure of Carbaryl 
 

- Chlorinated Phenoxy Acid Herbicides 

Cl

Cl

OCH2COOH

 
Figure 2.5. Molecular Structure of 2,4-Dichlorophenoxyacetic acid (2,4-D) 

 

- Dinitroaniline Herbicide 

F3C N(CH2CH2CH3)2

NO2

NO2  
Figure 2.6. Molecular Structure of Trifluralin 

 

2.1.3. Usage Purposes and Areas of Pesticides 

 
 Pesticides are used mostly in agriculture to control the pest (insects, rodents), 

fungi and weeds. In health protection, pesticides are used mainly to control the 

mosquitoes that carry diseases, particularly malaria. Pesticides are used in homes to 

control insects, rodents, etc. Other applications are: to control pest in forestry, for wood 

and textile preservation, and also to control the excessive growth of undesirable plants 

in water reservoirs. 

2.1.4. General Properties of Pesticides 

 In general, pesticides should have the following properties: 

- high toxicity to pests, 
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- low toxicity to other organisms, principally to water organisms and to 

people, 

- adequate stability so that they fulfill their goal before degrading, 

- great ability for degradation so that after completing their task they will 

disappear in the environment with minimal harm. 

Two properties of the pesticides are most important. Their toxicity and degradation. 

2.1.5. Degradation of Pesticides 

 

 Decomposition of pesticides in the environment is now one of the main 

considerations when deciding their approval by the regulating authorities. Degradation 

is mainly by biochemical methods, but chemical and photochemical (under the 

influence of sunlight) degradation also occurs. Biodegradation of pesticides is partly 

correlated with their solubility in water. Those organic pesticides, which readily 

dissolve in water, hydrolyze rapidly in water, and in general they degrade easily. The 

same pesticides are quickly washed out from the soil by rainwater and enter river 

waters. The solubility of some pesticides is given in Table 2.2 [28]. 

 

Table 2.2. Solubility of Some Pesticides 
    Compound Solubility, mg/L 
  DDT       0.0012 
  Aldrin       0.01 
 Organo- Heptachlor       0.056 

I Chlorine Methoxychlor       0.10 
N  Dieldrin       0.18 
S  Endrin       0.23 
E  Toxaphene       0.30 
C   Lindane       7.0 
T  Parathion     24.0 
I  Disulfon     25.0 
C Organo- Diazinon     40.0 
I Phosphorus Chlorfenvinfos    145.0 
D  Malathion    145.0 
E  Methyl demeton    330.0 
S  Dichlorvos 10000.0 

   Dimethoate  2500.0 
  Carbaryl      40.0 
 Carbamates Carbofuran    700.0 
    Aldicarb   6000.0 
  Simazine       5.0 
  Propazine       8.0 
  Diuron     42.0 
 Herbicides 2,4,5-T    280.0 
  2,4-D    890.0 
  Trifluralin        0.300 
  Diquat      70.0% 
    Dalapon      80.0% 
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 Pesticides can be classified into four groups of various persistences. Relative 

persistence of some pesticides in natural water is given in Table 2.3 [29]. 

 

Table 2.3. Relative Persistence of Some Pesticides in Natural Waters 

Readily Slightly Moderately Persistent; 
degradable; persistent; Persistent; half-life 
half-life half-life half-life more than 
less then 2-6 weeks 6 weeks- 6 months 
2 weeks   6 months   
    
Captan Chloramben Carbofuran DDT 
Carbaryl Chlorpropham Carboxin γ-HCH 
Chlorpyrifos Dalapon Chlordane Aldrin 
Dichlone Diazinon Chlorfenvinfos Dieldrin 
Dicrotophos Disulfoton Chloroxuron Heptachlor 
Endotol Fenuron Dimethoate Isodrin 
Endosulfan MCPA Diphenamid Monocrotophos 
Fenitrothion Methoxychlor Diuron Benomyl 
Malathion Monuron Ethion  
Methiocarb Phorate Fensulfothion  
Methylparathion Propham Linuron  
Parathion Dichlorvos Prometion  
Phophamidon  Propazine  
Propoxur  Simazine  
2,4-D   Toxaphene   
Trifluralin    

 

 The persistent pesticides such as DDT, γ-HCH (Hexachlorocyclohexane), 

dieldrin, endrin and others have only slight solubility in water. However, they usually 

readily dissolve in fats, and for this reason they accumulate in the body tissue of birds, 

fish and mammals, and threaten the health of the organism. Because of the high 

persistence of pesticides, their consumption is decreasing in many countries. 

 The degradation process depends on temperature, water, pH and biota. The pH 

of the water is a significant factor, because very often hydrolysis is one stage of the 

biodegradation. A rise in temperature increases the rate of the chemical reaction and 

activity of microorganisms taking part in the biodegradation. In addition, the 

evaporation rate of pesticides to the atmosphere increases with the rise in temperature. 

The most significant factor though is the presence of microorganisms capable of 

degrading the particular pesticide and the time that has elapsed to allow the 

microorganisms to adapt to the presence of the material. The half-life of some pesticides 

in the environment is presented in Figure 2.7 [30].  
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  Figure 2.7. The Half-life of Some Pesticides in the Environment 

 

2.1.6. Toxicity of Pesticides 

 
 Pesticides by definition are toxic substances. They are designed to kill or to 

harm insects, rodents, weeds, fungus, etc. It is intended that the pesticides should be 

toxic in selective way; they should kill only the pest organism and be harmless to non-

target organisms, including humans. To achieve this goal is difficult, and pesticides are 

always, to various extents, harmful to the environment and to people. 

 Pesticides may be divided into five classes according to toxicity to warm-

blooded animals, as shown in the LC50 values, in mg/kg of organism weight (Table 

2.4.)[30].  

Table 2.4. Oral Acute Toxicity Classes of Pesticides for Mammals 

Class LC50 , mg/kg* 

I Below 50 
II 51-150 
III 151-500 
IV 501-5000 
V Above 5000 

 

*LC50 (Lethal Concentration) represents the concentration of pesticides that will kill half of a group of 

test animals from a single exposure by either the dermal, oral or inhalation routes.  

 

Pesticides belonging to class I and class II are classified as toxic substances. 

Pesticides in classes III and IV are harmful substances. Pesticides in class V can be 

regarded as harmless.  
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The toxicity of pesticides to living organisms differs, and depends on the 

particular organisms, the environmental conditions, on the methods of applications, the 

form the pesticide is in (liquid or powder), etc. The toxicity of pesticides to water 

organism is usually high, particularly to insect’s life, as many pesticides are designed to 

kill insects. 

 The toxicity to the water organisms depend on the temperature, ionic strength, 

concentration and character of suspended solids, and on the commercial form of the 

pesticide. Pesticides are rapidly adsorbed onto suspended solids, and their toxic effect is 

then usually diminished. Generally, the toxicity is lower in turbid water than in clear 

water for a given concentration of pesticide. Pesticides may be divided into four classes 

of toxicity to fish according to their LC50 values expressed as a concentration of 

pesticide in water (Table 2.5.) [30].  

 

Table 2.5. Toxicity Classes of Pesticides for Fish 

Class LC50 , mg/L* 

I Below 0.5 
II 0.5 - 5.0 
III 5.1 - 50 
IV Above 50 

 

*LC50 (Lethal Concentration) represents the concentration of pesticides that will kill half of a group of 

test animals from a single exposure by either the dermal, oral or inhalation routes.  

 

2.2. Introduction Routes of Pesticides into Water 

 
 Generally, pesticides are introduced into water by the following routes, 

- surface runoff, 

- transport through soil; soil erosion, 

- direct introduction into water when pesticides are sprayed onto crops or 

forest from planes, 

- in waste waters from plants producing pesticides, 

- in waste water from washing the equipment used for pesticides spraying, 

- in municipal sewage (fungicides, bacteriocides or insecticides when 

controlling flies at sewage works), 

- by direct application to control aquatic plants and insects, 
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- in waste water from manufacturers using pesticides, (e.g. textiles, carpet 

mothproofing). 

After the pesticides are introduced into water, they degrade more rapidly than 

their predecessor compounds, but are still present in measurable quantities in receiving 

river and in the water supply. To protect aquatic organisms and human health, almost 

every country and some official organizations determine upper limit of concentration of 

pesticides in water. For instance, according to European Community (EC) directives, a 

pesticide residue must not be present at a concentration greater than 0.1 µg/L in 

drinking water and requirements for surface water are 1-3 µg/L  [23]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 3 

 

DICHLORVOS (DDVP) AND TRIFLURALIN PESTICIDES 
AND THEIR PROPERTIES 

 

3.1. Dichlorvos (DDVP)  

 Dichlorvos (DDVP) is an organophosphate compound used to control 

household, public health, and stored product insects. It is effective against mushroom 

flies, aphids, spider mites, caterpillars, thrips, and white flies in greenhouse, outdoor 

fruit, and vegetable crops. Dichlorvos is used to treat a variety of parasitic worm 

infections in dogs, livestock, and humans. Dichlorvos can be fed to livestock to control 

botfly larvae in the manure. It acts against insects both as a contact and a stomach 

poison. It is used as a fumigant and has been used to make pet collars and pest strips. It 

is available as an aerosol and soluble concentrate. 

3.1.1. General Properties of Dichlorvos (DDVP) 

 
 Trade names include Apavap, Benfos, Cekusan, Cypona, Derriban, Derribante, 

Devikol, Didivane, Duo-Kill, Duravos, Elastrel, Fly-Bate, Fly-Die, Fly-Fighter, Herkol, 

Marvex, No-Pest, Prentox, Vaponite, Vapona, Verdican, Verdipor, and Verdisol. EPA 

has classified it as toxicity class I - highly toxic, because it may cause cancer and there 

is only a small margin of safety for other effects. Products containing dichlorvos must 

bear the Signal Words DANGER - POISON. 

 

3.1.2. Physical Properties  

• CAS (Chemical Abstracts Services) Number: 62-73-7  

• Chemical Name: 2,2-dichlorovinyl dimethyl phosphate [31]  

C C
Cl

C l
H

O P
O

OCH3

OCH3  
 

Figure 3.1. Molecular Structure of Dichlorvos (DDVP) 
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• Appearance: Dichlorvos is a colorless to amber liquid with a mild chemical odor 

[31].  

• Molecular Weight: 220.98 g/mol 

• Water Solubility: 10,000 mg/L (estimated) [31]  

• Solubility in Other Solvents: dichloromethane, v.s*.; 2-propanol, v.s.; toluene 

v.s.; ethanol s.**; chloroform s.; acetone s.; kerosene s. [31]                                  

* v.s: very soluble, **s: soluble 

• Melting Point: Not Available  

• Vapor Pressure: 290 mPa at 20 0C [31]  

• Partition Coefficient: Not Available  

• Adsorption Coefficient: 30 (estimated) [32]  

3.1.3. Toxicological Effects 

• Acute toxicity: Dichlorvos is highly toxic by inhalation, dermal absorption, and 

ingestion [33,34]. Because dichlorvos is volatile, inhalation is the most common 

route of exposure. As with all organophosphates, dichlorvos is readily absorbed 

through the skin. Acute illness from dichlorvos is limited to the effects of 

cholinesterase inhibition. Compared to poisoning by other organophosphates, 

dichlorvos causes a more rapid onset of symptoms, which is often followed by a 

similarly rapid recovery [33,34]. This occurs because dichlorvos is rapidly 

metabolized and eliminated from the body. People with reduced lung function, 

convulsive disorders, liver disorders, or recent exposure to cholinesterase 

inhibitors will be at increased risk from exposure to dichlorvos. Alcoholic 

beverages may enhance the toxic effects of dichlorvos. High environmental 

temperatures or exposure of dichlorvos to light may enhance its toxicity [33,34]. 

Dichlorvos is mildly irritating to skin [34]. Concentrates of dichlorvos may 

cause burning sensations, or actual burns [33]. Application of 1.67 mg/kg 

dichlorvos in rabbits' eyes produced mild redness and swelling, but no injury to 

the cornea [34]. Symptoms of acute exposure to organophosphate or 

cholinesterase-inhibiting compounds may include the following: numbness, 

tingling sensations, in coordination, headache, dizziness, tremor, nausea, 

abdominal cramps, sweating, blurred vision, difficulty breathing or respiratory 

depression, slow heartbeat. Very high doses may result in unconsciousness, 
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incontinence, and convulsions or fatality. Some organophosphates may cause 

delayed symptoms beginning 1 to 4 weeks after an acute exposure that may or 

may not have produced immediate symptoms. In such cases, numbness, tingling, 

weakness, and cramping may appear in the lower limbs and progress to in 

coordination and paralysis. Improvement may occur over months or years, but 

some residual impairment may remain [34]. The oral LD50 for dichlorvos is 61 

to 175 mg/kg in mice, 100 to 1090 mg/kg in dogs, 15 mg/kg in chicken, 25 to 80 

mg/kg in rats, 157 mg/kg in pigs, and 11 to 12.5 mg/kg in rabbits [31,33,34]. 

The dermal LD50 for dichlorvos is 70.4 to 250 mg/kg in rats, 206 mg/kg in 

mice, and 107 mg/kg in rabbits [31,33,34]. The 4-hour LC50 for dichlorvos is 

greater than 0.2 mg/L in rats [34].  

• Chronic toxicity: Repeated or prolonged exposure to organophosphates may 

result in the same effects as acute exposure, including the delayed symptoms. 

Other effects reported in workers repeatedly exposed include impaired memory 

and concentration, disorientation, severe depressions, irritability, confusion, 

headache, speech difficulties, delayed reaction times, nightmares, sleepwalking, 

and drowsiness or insomnia. An influenza like condition with headache, nausea, 

weakness, loss of appetite, and malaise has also been reported [34]. Repeated, 

small doses generally have no effect on treated animals. Doses of up to 4 mg/kg 

of a slow release formulation, given to cows to reduce flies in their feces, had no 

visibly adverse effects on the cows; but blood tests of these cows indicated 

cholinesterase inhibition [33]. Feeding studies indicate that a dosage of 

dichlorvos very much larger than doses which inhibit cholinesterase are needed 

to produce illness. Rats tolerated dietary doses as high as 62.5 mg/kg/day for 90 

days with no visible signs of illness, while a dietary level of 0.25 mg/kg/day for 

only 4 days produced a reduction in cholinesterase levels [33]. Rats exposed to 

air concentrations of 0.5 mg/L of dichlorvos over a 5-week period exhibited 

significantly decreased cholinesterase activity in the plasma, red blood cells, and 

brain. Dogs fed dietary doses of 1.6 or 12.5 mg/kg/day for 2 years showed 

decreased red blood cell cholinesterase activity, increased liver weights, and 

increased liver cell size occurred [35]. Chronic exposure to dichlorvos will cause 

fluid to build up in the lungs (pulmonary edema). Liver enlargement has 

occurred in pigs maintained for long periods of time on high doses [33].  
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Dichlorvos caused adverse liver effects, and lung hemorrhages may occur at 

high doses in dogs [34]. In male rats, repeated high doses caused abnormalities 

in the tissues of the lungs, heart, thyroid, liver, and kidneys [34].  

• Reproductive effects: There is no evidence that dichlorvos affects reproduction. 

When male and female rats were given a diet containing 5 mg/kg/day dichlorvos 

just before mating, and through pregnancy and lactation for females, there were 

no effects on reproduction or on the survival or growth of the offspring, even 

though severe cholinesterase inhibition occurred in the mothers and significant 

inhibition occurred in the offspring. The same results were observed in a three-

generation study with rats fed dietary levels up to 25 mg/kg/day [33]. Once in 

the bloodstream, dichlorvos may cross the placenta [34].  

• Teratogenic effects: There is no evidence that dichlorvos is teratogenic. A dose 

of 12 mg/kg/day was not teratogenic in rabbits and did not interfere with 

reproduction in any way. There was no evidence of teratogenicity when rats and 

rabbits were exposed to air concentrations of up to 6.25 mg/L throughout 

pregnancy. Dichlorvos was not teratogenic when given orally to rats [33].  

• Mutagenic effects: Dichlorvos can bind to molecules such as DNA. For this 

reason, there has been extensive testing of dichlorvos for mutagenicity. Several 

studies have shown dichlorvos to be a mutagen [35]; for example, dichlorvos is 

reported positive in the Ames mutagenicity assay and in other tests involving 

bacterial or animal cell cultures. However, no evidence of mutagenicity has been 

found in tests performed on live animals. Its lack of mutagenicity in live animals 

may be due to rapid metabolism and excretion [33].  

• Carcinogenic effects: Dichlorvos has been classified as a possible human 

carcinogen because it caused tumors in rats and mice in some studies but not 

others [36]. When dichlorvos was administered by gavage (stomach tube) to 

mice for 5 days per week for 103 weeks at doses of 20 mg/kg/day in males and 

40 mg/kg/day in females, there was an increased incidence of benign tumors in 

the lining of the stomach in both sexes. When rats were given doses of 4 or 8 

mg/kg/day for 5 days per week for 103 weeks, there was an increased incidence 

of benign tumors of the pancreas and of leukemia in male rats at both doses. At 

the highest dose, there was also an increased incidence of benign lung tumors in  
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males. In female rats, there was an increase in the incidence of benign tumors of 

the mammary gland [35]. However, no tumors caused by dichlorvos were found 

in rats fed up to 25 mg/kg/day for 2 years, or in dogs fed up to 11 mg/kg/day for 

2 years. No evidence of carcinogenicity was found when rats were exposed to 

air containing up to 5 mg/L for 23 hours/day for 2 years [36]. A few tumors 

were found in the esophagus of mice given dichlorvos orally, even though 

tumors of this kind are normally rare [34]. In sum, current evidence about the 

carcinogenicity of dichlorvos is inconclusive.  

• Organ toxicity: Dichlorvos primarily affects the nervous system through 

cholinesterase inhibition, the blockage of an enzyme required for proper nerve 

functioning.  

• Fate in humans and animals: Among organophosphates, dichlorvos is 

remarkable for its rapid metabolism and excretion by mammals. Exposure of 

rats to 11 mg/L (250 times the normal exposure) for 4 hours was required before 

dichlorvos was detectable in the rats [33]. Even then, it was detected only in the 

kidneys. Following exposure to 50 mg/L, the half-life for dichlorvos in the rat 

kidney was 13.5 minutes [33]. The reason for this rapid disappearance of 

dichlorvos is the presence of degrading enzymes in both tissues and blood 

plasma. When dichlorvos is absorbed after ingestion, it is moved rapidly to the 

liver where it is rapidly detoxified. Thus poisoning by nonlethal doses of 

dichlorvos is usually followed by rapid detoxification in the liver and recovery 

[33]. Rats given oral or dermal doses at the LD50 level either died within 1 hour 

of dosing or recovered completely [33]. Dichlorvos does not accumulate in body 

tissues and has not been detected in the milk of cows or rats, even when the 

animals were given doses high enough to produce symptoms of severe poisoning 

[33]. 

3.1.4. Ecological Effects 

• Effects on birds: Dichlorvos is highly toxic to birds, including ducks and 

pheasants [31]; the LD50 in wild birds fed dichlorvos is 12 mg/kg.  

• Effects on aquatic organisms: UV light makes dichlorvos 5 to 150 times more 

toxic to aquatic life [34]. Grass shrimp are more sensitive to dichlorvos than the  
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sand shrimp, hermit crab, and mummichog. The LC50 (96-hour) for dichlorvos 

is 11.6 mg/L in fathead minnow, 0.9 mg/L in bluegill, 5.3 mg/L in mosquito 

fish, 0.004 mg/L in sand shrimp, 3.7 mg/L in mummichogs, and 1.8 mg/L in 

American eels. The LC50 (24-hour) for dichlorvos in bluegill sunfish is 1.0 

mg/L [35]. Dichlorvos does not significantly bioaccumulate in fish [37].  

• Effects on other organisms: Dichlorvos is toxic to bees [31].  

3.1.5. Environmental Fate 

• Breakdown in soil and groundwater: Dichlorvos has low persistence in soil. 

Half-lives of 7 days were measured on clay, sandy clay, and loose sandy soil 

[32,37]. In soil, dichlorvos is subject to hydrolysis and biodegradation. 

Volatilization from moist soils is expected to be slow. The pH of the media 

determines the rate of breakdown [37]. Breakdown is rapid in alkaline soils and 

water, but it is slow in acidic media. For instance, at pH 9.1 the half-life of 

dichlorvos is about 4.5 hours. At pH 1 (very acidic), the half-life is 50 hours 

[37]. Dichlorvos does not adsorb to soil particles and it is likely to contaminate 

groundwater [32,37]. When spilled on soil, dichlorvos leached into the ground 

with 18 to 20% penetrating to a depth of 12 inches within 5 days [37].  

• Breakdown in water: In water, dichlorvos remains in solution and does not 

adsorb to sediments. It degrades primarily by hydrolysis, with a half-life of 

approximately 4 days in lakes and rivers. This half-life will vary from 20 to 80 

hours between pH 4 and pH 9. Hydrolysis is slow at pH 4 and rapid at pH 9 

[34,37]. Biodegradation may occur under acidic conditions, which slow 

hydrolysis, or where populations of acclimated microorganisms exist, as in 

polluted waters. Volatilization from water is slow. It has been estimated at 57 

days from river water and over 400 days from ponds [37].  

• Breakdown in vegetation: Except for cucumbers, roses, and some 

chrysanthemums, plants tolerate dichlorvos very well [34].  
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3.2. Trifluralin 

 Trifluralin is a selective, pre-emergence dinitroaniline herbicide used to control 

many annual grasses and broadleaf weeds in a large variety of tree fruit, nut, vegetable, 

and grain crops, including soybeans, sunflowers, cotton, and alfalfa. Pre-emergence 

herbicides are applied before weed seedlings sprout. Trifluralin should be incorporated 

into the soil by mechanical means within 24 hours of application. Granular formulations 

may be incorporated by overhead irrigation. Trifluralin is available in granular and 

emulsifiable concentrate formulations. The technical material is approximately 96% 

pure and the emulsifiable concentrate is about 45% pure. 

3.2.1. General Properties of Trifluralin 

 Trade names include Crisalin, Elancolan, Flurene SE, Ipersan, L-36352, M.T.F., 

Su Seguro Carpidor, TR-10, Trefanocide, Treficon, Treflan, Tri-4, Trifluralina 600, 

Triflurex Trim, and Trust. The compound may be found in formulations with other 

herbicides. Products containing trifluralin bear the Signal Words CAUTION or 

WARNING, depending on the type of formulation. This compound is a General Use 

Pesticide (GUP) in toxicity class III - slightly toxic. N-nitrosamine contaminant levels 

in trifluralin are required to be below 0.5 ppm, a level which EPA believes will result in 

no toxic effects. 

3.2.2. Physical Properties 

• CAS (Chemical Abstracts Services)  Number: 1582-09-8  

• Chemical Name: α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine [31]  

NO2

N(CH2CH2CH3)2

NO2

F3C

 

Figure 3.2 Molecular Structure of Trifluralin 

• Appearance: Trifluralin is an odorless, yellow-orange crystalline solid [31].  

• Molecular Weight: 335.50 g/mol 
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• Water Solubility: <1 mg/L at 27 0C [31]  

• Solubility in Other Solvents: s.** in organic solvents such as acetone 

dichloromethane and xylene [31]                   
**s: soluble 

• Melting Point: 48.5-49 0C [31]  

• Vapor Pressure: 13.7 mPa at 25 0C [31]  

• Partition Coefficient: 5.0719 at pH 7 and 25 0C [31]  

• Adsorption Coefficient: 8000 [38]  

3.2.3. Toxicological Effects 

• Acute toxicity: Pure trifluralin is practically nontoxic to test animals by oral, 

dermal, or inhalation routes of exposure [39]. The oral LD50 for technical 

trifluralin in rats is greater than 10,000 mg/kg, in mice is greater than 5000 

mg/kg, and in dogs, rabbits, and chickens, is greater than 2000 mg/kg. However, 

certain formulated products that contain trifluralin may be more toxic than the 

technical material itself. For example, the oral LD50 for Treflan TR-10 in rats is 

greater than 500 mg/kg. The dermal LD50 for technical trifluralin in rabbits is 

greater than 2000 mg/kg. The 1-hour inhalation LC50 for technical trifluralin in 

rats is greater than 2.8 mg/L [40]. Nausea and severe gastrointestinal discomfort 

may occur after eating trifluralin. Trifluralin does not cause skin irritation. When 

applied to the eyes of rabbits, trifluralin produced slight irritation, which cleared 

within 7 days [41]. Skin sensitization (allergies) may occur in some individuals. 

Inhalation may cause irritation of the lining of the mouth, throat, or lungs [41].  

• Chronic toxicity: Prolonged or repeated skin contact with trifluralin may cause 

allergic dermatitis [41]. The administration of 25 mg/kg/day to dogs for 2 years 

resulted in no observed toxicity [40]. In another study of beagle dogs, toxic 

effects were observed at 18.75 mg/kg/day. These included decreased red blood 

cell counts and increases in methemoglobin, total serum lipids, triglycerides, and 

cholesterol [42]. Trifluralin has been shown to cause liver and kidney damage in 

other studies of chronic oral exposure in animals [43].  

• Reproductive effects: The reproductive capacity of rats fed dietary 

concentrations of trifluralin as high as 10 mg/kg/day was unimpaired through 

four successive generations. Trifluralin administered to pregnant rabbits at doses 
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as high as 100 mg/kg/day, and to rats at doses as high as 225 mg/kg/day, 

produced no adverse effect on either the mothers or offspring [40]. Loss of 

appetite and weight loss followed by miscarriages were observed when pregnant 

rabbits were fed high doses of 224 or 500 mg/kg/day. Fetal weight decreased 

and there was an increase in the number of fetal runts at the 500-mg/kg/day 

dosage [41]. It is unlikely effects on reproduction will be produced in humans at 

expected exposure levels.  

• Teratogenic effects: No abnormalities were observed the offspring of rats fed 

doses as high as 10 mg/kg/day for four generations [40]. Studies in the rat and 

rabbit show no evidence that trifluralin is teratogenic. The highest doses tested 

in these studies were 1000 mg/kg/day in rats and 500 mg/kg/day in rabbits [39]. 

Trifluralin does not appear to be teratogenic.  

• Mutagenic effects: No evidence of mutagenicity was observed when trifluralin 

was tested in live animals, and in assays using bacterial and mammalian cell 

cultures [39].  

• Carcinogenic effects: In a 2-year study of rats fed 325 mg/kg/day, the highest 

dose tested, malignant tumors developed in the kidneys, bladder, and thyroid 

[39]. However, more data are needed to characterize its carcinogenicity.  

• Organ toxicity: Liver, kidney, and thyroid damage appear to be the main toxic 

effects in chronic animal studies [43].  

• Fate in humans and animals: Trifluralin is not readily absorbed into the 

bloodstream from the gastrointestinal tract; 80% of single oral doses 

administered to rats and dogs was excreted in the feces [41].  

3.2.4. Ecological Effects 

• Effects on birds: Trifluralin is practically nontoxic to birds [44]. The LD50 in 

bobwhite quail is greater than 2000 mg/kg, as it is in female mallards and 

pheasants [44]. These values are for the technical product.  

• Effects on aquatic organisms: Trifluralin is very highly toxic to fish and other 

aquatic organisms. The 96-hour LC50 is 0.02 to 0.06 mg/L in rainbow trout, and 

0.05 to 0.07 mg/L in bluegill sunfish [45]. The 96-hour LC50 in channel catfish 

is approximately 1.4 to 3.4 mg/L [45]. Variables such as temperature, pH, life  



 

 24 

stage, or size may affect the toxicity of the compound. Trifluralin is highly toxic 

to Daphnia, a species of small freshwater crustacean, with a 48-hour LC50 of 

0.5 to 0.6 mg/L [46]. The compound shows a moderate tendency to accumulate 

in aquatic organisms.  

• Effects on other organisms: At exposure levels well above permissible 

application rates (100 mg/kg), trifluralin has been shown to be toxic to 

earthworms. However, permitted application rates will result in soil residues of 

approximately 1 ppm trifluralin, a level that had no adverse effects on 

earthworms [46]. It is nontoxic to bees [31].  

3.2.5. Environmental Fate 

• Breakdown in soil and groundwater: Trifluralin is of moderate to high 

persistence in the soil environment, depending on conditions. Trifluralin is 

subject to degradation by soil microorganisms. Trifluralin remaining on the soil 

surface after application may be decomposed by UV light or may volatilize. 

Reported half-lives of trifluralin in the soil vary from 45 to 60 days [38] to 6 to 8 

months [31]. After 6 months to 1 year, 80 to 90% of its activity will be gone 

[41]. It is strongly adsorbed on soils and nearly insoluble in water [38]. Because 

adsorption is highest in soils high in organic matter or clay content and adsorbed 

herbicide is inactive, higher application rates may be required for effective weed 

control on such soils [40,41]. Trifluralin has been detected in nearly 1% of the 

5590 wells tested. However, it has been detected at very low concentrations, 

typically ranging from 0.002 µg/L to 15 µg/L  [41].  

• Breakdown in water: Trifluralin is nearly insoluble in water [31]. It will 

probably be found adsorbed to soil sediments and particulates in the water 

column.  

• Breakdown in vegetation: Trifluralin inhibits the growth of roots and shoots 

when it is absorbed by newly germinated weed seedlings [40]. Trifluralin 

residues in crop plants will occur only in root tissues, which are in direct contact 

with contaminated soil. Trifluralin is not translocated into the leaves, seeds, or 

fruit of most plants. On most crops, trifluralin applied to the leaves has no effect, 

but on certain crops, such as tobacco and summer squash, leaf distortion may 

occur [40].  



 

 

CHAPTER 4 
 

GAS CHROMATOGRAPHY (GC), MASS SPECTROMETRY (MS) 
and THEIR COMBINATION (GC-MS) 

 

4.1. Introduction 

 
GC and MS are complementary techniques that together create a powerful and 

versatile analytical method. Separation of the volatile components of a mixture by GC is 

a technology that was first described in 1952 [47], and it was immediately recognized as 

an indispensable tool for the analysis of organic compounds. Of particular importance in 

the evolution of GC toward modern instruments was the introduction of capillary 

chromatographic columns, which improved the resolution of GC separations by several 

orders of magnitude. However, there are two significant limitations of GC as a 

qualitative and quantitative analytical technique. The first limitation is the necessity for 

analytes to be sufficiently volatile and thermally stable to vaporize at practical 

temperatures. A second limitation is the specificity of GC detectors, which can range 

from very nonspecific [e.g. thermal conductivity, flame ionization detectors (FIDs)], to 

highly specific (mass spectrometer). 

GC/MS combines the resolving capabilities of GC with the unique structural 

information from MS, making it the hybrid analytical method of choice for qualitative 

analysis of suitably volatile organic compounds. Quantitative applications of GC/MS 

are more complicated, and typically require internal standards. The ability to resolve the 

components of complex mixtures, and yielding qualitative information about organic 

molecules, makes GC/MS an attractive technique for environmental and biomedical 

applications.  

MS has limited standalone applications, since specimen purity is essential. MS 

methods for measuring low-boiling compounds require a procedure that will volatilize 

enough molecules to be detected. There are several approaches to MS measurement of 

nonvolatile compounds, including liquid chromatography/MS interfaces, fast atom 

bombardment (FAB), electrospray, thermospray, and matrix-assisted laser 

desorption/ionization (MALDI). All of these methods incorporate techniques that 

ultimately produce vapor-phase molecules that are subsequently fragmented in the mass 

spectrometer’s ion source. 
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4.2. Gas Chromatography 

 
In gas chromatography, the sample is vaporized and injected onto the head of 

chromatographic column. Elution is brought about by the flow of an inert gaseous 

mobile phase. 

A typical gas chromatograph (as shown in Figure 4.1 [48]) comprises three 

fundamental components: an injection system, a chromatographic column, and a 

detector. In most cases, specimens for GC analyses are dissolved in a volatile solvent, 

although neat or gaseous specimens can also be used. Most GC injection systems are 

designed to vaporize liquid specimens, and they accomplish this by heating the injector 

body to a temperature above the boiling point of the solvent and analyte. In older GC 

designs, the sample was injected directly into the chromatographic column, which was 

preheated. However, introduction of capillary chromatographic columns, which have 

bores half a millimeter or less in diameter require innovative injector designs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. Schematic of a Gas Chromatograph 

 

The challenge was to avoid peak broadening due to leakage of residual sample 

into the capillary column over an extended period of time. One microliter of specimen, 

when volatized occupies a considerable volume within the injector body, and the small 

inside diameter of the capillary column cannot accommodate the large volume of vapor. 
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One approach to minimizing the injection bandwidth is to constantly purge the 

injector body so that only a small amount of the vapor has the opportunity to enter the 

capillary column – this technique is called split injection. The split ratio (amount of 

specimen entering the column versus the amount purged) typically varies from 1 : 10 to      

1 : 99. A limitation of split injection is the loss of analytical sensitivity, since a smaller 

amount of specimen enters the column and detector. In some cases, the loss of 

analytical sensitivity is not problematic, and may even be beneficial, especially when 

analyte concentration is high and the detector’s range of linear response is limited. 

Another approach to capillary column injectors is splitless. In a splitless 

injection, the injector body is kept hot enough to vaporize the specimen and solvent, but 

the column temperature remains below the boiling point of the solvent. As the 

vaporized specimen enters the capillary column, it condenses and therefore the 

bandwidth is minimized. After a sufficient period of time (usually about 60s), the 

injector body is purged and the column is warmed up to re-vaporize the specimen and 

begin the chromatography. Splitless injections are technically more complex and 

involve more variables than split injections, but a significantly greater amount of 

specimen is delivered to the capillary column, resulting in better analytical sensitivity. 

On-column injections with capillary columns are also possible, and require 

specially designed syringes fitted with needles that terminate with a length of very small 

capillary, which fits inside the chromatographic column. Because of the fine capillary 

point, the syringes are delicate, and generally not compatible with autosampler 

mechanisms. For sufficiently volatile compounds, vapor may be injected into the gas 

chromatograph using an airtight syringe. Raoult’s law states that the mole fractions 

contained in the vapor phase above a liquid are determined by the respective vapor 

pressures of the constituents of the liquid, which in turn are proportional to their relative 

concentrations. Therefore, the vapor in equilibrium with a liquid can be used to quantify 

volatile constituents in the liquid – this technique is called headspace analysis. 

Headspace sampling offers several advantages over conventional liquid injections: the 

vapor is substantially free of nonvolatile constituents that may form residue inside the 

injector; the injection bandwidth is considerably reduced; and specimen delivery is 

more nearly quantitative. Headspace analysis is only useful for highly volatile 

compounds such as low-molecular-weight alcohols. 
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GC column performance improved dramatically with the introduction of fused-

silica capillary columns, a technology derived from fiber optics. Resolution equivalent 

to several hundred thousand theoretical plates is commonly achievable with capillary 

GC columns. Microprocessor control of the GC oven temperature has enhanced the 

ability to program temperature changes, improving both the resolution and speed of GC 

analyses. In most GC columns the stationary phase is a liquid and the analytical method 

is therefore gas–liquid chromatography, following the widely used convention of 

specifying the state of both stationary and mobile phases in the names of 

chromatographic applications. Gas–solid chromatography applications also exist, but 

are less common. The liquid stationary phase may be coated on a solid support or 

chemically bonded to the inner wall of a fused silica capillary column (‘‘bonded phase’’ 

columns). 

The choice of GC detector depends on the type of compound that is to be 

measured, the sensitivity that is required, and the degree of selectivity necessary to 

avoid significant interference. Thermal conductivity detectors have moderate 

sensitivity, but are not selective. FIDs have better sensitivity, and respond mostly to 

hydrocarbon compounds. Nitrogen–phosphorus detectors are specific for nitrogen- and 

phosphorus-containing compounds, and are very sensitive. Electron capture detectors 

can measure chlorine-containing compounds in subpicogram amounts. The properties 

and performance characteristics of various GC detectors are summarized in Table 4.1 

[49]. 

 

Table 4.1. Performance Characteristics of Common GC Detectors 
Detector Detection Limit Linear Range Application 

 
Thermal conductivity  

 
0.5 ng 

 
105 

 
Universal 

Flame ionization  10 pg 107 Hydrocarbons 
Electron capture  0.05 pg 104 Halides 
Thermionic (nitrogen – 
phosphorus)  

0.1 pg 103 N, P 

Mass spectrometer  10 pg 106 Universal 
 

 

The versatility and ruggedness of GC makes this analytical method an attractive 

choice for the measurement of easily vaporized compounds 
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4.3. Mass Spectrometry 

 
 Mass spectrometry is a spectrometric method, which does not involve the 

absorption or emission of electromagnetic radiation. Sample in a molecular or atomic 

state is converted into ionic particles that are fragments and then analyzed by measuring 

the mass-to-charge ratio of ions. It is an extremely sensitive, versatile and important 

analytical method. 

 In Molecular Mass Spectrometry, analyte is vaporized and bombarded with a 

stream of electrons that lead to the loss of an electron by the analyte and the molecular 

ion M·+  is formed as shown below; 

 

M + e -             M·+  + 2e – 

 
 The charged species M·+ is the molecular ion. As indicated by the dot, the 

molecular ion is a radical ion that has the same molecular weight as the molecule. The 

collision between energetic electrons and analyte molecules usually transfer enough 

energy to the molecules to leave them in an excited state. Relaxation then often occurs 

by the fragmentation of molecular ion to produce ions of lower masses.  
 

Several instrumental techniques have been devised to separate and measure 

charged particles based on their mass. A typical mass spectrometer consists of four 

components: an inlet system, an ion source, a mass analyzer, and a detector, which are 

shown in Figure 4.2 [48]. 

 

 The inlet system must ensure that a pure compound is delivered to the ion 

source. Therefore, chromatographic systems are a popular choice for a mass 

spectrometer inlet system. The ion source is where the compound is ionized, a process 

that is ordinarily followed by decomposition of the analyte into unique, charged 

fragments.  
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Figure 4.2. Components of a Mass Spectrometer 
         

 

The mass analyzer sorts the charged fragments and the detector measures the 

number of charged fragments of any given mass. Since a mass spectrum (sometimes 

called a mass fragmentogram) uniquely identifies a compound based on its 

fragmentation pattern, superimposition of the fragments from a second compound in the 

ion source would make the spectrum uncertain. Therefore, the inlet system for a mass 

spectrometer must deliver pure compound to the ion source in order for the mass 

spectrometer to be useful for qualitative analysis. Inlet systems for MS include GC, 

liquid chromatographs, and several methods for vaporization and ionization of 

nonvolatile compounds. 

 The ion source in a mass spectrometer usually operates under a vacuum – the 

presence of oxygen and nitrogen may affect ionization and contribute interfering 

fragments to the mass spectrum – so a pressure differential exists between the ion 

source and the inlet system. This pressure differential is difficult to maintain when the 

inlet system is pressurized, as are gas and liquid chromatographs. Several devices have 

been created to remove the mobile phase as it elutes from the chromatographic system 

so that only analyte enters the ion source; examples are vacuum jet separators for 

packed-column GC systems, and moving-belt solvent evaporators for high-performance 

liquid chromatographs.  
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Capillary GC columns can usually terminate at the entrance to the ion source 

since the minimal carrier gas flow can be removed efficiently by the mass 

spectrometer’s vacuum system. When solid sampling systems for nonvolatile analytes 

are used, the pressure differential is less of a concern because the sampling system can 

operate under vacuum. Solid sampling inlet systems include MALDI, FAB, 

thermospray, and electrospray.  

In a MALDI system, the analyte is embedded into a pure crystalline matrix. 

When a laser is directed at the crystal, analyte and crystal molecules are ejected. FAB is 

a similar technique, except that high-energy beams of inert atoms, such as argon, are 

used to initiate molecular ejection. In electrospray ionization, the analyte is dissolved in 

an organic solvent, and passed through an electrically charged capillary. Small clusters 

of analyte/solvent form in the capillary, and become charged. As the clusters are 

accelerated through a series of lenses, the solvent is gradually removed, resulting in 

smaller and smaller clusters. When the clusters reach a certain size, coulombic forces 

cause them to explode, and the resulting fragments are measured in the mass analyzer. 

Thermospray ionization is a similar technique, except that the capillary is heated, and 

solvent evaporates quickly after the analyte/solvent aerosol exits the capillary. In both 

electrospray and thermospray applications, nonvolatile analytes are stranded in the 

vapor phase as solvent is removed, and can therefore enter the mass analyzer and be 

measured. These solid sampling techniques are particularly useful for high molecular 

weight compounds, which include proteins and nucleic acids. The ion source of a mass 

spectrometer shatters the analyte molecules so that their fragments can be separated and 

measured.  

Most mass spectrometers use a high-energy flux of electrons to ionize molecules 

the method is called electron impact ionization. Most reference mass spectra are 

generated by electron impact ionization. There are circumstances, though, when 

electron impact ionization does not produce satisfactory spectral uniqueness or 

analytical sensitivity, in this case other ionization methods may be preferable. One 

alternative method is chemical ionization, in which the ion source is pressurized with a 

reagent gas such as methane. The electron flux ionizes the reagent gas, which in turn 

interacts with the analyte to produce charged species. This approach is particularly 

useful for generating negatively charged ions. 
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Fragments may also be produced by collisional dissociation, where analyte 

molecules (or fragments) are accelerated and collide with inert gas molecules to 

produce fragments. This technique is often used in mass spectrometers that have 

multiple mass analyzers, and the collisionally induced fragments are therefore called 

daughter ions since they are produced after initial ionization and passage through the 

first-stage mass analyzer.  

There are several types of mass analyzers, and some instruments combine 

multiple mass analyzers. Time-of- flight mass spectrometers incorporate a simple 

design in which fragments are separated based on their velocities as shown in Figure 4.3 

[50]. 

Magnetic sector mass spectrometers separate fragments based on the degree to 

which they are deflected in a magnetic field. Magnetic sector instruments are very 

sensitive, but cost and complexity is high (Figure 4.4 [48]). Instruments that incorporate 

two magnetic sector mass analyzers can achieve very high resolution, and are useful for 

making accurate mass measurements. Mass measurements with accuracy to 0.0001 amu 

are usually sufficient to determine the exact empirical formula of a parent ion or 

fragment. 

 

 

 
 

Figure 4.3. A Time-of-flight Mass Spectrometer 
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          Figure 4.4. A Magnetic Mass Spectrometer 

                   
 

The most popular mass analyzer is the quadrupole as shown in Figure 4.5 [48], 

which uses a combination of static and oscillating (radio-frequency) electromagnetic 

fields to separate the ions produced in the ion source. Quadrupole instruments are 

relatively inexpensive, have <1.0 amu resolution, and have detection limits for most 

compounds in the picogram range. Multiple quadrupole instruments have also been 

designed, their principal advantage being the ability to analyze mixtures of compounds. 

A variation on the quadrupole mass analyzer is the ion trap mass spectrometer as shown 

in Figure 4.6 [51].  

 
 

      Figure 4.5. A Quadrupole Mass Spectrometer 
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       Figure 4.6. Ion Trap Mass Spectrometer 
 

 

The principal difference between a quadrupole analyzer and an ion trap is that 

the former filters ions by creating an oscillating electromagnetic path through which the 

ions travel, whereas an ion trap keeps the ions with the oscillating electromagnetic field. 

An advantage of the ion trap mass spectrometer is its sensitivity, since ions of a 

particular mass can be accumulated, then released to the detector – the ion yield is 

greater than that achievable by the quadrupole design. Ion trap instruments cost about 

the same as quadrupole instruments, and are more sensitive, but also have two 

disadvantages: mass spectra obtained in ion trap instruments do not always correspond 

closely with reference spectra generated by quadrupole or magnetic sector instruments; 

and ion trap instruments are, generally, less precise for quantitative analysis than are 

quadrupole instruments. Nevertheless, ion trap mass spectrometers are used in many of 

the same applications as quadrupole instruments. Multiple mass analyzer instruments 

using ion traps have also been designed; usually the ion trap accumulates a particular 

ion, and a quadrupole is used to subsequently measure the daughter ions. Most mass 

spectrometers use an electron multiplier tube as the detector, although the design may 

be modified with dynodes in order to measure both positive and negative ions. 
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4.3.1. Ion Trap 

The quadrupole ion trap mass analyzer (Figure 4.7.) consists of three hyperbolic 

electrodes: the ring electrode, the entrance endcap electrode and the exit endcap 

electrode. These electrodes form a cavity in which it is possible to trap and analyze ions. 

Both endcap electrodes have a small hole in their centers through which the ions can 

travel. The ring electrode is located halfway between the two-endcap electrodes.  

 
Figure 4.7. A Schematic Diagram of an Ion Trap Mass Spectrometer 

 

Ions produced from the source enter the trap through the inlet focusing system 

and the entrance endcap electrode. Various voltages are applied to the electrodes to trap 

and eject ions according to their mass-to-charge ratios. The ring electrode RF potential, 

and a.c. potential of constant frequency and variable amplitude, is applied to the ring 

electrode to produce a 3D quadrupolar potential field within the trapping cavity. This 

will trap ions in a stable oscillating trajectory confined within the trapping cell. The 

nature of the trajectory is dependent on the trapping potential and the mass-to-charge 

ratio of the ions. During detection, the electrode system potentials are altered to produce  
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instabilities in the ion trajectories and thus eject the ions in the axial direction. The ions 

are ejected in order of increasing mass-to-charge ratio, focused by the exit lens and 

detected by the ion detector system.  

GC-(IT)MS system has two analysis modes for sensitive and selective analysis. 

These are MS-MS (Tandem Mass Spectrometry) and SIS (Selected Ion Storage) modes. 

• MS-MS (Tandem Mass Spectrometry) Mode: Ion Trap Tandem Mass 

Spectrometry (MS-MS Mode) for electron ionization consists four basic operation 

steps; 

1. Ion formation and matrix ion ejection, 

2. Parent ion isolation, 

3. Product ion formation, 

4. Product ion mass scanning. 

The utility of the MS-MS technique derives from the following; 

1. optimally filling an ion trap with the selected parent ion, 

2. obtaining qualitative structural information about the sample by forming the 

product ion spectrum, 

3. increasing the signal-to-noise ratio by eliminating interfering matrix ions in the 

product ion spectrum during isolation. 

• SIS (Selected Ion Storage) Mode: SIS eliminates unwanted ions by ejecting them 

from the ion trap. Given the optimum number of ions that can be stored in the ion 

trap, SIS enriches the sample ions relative the unwanted matrix ions and ejects the 

latter throughout ionization. Working in SIS mode, the unwanted ions are ejected 

from the ion trap and selectivity is increased. 

4.4. Combined Gas Chromatography and Mass Spectrometry 

 
The combination of GC and MS is one of the most useful and versatile analytical 

configurations available for measuring organic molecules. Although in principle any gas 

chromatograph and mass spectrometer could be combined, the most popular 

configuration nowadays is a capillary gas chromatograph with a split/splitless injector 

and a quadrupole mass spectrometer or ion trap using electron impact ionization.  
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Most quadrupole and magnetic-sector mass spectrometers are offered with 

accessories that permit interfacing with gas chromatographic equipment. The simplest 

mass detector for use in GC is the ion trap detector (ITD). 

 In this instrument, ions are created from the eluted sample by electron impact or 

chemical ionization and stored in a radio-frequency field. The trapped ions are then 

ejected from the storage area to an electron multiplier detector. The ejection is 

controlled so that scanning on the basis of mass-to-charge ratio is possible. The ion trap 

detector is remarkably compact and less expensive than quadrupole instruments.  

Gas chromatograph / mass spectrometer instruments have been widely applied to 

analyze pesticides in water [52,53], because of its high specificity and sensitivity. Other 

attractive technique for determination is gas chromatography – tandem mass 

spectrometry (GC–MS–MS). The tandem MS technique allows highly specific MS 

analyses, with the possibility of directly analyzing complex environmental samples 

without extensive clean-up steps. The last generation of low-cost benchtop ion trap 

instruments can operate in the MS–MS mode: a specific ion, formed by electron 

ionization, is isolated in the ion trap and subsequently dissociated, increasing its 

collisions with the GC carrier gas molecules. Product ions are detected after this step, 

ejecting these ions from the trap by applying a radio frequency (RF) voltage ramp to the 

trap electrodes. Few applications of GC–MS–MS in pesticide analysis are reported [2,3] 

and its use is limited to residue confirmation [54]. The recent application of the MS–MS 

function in ion trap instruments could in the future increase the number of applications, 

considering its ease of use and the relatively low cost of the instruments. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 5 

 

MATERIALS AND METHOD 
 

5.1. Chemicals and Reagents 

 
Standards of the Dichlorvos (DDVP) and Trifluralin pesticides were obtained 

from Riedel-de Haёn® (Germany) with purity higher than 98%. The internal standard 

(I.S.), pentachloronitrobenzene (99% purity) was obtained from Aldrich. Each of 

pesticide stock standard solutions (1000 mg/L) were prepared by exact weighing and 

dissolving them in dichloromethane and stored in a freezer (-18 °C). GC quality 

solvents of dichloromethane, and methanol were purchased from Fluka, and Riedel-de 

Haёn®, respectively. Organic-free water was prepared by Barnstead / Thermolyne 

EASYpure UV System (Dubuque, IOWA, USA). Solid Phase Extraction Disks  

(ENVI™ -18 DSK 47mm) and NaCl were obtained from Supelco (Sigma-Aldrich) and 

Carlo Erba (Italy), respectively.  

 

5.2. Calibration Set 

 
  Intermediate stock standard solutions (10 mg/L) of each compound were 

prepared from 1000 mg/L stock standard solutions. From these 10 mg/L standard 

pesticide solutions, a mixed solution containing 1 mg/L of each pesticide was prepared. 

From this mixed solution, nine calibration solutions (from 0.025 to 5 mg/L) were 

prepared in dichloromethane. Pentachloronitrobenzene internal standard solution         

(1 mg/L) was prepared in dichloromethane and 50 µl of this solution was added to each 

1.0 ml calibration solutions prior to chromatographic quantifications. All solutions were 

stored frozen in the dark at -18 °C until use. 

 

5.3. GC–MS analysis 

 
Star 3400 Cx Gas Chromatograph - Saturn 2000 Ion Trap Mass Spectrometer 

from Varian Instruments (USA) was used for analysis. The gas chromatograph was 

equipped with a split / splitless programmed temperature injector SPI/1078 operated in 

the splitless mode and a DB5-MS (30mX0.25mm I.D.), film thickness 0.25 µm 
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capillary column was employed. The ion trap mass spectrometer was operated in the EI 

mode and the MS–MS option was used.  

Varian Saturn GC/MS Workstation controlled the system. 

GC conditions were as follows: initial column temperature 90°C, then increased 

at 20°C/min to 280°C (kept 2.50 min); carrier gas He (99.999%) at a flow-rate of          

1 ml/min; manifold, transfer-line and trap temperatures were 40, 280 and 200°C, 

respectively; injection volume was 2 µl.  

GC–MS conditions were: solvent delay 4 min; 70 eV of electron impact energy; 

scan rate 1 scan/sec; scanned-mass range 50–300 m/z in segment 2, 50-400 m/z in 

segment 3 and 4. The mass spectrometer was calibrated weekly. 

For GC–MS–MS and GC-MS (SIS Mode), the sample was injected under the 

gas chromatographic conditions described for GC–MS. The MS–MS and MS (SIS) 

parameters are shown in Appendix A. 

 

5.4. Sampling 

 

 All 5 L of water samples were collected by İZSU from Tahtalı Dam in 

Seferihisar/İZMİR and Tahtalı Dam Water Treatment Plant in Görece/İZMİR. These 

samples were supplied twice a month between June and October 2002 by İZSU. 

Collected water samples were acidified and stored in refrigerator at 4 0C until they were 

used for analysis. 

 

5.5. Analysis of Water Samples Using Solid Phase Extraction (SPE) 

Preconcentration Method  

 
 Trace level of pesticides were preconcentrated using the ENVI™ -18 DSK Solid 

Phase Disk [glass fiber embedded with surface-modified silica (C18 bonded phase)]. 

Passing 5 ml of dichloromethane, 5 ml of methanol, and 5 ml of pesticide-free water in 

sequence, under low vacuum, activated the SPE disk. 

 Once activated, 500 ml of the spiked or real sample water, with the prior 

addition of 10 g/l of NaCl and adjusted to pH 4,was passed through the SPE disk at a 

flow-rate of approximately 75-100 ml/min using a vacuum system. Then the SPE disk 

was dried for 15 minutes under vacuum. The elution was carried out by adding 5 ml of 

dichloromethane under low vacuum. The eluate was collected in a tube, and then all 
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elution solvent was evaporated under nitrogen gas stream. After this evaporation 

process, exactly 500µl of dichloromethane and 25µl of internal standard 

(Pentachloronitrobenzene) was added. And then 2 µl of this solution was injected to the 

GC-MS system. 

    Tahtalı Dam water samples were filtered through Filtrak filter paper (black 

band) before preconcentration.  

  

 The analytical procedure can be summarized as follows: 

 

ENVI™ -18 DSK Solid Phase Disk 

 

 

Preconditioning: 5 ml dichloromethane, 5 ml methanol, and 5 ml pesticides-free water 

 

 

Filtration: 500 ml water sample for solid phase extraction 

 

 

Drying: 15 min under vacuum, 15 min air 

 

 

Elution 5 ml dichloromethane 

 

 

Elution solvent evaporated under N2 gas 

Redissolved in exactly 500µl dichloromethane 

Add Pentachloronitrobenzene (I.S.) (25µl) 

 

 

Inject 2 µl  [GC–MS system under MS–MS, and SIS modes] 
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5.6. Analysis of Water Samples Using Liquid-Liquid Extraction (LLE) 

Preconcentration Method 

 

In this preconcentration process, 500 ml of spiked or real sample water was 

extracted with 20 ml of dichloromethane. Obtained extract was evaporated to dryness 

with gentle N2 stream, redissolved in 500 µl of dichloromethane and then 25 µl of 

pentachloronitrobenzene was added as an internal standard before injection to the     

GC-MS system. 

 

The analytical procedure can be summarized as follows: 

 

500 ml of water sample put into separation funnel 

 

 

Add 20 ml dichloromethane and shake about 10 minutes 

 

 

Take the dichloromethane phase into tube 

 

 

Evaporate solvent under Nitrogen gas stream 

Redissolve in exactly 500µl dichloromethane 

Add Pentachloronitrobenzene (I.S.) (25µl) 

 

 

Inject 2 µl  [GC–MS system under MS–MS, and SIS modes] 

 

 



 

 

CHAPTER 6 

 

RESULTS AND DISCUSSION 
 

6.1. Method Comparison 

 

 In this study, two different methods were used for identification and 

quantification of the two target pesticides.  

 First method was GC-MS full scan mode. This mode was used for identification 

of the two pesticides. Standard pesticide mixture solutions were injected under full scan 

mode. Total ion GC-MS chromatogram (Figure 6.1.) and mass spectra of each pesticide 

were obtained (Figure 6.2. and 6.3.).  

 

 

 
Figure 6.1. Total Ion GC-MS Chromatogram of Standard Pesticide Mixture Solution  

(1 mg/L); a = Dichlorvos (DDVP); b = Trifluralin; c = Pentachloronitro 

benzene (Internal Standard) 
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Figure 6.2. Mass Spectrum of Dichlorvos (DDVP) 

 

  In the mass spectrum of Dichlorvos (Figure 6.2.), two important peaks were 

examined to compare with reference mass spectrum of dichlorvos from pesticides 

library. These two peaks (109 and 185) are most probably formed by the following bond 

cleavages. 
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Figure 6.3. Mass Spectrum of Trifluralin 

 

In the mass spectrum of trifluralin (Figure 6.3.), two important peaks were 

examined to compare with reference mass spectrum of trifluralin from pesticides 

library. These two peaks (264 and 306) are most probably formed by the following bond 

cleavages. 
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 Obtained mass spectra of these pesticides were almost the same in the mass 

spectrum library (appendix B). MS full scan mode was used because it gives structural 

information about the target pesticides to be identified. However it was of limited 

sensitivity and therefore, for target pesticide analysis, MS-MS mode was preferred.   

The MS-MS parameters are shown in Table 6.1. 

 

Table 6.1. MS-MS Parameters 

 

Pesticides 
Activation 

Time (min) 
m/e Range 

Major 

Fragment 

Ion (m/e) 

Excitation 

Amplitude (V) 

Excitation Storage 

Level (m/e) 

Dichlorvos 4.00 – 5.25 50 – 300 185 57.0 66.0 

Trifluralin 5.25 – 7.75 50 – 400 306 45.0 75.0 

 

 

 
 

Figure 6.4. Chromatogram A obtained with GC-MS mode, chromatogram B obtained 

with GC-MS-MS mode after SPE step of 500 ml of water sample 

 
 
 
 
 

 



 

 46 

 
 

Figure 6.5. Chromatogram A obtained with GC-MS mode, Chromatogram B obtained 

with GC-MS-MS mode 0.5 mg/L of pesticides standard solution.             

[a= Dichlorvos(DDVP); b = Trifluralin; c = Pentachloronitrobenzene 

(Internal Standard)] 

 

 
 Figure 6.4.B and 6.5.B show that using tandem mass spectrometry                

(GC-MS-MS) mode; selectivity of the technique improves with a drastic reduction of 

the background and without losing identification capability. And also, the tandem mass 

technique allows highly specific MS analyses, with possibility of directly analyzing 

complex environmental samples without extensive clean-up steps. 

 Under these situations, GC-Tandem Mass (MS-MS) mode was used for 

analyzing the real water samples from Tahtalı Dam. 

6.2. Calibration Results  

 

 The instrument calibration for GC-MS-MS was performed by injecting standard 

solutions of each pesticide at levels ranging from 0.025 to 5 mg/L. The results are 

shown in Table 6.2. GC chromatograms for the lowest and highest concentration of 

standard solution are shown in Figure 6.6. and 6.7. Good linearity of the response was 

found for Trifluralin and Dichlorvos at concentration belonging to cited interval, with 

determination coefficients (or correlation coefficient) higher than 0.994. The calibration 

plots for dichlorvos and trifluralin are shown in Figure 6.8. to 6.10.  
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Figure 6.6. Chromatogram obtained with GC-MS-MS mode 0.025 mg/L of pesticides 

standard solution. 

                      [a= Dichlorvos(DDVP); b = Trifluralin; c = Pentachloronitrobenzene          
(Internal Standard)] 

 
 
 
 
 
 

 
 

 

Figure 6.7. Chromatogram obtained with GC-MS-MS mode 5 mg/L of pesticides 

standard solution. 

                      [a= Dichlorvos(DDVP); b = Trifluralin; c = Pentachloronitrobenzene          
(Internal Standard)] 
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Table 6.2. Retention Time Windows (RTWs)a and Calibration Data of GC-MS-MS Methodsb 

 

Pesticide RTWa 

(min) 
Precursor 

Ion 
Studied  

Ion 
Linear Range 

(mg/L) 
r2 RSD 

(%) 
LODc (µg/L)  

(Before 
preconcentration) 

LODc (µg/L) 
(After 

preconcentration) 

LOQd (µg/L) 
(Before 

preconcentration) 

LOQd (µg/L) 
 (After 

preconcentration) 
 

Trifluralin 

 

7.17- 7.21 

 

306 

 

264 

 

0.025 - 0.500 

 

0.997 

 

8.5 

 

0.8  

 

0.0008 

 

2.7  

 

0.0027 

 

Trifluralin 

 

7.17- 7.21 

 

306 

 

264 

 

0.500 – 5.000 

 

0.994 

 

5.8 

 

0.8  

 

0.0008 

 

2.7  

 

0.0027 

 

Dichlorvos 

 

4.31-4.38 185 93 

 

0.025 - 0.500 

 

0.999 

 

11.4 

 

10.5 

 

0.0105 

 

35.0  
 

0.0350 

 

Dichlorvos 

 

4.31-4.38 

 

185 

 

93 

 

0.500 – 5.000 

 

0.998 

 

10.3 

 

10.5 

 

0.0105 

 

35.0  
 

0.0350 

 

         a Retention time windows (RTWs), defined as retention time of analyte averages ± 3 standard deviation of retention times. 
         b Calibration data for GC-MS-MS obtained using relative areas of the Internal Standard (I.S.) 
         c LOD (limit of detection) 
         d LOQ (limit of quantitation) 
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Detection limit (LOD) (Signal-to-Noise Ratio S/N = 3) and quantitation limit 

(LOQ) (S/N = 10) were calculated on the values of the blank at the retention times of 

analytes (ten injections). They were low enough to allow the analysis of pesticides in 

water samples at the levels required by the EU Drinking Water Directive (0.1 µg/L 

individually, 0.5 µg/L in total). 
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Figure 6.8. Calibration Plot for Trifluralin for Concentration Range of 0.025 mg/L - 0.5 mg/L 
 
 

 
Figure 6.9. Calibration Plot for Trifluralin for Concentration Range of 0.5 mg/L - 5 mg/L 
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Figure 6.10. Calibration Plot for DDVP for Concentration Range of 0.025 mg/L - 0.5 mg/L                             
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Figure 6.11. Calibration Plot for DDVP for Concentration Range of 0.5 mg/L - 5 mg/L 
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6.3. Liquid-Liquid Extraction (LLE) 

 

In this process, 500 ml of pesticide-free water spiked with 0.2 µg/L of each 

target pesticide were used to study the extraction efficiency of the analytes. Good 

recoveries were obtained (90.8% for Trifluralin and 86.0% for Dichlorvos (DDVP)). 

This process was also repeated for 250 ml and 1000 ml of spiked water samples. The 

results obtained are in Table 6.3. 

 

Table 6.3. Recoveries of Liquid-Liquid Extraction of Pesticide Spiked in Pesticide-free 

Water at Different Sample Volumes* 

 

Pesticides Volumes 

 250 ml 500 ml 1000 ml 

 Recovery % RSD % Recovery % RSD % Recovery % RSD % 

Trifluralin 111.2 5.8 90.8 10.3 28.6 13.9 

Dichlorvos 103.3 10.2 86.0 6.3 20.4 13.2 

*The values are means of four determinations 

 Recoveries were good enough using volumes ≤ 500ml of sample. A volume of 

500 ml was chosen as optimum volume of sample to use. This volume is also the most 

used volume in literature [27, 55]. 

 

6.4. Solid Phase Extraction (SPE) 

 

 In the solid phase extraction process, ENVI™-18 DSK 47mm Solid Phase 

Extraction Disks were used. For each trial, three 500 ml aliquots of pesticide free water 

samples spiked with 0.2 µg/L of each target pesticide were used to study the extraction 

efficiency of the analytes.  

Three parameters pH, salt (NaCl) effect and sample volume were studied for the 

recovery efficiency of the target pesticides. 

 The effect of three different pH values were tested; pH of pesticide free water 

was adjusted to 2.0, 4.0 and 6.0 by adding hydrochloric acid and NaOH before the 

preconcentration step. Good recoveries were obtained for Dichlorvos and Trifluralin at 

pH 4 (as shown in Figure 6.12.). Recovery results are shown in Table 6.4. 
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Table 6.4. Effect of pH on Recoveries in the Solid Phase Extraction Process 

 
  Pesticides pH 

 2 4 6 

 Recovery % Recovery % Recovery % 

Trifluralin 98.7 107.5 98.0 

Dichlorvos 40.7 63.0 31.0 

 

 

Recoveries of the Dichlorvos and Trifluralin for solid phase extraction were   

63.0 (±5.7)% and 107.5 (±4.5)% in water samples spiked with 200 ng/L pesticides at  

pH 4. 
 

0

20

40

60

80

100

120

0 2 4 6 8

pH

Re
co

ve
ry

 %

Trifluralin
Dichlorvos

 
Figure 6.12. Effect of pH on The Recovery of Target Pesticides 

 

 Another parameter tested was the addition of salt (NaCl) at four different 

concentrations, 5, 10, 15 and 20 g/L. The results as figured in Table 6.5. show an 

improvement in the recoveries of target pesticides when 10 g/L of NaCl was added and 

so this concentration was chosen for further studies. Addition of NaCl affects the 

increase of ionic strength of the solution to decrease the solubility of analytes. 
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Table 6.5. Effect of Salt (NaCl) on Recoveries in the Solid Phase Extraction Process* 

   
Pesticides Salt (NaCl) g/L 

 5 10 15 20 

 Recovery % Recovery % Recovery % Recovery % 

Trifluralin 87.7 107.5 77.3 79.7 

Dichlorvos 30.7 63.0 30.7 40.0 

     * 
These values were obtained at pH 4 
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Figure 6.13. Effect of Salt Addition on The Recovery of Target Pesticides 

 

Also, the next step was to study the recoveries of pesticides at different sample 

volumes. 250, 500 and 1000 ml of pesticide free water samples were spiked with 

different amounts of pesticides so that the pesticide concentration was always the same. 

In Table 6.6 recoveries for each pesticide obtained with GC-MS-MS is shown. 

 

Table 6.6. Recoveries of Solid Phase Extraction of Pesticides at Different  

Sample Volumes* 

 

Pesticides Volumes 

 250 ml 500 ml 1000 ml 

 Recovery % RSD % Recovery % RSD % Recovery % RSD % 

Trifluralin 99.0 11.3 98.7 4.1 87.3 9.7 

Dichlorvos 66.3 11.3 40.7 8.6 23.3 2.5 
*
The values are mean values of four determinations obtained at pH 2 
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As seen from Table 6.6, when the extraction volumes were increased, recoveries 

of pesticides decreased. Optimum a volume of 500 ml was chosen for further studies. 

 

6.5. Real Sample Analysis   

 

 Analyzed water samples were collected between 01 June to 30 September 2002 

by İZSU. Solid Phase Extraction and Liquid-Liquid Extraction methods were used to 

analyze all the water samples. Obtained results are below the detection limit for each 

pesticide. A typical chromatogram obtained with a real sample from Tahtalı Dam Water 

is shown in Figure 6.14.B.   

 

 
 

Figure 6.14. Chromatogram A obtained with GC-MS-MS mode 0.025 mg/L of standard 

pesticide solution, Chromatogram B obtained with GC-MS-MS mode after 

SPE step of 500 ml of water sample 

                    [a= Dichlorvos(DDVP); b = Trifluralin; c = Pentachloronitrobenzene          
(Internal Standard)] 

 

 

In Figure 6.14, chromatogram B was obtained with GC-MS-MS mode from real 

water  sample  after  SPE  whereas  chromatogram  A  was  obtained  from  0.025 mg/L  
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standard pesticides solution. Comparison of these two chromatograms and analysis of 

water samples collected between 01 June to 30 September 2002 shown that Dichlorvos 

(DDVP) and Trifluralin pesticides are not present at detectable levels in Tahtalı Dam 

Water. 



 

 

CHAPTER 7 
 

CONCLUSION  
 

1.  The above studied pesticides could be analyzed both with GC and GC-MS. 

However during this research study GC-(IT)-MS instrument was used for 

analysis. Comparison of two techniques are as follows:  

 

Advantages of the GC 
 
a. Detection limits for a certain  

compound can be lowered with  a 

specific detector. 

 

 

 

 

Disadvantages of GC 
 
a. Since sample detection relies on 

retention time, one cannot be 

completely sure of the sample 

analyzed. 

b.  Retention time can change and give 

positive errors for the same compound 

but for different analysis. 

 

Advantages of the GC- (IT)-MS 
 
a. Compounds can be completely 

identified by their mass spectra. 

b. Different compounds can be 

analyzed with the same ion source. 

c. Detection limit can be lowered by 

using tandem MS and SIS. 

d. Analysis of samples can be 

straightforward even in solutions 

with a big matrix. 

 

Disadvantages of the GC- (IT)-MS 
 
a. In some cases sensitivity of the 

instrument cannot be as high as a 

specific GC-Detector. 

 

 

Therefore GC- (IT)-MS was found to be a suitable technique for analyzing trace 

amounts of the studied pesticides. 
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2. Following conclusions are deduced from the analysis results 

 

a. Both dichlorvos and trifluralin are in negligible amounts in Tahtalı Dam Water. Soil 

and sediment analysis can complement our study. However, although these two 

pesticides are widely used in Tahtalı Dam Basin, they degrade reasonably fast and 

the probability of finding them in water, soil or sediment seems low. 

b. Analysis interval was planned for at least one year, but due to some unavoided 

reasons (organizing water sample supplies with İZSU, MS going out of order and 

time spent for servicing, time spent for missing chemicals and Spe disks), samples 

between 01 June 2002 to 30 September 2002 intervals could be analyzed. We are 

planning to continue the analysis for at least one year or may be two years. 

c. Solid Phase Extraction (SPE) and Liquid-Liquid Extraction (LLE) were both used 

for the extraction of studied pesticides and gave results in the same range. However, 

spe will be used in future studies, because it performs better separation especially 

for samples with big matrix effects. 

d. Solid Phase Extraction (SPE) is also preferable for environmental reasons because 

amount of polluting extraction solutions are minimized. 

 

7.1. Future Proposed Research 

 

 In order to follow the changes in concentration levels if any, this study is aimed 

to be continued in 2003 especially in spring and autumn seasons. 

If some changes in concentration are detected, these pesticides should be 

analyzed for two or more years to get more significant results and to form a 

mathematical model. 

Analysis of other pesticides are also planned. 
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APPENDIX A 

 

SATURN GC/MS WORKSTATION – METHOD LISTING 
 

A.1. 3400 GC Method Report 

 GC Injector 

 Injector Type                             :   Temperature Programmable   

 GC Injector Oven On?              :   Yes 

 Inital GC Injector Temperature :   280 ˚C 

Inital GC Injector Hold Time    :   0.00 minutes 

 

GC Column 

Column Oven On?                     :  Yes 

Inital GC Column Temperature :   280 ˚C 

Inital GC Column Hold Time    :   0.00 minutes 

 

GC Column Temperature Program 1 

                                                                           

Final Temperature                     :   280  ˚C 

Rate                                           :   20.0 ˚C/min. 

Hold Time                                 :   2.50 min 

 

GC Relays 

Relay Time Program                           :   Use 

Initial Relay States                              :   ----- 

Relay Initial Conditions at Run End? :   No 

 

Relay Program 1 

Relay Time           :   0.01   State 1--- 

 

Relay Program 2 

Relay Time           :   1.00   State ---- 
           AA1 



 

  

A.2. MS Method Report 

Segment Number 1 

Description :   FIL/MUL DELAY 

 

Emission Current :                   10 microamps 

Mass Defect :                             0 mmu/100u 

Count Threshold:                       1 counts  

Multiplier Offset :                      0 volts 

Cal Gas :                               OFF   

Scan Time :                                1.000 Sec. 

Segment Start Time :                 0.00 Min. 

Segment End Time :                  4.00 Min. 

Segment Low Mass :                40 m/z 

Segment High Mass :              650 m/z 

Ionization Mode :                           NONE 

Ion Preparation Technique :           NONE 

 

Segment Number 2 

 

Emission Current :                   80 microamps 

Mass Defect :                             0 mmu/100u 

Count Threshold:                       1 counts  

Multiplier Offset :                   300 volts 

Cal Gas :                               OFF   

Scan Time :                                1.000 Sec. 

Segment Start Time :                 4.00 Min. 

Segment End Time :                  5.25 Min. 

Segment Low Mass :                50 m/z 

Segment High Mass :              300 m/z 

Ionization Mode :                           EI/AGC 

Ion Preparation Technique :           MS/MS 

Target TIC :                            5000 counts     

Prescan Ionization Time :       1500 microseconds 
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Background Mass :             50 m/z 

RF Dump Value :              650 m/z 

 

MS/MS Ion Preparations 

 

Ionization Parameters : 

 Ionization Storage Levels :           48 m/z 

Ejection Amplitude :                    20.0 volts 

Isolation Parameters : 

 Parent Ion Mass :                        185.0 m/z 

 Isolation Window :                         3.0 m/z 

 Low-edge Offset :                           6 steps 

 High-edge Offset :                          2 steps 

 High-edge Amplitude :                30.0 volts 

 Isolation Time :                                5 milliseconds  

Dissociation Parameters : 

 Waveform Type :                           NON-RESONANT 

 Excitation Storage Level :                    66.0 m/z    

 Excitation Amplitude :                          57.00 volts 

Excitation Time :                                  20 milliseconds 

 

Segment Number 3 

 

Emission Current :                   50 microamps 

Mass Defect :                             0 mmu/100u 

Count Threshold:                       0 counts  

Multiplier Offset :                   300 volts 

Cal Gas :                               OFF   

Scan Time :                                1.000 Sec. 

Segment Start Time :                 5.25 Min. 

Segment End Time :                  7.75 Min. 

Segment Low Mass :                50 m/z 

Segment High Mass :              400 m/z 
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Ionization Mode :                       EI/AGC 

Ion Preparation Technique :       MS/MS        

Target TIC :                             5000 counts     

Prescan Ionization Time :          100 microseconds 

Background Mass :                    50 m/z 

RF Dump Value :                     650 m/z 

 

MS/MS Ion Preparation : 

 

Ionization Parameters : 

 Ionization Storage Levels :           48 m/z 

Ejection Amplitude :                    20.0 volts 

Isolation Parameters : 

 Parent Ion Mass :                        306.0 m/z 

 Isolation Window :                         3.0 m/z 

 Low-edge Offset :                           6 steps 

 High-edge Offset :                          2 steps 

 High-edge Amplitude :                30.0 volts 

 Isolation Time :                                5 milliseconds  

Dissociation Parameters : 

 Waveform Type :                           NON-RESONANT 

 Excitation Storage Level :                    75.0 m/z    

 Excitation Amplitude :                          45.00 volts 

Excitation Time :                                  20 milliseconds 

Segment Number 4 

 

Emission Current :                   50 microamps 

Mass Defect :                             0 mmu/100u 

Count Threshold:                       0 counts  

Multiplier Offset :                   200 volts 

Cal Gas :                               OFF   

Scan Time :                                1.000 Sec. 

Segment Start Time :                 7.75 Min. 
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Segment End Time :                 10.00 Min. 

Segment Low Mass :                50 m/z 

Segment High Mass :              400 m/z 

Ionization Mode :                           EI/AGC 

Ion Preparation Technique :         SIS        

Target TIC :                             10000 counts     

Prescan Ionization Time :          100 microseconds 

Background Mass :                    50 m/z 

RF Dump Value :                     650 m/z 

 

SIS Ion Preparation : 

 

Mass Range 1 : 294 to 296 
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APPENDIX B 
 
 

GC / MS MASS SPECTRA LIBRARY 
 
 
 

 
Figure B.1. Mass Spectrum of Trifluralin (from NIST Pesticides Library) 
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Figure B.2. Mass Spectrum of Trifluralin  
 
 
 This mass spectrum (Figure B.2.) was obtained using Varian 3400 CX Gas 

Chromatograph - Saturn 2000 Mass Spectrometer instrument. 
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GC / MS MASS SPECTRA LIBRARY 
 
 
 

 
 

Figure B.3. Mass Spectrum of Dichlorvos (DDVP) (from NIST Pesticides Library) 
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Figure B.4. Mass Spectrum of Dichlorvos (DDVP)  
 
 
 
 

This mass spectrum (Figure B.4.) was obtained using Varian 3400 CX Gas 

Chromatograph - Saturn 2000 Mass Spectrometer instrument. 
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APPENDIX C 

 

GENERAL INFORMATION ABOUT TAHTALI DAM 
 

 

                          
 

Figure C.1. General View Of Tahtalı Dam 

 

• Location: Seferihisar / İzmir / TÜRKİYE, 

• Construction started in 1986 and was completed in 1996, 

• Used as a Domestic and industrial water supply, 

• Volume: 297,200,000 m3, 

• Annual domestic water: 205,000,000 m3. 
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