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Abstract

Asymptotic equilibria of linear integro-differential equations and asymptotic relations between solutions of linear homogeneous
impulsive differential equations and those of linear integro-differential equations are established. A new Gronwall–Bellman type
lemma for integro-differential inequalities is proved. An example is given to demonstrate the validity of one of the results.
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1. Introduction and preliminaries

Let N, Z and R be sets of all natural numbers, integers and real numbers, respectively. Let ‖ · ‖ be the Euclidean
norm in Rn , n ∈ N. Let R+ = [0,∞], and θi , i = 1, 2, . . . , be a sequence from R+ such that 0 < θ1 < θ2 < · · ·

and that θk → ∞ as k → ∞. In what follows, PC(R+,Y) denotes the set of all functions ϕ : R+ → Y, which
are piecewise continuous and continuous on the left with discontinuities of the first kind at points θi , i = 1, 2, . . . . A
function ϕ(t) is said to be from a space PC1(R+,Y) if ϕ′

∈ PC(R+,Y).
The main object of investigation in this work are the following two systems of impulsive integro-differential

equations:

ẋ(t) = [A(t)+ B(t)]x(t)+

∫ t

0
K (t, τ )x(τ )dτ, t 6= θi , t ≥ 0,

1x |t=θi
= [Ci + Di ]x(θi )+

∑
0<θ j ≤θi

L i j x(θ j ), (1)

∗ Corresponding author.
E-mail addresses: marat@metu.edu.tr (M.U. Akhmet), oguzyilmaz@iyte.edu.tr (O. Yılmaz).

1 M.U. Akhmet is previously known as M.U. Akhmetov.

0898-1221/$ - see front matter c© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2007.08.050

http://www.elsevier.com/locate/camwa
mailto:marat@metu.edu.tr
mailto:oguzyilmaz@iyte.edu.tr
http://dx.doi.org/10.1016/j.camwa.2007.08.050


1072 M.U. Akhmet et al. / Computers and Mathematics with Applications 56 (2008) 1071–1081

where, x(t) ∈ Rn , t ∈ R+,1x |t=θ = x(θ+)− x(θ), x(θ+) = limt→θ+ x(t), and

u̇(t) = P(t)u(t)+

∫ t

0
M(t, s)u(s)ds, t 6= θi , t ≥ 0

1u |t=θi
= Qi u(θi )+

∑
0<θ j ≤θi

Ni j u(θ j ), (2)

where, u(t) ∈ Rn , t ∈ R+. The problem of asymptotic properties of solutions of the systems is investigated.
Throughout this paper we need the following conditions on system (1):

(C1) A(t), B(t) ∈ PC(R+,Rn×n) and K (t, s) is continuous on R+ × R+ in both variables t and s;
(C2) Ci , Di and L i j , i, j = 1, 2, . . . are real constant n × n matrices, and det[Ci + Di ] 6= 0, det Ci 6= 0, i ∈ N.

Similar conditions are imposed on system (2):

(P1) P(t) ∈ PC(R+,Rn×n) and M(t, s) is continuous on R+ × R+ in both variables t and s;
(P2) Qi and Ni j , i, j = 1, 2, . . . are real constant n × n matrices and det Qi 6= 0, i ∈ N.

The results of [1,2] imply that solutions for systems (1) and (2) exist and are unique. They are from PC1(R+,Rn),
if conditions (C1), (C2) and (P1), (P2), respectively, are valid. Both systems have the zero solutions.

Theory of impulsive differential equations has been investigated intensively for the last several decades [3–13].
They are of great interest for applications [14–20]. The asymptotic behavior of solutions and integro-differential
equations have an important place in the theory [21–23]. There are many research articles which deal with asymptotic
properties of solutions of differential equations. These properties are basic subjects of investigation for qualitative
theory of differential equations [24–31].

In this paper, by making use of the results of [30] for integro-differential equations, and investigation technique of
impulsive integro-differential equations [1,2,23], new asymptotic properties of solutions of (1) and (2) are established.
The first problem we try to tackle is the asymptotic relations between solutions of (1) and solutions of the associated
linear homogeneous system

ẏ(t) = A(t)y(t), t 6= θi ,

1y |t=θi
= Ci y(θi ). (3)

We shall prove the following equations under some conditions that will be specified later,

x(t) = Y (t)[b + o(1)], (4)

x(t) = Y (t)c + o(1), (5)

where Y (t) is a fundamental matrix of solutions of (3) such that Y (0) = I (I is the identity matrix), x(t) is a solution of
(1), c, b ∈ Rn are vectors, and o(1) → 0 as t → ∞. The last equation accompanied with a one-to-one correspondence
condition implies asymptotic equivalence of the systems. Another problem to be considered is the existence of the
asymptotic equilibria for system (2) which is secondary to the first problem in our paper, but it certainly has its own
interest for the theory of impulsive integro-differential equations.

Remark 1.1. If the integral terms in linear perturbation (1) of (3), and in (2) vanish, then from our results one can
easily obtain assertions on asymptotic behavior of solutions for linear impulsive differential equations.

The following assertion is needed in the proof of the main results of the paper.

Lemma 1.2. Assume that

u(t) ≤ C +

∫ t

0

[
ν(s)u(s)+

∫ s

0
ω(s, τ )u(τ )dτ

]
ds +

∑
0<θi<t

βi u(θi )+

∑
0<θ j ≤θi

γi j u(θ j )

 , (6)

where 0 ∈ R+, constants C, ω(s, τ ), βi and γi j are nonnegative and ν(s) > 0.
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Then, the following inequality holds

u(t) ≤ C exp
[∫ t

0

[
ν(s)+

∫ s

0
ω(s, τ )dτ

]
ds

]
·

∏
0<θi<t

1 + βi +

∑
θi ≤θ j<t

γi j

 . (7)

Proof. By applying Lemma 1 of [2], we can write the following

∑
0<θi<t

∑
0<θ j ≤θi

γi j u(θ j ) =

∑
0<θi<t

 ∑
θi ≤θ j<t

γi j

 u(θi ). (8)

Hence,

u(t) ≤ C +

∫ t

0

[
ν(s)+

∫ t

s
ω(s, τ )dτ

]
u(s)ds +

∑
0<θi<t

βi +

∑
θi ≤θ j<t

γi j

 u(θi ).

By applying Lemma 1 of [13], it is easily seen that (7) holds. �

2. Asymptotic equilibria

Let us list the following conditions, which we shall use to formulate several theorems on asymptotic equilibria for
system (2).

(P3) ∫
∞

0

[
‖P(t)‖ +

∫ t

0
‖M(t, s)‖ds

]
dt +

∑
0<θi<t

log

1 + ‖Qi‖ +

∑
0<θ j ≤θi

‖Ni j‖

 < ∞;

(P4)

µ1 =

∫
∞

0

[
‖P(s)‖ exp[H(s)] +

∫ s

0
‖M(s, τ )‖ exp[H(τ )]dτ

]
ds

+

∑
0<θi<∞

‖Qi‖ exp[H(θi )] +

∑
0<θ j ≤θi

‖Ni j‖ exp[H(θ j )]

 < 1.

(P5)

|Sp(Qi )| < 1, i = 1, 2, . . . ,

where Sp(Qi ) means the sum of diagonal elements of a square matrix Qi ;

(P6)

µ2 = n!

∫
∞

0

∫ t

0
[‖M(t, τ )‖ exp[(n − 1)H(t)+ µ+(t)+ H(τ )]]dτ

+ n!

∑
0<θi<∞

∑
0<θ j ≤θi

(1 + n‖Qi‖)‖Ni j‖ exp[(n − 1)H(θi )+ µ+(θi )+ H(θ j )] < 1,

where

µ+(t) =

∫ t

0
[Sp(P(s))]ds +

∑
0<θi<t

log(1 + Sp(Qi )), t ≥ 0,

H(t) = φ(t)+

∑
0<θi<t

log(1 + ψi ),

φ(t) =

∫ t

0

[
‖P(s)‖ +

∫ s

0
‖M(s, τ )‖dτ

]
ds
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and

ψi =

‖Qi‖ +

∑
θi<θ j ≤t

‖Ni j‖


we shall need also the following function

µ−(t) =

∫ t

0
[Sp(P(s))]ds −

∑
0<θi<t

log(1 + Sp(Qi )), t < 0.

Theorem 2.1. If conditions (P1)–(P3) hold, then every solution u(t) of (2) approaches cu as t → ∞, where cu is a
constant vector in Rn .

Proof. It is easy to see that a solution u(t) of (2) with u(0) = u0 satisfies the following integral equation,

u(t) = u(0)+

∫ t

0

[
P(s)u(s)+

∫ s

0
M(s, τ )u(τ )dτ

]
ds +

∑
0<θi<t

Qi u(θi )+

∑
0<θ j ≤θi

Ni j u(θ j )

 . (9)

By taking the norms of both sides of (9), we get,

‖u(t)‖ ≤ ‖u(0)‖ +

∫ t

0

[
‖P(s)‖ ‖u(s)‖ +

∫ s

0
‖M(s, τ )‖ ‖u(τ )‖dτ

]
ds

+

∑
0<θi<t

‖Qi‖ ‖u(θi )‖ +

∑
0<θ j ≤θi

‖Ni j‖ ‖u(θ j )‖

 . (10)

By applying Lemma 1.2, we obtain,

‖u(t)‖ ≤ ‖u(0)‖ exp[φ(t)]
∏

0<θi<t

[1 + ψi ]. (11)

Then (11) can be written as

‖u(t)‖ ≤ ‖u(0)‖ exp[H(t)]. (12)

Condition (P3) implies that every solution u(t) of (2) is bounded. Let

mu = sup
t∈R+

‖u(t)‖ < ∞.

Using (9) one can find that for fixed t1, t2 ∈ R+, t2 < t1

‖u(t1)− u(t2)‖ ≤ mu

∫ t2

t1

[
‖P(s)‖ +

∫ s

0
‖M(s, τ )‖dτ

]
ds +

∑
t1<θi<t2

‖Qi‖ +

∑
0<θ j ≤θi

‖Ni j‖

 .
Condition (P3) implies that for arbitrary ε > 0 there exists T (ε) > 0 such that if t1 > t2 > T (ε) then∫ t2

t1

[
‖P(s)‖ +

∫ s

0
‖M(s, τ )‖dτ

]
ds +

∑
t1<θi<t2

‖Qi‖ +

∑
0<θ j ≤θi

‖Ni j‖

 < ε

mu
.

That is,

‖u(t1)− u(t2)‖ ≤ ε if t1 > t2 > T (ε). �

Theorem 2.2. If conditions (P1), (P2) and (P4) are valid, then every nontrivial solution of (2) has the nonzero limit

lim
t→∞

u(t) = cu .
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Proof. It is easily seen that condition (P4) implies the condition of Theorem 2.1. So, every solution u(t) of (2)
approaches a limit, i.e. limt→∞ u(t) = cu . Let us show that cu 6= 0. By applying triangle inequality to (9), we have
the following:

‖u(t)‖ ≥ ‖u(0)‖

1 −

∫
∞

0

[
‖P(s)‖ exp[H(s)] +

∫ s

0
‖M(s, τ )‖ exp[H(τ )]dτ

]
ds

−

∑
0<θi<∞

‖Qi‖ exp[H(θi )] +

∑
0<θ j ≤θi

‖Ni j‖ exp[H(θ j )]

 .
That is, in the limit,

cu ≥ ‖u0‖(1 − µ1). �

Theorem 2.3. If conditions (P1), (P2), (P5) and (P6) are valid, then for every vector c ∈ Rn there exists a unique
solution uc(t) of (2) such that

lim
t→∞

uc(t) = c. (13)

Proof. Denote D(t) = det U (t), where U (t) = (ui j (t)), U (0) = I is the fundamental matrix of solutions of (2), such
that

dU

dt
= P(t)U (t)+

∫ t

0
M(t, s)U (s)ds, t 6= θi

1U |t=θi
= QiU (θi )+

∑
0<θ j ≤θi

Ni jU (θ j ) (14)

and by (12)

‖ui j (t)‖ ≤ exp[H(t)]. (15)

Denote A = limt→∞ U (t). By Theorem 2.1 matrix A exists and is constant. Every solution of (2) can be written as

u(t) = U (t)d (16)

where d ∈ Rn and d = u(0). To prove the theorem it is sufficient to show that

det A 6= 0. (17)

Indeed, if c ∈ R is given, then a solution of the equation

Ad = c (18)

defines a solution of (16) which we are looking for.
In what follows we shall show that (17) is valid under conditions of the theorem. Let Di j (t) be the minor

corresponding to element ui j (t) of U (t). Then for t 6= θi , we have that

D′(t) =

n∑
i, j=1

Di j (t)u
′

i j (t)

=

n∑
i, j=1

Di j (t)
n∑

k=1

[
Pik(t)uk j (t)+

∫ t

0
Mik(t, τ )uk j (τ )dτ

]
= [Sp(P(t))]D(t)+ R(t) (19)

where

R(t) =

n∑
i, j,k=1

Di j (t)
∫ t

0
Mik(t, τ )uk j (τ )dτ.
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Similarly one can find that

1D |t=θi
= [Sp(Qi )]D(θi )+ Si , (20)

where number Si is a product of n! elements of matrix,

S = (I + Qi )U (θi )
∑

0<θ j ≤θi

Ni jU (θ j ).

Next, we consider the equation,

D′(t) = [Sp(P(t))]D(t)+ R(t)

1D |t=θi
= [Sp(Qi )]D(θi )+ Si , (21)

and its associated equation,

Z ′(t) = [Sp(P(t))]Z(t)

1Z |t=θi
= [Sp(Qi )]Z(θi ). (22)

The solution D(t), D(0) = 1 of (22) is equal to

D(t) =

{
exp[µ+(t)], t ≥ 0
exp[µ−(t)], t < 0,

and the solution D(t), D(0) = 1 of (21) is

D(t) = D(t)

[
1 +

∫ t

0
D(−s)R(s)ds +

∑
0<θi<t

D(−θi )Si

]
. (23)

Since Di j is (n − 1) order determinant of elements of D(t), then

|Di j (t)| ≤ (n − 1)! exp[(n − 1)H(t)], i, j = 1, . . . , n, t ∈ R+

and

|R(t)| ≤ n!

∫ t

0
‖M(t, τ )‖ exp[(n − 1)H(t)+ H(τ )]dτ, t ∈ R+.

Similarly one can find that

|Si | ≤ n!(1 + n‖Qi‖) exp[(n − 1)H(θi )]
∑

0<θ j ≤θi

‖Ni j‖ exp[H(θ j )].

Hence

det A = exp[µ+(∞)]

[
1 +

∫
∞

0
D(−s)R(s)ds +

∑
0<θi

D(−θi )Si

]
≥ exp[µ+(∞)][1 − µ2],

and using (P6) theorem is proved. �

In following two examples we illustrate Theorem 2.1.

Example 2.4. Consider the system

u′

1(t) =
t

t − 1
,

u′

2(t) =

∫ t

2

5(s − 1)

4t5 u1(s)ds, t 6= i,

1u1|t=i =
1

i(i − 1)
u(i),

1u2|t=i =

∑
2< j≤t

1

i3

1
j ( j − 1)

u( j), (24)
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where t ∈ [2,∞), and i > 2 are integers. It is obvious that conditions (P1) and (P2) are satisfied by the system (24).
Condition (P3) is also satisfied by the system, that is,∫

∞

2

[
t

t − 1
+

∫ t

1

5(s − 1)

4t5 ds

]
dt +

∑
2<i

log

[
1 +

1
i(i − 1)

+

∑
2< j≤i

1

i3

1
j ( j − 1)

]
< ∞.

Indeed, the convergence of the improper integrals is obvious. Moreover, we have that

exp

(∑
2<i

log

[
1 +

1
i(i − 1)

+

∑
2< j≤i

1

i3

1
j ( j − 1)

)
=

∏
i>1

(
1 +

1
i(i − 1)

+

∑
2< j≤i

1

i3

1
j ( j − 1)

)]

=

∏
i>2

(
1 +

1
i(i − 1)

+
i + 1

i4

)
.

Hence, the sum is convergent by a theorem on the infinite product convergence [32]. Thus, Theorem 2.1 implies that
for each solution u(t) = (u1(t), u2(t)) of (24) there exists a vector cu ∈ R2, such that u(t) → cu as t → ∞. It
is difficult to obtain the exact solution in closed form in this example. However, we simplify the system in the next
example to get an explicit solution.

Example 2.5. Consider a slightly different version of the last system

u′

1(t) =
t

t − 1
,

u′

2(t) =

∫ t

2

5(s − 1)

4t5 u1(s)ds, t 6= i,

1u2|t=i =

∑
2< j≤i

1

i3

1

( j − 1)2
u1( j). (25)

One can verify that condition (P3) is valid in this case too, and the solution u(t), u(2) = (u1(2), u2(2)), has a form

u1(t) = 2u1(2)
t − 1

t
, u2(t) = u2(2)+ 5

t2
− 4

t5 + 2u1(2)
∑

2<i<t

∑
2< j≤i

1

i3

1

( j − 1)2
j − 1

j

= u2(2)+ 5
t2

− 4

t5 + 2u1(2)
∑

2<i<t

i + 1

i4 .

In Fig. 1 the graphs of the solution, when u1(2) = 2, and u2(2) = 3 are provided. One can observe that both
coordinates of the solution approach finite values as t → ∞.

3. Asymptotic equivalence

Denote

m+(t) =

∫ t

0
[Sp(Y −1(s)B(s)Y (s))]ds +

∑
0<θi<t

log(1 + Sp(Y −1(θ+

i )Di Y (θi ))), t ≥ 0,

H(t) =

∫ t

0

[
‖Y −1(t)B(t)Y (t)‖ +

∫ s

0
‖Y −1(s)K (s, τ )Y (τ )‖dτ

]
ds

+

∑
0<θi<t

log

1 + ‖Y −1(θi )Di Y (θi )‖ +

∑
θi<θ j ≤t

‖Y −1(θi )L i j Y (θ j )‖

 .
Let us formulate the following conditions which we shall need to prove some of the theorems given below:
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Fig. 1. The graph of the coordinate u1(t) of the solution is shown in blue, and of the coordinate u2(t) is green.

(C4) ∫
∞

0

[
‖Y −1(t)B(t)Y (t)‖ +

∫ t

0
‖Y −1(t)K (t, s)Y (s)‖ds

]
dt

+

∑
0<θi<t

log

1 + ‖Y −1(θ+

i )Di Y (θi )‖ +

∑
0<θ j ≤θi

‖Y −1(θ+

i )L i j Y (θ j )‖

 < ∞;

(C5) ∫
∞

0

[
‖Y −1(t)B(t)Y (t)‖ exp[H(t)] +

∫ t

0
‖Y −1(t)K (t, s)Y (s)‖ exp[H(s)]ds

]
dt

+

∑
0<θi<t

‖Y −1(θ+

i )Di Y (θi )‖ exp[H(θi )] +

∑
0<θ j ≤θi

‖Y −1(θ+

i )L i j Y (θ j )‖ exp[H(θ j )]

 < 1;

(C6)

|Sp(Y −1(θi )Di Y (θi ))| < 1;

(C7)

n!

∫
∞

0

∫ t

0
‖Y −1(t)K (t, τ )Y (τ )‖ exp[(n − 1)H(t)+ m+(t)+H(τ )]dτ

+ n!

∑
0<θi<∞

∑
0<θ j ≤θi

(1 + n‖Qi‖)‖Ni j‖ exp[(n − 1)H(θi )+ m+(θi )+H(θ j )] < 1;

(C8) ∫
∞

t

[
‖Y (t)Y −1(s)B(s)Y (s)‖ exp[H(s)] +

∫ s

0
‖Y (t)Y −1(s)K (s, τ )Y (τ )‖ exp[H(τ )]dτ

]
ds

+

∑
t<θi

‖Y (t)Y −1(θi )Di Y (θi )‖ exp[H(θi )]

+

∑
0<θ j ≤θi

‖Y (t)Y −1(θi )L i j Y (θ j )‖ exp[H(θ j )]

 → 0, as t → ∞.
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If the substitution

x(t) = Y (t)u(t) (26)

is applied to system (1) then one obtains system (2) with the following coefficients

P(t) = Y −1(t)B(t)Y (t), M(t, s) = Y −1(t)K (t, s)Y (s)

Qi = Y −1(θ+

i )Di Y (θi ), Ni j Y
−1(θ+

i )L i j Y (θ j ). (27)

One can easily see that conditions (C1)–(C7) are transformed to the conditions (P1)–(P7).
On the basis of Theorems 2.1–2.3, we can formulate, using the transformation x(t) = Y (t)u, the following

assertions.

Theorem 3.1. Assume that conditions (C1)–(C4) are valid, then, every solution x(t) of (1) satisfies x(t) = Y (t)[cx +

o(1)], where cx ∈ Rn is a constant vector.

Theorem 3.2. Assume that conditions (C1)–(C3) and (C5) are valid, then, every nontrivial solution x(t) of (1) can
be represented as x(t) = Y (t)[cx + o(1)], where cx 6= 0.

Theorem 3.3. Assume that conditions (C1)–(C4) and (C6), (C7) are valid, then, for every vector c ∈ Rn there exists
a unique solution xc(t) of (1) such that

xc(t) = Y (t)[c + o(1)].

Let us prove the following important assertion.

Theorem 3.4. Assume that conditions (C1)–(C4) and (C8) are valid, then, every solution of (1) can be written as

x(t) = Y (t)b + o(1) (28)

where b ∈ Rn is a constant vector.
If conditions (C1)–(C3), (C5), (C8) are valid then for every nontrivial solution x(t) of (1), there exists a nonzero

vector b such that (28) is valid.
If conditions (C1)–(C4), (C7), (C8) are valid then for every vector c ∈ Rn there exists a unique solution xc(t) of

(1) such that

xc(t) = Y (t)c + o(1).

Proof. On the base of condition (C4) and Theorem 3.1 we have that

x(t) = Y (t)b + α(t), (29)

where according to the proof of Theorem 2.1, (26) and (27)

α(t) ≡ −Y (t)
∫

∞

t

[
P(s)u(s)+

∫ s

t
M(s, τ )u(τ )dτ

]
ds +

∑
t<θi

Qi u(θi )+

∑
t<θ j ≤θi

Ni j u(θ j )

 (30)

and

‖u(t)‖ ≤ ‖u(0)‖ exp[H(t)]. (31)

By the last inequality and condition (C8) we have that ‖α(t)‖ → 0 as t → ∞, and, hence, (29) has the form of (28).
Similarly one can prove other assertions of the theorem. �

The notion of asymptotic equivalence for differential equations is very interesting from the theoretical point of
view as well as from the point of view of applications. In this part of the paper we shall consider the equivalence of
systems (1) and (3) on R+.

Let us introduce, following [24], the next definition.
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Definition 3.5. Systems (1) and (3) are asymptotically equivalent on R+ if there exists a one-to-one correspondence
between solutions x(t) : R+ → ∞ and y(t) : R+ → ∞ of the systems, respectively, such that x(t) − y(t) → 0 as
t → ∞.

The last theorem implies the following assertion:

Theorem 3.6. Assume that conditions (C1)–(C4), (C5), (C7) and (C8) are valid, then systems (1) and (3) on R+

are asymptotically equivalent on R+.

Proof. Indeed, (29) implies the one-to-one correspondence

x(0) = y(0)+ α(0),

where y(0) = c, between solutions of (1) and (3) on R+. �
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