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Abstract: Wind has been one of the popular renewable energy generation methods in the last decades. Foreknowledge of
power to be generated from wind is crucial especially for planning and storing the power. It is evident in various experimental
data that wind speed time series has non-linear characteristics. It has been reported in the literature that nonlinear prediction
methods such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS) perform better than linear
autoregressive (AR) and AR moving average models. Polynomial AR (PAR) models, despite being non-linear, are simpler to
implement when compared with other non-linear AR models due to their linear-in-the-parameters property. In this study, a PAR
model is used for one-day ahead wind speed prediction by using the past hourly average wind speed measurements of Çeşme
and Bandon and performance comparison studies between PAR and ANN-ANFIS models are performed. In addition, wind
power data which was published for Global Energy Forecasting Competition 2012 has been used to make power predictions.
Despite having lower number of model parameters, PAR models outperform all other models for both of the locations in speed
predictions as well as in power predictions when the prediction horizon is longer than 12 h.

1 Introduction
Wind speed or wind power prediction plays a key role in wind
power management for governments and energy companies. A
reliable and highly precise prediction provides better control and
planning of power, e.g. daily and hourly scheduling, transmission,
storage and balance of power and other managing related
operations [1]. When it is not possible to measure and apply
prediction operation directly to wind power, wind speed prediction
becomes important, since it is directly related to power. Short-term
wind speed prediction is crucial for preventing damage to wind
farms due to sudden wind gust, whereas long-term prediction
serves especially for planning of generated power. Moreover,
predicting directly from power time series eliminates extra errors
resulting from cubic conversion of erroneous wind speed estimates.

Several forecasting horizons can be used in power markets for
both management and trading issues. For example, for
management issues, from 2 to 3 days ahead predictions are
required for systems such as steam turbines etc. Up to 6 h
predictions can be enough for systems with lower complexity such
as gas turbines. Predictions which lie within 48 h are generally
required for trading issues. However, longer or shorter horizons
can be chosen according to the application and area in which the
predictions will be used [2–4].

Wind speed/power forecasting models can be listed in two
groups which are physical and statistical models. Physical models
perform wind forecasting by using meteorological and
atmospherical instances. Numerical weather prediction is a popular
approach in physical modelling which uses meteorological
instances and performs predictions via solving complex
mathematical models about physical equations of the atmosphere.
Its performance is relatively well especially in stable weather
conditions and is lower especially for short-term, because of the
uncertainties on initial atmospheric conditions and
parameterisations [5, 6].

There are several statistical models for wind speed/power
prediction in the literature which can be listed as the persistence
model [7], linear time series-based models [8–10], artificial neural
networks (ANNs) [11, 12] and adaptive neuro fuzzy inference
systems (ANFISs) [13, 14]. Persistence model is the simplest one

among these models and can be defined as the naive predictor in
meteorological studies [7] which makes predictions under the
assumption that the future value (prediction) will be the same as
the current measurement.

Linear time series-based models have been frequently used in
previous works on wind speed/power prediction. Those works
which use autoregressive (AR), AR moving average (ARMA) and
AR integrated MA (ARIMA) or seasonal-ARIMA-based models
have demonstrated a limited degree of success in predicting short-
term (especially from 10 min up to 6 h) wind speed/power. In
particular, ARIMA(2,0,0) [equivalently AR(2)] model has
performed better than feed forward ANN with different validation
techniques at prediction horizon between 10 min and 4 h [8].
Furthermore, ARMA models have been compared with ANN
models in short-term prediction [9] and achieved lower values of
error measures than the ANN models in the simulations. In another
study [10], short-term prediction performance of ARMA models
has been compared with that of the persistence model and these
models performed better than persistence at different locations in
Spain. These studies have clearly showed that linear time series
models achieve considerably good performance and they are
preferable models for short-term over persistence model and
several ANN.

When the prediction horizon is longer than 6 h, linear time
series methods fall short due to the non-linear character of wind
speed/power. To overcome this, various non-linear methods such as
ANN and ANFIS are used for both short and long-term prediction
in the literature. These methods outperform linear time series
methods for various wind speed and wind power data from various
locations in the world. Data mining approaches and hybrid systems
have been proposed in studies [15–17] in order to predict wind
speed/power up to 1–3 days and they outperform linear and some
specific non-linear methods. Furthermore, Gaussian processes [18],
random forest and bagging trees [19, 20] are also utilised in
prediction studies.

Non-linear time series methods are also used for wind speed/
power prediction studies. A Volterra model-based prediction
scheme trained by a recursive ANN (R-ANN) has been utilised in
[21] and a pattern-based hybrid wind speed forecasting scheme
with a Hammerstein-AR model has been proposed [1]. In addition,
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in other studies nonlinear autoregressive moving average with
exogenous inputs (NARMAX) models have been proposed [22,
23].

Polynomial AR (PAR) models are based on the Volterra series
expansion (1), which has been applied successfully in areas such as
biological systems [24], industrial plant control systems [25],
communications [26] and seismology [27]. PAR processes differ
from the other non-linear AR processes in that they are linear-in-
the-parameters and thus many mathematical applications
developed for linear models can be employed without much
difficulty [28].

In a preliminary work presented as conference communication
[29], PAR models performance was compared with linear models.
In this paper, we extend our comparisons with state-of-the-art non-
linear models such as ANN and ANFIS models whose number of
parameters and computational complexities are relatively higher
than the proposed model, PAR. We also enrich our simulations on
various experimental data: in addition to hourly average wind
speed data of Çeşme (İzmir, Turkey), data from another location in
USA, Bandon (Oregon) are used for this paper. Performance
comparison is provided visually for two different periods (July–
August–September and January–February–March) using error
measures such as normalised root mean square error (NRMSE),
normalised mean absolute percentage error (NMAPE) and bias.

In this paper, in addition to wind speed predictions, we have
performed a wind power prediction study directly using wind
power time series. For this purpose, globally reachable wind power
measurements which were published for Global Energy
Forecasting Competition 2012 [30] have been utilised for the
prediction study and performances of models have been compared
by error metrics NRMSE, NMAPE and bias.

Rest of this paper is organised as follows: PAR models and
representative state-of–the-art models, ANN and ANFIS models
are examined in Section 2. Section 3 exhibits estimation methods
and error measures used in prediction procedure. Wind data
information, the simulation results and error analysis have been
provided in Section 4. Section 5 concludes this paper with a
discussion of experimental results.

2 Models
2.1 PAR models

PAR models can be represented as [28]

x(l) = μ + ∑
i

k
ai

(1)x(l − i) + ∑
i

k

∑
j

k
ai, j

(2) x(l − i)x(l − j)

+⋯ + ∑
i, …

k, …
ai, …

(p) x(l − i)… + ϵ(l)
(1)

where μ is the intercept, ϵ(l) is an independent and identically
distributed (i.i.d.) excitation sequence with distribution N(0, σϵ

2),
ai

(1), ai, j
(2)  and ai, . . .

(p)  are coefficients for first, second and pth-order
polynomials, respectively, p is the non-linearity degree and k is the
AR order. We represent a PAR model with the notation: P(p)AR(k).

A P(p)AR(k) model given by (1) can be expressed in matrix–
vector form by using the linear-in-the-parameters property

x = μ + Xa(p, k) + ϵ (2)

where x is an n × 1 data vector, X is an n × w matrix of past
samples and polynomial products of the data, a(p, k) is a w × 1
coefficient vector, ϵ is an n × 1 vector of excitation sequence, n is

the data length and w is the number of model coefficients. The
coefficient vector a(p, k) and the matrix X can be defined as in (3)
and (4), respectively

a(p, k) = a1
(1), a2

(1), …, ak
(1), a1, 1

(2) , a1, 2
(2) , …, ak, k

(2) , …, ak, k, …, k
(p)

pth order

T

(3)

(see (4)) AR models are subsets of PAR models. So, P(p)AR(k)
models are equivalent to AR(k) models when the non-linearity
degree, p, is set to 1.

2.2 ANN models

ANNs are statistical learning models which are inspired by central
nervous system of animals and composed of elements called nodes,
also known as neurons. Interconnected neurons exchange messages
between each other. These systems are trained via various training
algorithms and this learning process updates weights of
interconnections. ANN are formed of layers which are composed
of a number of interconnected neurons and every neuron contains
an activation function which is a zero memory non-linear function.
Inputs are fed to the input layer which is connected to one or more
hidden layers. The actual processing is provided by hidden layers
via a system of weighted connections. The output layer which is
linked to the hidden layers provides the final result. Five different
ANN structures will be used in this paper. These are: multilayer FF
(MLFF), multilayer perceptron (MLP), Elman recurrent, radial
basis function (RBF) and linear (for details, see studies [13, 31]).
Inputs are past hourly average wind speed/power data and the
output is the predicted wind speed/power data. For example, if the
number of inputs is r, then the corresponding inputs for the one-
step ahead predicted output y^(l) are
{y(l − 1), y(l − 2), …, y(l − r)}.

2.3 ANFIS models

ANFIS models are combinations of two statistical systems and
create a successful hybrid system of neural networks and fuzzy
inference systems. The working principle of an ANFIS model
consists of two steps [13]: (i) the system is trained in a similar
manner with ANN and (ii) trained system will then operate as a
fuzzy inference system. ANFIS model is based on Takagi–Sugeno
fuzzy inference system [32]. Since ANFIS integrate both ANN and
fuzzy logic principles, the advantages of both systems are
integrated in a single system. Fuzzy interference system (FIS) part
has the capability to approximate non-linear functions via a set of
if–then rules [33]. Basically, ANFIS are constructed with five
layers. Each layer is formed of nodes which are described by the
node functions. The outputs of previous layers are inputs of next
layers. ANFIS use either backpropagation or a combination of
least-squares (LSs) estimation and backpropagation for the
membership function (MF) parameter estimation. In addition,
ANFIS models have both linear parameters of the consequent MF
and non-linear parameters of the antecedent MF. The number of
consequent parameters depends on the number of rules, which in
turn depends on the number of inputs. However, the number of
antecedent parameters depends on the number of MFs per input
and the MF type in addition to the number of inputs [34].

3 Estimation methods
3.1 Multistep ahead prediction

Prediction study in this paper requires a multistep ahead prediction
procedure in order to make predictions up to 24 h ahead.

X =

x(0) x( − 1) … x(1 − k) x2(0) x(0)x( − 1) … x2(1 − k) … xp(1 − k)
x(1) x(0) … x(2 − k) x2(1) x(1)x(0) … x2(2 − k) … xp(2 − k)

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
x(n − 1) x(n − 2) … x(n − k) x2(n − 1) x(n − 1)x(n − 2) … x2(n − k) … xp(n − k)

(4)
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Predictions have been made for all the models in this paper (AR,
PAR, ANN and ANFIS) by employing the procedure explained
below.

A time series Y = [y1, y2, …, yn] can be defined as a sequence
of recorded observations at each time step. If we take a segment of
data with length q up to time l, this segment will be
Yl − q + 1

l = [yl, yl − 1, …, yl − q + 1]. T-step ahead prediction of Y is
represented as Yl + 1

l + t and will be a function of q past values. This can
be defined as [35]

Yl + 1
l + t = f (yl, yl − 1, …, yl − q + 1) = f (Yl − q + 1

l ) (5)

The keypoint in multistep ahead prediction is to use only the
measurements up to time l. If measurements at time l + 1, l + 2, …
are needed, predicted values will be used instead of these
measurements. An example of three-step ahead prediction have
been shown in Fig. 1. 

3.2 Coefficient estimation of PAR models

The non-linear LS (NLS) estimation generates optimal PAR
coefficient estimates under the assumption that the excitation, ϵ(l),
are i.i.d. Gaussian random variables. PAR model coefficients, a(p, k)

which are defined in (3) have been estimated by using the training
data for all data sets by employing the NLS method, since the data
matrix X includes polynomial products of past data samples. Under
the assumption that the model orders p and k are known initially,
NLS estimates of PAR model coefficients by [36]

a^NLS
(p, k) = (XTX)−1XTx (6)

On the other hand, when ϵ(l) have heavier tails than a Gaussian
distribution, computing the variance may not be possible and other
approaches can be applied instead of NLS. Using minimum
dispersion-based estimation methods instead of minimum MSE
appears as good alternatives here. Non-linear polynomial least L-p
norm-based estimation methods such as non-linear iteratively
reweighted LS and normalised polynomial least mean Pth power,
perform optimal coefficient estimations for PAR processes with α-
stable or generalised Gaussian innovations [28].

In this paper, we assume a Gaussian excitation for PAR models
for simplicity and apply NLS directly since PAR models are linear-
in-the-parameters models.

3.3 Performance metrics

There are various error metrics which have been used in the
literature to compare prediction performances of the methods. In
this paper, we use NRMSE, NMAPE and bias metrics in order to
measure the performances to visualise both L1-norm (NMAPE) and
L2-norm (NRMSE)-based errors and the bias. NRMSE provides a
good measure of distortion when the error is Gaussian distributed
while NMAPE is successful in dealing with data containing
outliers. We have used bias in order to see whether the predictions
are under or overestimated. These metrics are defined as

NRMSE = 1
n ∑

i = 1

n xi − x^i
max (x)

2

(7)

NMAPE = 1
n ∑

i = 1

n |xi − x^i|
max (x) × 100 (8)

bias = 1
n ∑

i = 1

n
(xi − x^i) (9)

where x and x̂ are the test and the predicted time series of length n,
respectively. Best results are shown with lower values of NRMSE
and NMAPE.

4 Experimental analysis
4.1 Data

In this paper, wind speed data which are measured at Çeşme (İzmir,
Turkey) and Bandon (Oregon, USA) are used to make predictions
up to 24 h ahead. Generally, accepted procedure in the literature is
to use hourly average values in the studies. In addition, our data
sets include only hourly averages. The term ‘hourly average’
corresponds to the average of the samples obtained within an hour
with a sampling period of several minutes. Using hourly average
values provides computationally cheaper operations in the same
time interval. Moreover, short averages generate erratic values than
the longer. Thus, using hourly averages is appropriate and the
smoothing effect generated by this averaging is assumed to be
negligible [37].

In particular, first data set is hourly average wind speed data
measured in Çeşme at an altitude of 10 m by Turkish State
Meteorological Service. Bandon data are also hourly average wind
speed data and measured by AgriMet (Cooperative Agricultural
Weather Network) [38]. The Bandon site is located at 25 m (80 ft)
elevation and at the West coast of Oregon, USA.

For wind speed prediction studies, two 3 months long periods
have been selected as test periods in order to measure the
performance of the models in different times of the year. In
particular, test period 1 covers January–February–March and
period 2 covers July–August–September and model performances
have been measured both for the first months and whole 3 months
of the periods. Measurements from 12 and 24 months before these
test periods are selected as candidate training data sets. Then, we
perform a comparison of the informative content for training sets
with different lengths (i.e. 1 and 2 years) using entropy to quantify
the information content of the sequences. As a result, the entropy
values for both of the training sets are very close to each other for
all the data sets. Hence, using shorter training period will be more
appropriate in the sense of computational complexity.

Fig. 2 shows hourly average wind speed distributions of test
months for two locations for both training and test data sets. Also,
both of the subfigures depict that the distributions for training and
test data have similar characteristics. Specifically, Bandon test data
for period 2 have quite lower values than training; however, this
fact has been compensated by the training data. 

Wind power measurements used in this paper are from a
globally reachable data set which was published for Global Energy
Forecasting Competition 2012 [30] including wind power

Fig. 1  Three-step ahead prediction example
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measurements from several wind farms and electricity load data.
Wind power measurements of a single wind farm (wp1 in the data
set excel sheet) have been selected and used in the wind power
predictions. Testing data periods are the same dates with wind
speed data sets and historical data 12 months before these periods
have been selected as training data.

4.2 Modelling results

Each model explained in previous sections is applied in a training
procedure with 1 year length wind speed/power data and 1 month
length wind speed/power test data. Both training and test data are
normalised in a range between 0 and 1 in order to apply prediction
procedures at the same interval for every data set.

4.2.1 Simulated PAR models: To decide the best AR and PAR
models in this paper, Akaike information criterion (AIC) and
Bayesian information criterion (BIC) methods have been
performed to select PAR or AR models for wind speed/power
predictions where model space includes nine different PAR models
(for p = 1, 2, 3 and k = 1, 2, 3). However, estimated orders by AIC
or BIC did not provide the best results in terms of prediction error.
Therefore, the ‘best’ PAR and AR models were selected by
performing an exhaustive search on models comparing their 24 h
ahead prediction performances (Please see [39] to estimate best
PAR model via AIC and BIC.).

For Çeşme wind speed, P(2)AR(3) and AR(3) models have been
found to be the best PAR and AR models according to their
NRMSE values for both 24 h ahead prediction, where for Bandon,
P(2)AR(2) and AR(2) models have been selected. For power
prediction studies, P(2)AR(1) and AR(1) models achieve the lowest
NRMSE values.

PAR/AR model coefficients for each model in question have
been estimated via NLS method by using the exhaustively
estimated model orders. Moreover, in training period, PAR models
have been tested for zero and non-zero intercepts and PAR models
with zero intercept achieve better prediction results than that of
non-zero intercept. That is why the intercept, μ, has been selected
as zero for all the data sets in this paper. PAR model excitation
sequence ϵn is a Gaussian process with mean 0 and variance σϵ

2.

Excitation variance values for each data set have been estimated in
training process.

By using all these estimated and initially defined parameters,
PAR model equation in (1) has been used to make predictions by
taking k past wind speed samples as its input. About 1000 Monte
Carlo simulations have been performed and averages have been
used as the predictions in order to obtain stable results.

4.3 Validation of PAR models

To validate the PAR models estimated for prediction, first a
statistical significance study has been run based on the residual
autocorrelations. Each training data set has a length of 8760
samples and to perform residual autocorrelations a 1 month long
(720 samples) period inside of the training set has been randomly
selected for each data set.

In Fig. 3, residual autocorrelations have been depicted for two
example data sets (Çeşme Period 1 and Power Period 2).
Examining both of the subfigures, it can be clearly stated that the
residual autocorrelations are generally below the limits and are
contained. However, they both show a cyclic character with a
period of 24 h (1 day). Notwithstanding, correlation values of the
residuals for each lag are low. Not to repeat the same results, we
only show 2 out of 6 figures. All other four data sets show same
characteristics such as the examples. Thus, we can extend the
comments above to all data sets that we utilised in this paper. 

Apart from residual autocorrelations, PAR models obtain
reasonable fitting results which are measured using adjusted-R2 and
F-test. Both tests measure the fitting performance of an estimated
model. Estimated PAR models [P(2)AR(3) for Çeşme, P(2)AR(2) for
Bandon and P(2)AR(1) for Power] for each data set have achieved at
least 65% adjusted-R2 score while rival methods also achieve
nearly the same values. Although all the models have p-values
lower than 0.0001 after F-test, F-score of PAR model is higher and
it can be stated that its fitting performance is slightly better than the
others.

4.3.1 Simulated ANN and ANFIS models: ANN models are
implemented by using the parameters given in Table 1. ANN and
ANFIS model structures are created in MATLAB®’s ANN and FIS
toolboxes and models are oriented to minimise the MSE. Some of

Fig. 2  Wind speed histograms
(a) Period 1, (b) Period 2

 

Fig. 3  Residual autocorrelations for randomly selected periods with length of 720 samples. Limits in these figures refer to ±3σ
(a) Çeşme (period 1), (b) Power (period 2)
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the models and their parameters for ANN and ANFIS models have
been taken from a previous study [13] on wind prediction using
several ANN and ANFIS models. In addition to the ANN models
in Table 1, two ANFIS structures with three inputs have been
implemented, where both use linear output MF and hybrid
optimisation method. The only difference is the MF types in
question, where ANFIS-1 uses generalised bell and ANFIS-2
employs triangular-shaped MFs. 

Number of inputs have been decided on after an exhaustive
search for each model (ANN and ANFIS) between 1 and 6 by
choosing the one giving the best performance. Consequently,
number of inputs have been decided as three in wind speed
prediction for both ANN and ANFIS for both locations. For wind
power prediction, number of inputs are selected for ANN models
as one for both of the test months.

Table 2 depicts the number of adjustable parameters for each
simulated model. Linear models AR and linear-ANN (L-ANN)
have a small number of parameters. PAR models are non-linear
models but their complexity is low when compared with other non-
linear models in terms of number of adjustable parameters. In
addition, complexity of the NLS used for estimating the parameters

of PAR and AR models is lower than those of the training
algorithms which ANN and ANFIS models have employed. 

4.4 Wind speed prediction results

Between Tables 3 and 6 show the performance of all the
implemented models for four different cases which are Çeşme-
period1, Bandon-period1, Çeşme-period2 and Bandon-period2. In
these tables, one PAR model is indicated for each case. These
models are the best PAR models which achieve the lowest NRMSE
value for 24 h ahead prediction as stated in Section 4.2.1. Values
for the best models for each error metric have been depicted as
bold in the tables. 

Examining the values in Table 3, the performance of P(2)AR(3)
model is clearly much better than all other models when prediction
horizon is longer than 6 h. RBF, MLP and ANFIS-2 have achieved
the second best performance after PAR models and they are
preferable to all other models for a longer prediction horizon. For
all prediction horizons, all the models, except P(2)AR(3) have
underestimated the wind speed (bias values are over zero). Below
12 h linear model AR(3) model is preferable which is a fact that

Table 1 ANN simulation parameters
MLFF RBFa MLP Elmanb L-ANN

training function TRAINLMe — TRAINLM TRAINLM TRAINGDXe

learning function LEARNGDe LEARNGD LEARNPe LEARNGD LEARNGD

number of layers 4 3 3 3 2

neurons – inputsc (I) 3/1 3/1 3/1 3/1 3/1

neurons – hidden 1d (H1) 10/20 variable (maximum 30) 10/20 10/20 —

neurons – hidden 2d (H2) 10/20 — — — —

notation I-H1-H2-1 I-H1-1 I-H1-1 I-H1-1 I-1
activation function (hidden) TANSIGe RADBASe TANSIG TANSIG —

activation function (output) PURELIN PURELIN PURELIN PURELIN —
epochs 200 200 200 200 200
aNeurons are iteratively added to the RBF network one by one until the sum-squared error falls beneath 0.005 or a maximum number of neurons have been reached.
bElman R-ANN model is selected with one feedback input.
cOne input neuron has been used for wind power predictions.
dAbout 20 hidden neurons have been used for wind power predictions.
eLM: Levenberg–Marquardt algorithm, GDX: gradient descent with momentum and adaptive learning rate backpropagation, GD: gradient descent, P: perceptron, TANSIG:
hyperbolic tangent sigmoid and RADBAS: RBF.
 

Table 2 Number of adjustable parameters for the simulated models
Model Number of

parameters
Model Number of

parameters
Model Number of

parameters
Model Number of

parameters
AR(1) 1 P(2)AR(3) 9 L-ANN (1-1) 2 MLFF (3-10-10-1) 161
AR(2) 2 Elman (3-10-1) 151 L-ANN (3-1) 4 MLFF (1-20-20-1) 481
AR(3) 3 Elman (1-20-1) 461 MLP (3-10-1) 51 ANFIS-1 135
P(2)AR(1) 2 RBF (1-Var-1) 31-91 MLP (1-20-1) 61 ANFIS-2 135

P(2)AR (2) 5 RBF (3-Var-1) 51-151
 

Table 3 Performance comparison of Çeşme wind speed time series for the test period 1
1 month test 3 months test

6 h 12 h 24 h 24 h
NRMSE NMAPE Bias NRMSE NMAPE Bias NRMSE NMAPE Bias NRMSE NMAPE Bias

P(2)AR(3) 0,0554 5,6688 0,0001 0,0762 8,2396 −0,0056 0,1026 11,7231 −0,0187 0,1015 11,7429 −0,0188

AR(3) 0,0511 5,5591 0,0361 0,0801 9,2375 0,0649 0,1297 15,5834 0,1108 0,1294 15,4769 0,1100
MLFF 0,0638 6,6579 0,0084 0,0882 9,4067 0,0137 0,1148 12,4311 0,0183 0,1155 12,8892 0,0165
MLP 0,0653 6,8056 0,0047 0,0894 9,4993 0,0072 0,1145 12,3899 0,0083 0,1152 12,8364 0,0064
Elman 0,0666 7,0689 0,0034 0,0920 9,8633 0,0047 0,1160 12,6288 0,0046 0,1169 13,0848 0,0026
L-ANN 0,0800 8,7943 0,0035 0,1045 11,4765 0,0052 0,1245 13,6713 0,0067 0,1257 14,1844 0,0046
RBF 0,0662 6,7510 0,0119 0,0908 9,3135 0,0203 0,1147 12,0531 0,0285 0,1151 12,5064 0,0264
ANFIS-1 0,0677 6,8119 0,0156 0,0926 9,4747 0,0279 0,1178 12,1115 0,0398 0,1177 12,5584 0,0378
ANFIS-2 0,0612 6,5445 0,0086 0,0863 9,4519 0,0158 0,1148 12,5259 0,0234 0,1139 12,9248 0,0209
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supports the previous studies [8–10] about wind speed prediction
that linear models are more appropriate models for short-term
prediction, whereas non-linear models work better for long-term
wind speed prediction.

Prediction performance for Bandon in test period 1 as shown in
Table 4 provides nearly the same results as that for Çeşme. P(2)

AR(2) model appears to be preferable to all other models. MLFF is
the best performing ANN model and ANFIS-1 is the best
performing ANFIS model for Bandon data at 24 h ahead
prediction. For all prediction horizons, all the models’ predictions
have been underestimated for Bandon. 

In Table 5, it has been shown that the performance of P(2)AR(3)
outperforms all other models when prediction horizon is over 12 h.
RBF and linear AR(3) perform well for all horizons in test period
2. Generally, most of the models have overestimated the wind
speed (bias values are above zero). Moreover, in Table 6, the
proposed model P(2)AR(2) shows remarkable performance in all the
cases. In addition, linear AR(2) model performs as the second best
model when all other models achieve very low prediction
performance in test period 2 in Bandon site. Bias results appear

similar with Çeşme test period 2 results. Specifically, most of the
models overestimated wind speed in all the prediction horizons. 

Figs. 4a and b show the 24 h ahead prediction results versus
observed test data in a randomly selected week in July. Simulated
models are divided into four groups, namely PAR, ANN (MLFF,
MLP, Elman and RBF), ANFIS and linear (AR and L-ANN). The
best model for prediction horizon of 24 h from each group is
selected and plotted. PAR models appear remarkable for this
prediction horizon when ANFIS and ANN models did not notably
capture their performance. Figs. 4c and d show percentage of
NRMSE improvement obtained by the PAR model with respect to
other models. Observing the values in Fig. 4c for all the prediction
horizon values over 12 h, PAR model improves the prediction
performance in NRMSE over ANN and ANFIS models by about
20%. In Fig. 4d, again PAR model has an improvement over ANN
and ANFIS models by about 35%. 

In Figs. 5a and b, the 24 h ahead prediction results for January
have been shown for both locations. PAR model outperforms all
other models again for winter. Figs. 5c and d show NMAPE
improvement obtained by the PAR model with respect to other
models. NMAPE improvement means the reduction in NMAPE
obtained by PAR with respect to those of the other simulated

Table 4 Performance comparison of Bandon wind speed time series for the test period 1
1 month test 3 months test

6 h 12 h 24 h 24 h
NRMSE NMAPE Bias NRMSE NMAPE Bias NRMSE NMAPE Bias NRMSE NMAPE Bias

P(2)AR(2) 0,0683 6,1242 0,0235 0,0984 9,4282 0,0293 0,1291 13,4536 0,0272 0,1122 11,8619 0,0026
AR(2) 0,0594 6,7273 0,0498 0,1069 12,2032 0,0907 0,1798 20,5896 0,1532 0,1574 17,1953 0,1278
MLFF 0,0864 8,8088 0,0311 0,1332 13,4365 0,0489 0,1660 16,9221 0,0566 0,1505 15,7561 0,0153
MLP 0,0865 9,1269 0,0349 0,1377 14,3080 0,0579 0,1799 18,5120 0,0751 0,1618 16,9407 0,0309
Elman 0,0834 8,8819 0,0296 0,1328 13,9725 0,0501 0,1765 18,3858 0,0687 0,1605 17,0611 0,0244
L-ANN 0,0927 9,8636 0,0270 0,1406 14,9318 0,0408 0,1764 18,7244 0,0511 0,1643 17,9314 0,0054
RBF 0,0884 9,3551 0,0365 0,1412 14,7057 0,0623 0,1858 19,1139 0,0848 0,1661 17,2954 0,0397
ANFIS-1 0,0829 7,9212 0,0284 0,1192 11,0680 0,0410 0,1343 12,7252 0,0438 0,1215 11,9520 0,0114
ANFIS-2 0,0895 9,3282 0,0348 0,1367 14,4478 0,0567 0,1860 19,2294 0,0793 0,1672 17,5688 0,0336

 

Table 5 Performance comparison of Çeşme wind speed time series for the test period 2
1 month test 3 months test

6 hours 12 h 24 h 24 h
NRMSE NMAPE Bias NRMSE NMAPE Bias NRMSE NMAPE Bias NRMSE NMAPE Bias

P(2)AR(3) 0,0436 3,5922 0,0033 0,0591 5,1160 0,0015 0,0789 7,5981 −0,0061 0,0782 7,8179 0,0045

AR(3) 0,0371 3,5343 0,0217 0,0558 5,4451 0,0391 0,0894 9,0624 0,0678 0,0972 10,2940 0,0773
MLFF 0,0545 5,8218 −0,0058 0,0785 8,3700 −0,0070 0,1034 11,0578 −0,0094 0,1059 11,3404 0,0102
MLP 0,0580 6,2713 −0,0100 0,0834 8,9522 −0,0133 0,1086 11,6392 −0,0181 0,1077 11,6112 0,0011
Elman 0,0580 6,3409 −0,0117 0,0842 9,1503 −0,0165 0,1101 11,8817 −0,0207 0,1082 11,7624 −0,0013
L-ANN 0,0588 6,3336 −0,0089 0,0848 9,1286 −0,0138 0,1103 11,8562 −0,0186 0,1086 11,7773 0,0007
RBF 0,0580 6,6109 −0,0080 0,0766 8,7526 −0,0040 0,0963 10,6481 0,0032 0,1072 11,7528 0,0282
ANFIS-1 0,0653 6,7592 −0,0040 0,0927 9,7987 −0,0060 0,1167 12,2866 −0,0068 0,1171 12,5301 0,0141
ANFIS-2 0,0665 6,4903 −0,0092 0,0889 9,0766 −0,0107 0,1107 11,4970 −0,0093 0,1097 11,6950 0,0125

 

Table 6 Performance comparison of Bandon wind speed time series for the test period 2
1 month test 3 months test

6 h 12 h 24 h 24 h
NRMSE NMAPE Bias NRMSE NMAPE Bias NRMSE NMAPE Bias NRMSE NMAPE Bias

P(2)AR(2) 0,0337 2,3707 −0,0004 0,0496 3,9644 −0,0043 0,0693 6,5320 −0,0148 0,0878 7,1058 0,0015
AR(2) 0,0341 3,1922 0,0233 0,0608 5,7136 0,0422 0,1010 9,4877 0,0704 0,1281 11,5965 0,0960
MLFF 0,0728 7,9022 −0,0252 0,1098 12,0676 −0,0396 0,1355 15,7152 −0,0635 0,1441 14,0129 −0,0213
MLP 0,0725 8,0474 −0,0288 0,1108 12,4097 −0,0433 0,1393 16,1842 −0,0652 0,1472 14,3800 −0,0214
Elman 0,0715 7,9189 −0,0270 0,1080 11,9932 −0,0368 0,1327 14,9218 −0,0465 0,1460 13,8345 −0,0020
L-ANN 0,0853 10,2751 −0,0515 0,1293 15,5128 −0,0769 0,1568 18,7881 −0,0928 0,1556 15,8369 −0,0475
RBF 0,0711 7,7178 −0,0253 0,1073 11,6357 −0,0343 0,1307 14,6585 −0,0471 0,1439 13,5601 −0,0038
ANFIS-1 0,0757 8,2571 −0,0306 0,1105 12,2874 −0,0499 0,1297 15,5006 −0,0782 0,1311 13,2829 −0,0439
ANFIS-2 0,0784 8,7240 −0,0315 0,1196 13,6140 −0,0508 0,1468 17,2387 −0,0738 0,1527 15,1032 −0,0285
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models. Observing these values, for all the prediction horizon
values, PAR model improves the prediction performance in
NMAPE by about 4% for Çeşme and 10% for Bandon. 

4.5 Wind power prediction results

Examining Table 7, the performance of P(2)AR(1) in test period 1 is
dominantly better than all other models for all the prediction

horizons. Linear AR(1) and MLFF have achieved the second and
third best performances, respectively, and they are preferable to all
other models for a longer prediction horizon. For all the prediction
horizons, most of the models have overestimated the wind power.
Wind power prediction performances in test period 2 are shown in
Table 8. As seen clearly, P(2)AR(1) performs better than all other
models for all the prediction horizons generally. MLFF and MLP
perform considerable for longer horizons. 

Fig. 4  Wind speed prediction comparison figures for the test period 1
(a) Çeşme (period 1) – 24 h ahead prediction, (b) Bandon (period 1) – 24 h ahead prediction, (c) Çeşme (period 1) – percentage of NRMSE improvement by PAR with respect to
other models, (d) Bandon (period 1) – percentage of NRMSE improvement by PAR with respect to other models

 

Fig. 5  Wind speed prediction comparison figures for the test period 2
(a) Çeşme (period 2) – 24 h ahead prediction, (b) Bandon (period 2) – 24 h ahead prediction, (c) Çeşme (period 2) – NMAPE reduction obtained using PAR with respect to other
models, (d) Bandon (period 2) – NMAPE reduction obtained using PAR wrt other models
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Figs. 6a and b show the 24 h ahead wind power prediction
results versus observed test data in a week. Examining these
figures, PAR and MLFF capture the test data trend better than any
other model for 24 h of prediction horizon. PAR captures lower-
power values better than MLFF, when MLFF is better for higher-
power values. Performance of ANFIS and linear models fall behind

PAR for both test periods. Figs. 6c and d show the NMAPE
improvement of PAR over all other models. For 24 h ahead
prediction, NMAPE values of PAR are around 5–10%; however,
the rest are around 10–20%. Thus, improvement of PAR is at least
5% for both seasons. 

Table 7 Performance comparison of wind power prediction for test period 2
1 month test 3 months test

6 h 12 h 24 h 24 h
NRMSE NMAPE Bias NRMSE NMAPE Bias NRMSE NMAPE Bias NRMSE NMAPE Bias

P(2)AR(1) 0,0210 1,5283 0,0008 0,0359 2,7777 −0,0002 0,0567 4,7827 −0,0040 0,0913 5,5466 0,0129
AR(1) 0,0311 2,8262 0,0215 0,0583 5,2799 0,0403 0,1023 9,2787 0,0710 0,1284 9,7502 0,0904
MLFF 0,0462 5,2700 −0,0275 0,0792 8,8320 −0,0512 0,1124 12,2036 −0,0749 0,1163 10,0737 −0,0520
MLP 0,0417 4,6074 −0,0207 0,0713 8,2005 −0,0427 0,1097 12,6027 −0,0714 0,1169 10,6537 −0,0504
Elman 0,0479 5,5514 −0,0215 0,0878 10,2639 −0,0437 0,1455 17,0304 −0,0807 0,1628 14,8224 −0,0477
L-ANN 0,0461 5,1694 −0,0173 0,0804 9,0109 −0,0301 0,1249 14,0076 −0,0469 0,1450 12,5989 −0,0159
RBF 0,0503 5,8857 −0,0241 0,0943 11,0839 −0,0498 0,1537 17,9750 −0,0874 0,1693 15,5102 −0,0533
ANFIS-1 0,0672 7,2553 −0,0228 0,1131 12,3731 −0,0429 0,1435 15,4991 −0,0575 0,1723 14,1025 −0,0208
ANFIS-2 0,0689 7,4776 −0,0214 0,1155 12,6548 −0,0360 0,1584 17,7685 −0,0599 0,1870 16,0925 −0,0199
 

Table 8 Performance comparison of wind power prediction for test period 1
1-month test 3-months test

6 h 12 h 24 h 24 h
NRMSE NMAPE Bias NRMSE NMAPE Bias NRMSE NMAPE Bias NRMSE NMAPE Bias

P(2)AR(1) 0,0519 2,6401 0,0165 0,0833 4,4254 0,0259 0,1199 6,8146 0,0345 0,1467 9,1705 0,0548

AR(1) 0,0451 3,2898 0,0306 0,0843 6,1249 0,0572 0,1483 10,7362 0,1006 0,1726 13,3679 0,1263
MLFF 0,0633 5,5255 −0,0132 0,1019 8,8270 −0,0320 0,1332 11,6392 −0,0535 0,1316 11,0963 −0,0245
MLP 0,0596 5,2008 −0,0085 0,1002 8,6963 −0,0203 0,1336 11,8839 −0,0373 0,1405 12,0112 −0,0078
Elman 0,0662 5,7053 −0,0026 0,1198 10,4319 −0,0099 0,1898 16,8847 −0,0289 0,2070 17,8914 0,0136
L-ANN 0,0625 5,4174 −0,0006 0,1095 9,4819 −0,0009 0,1715 14,8508 −0,0014 0,1896 15,8575 0,0389
RBF 0,0687 5,9576 −0,0054 0,1244 11,0212 −0,0170 0,1916 17,2038 −0,0333 0,2050 17,8344 0,0105
ANFIS-1 0,1084 9,2020 0,0064 0,1751 15,2000 0,0017 0,2408 20,8790 −0,0106 0,2682 22,5564 0,0441
ANFIS-2 0,1094 9,2455 0,0112 0,1828 15,7807 0,0133 0,2456 21,0580 0,0088 0,2739 22,6919 0,0656
 

Fig. 6  Wind power prediction comparison figures
(a) Test period 1 – 24 h ahead prediction, (b) Test period 2 – 24 h ahead prediction, (c) Test period 1 – NMAPE reduction obtained using PAR with respect toother models, (d) Test
period 2 – NMAPE reduction obtained using PAR with respect toother models
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Examining the error metrics for 1 and 3 months, the results
generally follow the same characteristics. Increasing the test length
did not improve the performance of the proposed method and the
others. However, using two different test length proves the
applicability of the proposed method for whole year.

5 Discussion and conclusion
A detailed comparative study has been carried out for PAR model
performance on wind speed/power predictions up to 24 h ahead of
time over several ANN, ANFIS and linear AR models. Two data
sets for two different locations in Turkey and USA are used to train
and test the models. Results are presented in both figures and
performance metrics such as NRMSE, NMAPE and bias to enrich
the conclusion of this paper.

In particular, wind speed prediction results are similar to many
other studies in the literature which claim that the prediction
performance decreases when prediction horizon increases. In
addition, linear model performance for longer prediction horizon
gets worst than non-linear models. This fact reveals that non-linear
characteristics of wind speed are more visible when prediction
horizon is longer. Examining the performance metric values, linear
AR achieves better wind speed prediction results in the first 6–10 h
of prediction horizon, whereas PAR appears to be more successful
for prediction horizons over 6–10 h. RBF, MLFF and MLP show
close but inferior performance to PAR for longer horizons. Both
ANFIS models achieve similar performance with most of the
ANN. Performances of ANN and ANFIS are relatively worst when
test period 2 is used for predictions and did not even reach the
performance of linear AR.

The proposed method has been used also in wind power
predictions. Examining the wind power prediction results shows us
that performance of PAR has been distinctive and it outperforms
other models for all the cases. Although MLFF and MLP perform
worst than PAR, they appear better when compared with the other
ANN and ANFIS models. Examining bias values of all the models
for power prediction, we can conclude that over or under
estimation of the wind power changes according to the data set in
use. Specifically, PAR models generally underestimate the power
in test period 1 and overestimate in test period 2. Moreover, for
increasing order of prediction horizon values, bias values for PAR
models generally follow a slightly increasing characteristic and for
all the data sets bias values are between −0.05 and 0.05. Apart from
its performance with respect to NRMSE and NMAPE for all the
data sets, PAR performs predictions with very low bias values. In
particular, PAR has the lowest bias for 24 h ahead predictions in
some of the cases, and in the other cases, it is among the best five
methods in terms of bias values.

Moreover, PAR model is computationally more efficient than
other non-linear models which are used in this paper. PAR models
have very low number of adjustable parameters (close to the linear
models) and, however, achieve the best results for a prediction
horizon values higher than 6 h. This superior performance makes
PAR more preferable compared with the models which have
widespread usage in wind speed/power prediction studies.

We should state that the non-linear functions that have been
employed by ANN and ANFIS can be represented by polynomials
with infinite order. However, PAR prediction performance shows
that lower degree polynomials (order 2 for this paper) is enough for
24 h ahead wind speed/power predictions. Thus, we are of the
opinion that the effects of these higher-ordered polynomial
components in non-linear functions of ANN and ANFIS cause
failure on prediction results.
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