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ABSTRACT

HIGHER ORDER SYMPLECTIC METHODS BASED ON

MODIFIED VECTOR FIELDS

The higher order, structure preserving numerical integrators based on the modified

vector fields are used to construct discretizations of separable systems. This new approach

is called as modifying integrators. Modified vector fields can be used to construct high-

order, structure-preserving numerical integrators for ordinary differential equations. In

this thesis by using this approach the higher order symplectic numerical methods based

on symplectic Euler method are obtained. Stability and consistency analysis are also stud-

ied for these new higher order numerical methods. Finally the proposed new numerical

schemes applied to the separable Hamilton systems.
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ÖZET

UYARLANABİLEN VEKTÖR ALANLARI KULLANILARAK

YÜKSEK MERTEBEDEN SİMPLEKTİK

METODLARIN ELDE EDİLMESİ

Uyarlanabilen vektör alanları kullanılarak elde edilen yüksek mertebeden, yapı

koruyan nümerik yöntemler ayrık sistemlerin diskritizasyonunda kullanılmaktadır. Bu

yeni yaklaşım uyarlanabilir entegratörler olarak adlandırılmaktadır. Uyarlanabilen vektör

alanları adi diferansiyel denklemler için yüksek mertebeden, yapı koruyan nümerik ente-

gratörler elde etmek için kullanılabilmektedir. Bu yaklaşıma dayanarak, bu tezde simplek-

tik Euler yöntemi temel alınarak yüksek mertebeden, simplektik metodlar elde edilmiştir.

Bununla birlikte elde edilen bu yeni yöntemlerin kararlılık ve tutarlılık analizleri üzerinde

de çalışılmıştır. Son olarak elde edilen bu yeni metodlar ayrılabilir Hamilton sistemlere

uygulanmıştır.
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CHAPTER 1

INTRODUCTION

During the past decade there has been an increasing interest in studying numerical

methods that preserve certain properties of some differential equations (Budd and Piggott

2000). In recent years, geometric numerical integration methods have come to the fore,

partly as an alternative to traditional methods such as Runge-Kutta methods. A numeri-

cal method is called geometric integrator if it preserves one or more physical/geometric

properties of the system exactly (i.e up to round-off error). Examples of such geometric

properties that can be preserved are (first) integrals, symplectic structure, symmetries and

reversing-symmetries, phase-space volume, Lyapunov functions, foliations, e.t.c. Geo-

metric methods have applications in many areas of physics, including celestial mechan-

ics, particle accelerators, molecular dynamics, fluid dynamics, pattern formation, plasma

physics, reaction-diffusion equations, and meteorology.

Probably the first significant area where geometric ideas were used was in the

(symplectic) integration of Hamiltonian ordinary differential equations. Hamilton sys-

tems form the most important class of ordinary differential equations in the context of

geometric integration. An outstanding property of Hamilton systems is the symplecticity

of the flow. The name symplectic integrator is usually attached to a numerical scheme that

intends to solve such a hamiltonian system approximately, while preserving its underly-

ing symplectic structure. Symplectic integrators tend to preserve qualitative properties

of phase space trajectories: trajectories do not cross, and although energy is not exactly

conserved, energy fluctuations are bounded. First examples of symplectic integrators are

implicit midpoint rule, Strmer-Verlet methods, some Runge Kutta methods such as Gauss

Collocation and Lobatto IIIA-IIIB methods.

In the literature symplectic methods are generally constructed using generating

functions, Runge Kutta methods, splitting methods and variational methods. One of the

methods for constructing high-order symplectic integrators is developed by using modi-

fied vector fields. The primary work on this approach was developed by Philippe Chartier,

Ernst Hairer and Gilles Vilmart(Chartier, et al. 2006) and illustrated by the implicit mid-

point rule applied to the full dynamics of the rigid body. Roman Kozlov used the idea of
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modified vector field in his paper, ”Higher-order conservative discretization of the three

dimensional Kepler motion”(Kozlov 2007) as well. This approach is developed by using

the idea in backward error analysis while constructing modified equations by inverting

the roles of the exact and numerical flows.

In this thesis we construct new higher order symplectic methods based on sym-

lectic Euler method inspired by the theory of modified vector fields in combination with

backward error analysis.

The outline of this thesis can be given as follows: After giving the idea of mod-

ified equations in combination with backward error analysis in Chapter 2. We give the

idea of modifying integrators, introduce symplectic integrators and construct new higher

order symplectic numerical method in Chapter 3. Order of accuracy, consistency, stability

analysis of the proposed numerical methods are studied in Chapter 4. Finally in Chap-

ter 5, these new methods are applied to separable Hamilton systems namely Harmonic

Oscillation and Double Well systems.
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CHAPTER 2

BACKWARD ERROR ANALYSIS AND MODIFIED

EQUATIONS

In this chapter we introduce some important keywords that will be useful for the

next chapters. Since the topic of this thesis is the numerical integrators based on the

modified vector fields we have to give the definition of modified differential equations in

combination with backward error analysis.

2.1. Backward Error Analysis

The general concept of backward error analysis was developed and used exten-

sively by Wilkinson in his work during the 1950s and 1960s, primarily in the field of

numerical linear algebra (Wilkinson 1963). For the study of integration methods for

ordinary differential equations it’s importance was seen much later. Backward error anal-

ysis is very useful, when the qualitative behavior of numerical methods is of interest, and

when statements over very long time intervals are needed. The formal analysis (construc-

tion of the modified equation, study of its properties) gives already a lot of insight into the

numerical methods. For a rigorous treatment, the modified differential equation, which is

a formal series in powers of the step-size, has to be truncated. The error, induced by such

truncation, can be made exponentially small, and the results remain valid on exponentially

long time intervals. (Hairer, et al. 2002)

Now the idea of modified differential equations in the content of backward error

analysis can be given.

2.2. Modified Equations for Backward Error Analysis

Modified differential equations in combination with backward error analysis form

an important tool for studying long-time behavior of numerical integrators for ordinary

differential equations. A modified equation is a truncated series in powers of step size, that

is solved to higher order by a numerical scheme. Such a transformation induces an error
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which can be made exponentially small, and the results remain valid on exponentially

long time intervals. It is very useful when the qualitative behavior of a numerical scheme

is of interest, and when statements over long time intervals are needed.

The idea of modified equations is to describe a numerical solution as points along

the exact solution of a modified problem which is in some sense near the original prob-

lem. That is, the exact solutions of the modified problem ”interpolate” the numerically

approximated solution. The word interpolate is used loosely, and should be thought of as

meaning merely that for a given fixed time step h, the modified solution passes through

the points of the numerical solution. For large h, the modified solutions may vary wildly

between points of the numerical solution and do not necessarily provide a good or natural

interpolant to the numerical solution in the traditional sense.

Though notions of backward analysis and backward stability of problems has been

around for some time, the method of modified equations as a means of (backward) ana-

lyzing numerical solutions of differential equations is a much more recent development.

The primary motivation for seeking such modified problems is that frequently they

are easier to understand than the discrete dynamical systems (i.e. difference equations)

which define the numerical integrator. In essence, they are useful because models are

usually developed and expressed in terms of continuous systems which are difficult to

compare with discrete maps. However, modified equations can also prove useful in ob-

taining long-term estimates of quantities defined strictly by discrete models with maps

sufficiently close to the identity.

Backward error analysis has a history of succeeding where forward analysis fails.

Wilkinson’s classical result regarding the stability of Gaussian elimination could not be

explained through the traditional forward analysis approach (Wilkinson 1961). Modified

equations have been used to explain the success of numerical methods applied to chaotic

systems and perhaps most notably they have been used to prove a series of theorems re-

garding the structure preservation of certain types of methods (e.g. energy conservation

of symplectic methods). Briefly, these theorems are of the form, ”if the system is Hamil-

tonian and the method is symplectic, then the modified system is also Hamiltonian”. A

similar statement holds with Hamiltonian and symplectic replaced by reversible and sym-

metric respectively. The proof of these statements is by induction and can be found in

(Hairer and Stoffer 1997), (Hairer 1984) and (Hairer, et al. 2002).
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2.2.1. Construction of the Modified Equation

Consider an ordinary differential equation

ẏ = f (y), y(0) = y0 (2.1)

with sufficiently smooth vector field f (y) , and the numerical method Φ f ,h(y) applied to

(2.1) which produces the approximations y0,y1,y2, ... such that

yn+1 = Φ f ,h(yn) (2.2)

A forward error analysis consists of the study of errors y1−ϕh(y0) (local error) and yn−
ϕnh(y0) (global error) in the solution space where ϕ is the exact flow of (2.1). The idea of

backward error analysis is to search a modified equation ˙̃y = fh(ỹ) of the form

˙̃y = fh(ỹ) = f (ỹ)+h f2(ỹ)+h2 f3(ỹ)+ ..., ỹ(0) = y0, (2.3)

such that yn = ỹ(nh), and in studying the difference of the vector fields f (y) and fh(y).

This then gives much insight into the qualitative behavior of numerical solution and into

the global error yn− y(nh) = ỹ(nh)− y(nh).

We seek a perturbed or modified function fh such that the solution ỹ, of ˙̃y = fh(ỹ)

matches the solution of (2.2) at the points t = 0;h;2h; .....

We remark that the series in (2.3) usually diverges and that one has to truncate it

suitably. The effect of such a truncation will be given with a theorem after giving the idea

of modified differential equations.

The below figure illustrates this idea.

Figure 2.1. Idea of Backward Error Analysis with Modified Differential Equations.
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In general, it is not possible to obtain an expression for fh explicitly. Instead fh

can be written as a formal series in powers of h, with the terms defined recursively. This

series does not converge in general but suitable truncations of the series can approximate

fh well. There are several approaches for calculating the terms in the h-expansion of fh.

Here we closely follow the approach of Hairer (Hairer, et al. 2002). The idea is to take

expansions of ỹ and Φ f ,h and match terms of equal powers of h. For the computation of

the modified equation (2.3) we put y := ỹ(t) for a fixed t, and expand the solution of (2.3)

into a Taylor series

ỹ(t +h) = ỹ(t)+h ˙̃y(t)+
h2

2
¨̃y(t)+

h3

3!
ỹ(3)(t)+ ...

= ỹ(t)+h fh +
h2

2
f ′h fh +

h3

3!
( f ′′h ( fh, fh)+ f ′h f ′h fh)

= y+h( f +h f2 +h2 f3 + ...)

+
h2

2!
( f ′+h f ′2 +h2 f ′3 + ...)( f +h f2 +h2 f3...)+ ...

= y+h f +h2( f2 +
1
2!

f ′ f )+h3(( f3 +
1
2!

( f ′2 f + f ′ f2)

+
1
3!

( f ′′( f , f )+ f ′ f ′ f ))+ ... (2.4)

Here f , f ′, f ′′ represent f (y), f ′(y), f ′′(y) respectively. Also note that f ′ is the Jacobian

of f and f ′′ , f (3)... binary,ternary operators taking 2,3,... arguments. Term by term

comparison of (2.4) to the expansion of Φ f ,h

Φ f ,h(y) = y+h f (y)+h2d2(y)+h3d3(y)+ ..., (2.5)

gives the functions fk+1 in terms of the f2, f3, ... fk

f2 = d2− 1
2!

f ′ f ,

f3 = d3− 1
3!

( f ′′( f , f )+ f ′ f ′ f )− 1
2!

( f ′ f2 + f ′2 f ),etc. (2.6)

Methods for implementing this recursion are given by Hairer (Hairer, et al. 2002) and by

Ahmed and Corless (Ahmed and Corless 1997) among others. For most functions f ,the

symbolic computations become very costly for higher order terms. An elegant represen-
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tation of the recurrence relation can by achieved through the use of trees and ordered trees

(Hairer, et al. 2002), but will not be presented here as it is outside the scope of this work.

A very similar approach is taken by Reich (Hairer 1999) to develop an expression

for the modified equation, the main difference there being that a recursive expression is

written to define the terms f2, f3, ... of the modified equation (i.e. fi+1 is defined in terms

of fi). The approach is exactly the same otherwise but may be advantageous in the prac-

tical construction of modified equations. With the development of symbolic computing

packages such as Maple, the often cumbersome task of computing terms of the modi-

fied equation can be fully automated. There are several published codes for symbolically

computing modified equations in Maple (Ahmed and Corless 1997) and (Hairer, et al.

2002).

Example 2.1 Consider the scalar differential equation

ẏ = y2, y(0) = 1

with exact solution y(t) = 1
1−t . It has a singularity at t=1. The exact solution exists for

t < 1. We apply the explicit Euler method yn+1 = yn + h f (yn). The one term modified

differential equation (MDE-1) is

˙̃y = f (ỹ)− h
2

f ′(ỹ) f (ỹ) = ỹ
2 −hỹ3 (2.7)

The system has an unstable equilibrium at y = 0 and an asymptotically stable equilibrium

at y = 1
h . In particular a solution exists for all time. The Figure (2.2) shows the exact

solution,the forward euler solution and the modified equation solution for h = 0.1 The

modified equation is not much closer to the numerical solution than the exact solution is,

but it does exist for all time.

7



Figure 2.2. Exact, Forward Euler and MDE-1 Solutions to ẏ = y2,y(0) = 1.

Continuing the procedure outlined above to determine higher order terms(and

making use of symbolic mathematics software) gives the five term modified equation. Its

output is

˙̃y = ỹ2−hỹ3 +
3
2

h2ỹ4− 8
3

h3ỹ5 +
31
6

h4ỹ6− 157
15

h5y7∓ .... (2.8)

The Figure(2.3) presents the exact solution, the Forward Euler method and m-term

modified equations (MDE-m) for m = 1, ...,5 plotted for h = .02. We see that the modified

equation solutions ’converge’ to the numerical solution very quickly as h become smaller.

We observe an excellent agreement of the numerical solution with the exact solution of

the modified equation.

By the similar way the modified equation w.r.t midpoint rule can be obtained given as

below

˙̃y = ỹ2 +
1
4

h2ỹ4 +
1
8

h4ỹ6 +
11

192
h6ỹ8 +

3
128

h8ỹ10∓ .... (2.9)

For the classical Runge-Kutta method of order 4

˙̃y = ỹ2− 1
24

h4ỹ6 +
65

576
h6ỹ8− 17

96
h7ỹ9 +

19
144

h8ỹ10∓ .... (2.10)

8



Figure 2.3. Exact,Forward Euler and MDE-m Solutions to ẏ = y2,y(0) = 1.

We observe that the perturbation terms in modified equation are of size O(hp), where p is

the order of the method. This is true in general.

Theorem 2.1 Suppose that the method yn+1 = φ f ,h(yn) is of order p, i.e.,

φ f ,h(yn) = ϕh(y)+hp+1δp+1(y)+O(hp+2)

where ϕt(y) denotes the exact flow of ẏ = f (y), and hp+1δp+1(y) the leading term of the

local truncation error. The modified equation then satisfies

˙̃y = f (ỹ)+hp fp+1(ỹ)+hp+1 fp+2(ỹ)+ ..., ỹ(0) = y0 (2.11)

with fp+1(y) = δp+1(y).

Proof: The construction of the functions f j(y) (see the beginning of this section) shows

that f j(y) = 0 for 2≤ j ≤ p if and only if φ f ,h(y)−ϕh(y) = O(hp+1).

A first application of the modified equation (2.3) is the existence of an asymptotic

expansion of the global error. Indeed by the nonlinear variation of constants formula, the

difference between its solution ỹ(t) and the solution y(t) of ẏ = f (y) satisfies

ỹ(t)− y(t) = hpep(t)+hp+1(t)+ ... (2.12)

9



Since yn = ỹ(nh)+ O(hN) for the solution of a truncated modified equation, this proves

the existence of an asymptotic expansion in powers of h for the global error yn− y(nh).

In general, the series (2.3) diverges and the infinite order modified equation does

not exist. Nonetheless, taking a finite number of terms of the series (2.3) yields a trun-

cated modified equation that can still provide a good approximation to the behavior of the

discrete dynamical system.

Consider the truncated modified differential equation

˙̃y = FN(ỹ), FN(ỹ) = f (ỹ)+h f2(ỹ)+ ...+hN−1(ỹ) (2.13)

There exists an optimal value of m, dependent on h and denoted by N for which

the difference between the m-term modified equation and the numerical solution is mini-

mized. N increases like 1/h as h tends to zero, and usually much larger than the order p

of the numerical method. In other words, the modified equations are indeed a useful tool

in understanding numerical methods.

Theorem 2.2 Let f (y) be analytic in a complex neighborhood of y0 and that || f (y)|| ≤M

for ||y−y0|| ≤ 2R i.e., for all y of B2R(y0) := {y ∈Cd; ||y−y0|| ≤ 2R}, let the coefficients

d j(y) of the method (2.5) be analytic and bounded in BR(y0). If h < h0/4 where h0 ∝ R/M

then there exists N = N(h) (namely N equal to the largest integer satisfying hN ≤ h0)such

that the difference between the numerical solution y1 = φh(y0) and the exact solution

ϕ̃N,t(y0) of the truncated modified equation (2.13) satisfies

||φh(y0)− ϕ̃N,h(y0)|| ≤ hγMe−h0/h, (2.14)

Proof:See (Hairer, et al. 2002).

2.3. Geometric Properties

The importance of backward error analysis in the context of geometric numerical

integration lies in the fact that properties of numerical integrators are transferred to cor-

responding properties of modified equations.Because of the close relationship between

backward error analysis and the approach of modifying integrators, it is not a surprise

that most results can be extended to our situation. The most important properties of the

modified equation can be collected given as below:

10



• If the numerical integrator Φ f ,h(y) has order p, i.e., the local error satisfies Φ f ,h(y)−
ϕ f ,h(y) = O(hp+1), then we have f j = 0 for j = 2, ..., p;

• If the numerical integrator Φ f ,h(y) is symmetric, i.e, Φ f ,−h(y) = Φ−1
f ,h(y), then the mod-

ified differential equation has an expansion in even powers of h, i.e., f2 j = 0 for all j, and

modifying integrator is symmetric.

• If the basic method Φ f ,h(y) exactly conserves a first integral I(y) of (2.1), then the mod-

ified differential equation has I(y) as first integral, and the modifying integrator exactly

conserves I(y).

• If the basic method is symplectic for Hamiltonian systems of the form ẏ = J−1∇H̃(y);

the modifying integrator is also

• If the basic method is reversible for reversible differential equations then the modified

differential equation and the modifying integrator are reversible;

The proofs of these properties can be found in (Hairer, et al. 2002). Here we are

not concerned with these proofs.
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CHAPTER 3

HIGHER ORDER SYMPLECTIC METHODS BASED

ON MODIFIED VECTOR FIELDS

3.1. Modifying Numerical Integrators

Motivated by the theory of modified differential equations(backward error anal-

ysis) an approach for construction of higher order numerical integrators that preserve

geometric properties of the exact flow is developed. This integrators are called modified

integrators.

The main idea of the theory of modified integrators is sketched by inverting the

roles of the ”numerical method” and the ”exact solution”, it can be turned into a means

by constructing high order integrators that conserve geometric properties. They will be

useful for integrations over long times. This method was used by Philippe Chartier, Ernst

Hairer and Gilles Vilmart in the equations of motion for a rigid body as a numerical

integrator they have chosen the Discrete Moser-Veselov algorithm (DMV)(Moser and

Veselov 1991).Also Roman Kozlov used this method in his work called conservative

discretizations of the Kepler motion (Kozlov 2007).

As before, we consider an ordinary differential equation (2.1) and a numerical

integrator(2.2). But now we search for a modified differential equation again of the form

(2.3), such that the numerical solution ỹn of the method applied with step size h to (2.3)

yields formally the exact solution of the original equation (2.1),i.e.,

ỹn = y(nh) f or n = 0,1,2, ..., (3.1)

The following figure illustrates this idea.
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Figure 3.1. Idea of Modifying Numerical Integrators.

Notice that this modified equation is different from the one considered before.

However because of the close connection with backward error analysis, all theoretical

and practical results have their analogue in this new context. The modified differential

equation is again an asymptotic series that usually diverges, and its truncation inherits

geometric properties of the exact flow if a suitable integrator is applied. The coefficient

functions f j can be computed recursively by using a formulae manipulation program like

MAPLE. Here the idea of obtaining a few of these coefficient functions will be given.

3.2. Construction of the Modifying Integrator

Consider the ordinary differential equation (2.1) and a numerical method (2.2). We

again search for a modified differential equation (2.3) such that the numerical solution ỹn

of the method applied with step size h to (2.3) yields formally the exact solution of the

original differential equation (2.1), i.e. ỹn = y(nh) f or n = 0,1,2, .... The coefficient

functions f j can be computed recursively.

Having found first functions f j, one can use truncation for r > 1

˙̃y = f [r]
h (ỹ) = f (ỹ)+h f2(ỹ)+ ...+hr−1 fr(ỹ) (3.2)

of the modified differential equation corresponding to Φ f ,h(y) . A numerical method

ỹn+1 = Φ
f [r]
h ,h

(ỹn) approximates the solution of (2.1) with order r. It was called a modify-

ing integrator because it applies to the modified vector field f [r]
h instead of f (y).

13



This is an alternative approach for constructing high order numerical integra-

tors for ordinary differential equations (classical approaches are multistep, Runge-

Kutta,Taylor series,composition and splitting methods). It is particularly interesting in

the context of geometric integration because, as known from backward error analysis, the

modified differential equation inherits the same structural properties as (2.1) if a suitable

integrator is applied.

Modifying integrators will be efficient when the evaluation of the truncated vector

field in (3.2) is not much more expensive than that of f (y). McLachlan (McLachlan

2007)discusses situations (N-body problems, lattice systems) where the computation of

derivatives is cheap when it is performed together with the evaluation of f (y). In this

situations the modifying integrators have a large potential.

3.3. Construction of the Modifying Midpoint Rule

For the numerical integration of (2.1) we consider the implicit midpoint rule

yn+1 = yn +h f (
yn + yn+1

2
) (3.3)

We find the functions f j(y) of the truncated modified vector field with respect to implicit

midpoint rule.

Consider the truncated modified differential equation (3.2)

˙̃y = f [r]
h (ỹ) = f (ỹ)+h f2(ỹ)+ ...+hr−1 fr(ỹ)︸                                              ︷︷                                              ︸

F

(3.4)

and the Taylor expansion of exact solution y(t) over h

y(t +h) = y(t)+h ˙y(t)+
h2

2!
¨y(t)+

h3

3!
y3(t)+ ..., (3.5)

where ÿ = f ′ f , y(3) = f ′ f ′ f + f ′′( f , f ) and ỹn+1 = φ
f [r]
h ,h

(ỹn) where the method here is

midpoint rule

ỹn+1 = ỹn +hF(
ỹn + ỹn+1

2
)

= ỹn +hF(
ỹn + ỹn +hF( ỹn+ỹn+1)

2
2

)

= ỹn +hF(ỹn +
h
2

F(
ỹn + ỹn+1

2
))

= ỹn +h [F(ỹn)+
h
2

F(
ỹn + ỹn+1

2
) F ′(ỹn)+

h2

8
F2(

ỹn + ỹn+1

2
)F ′′(ỹn)+ ...]

= ỹn +h f +h2[ f2 +
1
2

f f ′]+h3[ f3 +
1
2

f2 f ′+
1
4

f ′ f ′ f +
1
8

f ′′( f , f )]+ ... (3.6)
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Now equating the terms of (3.6) to the terms of the exact solution (3.5) expanded by

Taylor series we get

f2 +
1
2

f ′ f =
1
2

f ′ f ⇒ f2 = 0 (3.7)

f3 =
1

12
(− f ′ f ′ f +

1
2

f ′′( f , f )) (3.8)

f4 = 0 (3.9)

f5 =
h4

120
( f ′ f ′ f ′ f ′ f − f ′′( f , f ′ f ′ f )+

1
2

f ′′( f ′ f , f ′ f ))

+
h4

120
(−1

2
f ′ f ′ f ′′( f , f )+ f ′ f ′′( f , f ′ f )+

1
2

f ′′( f , f ′′( f , f ))− 1
2

f (3)( f , f , f ′ f ))

+
h4

80
(−1

6
f ′ f (3)( f , f , f )+

1
24

f (4)( f , f , f , f )). (3.10)

We will give numerical application examples about modifying midpoint integrator

as a numerical experiment for Harmonic Oscillator in chapter 5.

3.4. Construction of the Higher Order Symplectic Methods

At the beginning of this section we give some preliminary information about

Hamiltonian systems and symplectic methods .

3.4.1. Hamiltonian Systems

Probably the first significant area where geometric ideas were used was in the

(symplectic) integration of Hamiltonian ordinary differential equations. This is natural as

Hamiltonian systems often have very important applications in mechanics, celestial and

molecular dynamics and optics and their analysis, since Hamilton’s original papers has

always centered on the geometric structure of the equation. The numerical methods for

solving such systems are called symplectic methods that will be given in the following

subsections.

The Theory of Hamiltonian Methods:

Consider initially a mechanical system with generalized coordinates q ∈ R d and

Lagrangian L = T −V where T ≡ T (q, q̇) represents the kinetic energy of the system and

V ≡V (q) represents the potential energy. The dynamics of such a system can be studied

in terms of the calculus of variations by considering the action function is constructed
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by integrating L along a curve q(t) and then computing variations of the action while

holding the end points of the curve q(t) fixed. The details are given in (Marsden and

West 2001). It can be shown easily that this procedure leads to following Euler-Lagrange

equations describing the motion

d
dt

(
∂L
∂q̇

)− ∂L
∂q

= 0 (3.11)

Hamilton recognized that these equations could be put into a form which allowed a more

geometrical analysis. In particular he introduced the coordinates

p =
∂L
∂q̇
∈ R d , (3.12)

which are conjugate generalized momenta for the system. He further defined the

Hamiltonian via a Legendre transformation as

H(q, p) = pT q̇−L(q, q̇) (3.13)

and showed that (3.11) is equivalent to the following system of 2d first-order equations,

called Hamilton’s equations.

q̇i =
∂H
∂pi

(3.14)

ṗi = −∂H
∂qi

(3.15)

Definition 3.1 Suppose that H(q,p) is a smooth function of its arguments for

q and p ∈Rn. Then the dynamical system (3.14), (3.15) (i = 1,2,...,n) is called a Hamil-

tonian system and H is the Hamiltonian function (or just the Hamiltonian) of the system.

Equations (3.14) and (3.15) called Hamiltons equations.

In mechanics, the vector q represents the generalized coordinates of the components of

the system (positions, angles, etc.), while p is a set of generalized momenta.
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Note that for our considered mechanical system H ≡ T +V and thus the Hamilto-

nian represents the total energy present and the Hamiltonian function is a constant of the

motion i.e the Hamiltonian is an invariant of a first integral:

dH
dt

=
n

∑
i=1

∂H
∂qi

q̇i +
∂H
∂pi

ṗi

=
n

∑
i=1

∂H
∂qi

∂H
∂pi

+
∂H
∂pi

(−∂H
∂qi

) = 0 (3.16)

More generally if a system of ordinary differential equation is defined in terms of u∈R 2d

where u = (q, p)T with q, p ∈ R d such that

u̇ = f (u) (3.17)

Then this system is canonically Hamiltonian if

f (u) = J∇H (3.18)

where H = H(q, p) is the Hamiltonian function and ∇ is the operator

(
∂

∂q1
,

∂
∂q2

, ...,
∂

∂qd
,

∂
∂p1

,
∂

∂p2
, ...,

∂
∂pd

) , (3.19)

and J is the skew symmetric matrix

J =


 0 Id

−Id 0


 (3.20)

Here Id is the identity matrix of dimension d.

In this case f is called a Hamiltonian vector field.
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Example 3.1 A harmonic oscillator is a mass-spring system with potential energy 1
2kq2,

where q is the displacement of the spring from equilibrium. For simple systems like this

one, in which the potential energy simply depends on the position, the Hamiltonian is just

the total energy:

H(q, p) =
1
2

kq2 +
p2

2m
, (3.21)

where k and m are positive constants and p is the momentum. Because H is a constant,

the orbits are just the family of ellipses,

1
2

kq2 +
p2

2m
= E (3.22)

The value of E is fixed by the initial conditions. Different values of E correspond to

ellipses of different size. If we are interested in the equations of motion, we can recover

them from Hamiltons equations:

q̇ =
∂H
∂p

= p/m (3.23)

ṗ = −∂H
∂q

= −kq (3.24)

3.4.2. Divergence-Free Vector Fields

Another category of vector field with interesting dynamical features are those with

zero divergence.

Let f = f (y) , f : R d → R d be a vector field. Recall that the divergence of f is

div f =
∂

∂y1
f1 +

∂
∂y2

f2 + ...+
∂

∂yd
fd (3.25)

It happens in certain situations that div f ≡ 0. As an illustration, the vector field of the

system
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dx
dt

= h1(y) (3.26)

dy
dt

= h2(x) (3.27)

A very important special case of divergence-free vector fields are those associated to

Hamiltonian systems, since, from (3.14) and (3.15) we find

div f =
∂

∂q1

∂H
∂p1

+
∂

∂q2

∂H
∂p2

+ ...+
∂

∂qk

∂H
∂pk

− ∂
∂p1

∂H
∂q1

− ∂
∂p2

∂H
∂q2

− ...− ∂
∂pk

∂H
∂qk

(3.28)

which vanishes due to equality of mixed partial derivatives.

The remarkable feature of divergence-free vector fields is that the flow maps as-

sociated to these vector fields are volume preserving.

3.4.3. Volume-Preserving Flows and Liouvilles Theorem

Recall the change of variables theorem tells us that, if we are given a map

ϕ : R d → R d , and a suitable domain V ⊂ R d , then

volV =
∫

V
dx , vol(ϕ(v)) =

∫

V

∣∣det
∂ϕ
∂x

∣∣dx =
∫

V
|detM|dx (3.29)

where M = ϕ′ is the Jacobian of ϕ.It follows that the map ϕ preserves volume provided

|detM| = 1.We would like to examine the Jacobian determinant of the flow map of a

system. The flow map itself satisfies

d
dt

ϕt(y) = f (ϕt(y)) (3.30)

On each side of this equation, we have a vector valued function of y and t; compute the

Jacobian matrix of each side, and swap the order of differentiation with respect to t and y:

d
dt

ϕ′t(y) = f ′(ϕt(y))ϕ′t(y) (3.31)

19



Or dM/dt = f ′(ϕt(y))M. Assuming M is invertible, multiply on the right on both sides

by M−1. Compute the trace of each side:

tr(ṀM−1) = tr[ f ′(ϕt(y))] (3.32)

It is clear to show that tr f ′ = div f . Jacobis formula for the derivative of a determinant

gives

tr(ṀM−1) =
d
dt detM
detM

(3.33)

Since M(0) = ϕ′0(y) = I, it follows that

detϕ′t(y)≡ 1 (3.34)

Thus we have proved the following theorem:

Theorem 3.1 (Liouvilles Theorem)Let a vector field f be divergence free. Then ϕt is a

volume preserving map (for all t).

In particular, all Hamiltonian flow maps preserve volume in phase space. This is a sort of

(qualitative) invariant property.

3.4.4. Volume Preserving Numerical Methods

We now ask if there are numerical methods that preserve volume in phase space,

i.e. mimicking the corresponding property for the flow map.

The obvious requirement for such a numerical method Φh is that

div f = 0⇒ det(Φ′
h) = 1. (3.35)

Let us start with Eulers method, yn+1 = yn +h f (yn). The Jacobian matrix of the flow

Φ′
h = I +h f ′(yn) (3.36)
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which only has unit determinant in extraordinary situations. For example, the determinant

is one for Eulers method applied to the following example:

dx
dt

= 0 (3.37)

du
dt

= f (x) (3.38)

However, it is not one when Eulers method is applied to the harmonic oscillator:

dx
dt

= u (3.39)

du
dt

= −x (3.40)

On the other hand, there are certain methods that do conserve volume, sometimes under

special conditions.

3.4.5. Symplectic Integrators

A firs property of Hamiltonian systems, already mentioned in section (3.4.1) is

that the Hamiltonian H(q, p) is a first integral of the system (3.11) and (3.12). In this

section we shall study another important property-the symplecticity of its flow.

The basic objects to be studied are two-dimensional parallelograms lying in R2d .

We suppose the parallelogram to be spanned by two vectors

ξ =


 ξq

ξp


 , η =


 ηq

ηp


 (3.41)

in the (p,q) space (ξq,ξp,ηq,ηp are in Rd) as P = {tξ+ sη |0≤ t ≤ 1,0≤ s≤ 1}.
In the case d=1 we consider the oriented area

Area(P) = det


 ξq ηq

ξp ηp


 = ξqηp−ξpηq (3.42)
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In higher dimensions, we replace this by the sum of the oriented areas of the projections

of P onto the coordinate planes (pi,qi), i.e., by

ω(ξ,η) :=
d

∑
i=1

det


 ξq

i ηq
i

ξp
i ηp

i


 =

d

∑
i=1

(ξq
i ηp

i −ξp
i ηq

i ). (3.43)

This defines a bilinear map acting on vectors of R2d , which will play a central role for

Hamiltonian system. In matrix notation, this map has the form

ω(ξ,η) = ξT Jη with J =


 0 I

−I 0




where I is the identity matrix of dimension d.

Definition 3.2 A linear mapping A :R2d →R2d is called symplectic if

AT JA = J (3.44)

or, equivalently, if ω(Aξ,Aη) = ω(ξ,η) for all ξ,η ∈R2d .

We can find it

ω(Aξ,Aη) = (Aξ)T J(Aη) = ξT AT JA︸  ︷︷  ︸
J

η

= ξT Jη = ω(ξ,η) (3.45)

Definition 3.3 A differentiable map g : U → R2d (where U ⊂ R2d is an open set) is

called symplectic if the Jacobian matrix g′(q, p) is everywhere symplectic, i.e., if

g′(q, p)T Jg′(q, p) = J or ω(g′(q, p)ξ,g′(q, p)η) = ω(ξ,η). (3.46)

Lemma 3.1 If ψ and ϕ are symplectic maps then ψ◦ϕ is symplectic.
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Proof: Since ψ is symplectic

(ψ′)T Jψ′ = J, similarly (ϕ′)T Jϕ′ = J

[
(ψoϕ)′

]T J(ψoϕ)′ = (ψ′oϕ′)T J(ψ′oϕ′) = (ϕ′)T o(ψ′)T Jψ′oϕ′ = J (3.47)

Theorem 3.2 (Poincaré 1899). Let H(q, p) be a twice continuously differentiable func-

tion on U ⊂R2d . Then, for each fixed t, the flow ϕt is a symplectic transformation wher-

ever it is defined.

Proof: Let ϕt be flow of the Hamiltonian system. ϕ′t is a Jacobian matrix of the flow, then

ϕ′t satisfies the variational equation i.e.

d
dt

ϕ′t = J−1H ′′ϕ′t where H ′′ =


 Hpp Hpq

Hqp Hqq


 is symmetric.

Hence

d
dt

(ϕ′Tt Jϕ′t) = [J−1H ′′ϕ′t ]
T Jϕ′t +ϕ′Tt JJ−1︸ ︷︷ ︸

I

H ′′ϕ′t (3.48)

d
dt

(ϕ′Tt Jϕ′t) = ϕ′Tt H ′′T (J−1)T Jϕ′t +ϕ′Tt H ′′ϕ′t (3.49)

Now, we will use (H ′′)T = H ′′ and (J−1)T J =−I, let us prove it;

JT =−J ⇒ [(J−1)T J]T = JT · J−1 =−J · J−1 =−I

then we finally find (J−1)T J =−I. We put (J−1)T J =−I in the last equation;

d
dt

(ϕ′Tt Jϕ′t) =−ϕ′Tt H ′′ϕ′t +ϕ′Tt H ′′ϕ′t = 0 (3.50)

Since d
dt (ϕ

′T
t Jϕ′t) = 0 then ϕ′Tt Jϕ′t = C. When t = 0, we have ϕ′t(t0) = I ⇒C = J

Theorem 3.3 Let f : U → R2d be continuously differentiable. Then, ẏ = f (y) is locally

Hamiltonian if and only if its flow ϕt(y) is symplectic for all y ∈U and for all sufficiently

small t.
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Proof: Assume that the flow ϕt is symplectic, and we have to prove the local existence

of a function H(y) such that f (y) = J−1∇H(y). Using the fact that ∂ϕt
∂y0

is a solution of the

variational equation Ψ̇ = f ′(ϕt(y0))Ψ, we obtain

d
dt

((∂ϕt

∂y0

)T
J
(∂ϕt

∂y0

))
=

(∂ϕt

∂y0

)(
f ′(ϕt(y0))T J + J f ′(ϕt(y0)

)(∂ϕt

∂y0

)
= 0. (3.51)

Putting t = 0, it follows from J =−JT that J f ′(y0) is a symmetric matrix for all y0.

Definition 3.4 A numerical one-step method is called symplectic if the one-step map

y1 = Φh(y0) is symplectic whenever it is applied to a smooth Hamiltonian system.If the

method is symplectic:

Φ′
h(y)

T J Φ′
h(y) = J (3.52)

where J =


 0 I

−I 0




Theorem 3.4 The implicit midpoint rule is symplectic.

Proof : The second order implicit midpoint rule is:

Un+1 = Un +h f
(Un +Un+1

2

)
(3.53)

Consider the Hamiltonian problem

ẏ = J−1∇H(y) (3.54)

Un+1 = Un +hJ−1∇H
(Un +Un+1

2

)
(3.55)

Un+1 = ψn(Un) and need to show ψ′Tn Jψ′n = J

ψ′n =
∂Un+1

∂Un
= I +hJ−1H ′′

(Un +Un+1

2

)(1
2

)(∂Un+1

∂Un
+ I

)
(3.56)

ψ′h =
∂Un+1

∂Un
=

(
I− h

2
J−1H ′′

)−1(
I +

h
2

J−1H ′′
)

(3.57)
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ψ′Tn Jψ′n = J means:
(

I +
h
2

J−1H ′′
)

J
(

I +
h
2

J−1H ′′
)T

=
(

I− h
2

J−1H ′′
)

J
(

I− h
2

J−1H ′′
)T

(3.58)

By using the equalities

1)(H ′′)T = H ′′ (since H is symmetric)

2)(J−1)T =−J−1 = J

we get
(

I +
h
2

J−1H ′′
)T

= I− h
2

H ′′J−1 (3.59)
(

I− h
2

J−1H ′′
)T

= I +
h
2

H ′′J−1 (3.60)

Then
(

IJ +
h
2

J−1H ′′J
)(

I− h
2

H ′′J−1
)

=
(

IJ− h
2

J−1H ′′J
)(

I +
h
2

H ′′J−1
)

(3.61)

J +
h
2

J−1H ′′J− h
2

JH ′′J−1− h2

4
J−1H ′′JH ′′J−1

= J +
h
2

JH ′′J−1− h
2

J−1H ′′J− h2

4
J−1H ′′JH ′′J−1 (3.62)

And we find

⇒ hJH ′′J−1 = hJ−1H ′′J (3.63)

J−1 =−J ⇒−JH ′′J =−JH ′′J (3.64)

Theorem 3.5 The so-called symplectic Euler method

qn+1 = qn +h
∂H
∂p

(qn+1, pn) (3.65)

pn+1 = pn−h
∂H
∂q

(qn+1, pn) (3.66)

is a symplectic method of order 1.

Proof:

 p

q




n+1

= φ′h





 p

q




n


 (3.67)

φ′h =




∂pn+1
∂pn

∂pn+1
∂qn

∂qn+1
∂pn

∂qn+1
∂qn


⇒ (3.68)
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∂pn+1

∂pn
= 1−hHqp

∂pn+1

∂pn
(3.69)

∂pn+1

∂qn
= −h[Hqq

∂pn+1

∂qn
+Hqq] (3.70)

∂qn+1

∂pn
= hHpp

∂pn+1

∂pn
(3.71)

∂qn+1

∂qn
= 1+h(Hpp

∂pn+1

∂qn
+Hpq) (3.72)

(I +HT
qp)

∂pn+1

∂pn
= I (3.73)

⇒

 I +hHT

qp 0

−hHpp I







∂pn+1
∂pn

∂pn+1
∂qn

∂qn+1
∂pn

∂qn+1
∂qn


 =


 I −hHqq

0 I +hHqp


 (3.74)


 A B

C D





 X Y

Z U


 =


 Im 0

0 In


 (3.75)

⇒

 X Y

Z U


 =


 A−1 −A−1.0

−IcA I−1


 =


 A−1 0

−cA I


 (3.76)

A = I +hHT
qp

C =−hHpp

⇒=


 (I +hHT

qp)
−1 0

hHpp +h2HppHT
qp I


 (3.77)

⇒
(∂(pn+1,qn+1)

∂(pn,qn)

)
=


 (I +hHT

qp)
−1 0

hHpp +h2HppHT
qp I





 I −hHqq

0 I +hHqp


 (3.78)

=


 (I +hHT

qp)
−1 −h(I +hHT

qp)
−1Hqq

hHpp +h2HppHT
qp −h2HppHqq−h3HppHT

qpHqq + I +hHqp




︸                                                                                ︷︷                                                                                ︸
K

(3.79)

KT =


 (I +hHT

qp)
−1 hHpp(I +hHT

qp)

−h(I +hHT
qp)

−1Hqq −h2HppHqq−h3HppHT
qpHqq + I +hHqp


 (3.80)
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KT J =


 −hHpp(I +hHT

qp) (I +hHT
qp)

−1

h2HppHqq +h3HppHT
qpHqq− I−hHqp −h(I +hHT

qp)
−1Hqq


 (3.81)

KT JK =


 0 I

−I 0


 = J ⇒ symplectic

Example 3.2 In this example we look for the application of symplectic integrators to the

harmonic oscillator as a Hamiltonian system.

This well studied problem has a separable Hamiltonian of the form

H(p,q) =
q2

2
+

p2

2
, (3.82)

and has solutions which are circles in the (q,p) phase space. The associated differential

equations are

dq
dt

= p,
d p
dt

=−q. (3.83)

Consider now the closed curve (circle)

Γ≡ p2 +q2 = C2, (3.84)

the action of the solution operator of the differential equation is to map this curve into

itself(conserving the area πC2 of the enclosed region). The standard forward Euler

method applied to this system gives the scheme

pn+1 = pn−hqn, qn+1 = qn +hpn, (3.85)

so that Ψh is the operator given by

Ψhv =


 1 −h

h 1


v, with det(Ψh) = 1+h2. (3.86)
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It is easy to see that in this case,Γ evolves through the action of the discrete map Ψh to

the new circle given by

p2
n+1 +q2

n+1 = C2(1+h2) (3.87)

and the area enclosed within the discrete evolution of Γ has increased by a factor of

1 + h2. Periodic orbits are not preserved by the forward Euler method – indeed all such

discrete orbits spiral to infinity. Similarly, a discretisation using the backward Euler

method leads to trajectories that spiral towards the origin (Budd and Piggott 2000).

Consider now the symplectic Euler method applied to this example. This gives rise to the

discrete map

pn+1 = pn−hqn, qn+1 = qn +h(pn−hqn) = (1−h2)qn +hpn (3.88)

The discrete evolutionary is then simply matrix

Ψh


 p

q


 =


 1 −h

h 1−h2





 p

q


 (3.89)

which can easily be checked to be symplectic. For example det(Ψh)=1. The circle Γ is

now mapped to the ellipse

(1−h2 +h4)p2
n+1−2h3 pn+1qn+1 +(1+h2)q2

n+1 = C2 (3.90)

which has the same enclosed area. The symplectic Euler map is not symmetric in time st.

ψ−1
h , ψ−h. (3.91)

Observe that the symmetry of the circle has been destroyed through the application of

this mapping.

28



It is also easy to see that if

A =


 1 −h

2

−h
2 1


 (3.92)

then

ΨT
h AΨh = A. (3.93)

3.4.6. Partitioned Systems

In this section we consider partitioned systems

ẏ = f (y,z) (3.94)

ż = g(y,z) (3.95)

and separable partitioned systems

ẏ = f (z) (3.96)

ż = g(y) (3.97)

In particular, we will be interested in canonical Hamiltonian equations, which are

generated by a Hamiltonian function H(y,z) such that

f (y,z) = Hz(y,z), g(y,z) = Hy(y,z) (3.98)

Such system often arise in mechanical systems described by Hamiltonian function

H(q, p) =
p2

2
+V (q), (3.99)
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which provides us with the Hamiltonian equations of motion

q̇ = p (3.100)

ṗ = −Vq(q) (3.101)

Here V is the potential energy function. In the following sections we construct the modi-

fied vector field corresponding to partitioned Euler method and its adjoint.

3.4.7. Partitioned Euler Method

In this section we use notations

q̇ = a(q, p) (3.102)

ṗ = b(q, p) (3.103)

Where a and b are the functions of q and p. Then the partitioned Euler method can be

given as follows

qn+1 = qn +ha(qn+1, pn), (3.104)

pn+1 = pn +hb(qn+1, pn). (3.105)

We show the calculation of the functions in modified differential equations. Application

of partitioned Euler method to the following modified differential equations which is one

term truncated gives a method of order 2.

3.4.8. Symplectic Euler Method

If the partitioned Euler method is applied to a smooth Hamiltonian system then it

is called symplectic Euler method. For the Hamilton equations

q̇ = Hp(q, p) (3.106)

ṗ = −Hq(q, p) (3.107)
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applying the partitioned Euler method to the system (3.106) and (3.107) we obtain

symplectic Euler method given as follows

qn+1 = qn +hHp(qn+1, pn) (3.108)

pn+1 = pn−hHq(qn+1, pn) (3.109)

3.4.9. Construction of the 1-term modified differential equations

The modified vector differential equations are

q̇ = a(q, p)+hc(q, p) = F(q, p), (3.110)

ṗ = b(q, p)+hd(q, p) = G(q, p). (3.111)

Our aim is determining the functions c and d. We determine the function c such as given

in the following way.

The Taylor expansion of the exact solution of q for a fixed t is

q(t +h) = q(t)+hq̇(t)+
h2

2!
¨q(t)+

h3

3!
q(3)(t)+ ..., (3.112)

where

q̇(t) = a (3.113)

q̈(t) = aqq̇+ap ṗ = aqq+apb (3.114)

q(3)(t) = (aqqq̇+aqp ṗ)a+aq(aqq̇+ap ṗ)+(apqq̇+app ṗ)b+ap(bqq̇+bp ṗ)

= 2aqp(a,b)+aqq(a,a)+aqaqa+aqapb

+ app(b,b)+apbqa+apbpb (3.115)

Applying the partitioned Euler method to the modified differential equations (3.110) and

(3.111) we obtain the following

qn+1 = qn +hF(qn+1, pn) (3.116)

pn+1 = pn +hG(qn+1, pn) (3.117)
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At first considering the equation in (3.116) and substituting F into we get

qn+1 = qn +h(a(qn+1, pn)+hc(qn+1, pn)) (3.118)

We expand each function a(qn+1, pn) and c(qn+1, pn) using Taylor expansion and

substituting (3.118) instead of qn+1 ,

a(qn+1, pn) = a(qn +hF(qn+1, pn)︸           ︷︷           ︸
∆

, pn)

' a+∆aq

' a+hF(qn+1, pn)aq

' a+h(a(qn+1, pn)+hc(qn+1, pn))aq

' a+h(a+hc)aq

' a+haap +h2caq (3.119)

c(qn+1, pn) = c(qn +hF(qn+1, pn), pn)

c(qn+1, pn) ' c (3.120)

Using the equations (3.119) and (3.120) we write qn+1 in the following form

qn+1 = qn +h(a+haaq +h2caq +hc) (3.121)

Comparing the terms of (3.121) and (3.112) with respect to the powers of h we get

c =
1
2
(apb−aqa) (3.122)

By the same procedure we can obtain the function d given as follows

d =
1
2
(bpb−bqa) (3.123)
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Now we show the calculation of the functions in 2-term modified differential equations.

Application of partitioned Euler method to the following modified differential equations

gives a method of order 3.

3.4.10. Construction of the 2-term modified differential equations

The modified vector differential equations are

q̇ = a(q, p)+hc(q, p)+h2e(q, p) = F(q, p) (3.124)

ṗ = b(q, p)+hd(q, p)+h2 f (q, p) = G(q, p) (3.125)

As we determined the functions c and d before we have to determine the functions e and

f now. Applying partitioned Euler method to the equations (3.124) and (3.125) we obtain

the following

qn+1 = qn +hF(qn+1, pn) (3.126)

pn+1 = pn +hG(qn+1, pn) (3.127)

At first considering the equation in (3.124) and substituting F into we get

qn+1 = qn +h[a(qn+1, pn)+hc(qn+1, pn)+h2e(qn+1, pn)] (3.128)

We expand each function a(qn+1, pn), c(qn+1, pn) and e(qn+1, pn) using Taylor expansion

and substituting (3.128) instead of qn+1 ,

a(qn+1, pn)' a+haaq +h2aaqaq +h2caq +
h2

2
(a,a)aqq (3.129)

c(qn+1, pn)' c+
h
2
(aqp(a,b)+apbqa−aqq(a,a)−aqaqa) (3.130)

e(qn+1, pn) = e(qn +hF(qn+1, pn), pn)

' e (3.131)
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Using the equations (3.129),(3.130) and (3.131) we write qn+1 in the following form

qn+1 = qn +h[a+h(aaq +
1
2

apb− 1
2

aqa)+h2(aaqaq +
1
2

apaqb− 1
2

aqaqa

+
1
2
(a,a)aqq +

1
2

aqp(a,b)+
1
2

apbqa− 1
2

aqq(a,a)− 1
2

aqaqa+ e)] (3.132)

Comparing the terms of (3.128) and (3.112) with respect to the powers of h we get

e =
1
6
(aqq(a,a)−aqp(a,b)+app(b,b)+aqaqa−2aqapb−2apbqa+apbpb) (3.133)

By the same procedure we can obtain the function f given as follows

f =
1
6
(bqq(a,a)−bqp(a,b)+bpp(b,b)+bqaqa−2bqapb−2bpbqa+bpbpb) (3.134)

If the original equations are Hamiltonian (a = Hp , b =−Hq), then

H [3] = H +
h
2
(a,b)+

h2

6
(Hqq(a,a)−Hqp(a,b)+Hpp(b,b)) (3.135)

In view of an important property of this method discovered by de Vogelaere (1956) and

we call them symplectic Euler methods if we apply the method to Hamiltonian systems

(Hairer and Stoffer 1997).

3.4.11. Modifying Symplectic Euler Method for Separable Systems

So far the calculations of the coefficient functions for the modified equations are

more complex for the systems we have considered. So we choose separable systems after

this section since the calculations of the coefficient functions become more easier. For

separable systems the coefficient functions can be given as follows

c =
1
2

apb, d =−1
2

bqa, (3.136)

e =
1
6
(app(b,b)−2apbqa), f =

1
6
(bqq(a,a)−2bqapa). (3.137)
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If the original equations are Hamiltonian, we get

H [3] = H +
h
2
(a,b)+

h2

6
(Hqq(a,a)+Hpp(b,b)) (3.138)

In the application chapter the Harmonic Oscillator and Double Well system will be con-

sidered since they are both separable systems.

3.4.12. Modifying Symplectic Euler Method for Mechanical System

For method of order 2 (i.e. the modified differential equations (3.110) and (3.111))

q̇ = p− h
2

Vq(q) (3.139)

ṗ = −Vq(q)+
h
2

Vqq(q)p (3.140)

so that we get

qn+1 = qn +h(pn− h
2

Vq(qn+1)) (3.141)

pn+1 = pn +h(−Vq(qn+1)+
h
2

Vqq(qn+1)pn) (3.142)

The first equation is implicit, the second one is explicit.

3.4.13. Modifying Adjoint Partitioned Euler Method

Definition 3.5 The adjoint method φ∗h of a method φh is the inverse map of the original

method with reversed time step −h i.e.;

φ∗h := φ−1
−h (3.143)

In other words, y1 = φ∗h(y0) is implicitly define by φ−h(y1) = y0

The adjoint partitioned Euler method can be given as follows

qn+1 = qn +ha(qn, pn+1), (3.144)

pn+1 = pn +hb(qn, pn+1). (3.145)
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Note that this method is related to the partitioned Euler via the change of variables u←→
v, a←→ b. Using this relationship, we can obtain the modified differential equations for

the adjoint partitioned Euler from those for the partitioned Euler.

We get the modified differential equations

q̇ = a(q, p)+hc∗(q, p)+h2e∗(q, p) (3.146)

ṗ = b(q, p)+hd∗(q, p)+h2 f ∗(q, p) (3.147)

by the same procedure we have followed in section (3.4.9) and (3.4.10) we can obtain the

functions c∗,d∗,e∗and f ∗ where

c∗ =
1
2
(aqa−apb), (3.148)

d∗ =
1
2
(bqa−bpb), (3.149)

e∗ =
1
6
(aqq(a,a)−aqp(a,b)+app(b,b)+aqaqa

− 2aqapb−2apbqa+apbpb), (3.150)

f ∗ =
1
6
(bqq(a,a)−bqp(a,b)+bpp(b,b)+bqaqa

− 2bqapb−2bpbqa+bpbpb). (3.151)

Remark 3.1 Comparing the modified vector fields for partitioned Euler and its adjoint,

we find out that

c∗ =−c, d∗ =−d, e∗ = e, f ∗ = f . (3.152)

Lemma 3.2 If φ is a symplectic map then the adjoint map φ∗ is symplectic.

Proof : See (Hairer, et al. 2002)
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CHAPTER 4

ANALYSIS FOR MODIFYING INTEGRATORS

In this chapter after designing the new numerical method we analyse it in the

concept of order,consistency and stability.

Definition 4.1 Consistency and order: Suppose the numerical method is

yn+k = φ(tn+k;yn,yn+1, ...,yn+k−1;h). (4.1)

The local error of the method is the error committed by one step of the method. That is,

it is the difference between the result given by the method, assuming that no error was

made in earlier steps, and the exact solution:

δh
n+k = φ(tn+k;y(tn),y(tn+1), ...,y(tn+k−1);h)− y(tn+k). (4.2)

The method is said to be consistent if

lim
h→0

δh
n+k

h
= 0. (4.3)

The method has order p if

δh
n+k = O(hp+1) as h→ 0. (4.4)

Hence a method is consistent if it has an order greater than 0. Most methods being used

in practice attain higher order. Consistency is a necessary condition for convergence, but

not sufficient; for a method to be convergent, it must be both consistent and stable.

A related concept is the global error, the error sustained in all the steps one needs to

reach a fixed time t. Explicitly, the global error at time t is yN−y(t) where N = (t− t0)/h.

37



The global error of a pth order one-step method is O(hp); in particular, such a method is

convergent. This statement is not necessarily true for multi-step methods.

4.1. Order Analysis for Modifying Symplectic Euler Method

We have pretended in the previous chapter that the application of symplectic Euler

method to 1-term modified vector differential equation gives a numerical method of order

2. Note that the symlectic Euler is a method of order 1. Modification of the vector field

increases the order of the method. We can show the order of the new modifying method

to a mechanical system.

Proposition 4.1 Application of symplectic Euler method to 1-term modified vector differ-

ential equation gives a numerical method of order 2.

Proof: Consider the mechanical system as we mentioned before given in the equations

(3.25) and (3.26). The 1-term modified vector differential equations are

q̇ = p− h
2

Vq(q) (4.5)

ṗ = −Vq(q)+
h
2

Vqq p (4.6)

applying the symplectic Euler method to these modified system we get

qn+1 = qn +h(pn− h
2

Vq(qn+1)) (4.7)

pn+1 = pn +h(−Vq(qn+1)+
h
2

Vqq(qn+1)pn) (4.8)

The first equation is implicit and the second one is explicit.

The Taylor expansions of the exact solutions of q(x) and p(x) about x = tn;

q(tn +h) = q(tn)+hq̇(tn)+
h2

2!
q̈(tn)+

h3

3!
q(3)(tn)+ ... (4.9)

p(tn +h) = p(tn)+hṗ(tn)+
h2

2!
p̈(tn)+

h3

3!
p(3)(tn)+ ... (4.10)
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Substituting the equalities of q̇, q̈,q(3) and ṗ, p̈, p(3) in the equations (4.10) and (4.11) we

get the following equations

q(tn +h) = q(tn)+hp(tn)− h2

2
Vq(q(tn))− h3

6
Vqq(q(tn))p(q(tn)+ ... (4.11)

p(tn +h) = p(tn)−hVq(q(tn))− h2

2
Vqq(q(tn))p(tn)

+
h3

6
(−Vqqq(q(tn))p2(tn)+Vqq(q(tn))Vq(q(tn)))+ ... (4.12)

Since we’re just addressing the truncation error, which is introduced in a single step, we

can assert q(tn) = qn and q(tn) = qn. Hence

q(tn +h) = qn +hpn− h2

2
Vq(qn)− h3

6
Vqq(qn)pn +O1(h4) (4.13)

p(tn +h) = pn−hVq(qn)− h2

2
Vqq(qn)pn

+
h3

6
(−Vqqq(qn)p2

n +Vqq(qn)Vq(qn))+O2(h4) (4.14)

Now we arrange the equations (4.8) and (4.9). First let us take the equation (4.8).Substi-

tuting again (4.8) instead of qn+1 and using Taylor’s expansion we get

qn+1 = qn +h(pn− h
2

Vq(qn+1))

= qn +hpn− h2

2
Vq(qn+1)

= qn +hpn− h2

2
Vq(qn +hpn− h2

2
Vq(qn+1)

︸                  ︷︷                  ︸
∆

)

= qn +hpn− h2

2
[Vq(qn)+∆Vqq(qn)+ ...]

= qn +hpn− h2

2
Vq(qn)− h2

2
(hpn− h2

2
Vq(qn+1))Vqq(qn)+ ...

= qn +hpn− h2

2
Vq(qn)− h3

2
Vqq(qn)pn + ... (4.15)

Second let us take the equation (4.9).Substituting again (4.8) instead of qn+1 and using

Taylor’s expansion we get
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pn+1 = pn−hVq(qn+1)+
h2

2
Vqq(qn+1)pn

= pn−hVq(qn +hpn− h2

2
Vq(qn+1)

︸                  ︷︷                  ︸
∆

)

+
h2

2
Vqq(qn +hpn− h2

2
Vq(qn+1)

︸                  ︷︷                  ︸
∆

)pn

pn+1 = pn−hVq(qn)−h∆Vqq(qn)−h
∆2

2
Vqqq(qn)

+
h2

2
Vqq(qn)pn +

h2

2
∆Vqqq(qn)pn + ...

= pn−hVq(qn)− h2

2
Vqq(qn)pn +

h3

2
Vq(qn)Vqq(qn)+ ... (4.16)

Now for finding the errors we subtract the equation (4.16) from (4.14) and (4.17) from

(4.15)

q(tn +h)−qn+1 = C1h3 (4.17)

p(tn +h)− pn+1 = C2h3 (4.18)

Since the truncation error of the method is

Tn+1 =


 C1

C2


h3 (4.19)

then the new modifying symplectic Euler method is a method of order 2.

Proposition 4.2 The 1-term modifying symplectic method is consistent.

Proof:The consistency of the method is obvious since limh→0
Tn+1

h = 0.

4.2. Stability Analysis

In this section we give a brief information about stability analysis of scalar and

vector valued differential equations.
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4.2.1. Stability of a Numerical Method Applied to ODE

To determine whether a numerical method will produce reasonable results with

a given value of h > 0, we need a notion of stability that is different from zero-

stability.There are a wide variety of other forms of stability that have been studied in

various contexts. The one that is most basic is absolute stability. This notion is based

on the linear test equation,although a study of the absolute stability of a method yields

information that is typically directly useful in determining an appropriate time step in

nonlinear problems as well.

Theoretical analysis together with numerous numerical experiments has shown

that symplectic integrator not only produces improved qualitative numerical behaviors,

but also allows for a more accurate long-time scale computation than with general-purpose

methods. In the symplectic integration study, a widely recognized fact is that the symplec-

ticity of a numerical integrator has little to do with its step-size.Particularly, for symplectic

Runge-Kutta and symplectic partitioned Runge-Kutta methods, their symplecticities are

only related to the coefficients(Hairer, et al. 2002).We need to require more stringent

conditions on step-sizes in addition to the classical stability considerations in simulations

of Hamiltonian flows, even for symplectic integrators. In our work, we make a first step

towards such investigation by studying the influence induced by the numerical discretiza-

tion on the equilibria structure of the underlying Hamiltonian system.

The probably most well known absolute stability is introduced by Dahlquist.

Applying the numerical method to the famous test equation

y′(t) = λy(t) , y(0) = y0 (, 0) , λ ∈ C , Re(λ) < 0 (4.20)

we get the following scheme

yn+1 = R(z)yn, n = 0,1,2, ..., and z = λh (4.21)

with R(z) the stability function of the method. It is noted that the solution (the analytic

solution) to (4.21) asymptotically decays to zero at an exponential rate as t → ∞, and

in order for the numerical scheme (4.22) to yield such qualitative behavior without any
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restriction on the step size h, we naturally require that

|R(z)| ≤ 1 , f or any h > 0. (4.22)

Methods satisfying (4.23) are called absolutely stable, and this concept has been playing

an indispensable role in the numerical field.

Note that there are two parameters h and λ, but only their product z≡ hλ matters.

The method is stable whenever |R(λh)| ≤ 1, and we call this interval as absolute stability

interval of the method.

4.2.2. Stability Analysis For Modifying Symplectic Euler Method

In this section we give a brief look to the stability analysis to the new higher order

symplectic methods we have constructed in the previous chapter.

So far we have examined stability theory only in the context of a scalar differential

equation y′(t) = f (y(t)) for a scalar function y(t). In this section we will look at how

this stability theory carries over to systems of m differential equations where y(t) ∈ Rm.

For a linear system y′ = Ay, where A is m×m matrix, the solution can be written as

y(t) = eAty(0) and the behavior is largely governed by the eigenvalues of A. A necessary

condition for stability is that hλ be in the stability region for each eigenvalue of A. For

general nonlinear systems y′ = f (y), the theory is more complicated, but a good rule of

thumb is that hλ should be in the stability region for each eigenvalue of the Jacobian

matrix f ′(y). This may not be true if the Jacobian is rapidly changing with time, or even

for constant coefficient linear problems in some highly nonnormal cases, but most of the

time eigenanalysis is surprisingly effective.

Clearly the one-dimensional test equation

y′(t) = λy(t), λ ∈ C, Re(λ) < 0, t ∈ [0,∞) (4.23)

is not suitable for the study of absolute stability of partitioned discretization methods as

we emphasized in the previous subsection. Since we study mainly on separable systems

we have to determine the stability condition of the new proposed methods applied to such

systems.
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Proposition 4.3 The new symplectic methods applied to the separable partitioned

systems given in (3.26) and (3.27) with test equations

q̇ = αp (4.24)

ṗ = βq (4.25)

that leads to the mapping yn+1 = R(h)yn said to be stable if |Tr(R)|< 2 where R(h)

is the linear stability matrix depending on the coefficients α ,β and the time-step h.

Proof: We have the equation in the form

d
dt

y = Ay, (4.26)

where

A =


 0 α

β 0


 (4.27)

The application of the new method leads to the mapping

yn+1 = R(h)yn (4.28)

Consider the 2×2 matrix R(h) such that

R(h) =


 a11 a12

a21 a22


 (4.29)

A sufficient condition for stability is that the eigenvalues of method are (i) in the unit disc

in the complex plane, and (ii) simple (not repeated) if on the unit circle.
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Since R(h) is a symplectic map one of its properties is that its determinant is equal to 1.

The eigenvalues of the transformation are given by the characteristic equation,

det


 a11−λ a12

a21 a22−λ


 = ((a11−λ)(a22−λ))−a12a21 = 0

= λ2− (a11 +a22)︸         ︷︷         ︸
Tr(R)

λ+a11a22−a12a21︸              ︷︷              ︸
det(R)=1

= 0

= λ2−Tr(R)λ+1 = 0. (4.30)

The eigenvalues of R are solutions of λ2 − Tr(R)λ + 1 = 0. Following Arnold’s

treatment of the stability of symplectic maps (Olver 1993), if the two roots λ1 and λ2, of

this equation are complex conjugates then

λ =
Tr(R)

2
± i

√
1− (Tr(R)

2
)2 (4.31)

For stability λ < 1, hence |Tr(R)|< 2 is required. Because the norms of the eigenvalues

given in the equation (4.26) are 1 it means that the roots are on the unit circle. For the

stability condition the roots can not be multiple if they are on the unit circle.

Since R depends explicitly on the step-size h, it is necessary to take the least positive

solution of |Tr(R)|= 2 with respect to h in the calculation of stability criteria.

4.2.3. Stability Analysis of 1-term Modifying Symplectic Euler

Method

The 1 term-modified differential equations of the test equations

q̇ = αp (4.32)

ṗ = βq (4.33)
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can be found using the functions c and d that we have determined in chapter 3.Such that

q̇ = αp+
h
2

αβq (4.34)

ṗ = βq− h
2

αβp (4.35)

Applying the symplectic Euler method to the equations (4.31) and (4.32) we get the

following equations

qn+1 = qn +h(αpn +
h
2

αβqn+1) (4.36)

pn+1 = pn +h(βqn+1− h
2

αβpn) (4.37)

Proposition 4.4 The 1-term modifying symplectic Euler method applied to the system

(4.31) and (4.32) is stable for
∣∣1+ 1+h2αβ

1− h2
2 αβ

∣∣ < 2

Proof: From the equations (4.33) and (4.34) we can get qn+1 and pn+1 explicitly. Hence

qn+1 =
1

1− h2

2 αβ
qn +

hα
1− h2

2 αβ
pn

qn+1 = mqn +npn (4.38)

where m = 1
1− h2

2 αβ
and n = hα

1− h2
2 αβ

.

And

pn+1 = pn +hβqn +(1−hβn− h2

2
αβ)pn

pn+1 = kqn + l pn (4.39)

where k = hβm and l = 1+hβn− h2

2 αβ.

The equations (4.35) and (4.36) can be written in the matrix form such as


 qn+1

pn+1


 =


 m n

k l




︸         ︷︷         ︸
R


 qn

pn


 (4.40)
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where q(0) = q0 and p(0) = p0


 qn+1

pn+1


 = R


 qn

pn


 (4.41)

Here R is the linear map we have mentioned before in proposition (4.3) then the stability

condition for 1-term modifying Euler method requires |Tr(R)|= |m+ l|=
∣∣1+ 1+h2αβ

1− h2
2 αβ

∣∣ <

2.

Example 4.1 The stability condition for the 1-term modifying symplectic Euler method

applied to harmonic oscillation problem is h ∈ (0,2) for the time-step h.

The harmonic oscillation problem is just a special kind of separable systems which

is known as a linear mechanical system. For the linear mechanical systems we pick α = 1.

The harmonic oscillation problem is

q̇ = p (4.42)

ṗ = −q (4.43)

According to this system α = 1 and β = −1. After substituting these values in the matrix

R given in (4.37)we get the following matrix.

R =




1
1+ h2

2

h
1+ h2

2
−h

1+ h2
2

1− h2

1+ h2
2

+ h2

2


 (4.44)

For the matrix R given in (4.41) |Tr(R)| = 8+h4

2(2+h2) and hence the stability condition is

h ∈ (0,2) for the time-step h.

By the same way we can obtain the stability conditions for other numerical methods

applied to different systems.
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Figure 4.1. Stability Region for the methods MSE and SE

The above figure(4.1) illustrates the stability region for the symplectic Euler

method (SE) and 1-term modifying symplectic Euler method (MSE) applied for the Har-

monic Oscillation problem. The stability region for the symplectic euler method can be

found by the same way. The trace of the matrix A for the symplectic Euler method is

|Tr(R)|= 2−h2. The stability regions are same for two methods.
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CHAPTER 5

APPLICATION OF MODIFYING INTEGRATORS

5.1. Applications to Harmonic Oscillator System

In this section we determine the modified differential equations based on the

midpoint method and symplectic Euler method for the linear Hamiltonian system which

is called Harmonic Oscillator system and illustrate the trajectory of motion (phase space)

and the errors in Hamiltonian |H(q, p)−H(q0, p0)|. The Hamiltonian of this system can

be given as

H(q, p) =
1
2

p2 +
1
2

q2 (5.1)

so that the equations of motion become

q̇ = Hp(q, p) = p (5.2)

ṗ = Hq(q, p) =−q (5.3)

5.1.1. Modified Equations Based on Midpoint Rule

Let

q̇ = p = g1(q, p) (5.4)

ṗ = −q = g2(q, p) (5.5)

The coefficient functions f j for j = 2,3,4,5 of the modified equation can be found by the

equations(3.7),(3.8),(3.9) and (3.10). Hence the even indices of the coefficient functions

f are zero such that f2 = 0 and f4 = 0.

Now we have to determine the functions f3 and f5.

f3 =
1

12
(− f ′ f ′ f +

1
2

f ′′( f , f )) (5.6)
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In equations (5.6) f ′ is the Jacobian of f . Hence

f ′ =




∂g1
∂q

∂g1
∂p

∂g2
∂q

∂g2
∂p


 (5.7)

We have to evaluate the functions f ′ f ′ f and f ′′( f , f ) given in equation (5.7)

f ′ f ′ f =


 0 1

−1 0





 0 1

−1 0





 p

−q


 =


 −p

q


 (5.8)

and

f ′′( f , f ) = 0 (5.9)

Using the equations (5.8) and (5.9) the 2-term modified equation of the harmonic

oscillator system can be written as follows

f [3]
h (q, p) =


 p

−q


+

h2

12


 p

−q


 (5.10)

By the same procedure we can evaluate the 4-term modified equation where

f5 =
h4

120
( f ′ f ′ f ′ f ′ f − f ′′( f , f ′ f ′ f )+

1
2

f ′′( f ′ f , f ′ f ))

+
h4

120
(−1

2
f ′ f ′ f ′′( f , f )+ f ′ f ′′( f , f ′ f )+

1
2

f ′′( f , f ′′( f , f ))− 1
2

f (3)( f , f , f ′ f ))

+
h4

80
(−1

6
f ′ f (3)( f , f , f )+

1
24

f (4)( f , f , f , f )). (5.11)

given as follows

f [5]
h (q, p) =


 p

−q


+

h2

12


 p

−q


+

h4

120


 p

−q


 (5.12)
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Application of the midpoint rule to the modified equation (5.10) and (5.12) gives a method

of order 4 and 6 respectively.

5.1.2. Modified Equations Based on Symplectic Euler Method

Let

q̇ = p = a(q, p) (5.13)

q̇ = −q = b(q, p) (5.14)

The coefficient functions c(q, p),d(q, p),e(q, p) and f (q, p) of the modified equation can

be found using the equations (3.136) and(3.137). We obtain the modified differential

equations of the system (5.13) and (5.14) in the form

ẏ = f [i]
h (y), f or i = 2,3 where y = (q, p) (5.15)

where

f [2]
h (q, p) =


 p

−q


+

h
2


 −q

p


 (5.16)

f [3]
h (q, p) =


 p

−q


+

h
2


 −q

p


+

h2

3


 p

−q


 (5.17)

5.1.3. Numerical Implementation for Harmonic Oscillation

In this section numerical methods are applied to the Harmonic Oscillator system.

We apply symplectic Euler method (SE) (order1), Stmer-Verlet method (SVM)(order2),

Lobatto method (order2) and Midpoint rule (MR) (order2) to the system (5.13) and (5.14)

and symlectic Euler method to the equation (5.15). For i = 2 and i = 3 application of

symplectic Euler method gives a method of order 2 and 3 respectively.

The Figures (5.1, 5.2, 5.3, 5.4, 5.5, 5.6) illustrates the trajectory of motion and

errors in Hamiltonian (conservation of energy) obtained by symplectic Euler (SE),

1-term modifying symplectic Euler (MSE2), 1-term modifying adjoint symplectic Euler
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(AMSE2),Strmer-Verlet (SVM), Lobatto and Midpoint rule (MR) methods respectively.

Since all of these methods are symplectic geometric integrators the shape of the trajectory

preserved by both these methods. The 1-term modifying symplectic Euler method

conserves the energy better than the other methods except midpoint rule.
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Figure 5.2. Trajectory of motion and error in Hamiltonian by MSE2
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Figure 5.3. Trajectory of motion and error in Hamiltonian by AMSE2
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Figure 5.5. Trajectory of motion and error in Hamiltonian by Lobatto Method
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Figure 5.6. Trajectory of motion and error in Hamiltonian by MR
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5.2. Applications to Harmonic Double Well System

In this section we determine the modified differential equations based on the mid-

point method and symplectic Euler method for the nonlinear Hamiltonian system which is

called Double Well system and illustrate the trajectory of motion (phase space) and the er-

rors in Hamiltonian |H(q, p)−H(q0, p0)|. The Hamiltonian of this system can be given as

H(q, p) =
1
2

p2 +
1
2
(q2−1).2 (5.18)

so that the equations of motion become

q̇ = Hp(q, p) = p = a(q, p) (5.19)

ṗ = Hq(q, p) =−2q(q2−1) = b(q, p) (5.20)

In this section we derive only the modified differential equations of the system (5.19) and

(5.20) based on symplectic Euler method. The coefficient functions c(q, p), d(q, p), of

the modified equation can be found using the equations (3.122) and(3.123). We obtain

the modified differential equations of the system (5.19) and (5.20) in the form

ẏ = f [i]
h (y), f or i = 2 where y = (q, p) (5.21)

where

f [2]
h (q, p) =


 p

−2q(q2−1)


+h


 −q(q2−1)

(3q2−1)p


 (5.22)

5.2.1. Numerical Implementation for Double Well

In this section numerical methods are applied to the Double Well system. We

apply symplectic Euler method (SE)(order1), Stmer-Verlet method (SVM) (order2), Lo-

batto method (order2) and Midpoint rule (MR) (order2) to the system (5.19) and (5.20)

and symlectic Euler method to the equation (5.22). For i = 2 application of symplectic

Euler method gives a method of order 2 (MSE2).
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The Figures (5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13) illustrates the trajectory of mo-

tion and errors in Hamiltonian (conservation of energy) obtained by symplectic Euler

(SE), 1-term modifying symplectic Euler (MSE2), 1-term modifying adjoint symplectic

Euler (AMSE2), Strmer-Verlet (SVM), Lobatto , Midpoint rule methods (MR) and ODE-

45 respectively. Since all of these methods are symplectic geometric integrators the shape

of the trajectory preserved by both these methods. The 1-term modifying symplectic Eu-

ler method conserves the energy better than symplectic Euler method.
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Figure 5.9. Trajectory of motion and error in Hamiltonian by AMSE2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 5.10. Trajectory of motion and error in Hamiltonian by SVM

55



−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Phase Plane

q

p

0 10 20 30 40 50 60 70 80 90 100
0.218

0.219

0.22

0.221

0.222
Energy Error

Time t

|H
(q

,p
)−

H(
q0

,p
0)

|

Figure 5.11. Trajectory of motion and error in Hamiltonian by Lobatto Method
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Figure 5.12. Trajectory of motion and error in Hamiltonian by Midpoint Rule
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CHAPTER 6

SUMMARY AND CONCLUSION

In this thesis new higher order symplectic methods using the idea of modified

vector fields are constructed. The stability and consistency analysis are studied and the

proposed new methods are applied to some seprable Hamiltonian systems such as Har-

monic Oscillation and Double Well problems as a numerical test problem and the resuls

obtained from these new methods are compared with classical methods. All algorithms

of the methods were written in MATLAB.

As a conclusion, the following results are obtained:

•Modified symplectic Euler method of order 2 and order 3 (MSE2 and MSE3) give better

performance than Strmer-Verlet Method (SVM) and ODE-45.

• Order of symplectic Euler method is increased to 2 and 3.

• Stability regions do not change for symplectic Euler and modified symplectic Euler

methods.

• Modified symplectic Euler method is a combination of implicit and explicit (IMEX

methods).
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APPENDIX A

MATLAB CODES

A.1. Methods Applied to Harmonic Oscillation Problem

A.1.1. Stability Function

for i=1:300

x(i)=(i-1)*0.01 ;

y(i)=(8+(x(i).ˆ4))/(4+2*(x(i).ˆ2));

z(i)=(2-(x(i).ˆ2))

w(i)=2;

v(i)=-2;

end

plot(x,y);

hold on;plot(x,z,’r’);plot(x,w,’g’);plot(x,v,’m’);

xlabel(’h’);

ylabel(’Tr(A)’);

axis([0, 3, -5, 5]);

legend(’MSE’,’SE’,’y=2’,’y=-2’);

A.1.2. Symplectic Euler Method

h = 0.05 ;

q(1) = 1 ;

p(1) = 0 ;

t=0:h:100;

n=100/h+1;

for i=1:n

ye(i)=cos(t(i));

end
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for i=1:n

H(i)=.5*((q(i).ˆ2)+(p(i).ˆ2));

q(i+1)=q(i)+h*p(i);

p(i+1)=p(i)-h*q(i+1);

er(i)=ye(i)-q(i);

e(i)=abs(H(i)-H(1));

end

subplot(211);plot(q,p);

title(’Phase Plane’);

xlabel(’q’);ylabel(’p’);

subplot(212);plot(t,e,’r’);

title(’Energy Error’);

xlabel(’Time t’);ylabel(’|H(q,p)-H(q0,p0)|’);

A.1.3. Modifying Symplectic Euler Method of Order 2

h = 0.05 ;

x0 = 1 ;

p0 = 0 ;

x = x0 ;

p = p0 ;

H0 = ( ( p*p/2 ) + ( x*x/2 ));

t=0:h:100;

N=100/h+1;

for i=1:N

ye(i)=cos(t(i));

end

for i = 1:N

x1 = x ;

x2 = x1 ;

for k = 1:N

61



x2 = x + h * (p-.5*h*x1);

x1= x2 ;

end

p1 = p + h*(-x1+.5*h*p);

X(:,i) = x1 ;

P(:,i) = p1;

x = x1;

p = p1;

er(i)=ye(i)-x;

H(i) = ( ( p’*p/2 ) + ( x’*x/2 ) ) ;

error_H(i) =abs(H(i) - H0) ;

end

subplot(211);plot(X,P);

title(’Phase Plane’);

xlabel(’q’);ylabel(’p’);

subplot(212);plot(error_H,’r’);

title(’Energy Error’);

xlabel(’Time t’);ylabel(’|H(q,p)-H(q0,p0)|’);

A.1.4. Adjoint Modifying Symplectic Euler Method of Order 2

h = 0.05 ;

x0 = 1 ;

p0 = 0 ;

x = x0 ;

p = p0 ;

H0 = ( ( p*p/2 ) + ( x*x/2 ));

t=0:h:100;

N=100/h+1;

for i=1:N

ye(i)=cos(t(i));

end
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for i = 1:N

p1 = p;

p2 = p1;

for k = 1:N

p2=p-h*(x+.5*h*p1);

p1=p2;

end

x1=x+h*(p1+.5*h*x);

X(:,i) = x1 ;

P(:,i) = p1;

x = x1;

p = p1;

er(i)=ye(i)-x;

H(i) = ( ( p’*p/2 ) + ( x’*x/2 ) ) ;

error_H(i) =abs(H(i) - H0) ;

end

subplot(211);plot(X,P);

title(’Phase Plane’);

xlabel(’q’);ylabel(’p’);

subplot(212);plot(t,error_H,’r’);

title(’Energy Error’);

xlabel(’Time t’);ylabel(’|H(q,p)-H(q0,p0)|’);

A.1.5. Strmer-Verlet Method

h = 0.05 ;

q1(1) = 1 ;

p1(1) = 0 ;

q2(1) = 1 ;

p2(1) = 0 ;

t=0:h:100;

N=100/h+1;
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for i=1:N

H(i)=.5*((p2(i).ˆ2)+(q2(i).ˆ2));

er(i)=abs(H(i)-H(1));

p1(i+1)=p1(i)-h*q1(i);

q1(i+1)=q1(i)+h*p1(i+1);

q2(i+1)=q1(i+1)+h*p1(i+1);

p2(i+1)=p1(i+1)-h*q2(i+1);

end

subplot(211);plot(q2,p2);

subplot(212);plot(t,er,’r’);

A.1.6. Lobatto Method

p0= 1;

q0= 0;

h=.05;

t=0:h:100;

n=100/h+1;

q=q0;

p=p0;

H0= 0.5;

L1p=feval(’hpp’,q,p);

k2p=feval(’hpp’,q,p);

for i=1:n

ye(i)=sin(t(i));

end

for i=1:n

% Calculation of of L1 implicit

for j=1:5

L1=feval(’hpp’,q, p+h/2*L1p);

L1p=L1;

end
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% Calculation of of k1 explicit

k1=feval(’hqp’,q,p+h/2*L1);

for j=1:5

% Calculation of of k2 implicit

k2=feval(’hqp’,q + h/2*(k1+k2p),p+h/2*L1);

k2p=k2;

end

% Calculation of of L2 explicit

L2=feval(’hpp’,q + h/2*(k1+k2),p+h/2*L1);

q1=q+ h/2*(k1+k2);

p1=p+(h/2)*(L1+L2);

Q(:,i) = q1;

P(:,i) = p1;

q= q1;

p= p1;

er(i)=ye(i)-q;

e(i)= .5*((p.ˆ2)+(q.ˆ2)) - 0.5;

end

subplot(211);plot(Q,P);

title(’Phase Plane’);

xlabel(’q’);ylabel(’p’);

subplot(212);plot(t,e,’r’);

title(’Energy Error’);

xlabel(’Time t’);ylabel(’|H(q,p)-H(q0,p0)|’);

A.1.7. Midpoint Method

h = 0.05 ;

x0 = 1 ;

p0 = 0 ;

x = x0 ;

p = p0 ;
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H0 = ( ( p*p/2 ) + ( x*x/2 ));

t=0:h:100;

N=100/h+1;

for i=1:N

ye(i)=cos(t(i));

end

for i = 1:N

x1 = x ;

p1 = p;

x2 = x1 ;

p2 = p1;

for k=1:N

p_mid = (p+p1)/2;

x2 = x + h * p_mid ;

x_mid = (x+x1)/2;

p2 = p - h*x_mid;

x1= x2;

p1 = p2;

end;

X(:,i) = x1 ;

P(:,i) = p1;

x = x1;

p = p1;

er(i)=(ye(i)-x);

H(i) = ( ( p*p/2 ) + ( x’*x/2 ) ) ;

error_H(i) =abs(H(i) - H0) ;

end;

subplot(211);plot(X,P);

title(’Phase Plane’);

xlabel(’q’);ylabel(’p’);

subplot(212);plot(t,error_H,’r’);

title(’Energy Error’);
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xlabel(’Time t’);ylabel(’|H(q,p)-H(q0,p0)|’);

A.2. Methods Applied to Double Well Problem

A.2.1. Symplectic Euler Method

h = 0.05 ;

q(1) = 1.5 ;

p(1) = 0 ;

t=0:h:100;

n=100/h+1;

for i=1:n

H(i) = ( ( p(i)*p(i)/2 ) + ( (((q(i).ˆ2)-1).ˆ2)/2 ));

q(i+1)=q(i)+h*p(i);

p(i+1)=p(i)-2*h*q(i+1)*((q(i+1).ˆ2)-1);

e(i)=abs(H(i)-H(1));

end

subplot(211);plot(q,p);

title(’Phase Plane’);

xlabel(’q’);ylabel(’p’);

subplot(212);plot(t,e,’r’);

title(’Energy Error’);

xlabel(’Time t’);ylabel(’|H(q,p)-H(q0,p0)|’);

A.2.2. Modifying Symplectic Euler Method of Order 2

h = 0.05 ;

x0 = 1.5 ;

p0 = 0 ;

x = x0 ;

p = p0 ;

H0 = ( ( p*p/2 ) + ( (((x.ˆ2)-1).ˆ2)/2 ));
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t=0:h:100;

N=100/h+1;

for i = 1:N

x1 = x ;

x2 = x1 ;

for k = 1:N

x2 = x + h * (p-h*x1*(x1.ˆ2-1));

x1= x2 ;

end

p1 = p + h*(-2*x1*(x1.ˆ2-1)+h*p*((3*x1.ˆ2)-1));

X(:,i) = x1 ;

P(:,i) = p1;

x = x1;

p = p1;

H(i) = ( ( p*p/2 ) + ( (((x.ˆ2)-1).ˆ2)/2 ));

error_H(i) =abs(H(i) - H0) ;

end;

subplot(211);plot(X,P);

title(’Phase Plane’);

xlabel(’q’);ylabel(’p’);

subplot(212);plot(t,error_H,’r’);

title(’Energy Error’);

xlabel(’Time t’);ylabel(’|H(q,p)-H(q0,p0)|’);

A.2.3. Adjoint Modifying Symplectic Euler Method of Order 2

h = 0.05 ;

x0 = 1.5 ;

p0 = 0 ;

x = x0 ;

p = p0 ;

H0 = ( ( p*p/2 ) + ( (((x.ˆ2)-1).ˆ2)/2 ));
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t=0:h:100;

N=100/h+1;

for i = 1:N

p1 = p;

p2 = p1;

for k = 1:N

p2=p+h*(-2*x*((x.ˆ2)-1)-h*(3*(x.ˆ2)-1)*p1);

p1=p2;

end

x1=x+h*(p1+h*x*((x.ˆ2)-1));

X(:,i) = x1 ;

P(:,i) = p1;

x = x1;

p = p1;

H(i) = ( ( p*p/2 ) + ( (((x.ˆ2)-1).ˆ2)/2 ));

error_H(i) =abs(H(i) - H0) ;

end

subplot(211);plot(X,P);

title(’Phase Plane’);

xlabel(’q’);ylabel(’p’);

subplot(212);plot(t,error_H,’r’);

title(’Energy Error’);

xlabel(’Time t’);ylabel(’|H(q,p)-H(q0,p0)|’);

A.2.4. Strmer-Verlet Method

h = 0.05 ;

q1(1) = 1.5 ;

p1(1) = 0 ;

q2(1) = 1.5 ;

p2(1) = 0 ;

t=0:h:100;

69



N=100/h+1;

for i=1:N

H(i)=.5*((p2(i).ˆ2)+((q2(i).ˆ2)-1).ˆ2);

er(i)=abs(H(i)-H(1));

p1(i+1)=p1(i)-h*(2*q1(i)*(q1(i).ˆ2-1));

q1(i+1)=q1(i)+h*p1(i+1);

q2(i+1)=q1(i+1)+h*p1(i+1);

p2(i+1)=p1(i+1)-h*(2*q2(i+1)*(q2(i+1).ˆ2-1));

end

subplot(211);plot(q2,p2);

subplot(212);plot(t,er,’r’);

A.2.5. Lobatto Method

clear all;

q0= 1.5;

p0= 0;

h=.05;

t=0:h:100;

n=100/h+1;

q=q0;

p=p0;

H0= 1;

L1p=feval(’lpp’,q,0);

k2p=feval(’lpp’,q,p);

for i=1:n

ye(i)=sin(t(i));

end

for i=1:n

% Calculation of of L1 implicit

for j=1:5

L1=feval(’lpp’,q, p+h/2*L1p);
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L1p=L1;

end

% Calculation of of k1 explicit

k1=feval(’lqp’,q,p+h/2*L1);

for j=1:5

% Calculation of of k2 implicit

k2=feval(’lqp’,q + h/2*(k1+k2p),p+h/2*L1);

k2p=k2;

end

% Calculation of of L2 explicit

L2=feval(’lpp’,q + h/2*(k1+k2),p+h/2*L1);

q1=q+ h/2*(k1+k2);

p1=p+(h/2)*(L1+L2);

Q(:,i) = q1;

P(:,i) = p1;

q= q1;

p= p1;

er(i)=ye(i)-q;

e(i)= abs(.5*((p.ˆ2)+((q.ˆ2)-1).ˆ2) - 1);

end

subplot(211);plot(Q,P);

title(’Phase Plane’);

xlabel(’q’);ylabel(’p’);

subplot(212);plot(t,e,’r’);

title(’Energy Error’);

xlabel(’Time t’);ylabel(’|H(q,p)-H(q0,p0)|’);

A.2.6. Midpoint Method

h = 0.05 ;

x0 = 1.5 ;

p0 = 0 ;
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x = x0 ;

p = p0 ;

H0 = ( ( p*p/2 ) + ( (((x.ˆ2)-1).ˆ2)/2 ));

t=0:h:100;

N=100/h+1;

for i = 1:N

x1 = x ;

p1 = p;

x2 = x1 ;

p2 = p1;

for k=1:N

p_mid = (p+p1)/2;

x2 = x + h * p_mid ;

x_mid = (x+x1)/2;

p2 = p - 2*h*x_mid*((x_mid.ˆ2)-1);

x1= x2;

p1 = p2;

end;

X(:,i) = x1 ;

P(:,i) = p1;

x = x1;

p = p1;

H(i) = ( ( p*p/2 ) + ( (((x.ˆ2)-1).ˆ2)/2 ));

error_H(i) =abs(H(i) - H0) ;

end;

subplot(211);plot(X,P);

title(’Phase Plane’);

xlabel(’q’);ylabel(’p’);

subplot(212);plot(t,error_H,’r’);

title(’Energy Error’);

xlabel(’Time t’);ylabel(’|H(q,p)-H(q0,p0)|’);
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A.2.7. ODE-45

options = odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4]);

[t,Y] = ode45(@rigid,[0 870],[-1 1.000001 ],options);

h=100/10025;

q0=-1;

p0=1.000001;

q=Y(:,1);

p=Y(:,2);

H0= 0.5* (p0.ˆ2) - 0.5* (q0.ˆ2- 1).ˆ2;

t=0+h:h:100;

for i=1:n

P(i) = Y(i,2);

Q(i)= Y(i,1);

H(i) = ( P(i).ˆ2 /2 ) + 0.5*(( Q(i).ˆ2 ) -1 ).ˆ2;

error(i) = H(i) - H0;

end

size(t)

size (error)

subplot(211);plot(q,p);

title(’Phase Plane’);

xlabel(’q’);ylabel(’p’);

subplot(212);plot(t,error,’r’);

title(’Energy Error’);
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