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In this work, we present a novel continuous robust controller for a class of multi-input/multi-output nonlinear systems
that contains unstructured uncertainties in their drift vectors and input matrices. The proposed controller compensates
uncertainties in the system dynamics and achieves asymptotic tracking while requiring only the knowledge of the sign of
the leading principal minors of the input gain matrix. A Lyapunov-based argument backed up with an integral inequality is
applied to prove the asymptotic stability of the closed-loop system. Simulation results are presented to illustrate the viability
of the proposed method.
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Nomenclature

x(t) System states
x(i)(t) ith-order time derivative of x(t)

H(·), h(·) Functional containing uncer-
tain components

G(·), g(·) Real-valued matrix with non-
zero leading principal minors

τ (t), τ 1(t), τ 2(t) Control inputs
X(t) Combined state vector
S(X) Symmetric positive definite

matrix
D Diagonal matrix with entries

±1
U(X) Unity upper triangular matrix
τ̇ (t) Time derivative of control input

ϕ(X, x(n)) Auxiliary function
m Positive bounding constant

m̄ (X) Positive non-decreasing boun-
ding function

xr(t) Reference trajectory
e1(t) Output tracking error
ei(t) Auxiliary error signals for i =

2, . . ., n
r(t) Filtered error signal
ai, j Positive-valued coefficients

generated via a Fibonacci num-
ber series

Im m × m identity matrix
0m × 1 Vector of zeros

∗
Corresponding author. Email: envertatlicioglu@iyte.edu.tr

N(X, x(n), t), N̄ (t), Ñ (t) Auxiliary functions
Xr(t) Combined vector of reference

trajectory and its time deriva-
tives

�(t) Auxiliary signal
α, K, C Constant, diagonal, positive

definite, gain matrices
Sgn(·) Vector signum function

�(t), �(t), �(t), 	(t) Auxiliary functions
ρÑ (·), ρ i, j(·) Non-negative, globally invert-

ible, non-decreasing functions
z(t) Combination of the error terms

ζN̄i
, ζŪi,j

, ζ	, ζ�i,j
Positive bounding constants

ρ i(||z||) Non-negative, globally invert-
ible, non-decreasing functions

�(·) Strictly upper triangular matrix
λmin (·) Minimum eigenvalue of the

gain matrix
λ1 Positive bounding constant
β1 Positive constant

γ 1, γ 2 Positive bounding constants
ζ L Positive bounding constant

P(t) Auxiliary positive function
V(s, t) Auxiliary positive function

β Positive constant

1. Introduction

This work focuses on the tracking control problem for multi-
input/multi-output (MIMO) nonlinear uncertain systems.
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To our best knowledge, a generalised solution that covers
all nonlinear systems for the aforementioned problem is not
available. However, for special cases, there seems to be a
great deal of results presented in the literature. To name
a few, an adaptive backstepping method for strict feed-
back systems was utilised in Krstic, Kanellakopoulos, and
Kokotovic (1995) with the assumption that the input gain
matrix pre-multiplying the control input is known. In Kos-
matopoulos and Ioannou (2002), a general procedure for
the design of switching adaptive controllers including feed-
back linearisable and parametric-pure-feedback systems
has been proposed. An adaptive neural controller for MIMO
systems with block triangular form was proposed in Gee and
Wang (2004).

Recently, in Wang, Chen, and Behal (2010), Wang,
Behal, Xian, and Chen (2011), and Wang and Behal (2011),
researchers have proposed robust- and adaptive-type con-
troller formulations for the MIMO nonlinear systems of the
following form:

x(n) = H
(
x, ẋ, . . . , x(n−1)

)+ G
(
x, ẋ, . . . , x(n−2)

)
τ (1)

where x(i) (t) ∈ R
m×1 i = 0, . . . , n, are the states with

(·)(i) denoting the ith derivative with respect to time,
H (·) ∈ R

m×1 and G (·) ∈ R
m×m are uncertain functions

with G(·) being a real-valued matrix with non-zero lead-
ing principal minors, and τ (t) ∈ R

m×1 is the control in-
put. Specifically, in Wang et al. (2010), authors have ex-
tended the work of Zhang, Dawson, de Queiroz, and Xian
(2004) by redesigning the controller of Chen, Behal, and
Dawson (2006) removing an algebraic loop and potential
singularity in their previous design and obtained a global
uniformly ultimately bounded (UUB) tracking error perfor-
mance. In Wang et al. (2011), an adaptive controller that
ensures asymptotic tracking has been proposed. Recently, a
continuous robust controller achieving semi-global asymp-
totic tracking performance for uncertain MIMO systems of
the form (1) with two degrees of freedom was proposed in
Wang and Behal (2011).

In this work, we consider a broader class of uncertain
MIMO nonlinear system than that of (1) which has the
following form:

x(n) = h
(
x, ẋ, . . . , x(n−1)

)+ g
(
x, ẋ, . . . , x(n−1)

)
τ (2)

where x(i) (t) ∈ R
m×1, i = 0, . . . , n, are the states, h (·) ∈

R
m×1 is an uncertain function, g (·) ∈ R

m×m is an uncertain
real-valued matrix with non-zero leading principal minors,
and τ (t) ∈ R

m×1 is the control input. Example applications
for the system model in (2) include, but not limited to,
visual servoing (Zergeroglu, Dawson, de Queiroz, & Behal,
2001), thermal management (Setlur, Wagner, Dawson, &
Chen, 2003), aeroelasticity vibration suppression (Reddy,
Chen, Behal, & Marzocca, 2007), and surface vessels (Lee,
Tatlicioglu, Burg, & Dawson, 2008).

When compared to (1), the dependence of g(·) on x(n − 1)

complicates the control design, and to our best knowledge,
in the literature, there are only few works on this model.
Namely, Xu and Ioannou (2003) considered the case where
g(·) is either positive or negative definite, and designed a
neural-network-based adaptive controller that ensured local
convergence of the tracking error to a residual set. While
Xian, Dawson, de Queiroz, and Chen (2004) considered the
case where g(·) is positive definite, and a robust controller
containing the integral of the signum of the error term
was designed to obtain semi-global asymptotic tracking.
More recently, Chen, Behal, and Dawson (2008) proposed
a robust controller fused with a feedforward compensation
term that ensured UUB tracking performance.

In this work, under similar restrictions given in Chen
et al. (2008), we designed a new continuous robust con-
troller for the class of nonlinear systems described by (2).
Specifically, by applying a similar formulation to that of
Xian et al. (2004), which is a nonlinear proportional inte-
gral controller fused with integral of the sign of the error
feedback, we were able to achieve asymptotic tracking as
opposed to the UUB tracking result of Chen et al. (2008).
From this perspective, we might say that our work extends
the results given in Xian et al. (2004) to a broader class
of nonlinear systems. We would like to highlight that, due
to the nature of the nonlinearities and uncertainties in the
system given by (2), extending the results given in Xian
et al. (2004) is not a straightforward task. Explicitly, Xian
et al. (2004) considered the case where the input gain ma-
trix g(·) being positive definite, while we consider the case
where g(·) has non-zero leading principal minors. The re-
sults in Xian et al. (2004) can be considered as special
cases of the results presented here. The stability analysis
is conducted in four steps. First, we introduce an initial
Lyapunov function to prove the boundedness of all the sig-
nals under the closed-loop system. Second, after utilising
the boundedness of the error signals, an integral inequality
is obtained. Third, a novel Lyapunov-like function is con-
structed and, via the use of the integral inequality, its non-
negativeness is proven. Finally, after fusing this Lyapunov-
like function with the initial Lyapunov function (that was
utilised to prove boundedness), asymptotic stability is
proven.

The rest of the paper is organised as follows; Section 2
introduces the error system development while the con-
troller development is presented in Section 3. Stability of
the closed-loop system under the proposed method is inves-
tigated in Section 4, and the numerical simulations are given
in Section 5. Finally, concluding remarks are presented in
Section 6.

2. Error system development

The uncertain functions h(·) and g(·) of (2) are assumed to be
at least second-order differentiable (i.e., h(·), g (·) ∈ Cn+2).
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Based on the assumption that g(·) being a real-valued ma-
trix with non-zero leading principal minors, the follow-
ing matrix decomposition is utilised (Costa, Hsu, Imai, &
Kokotovic, 2003; Morse, 1993):

g = S(X)DU (X) (3)

where X (t) � [ xT ẋT . . . (x(n−1))T ]T ∈ R
(mn)×1 is the

combined state vector, S (X) ∈ R
m×m is a symmetric pos-

itive definite matrix, D ∈ R
m×m is a diagonal matrix with

entries being ±1, and U (X) ∈ R
m×m is a unity upper tri-

angular matrix. Similar to Chen et al. (2008) and Costa
et al. (2003), we assume that D is available for control de-
sign. We would like to note that since the leading principal
minors of g(X) are non-zero, g−1(X) exists and the follow-
ing expression can be obtained by pre-multiplying (3) with
g−1(X):

τ = g−1
(
x(n) − h

)
(4)

Taking the time derivative of the system model in (2)
and then substituting into (4) yields

x(n+1) = ϕ + SDUτ̇ (5)

where (3) was utilised, and ϕ
(
X, x(n)

) ∈ R
m×1 is an auxil-

iary function defined to have the following form:

ϕ � ḣ + ġg−1
(
x(n) − h

)
(6)

Multiplying both sides of (5) with S−1(X) results in

S−1x(n+1) = S−1ϕ + DUτ̇ (7)

and after defining M (X) � S−1 ∈ R
m×m and f

(
X, x(n)

)
�

S−1ϕ ∈ R
m×1, we obtain

Mx(n+1) = f + DUτ̇ (8)

It is noted that M(X) satisfies the following inequalities:

m ‖χ‖2 ≤ χT M (X) χ ≤ m̄ (X) ‖χ‖2 ∀χ ∈ R
m×1 (9)

with m ∈ R is a positive bounding constant, and m̄ (X) ∈ R

is a positive, non-decreasing function.
Our control objective is to ensure that the system out-

put x(t) tracks a given smooth reference trajectory while
ensuring all signals within the closed-loop system remain
bounded. In order to quantify the tracking control objec-
tive, an error signal, e1 (t) ∈ R

m×1, is defined to have the
following form:

e1 � xr − x (10)

where xr (t) ∈ R
m×1 is the reference trajectory satisfying

xr (t) ∈ Cn+1 , x(i)
r (t) ∈ L∞ , i = 0, 1, . . . , (n + 1) (11)

In our controller development, we will assume that the com-
bined state vector X(t) is available.

To facilitate the control design, auxiliary error signals,
denoted by ei (t) ∈ R

m×1, i = 2, . . . , n, are defined as fol-
lows:

e2 � ė1 + e1 (12)

e3 � ė2 + e2 + e1 (13)

...

en � ėn−1 + en−1 + en−2 (14)

A general expression for ei(t), i = 2, . . . , n, in terms of e1(t)
and its time derivatives can be obtained as follows:

ei =
i−1∑
j=0

ai,j e
(j )
1 (15)

where ai,j ∈ R are known positive constants, generated via
a Fibonacci number series (Xian et al., 2004). Our controller
development also requires the definition of a filtered error
signal, r (t) ∈ R

m×1, which has the following form:

r � ėn + αen (16)

where α ∈ R
m×m is a constant positive definite, diagonal,

gain matrix. It should be noted that, since ėn (t) is un-
available, then r(t) is also unavailable for control design. It
should further be noted that the auxiliary error signals in
(12)–(16) are introduced to obtain a stability analysis where
only first-order time derivatives are utilised. After differen-
tiating (16) and pre-multiplying the resulting equation with
M(X), the following expression can be derived:

Mṙ = M

⎛⎝x(n+1)
r +

n−2∑
j=0

an,j e
(j+2)
1 + αėn

⎞⎠− f − DUτ̇

(17)
where (8), (10), (15), and the fact that an, (n − 1) =
1 were utilised. After defining an auxiliary function,
N (X, x(n), t) ∈ R

m×1,

N � M

⎛⎝x(n+1)
r +

n−2∑
j=0

an,j e
(j+2)
1 + αėn

⎞⎠− f + en + 1

2
Ṁr

(18)
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the expression in (17) can be reformulated to have the fol-
lowing form:

Mṙ = −1

2
Ṁr − en − DUτ̇ + N (19)

Furthermore, the filtered error dynamics in (19) can be
rearranged as

Mṙ = −1

2
Ṁr − en − D (U − Im) τ̇ − Dτ̇ + Ñ + N̄

(20)
where we added and subtracted Dτ̇ (t) to the right-hand
side, Im ∈ R

m×m is the standard identity matrix, and N̄ (t),
Ñ (t) ∈ R

m×1 are auxiliary functions defined as follows:1

N̄ � N |
X=Xr ,x(n)=x

(n)
r

(21)

Ñ � N − N̄ (22)

with Xr (t) � [ xT
r ẋT

r . . . (x(n−1)
r )T ]T ∈ R

(mn)×1 being a
combination of the reference trajectory and its time deriva-
tives.

The main idea behind adding and subtracting Dτ̇ (t)
term to the right-hand side of (20) is to make use of the
fact that U(X) is unity upper triangular, and thus (U − Im)
is strictly upper triangular.

3. Controller formulation

Based on the open-loop error system in (20) and the sub-
sequent stability analysis, the control input τ (t) is designed
in the following form:

τ = DK

[
en (t) − en (t0) + α

∫ t

t0

en (σ ) dσ

]
+ D�

(23)
where the auxiliary signal � (t) ∈ R

m×1 is generated ac-
cording to the following equation:

�̇ = CSgn (en) ,� (t0) = 0m×1 (24)

In (23) and (24), K, C ∈ R
m×m are constant, diagonal, pos-

itive definite, gain matrices, 0m×1 ∈ R
m×1 is a vector of

zeros and Sgn(·) ∈ R
m×1 is the vector signum function.

Notice that, for i = n in (15), en(t) and thus τ (t) depend on
x(t), ẋ (t), . . . , x(n − 1)(t), and not x(n)(t). Based on the struc-
tures of (23) and (24), the following expression is obtained
for the time derivative of the control input:

τ̇ = DKr + DCSgn (en) (25)

where (16) was utilised. The control gain is designed as K =
Im + kpIm + diag{kd, 1, . . . , kd, (m − 1), 0}, where kp, kd,i ∈
R are constant, positive, control gains, and diag{·} is used

to represent the entries of a diagonal matrix. Finally, after
substituting (25) into (20), the closed-loop error system for
r(t) is obtained as

Mṙ = −1

2
Ṁr − en − Kr + Ñ + N̄

−D (U − Im) DKr − DUDCSgn (en) (26)

where the fact that DD = Im was utilised.
Before proceeding with the stability analysis, we would

like to draw attention to the last two terms of (26) which we
will investigate separately in the next two subsections.

3.1. The D(U − Im)DKr term

Note that, after utilising the fact that (U − Im) being strictly
upper triangular, we rewrite the term D(U − Im)DKr as

D (U − Im) DKr =
[

� + �

0

]
(27)

where �(t), � (t) ∈ R
(m−1)×1 are auxiliary functions with

their entries �i(t), �i (t) ∈ R, i = 1, . . . , (m − 1), being
defined as

�i � di

m∑
j=i+1

djkj Ũi,j rj (28)

�i � di

m∑
j=i+1

djkj Ūi,j rj (29)

with Ūi,j (Xr ), Ũi,j (t) ∈ R are defined as

Ūi,j � Ui,j |X=Xr
(30)

Ũi,j � Ui,j − Ūi,j (31)

where Ui,j (X) ∈ R are the entries of U(X). Notice from
(27) that the last entry of the term D(U − Im)DKr is equal
to 0, and its ith entry depends on the (i + 1)th to mth entries
of the control gain matrix K.

3.2. The DUDCSgn(en) term

We rewrite the DUDCSgn(en) term as

DUDCSgn (en) =
[

�

0

]
+ 	 (32)

where � (t) ∈ R
(m−1)×1 and 	 (t) ∈ R

m×1 are auxiliary
functions defined as
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[
�

0

]
= D

(
U − Ū

)
DCSgn (en) (33)

	 = DŪDCSgn (en) (34)

where Ū (Xr ) � U |X=Xr
∈ R

m×m is a function of reference
trajectory and its time derivatives. The terms �i (t) ∈ R,
i = 1, . . . , (m − 1), and 	i (t) ∈ R, i = 1, . . . , m, are
defined as

�i � di

m∑
j=i+1

djCj Ũi,j sgn
(
en,j

)
(35)

	i � di

m∑
j=i

djCj Ūi,j sgn
(
en,j

)
(36)

Remark 1: The mean value theorem in Khalil (2002) can
be utilised to develop the following upper bounds:

∥∥Ñ (t)
∥∥ ≤ ρÑ (‖z‖) ‖z‖ (37)∥∥Ũi,j (t)
∥∥ ≤ ρi,j (‖z‖) ‖z‖ (38)

where ρÑ (·), ρi,j (·) ∈ R are non-negative, globally in-
vertible, non-decreasing functions of their arguments, and
z (t) ∈ R

[(n+1)m]×1 is defined by

z �
[
eT

1 eT
2 . . . eT

n rT
]T

(39)

It can be seen from (11), (18), and (21) that N̄ (t) and Ūi,j (t)
are bounded in the sense that

∣∣N̄i (t)
∣∣ ≤ ζN̄i

(40)∣∣Ūi,j (t)
∣∣ ≤ ζŪi,j

(41)

∀t where ζN̄i
, ζŪi,j

∈ R are positive bounding constants.
Based on (28), (29), (35), and (36), the following upper
bounds can be obtained:

|�i | ≤
m∑

j=i+1

kjρi,j (‖z‖) ‖z‖ ∣∣rj

∣∣ ≤ ρ�i
(‖z‖) ‖z‖ (42)

|�i | ≤
m∑

j=i+1

kj ζŪi,j

∣∣rj

∣∣ ≤ ζ�i
‖z‖ (43)

|�i | ≤
m∑

j=i+1

Cjρi,j (‖z‖) ‖z‖ ≤ ρ�i
(‖z‖) ‖z‖ (44)

|	i | ≤
m∑

j=i

Cj ζŪi,j
≤ ζ	i

(45)

where (37)–(41) were utilised. From (45), it is easy to see
that ‖	 (t)‖ ≤ ζ	 ∀t is satisfied for some positive bounding
constant ζ	 ∈ R, and from (42)–(44), we have

|�i | + |�i | + |�i | ≤ ρi (‖z‖) ‖z‖ (46)

where ρi (‖z‖) ∈ R i = 0, 1, . . . , (m − 1), are non-negative,
globally invertible, non-decreasing functions satisfying

ρ�i
+ ρ�i

+ ζ�i
≤ ρi (47)

Remark 2: As a result of the fact that Ū (t) being unity
upper triangular, 	(t) in (34) can be rewritten as

	 = (Im + �) CSgn (en) (48)

where � (t) � D(Ū − Im)D ∈ R
m×m is a strictly upper tri-

angular matrix. Since it is a function of the reference
trajectory and its time derivatives, its entries, denoted by
�i,j (t) ∈ R, are bounded in the sense that

∣∣�i,j (t)
∣∣ ≤ ζ�i,j

∀t (49)

where ζ�i,j
∈ R are positive bounding constants.

At this point, we are now ready to continue with the
stability analysis of the proposed robust controller.

4. Stability analysis

In this section, via an initial Lyapunov-based analysis, we
will first prove the boundedness of the error signals under
the closed-loop operation. Using this result, we will then
present a lemma and obtain an upper bound for the integral
of the absolute values of the entries of ėn (t). This upper
bound will later be utilised in another lemma to prove the
non-negativity of a Lyapunov-like function that will be used
in our final analysis which proves asymptotic stability of the
tracking error.

Theorem 4.1: For the uncertain MIMO system of (2), the
controller in (23) and (24) guarantees the boundedness of
all the closed-loop signals including the error signals in
(10), (12)–(14), and (16) provided that the control gains
kd, i and kp are chosen large enough compared to the ini-
tial conditions of the system and the following condition is
satisfied:

λmin (α) ≥ 1

2
(50)

where the notation λmin (α) denotes the minimum eigenvalue
of the gain matrix α, previously introduced in (16).
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Proof: The non-negative function V1 (z) ∈ R is defined as

V1 � 1

2

n∑
i=1

eT
i ei + 1

2
rT Mr (51)

By utilising (9), (51) can be bounded in the following man-
ner:2

1

2
min

{
1,m

} ‖z‖2 ≤ V1 (z) ≤ 1

2
max {1, m̄ (‖z‖)} ‖z‖2

(52)
where z(t) was defined in (39), and the terms m , m̄ (‖z‖)
were defined in (9). Taking the time derivative of (51)
yields

V̇1 =
n∑

i=1

eT
i ėi + rT Mṙ + 1

2
rT Ṁr (53)

The first term in the above expression can be written as
follows:

n∑
i=1

eT
i ėi = eT

1 (e2 − e1) + eT
2 (e3 − e2 − e1)

+ eT
3 (e4 − e3 − e2) + ...

+ eT
n−1 (en − en−1 − en−2) + eT

n (r − αen)

= −
n−1∑
i=1

eT
i ei + eT

n−1en + eT
n r − eT

n αen (54)

where (12)–(14) and (16) were utilised. Substituting (26)–
(29), (32)–(34), and (54) into (53) results in

V̇1 = −
n−1∑
i=1

eT
i ei + eT

n−1en + eT
n r − eT

n αen

+ rT

(
−1

2
Ṁr − en − Kr + Ñ + N̄

)
− rT

[
� + �

0

]
− rT

[
�

0

]
− rT 	 + 1

2
rT Ṁr (55)

which, after substituting the control gain matrix K, can be
rewritten as

V̇1 = −
n−1∑
i=1

eT
i ei + eT

n−1en − eT
n αen − rT r

+ [
rT Ñ − kprT r

]
+
[
−

m−1∑
i=1

ri (�i + �i + �i) −
m−1∑
i=1

kd,ir
2
i

]
+ rT N̄ − rT 	. (56)

After completing the squares in bracketed terms, utilising∥∥N̄ (t)
∥∥ ≤ ζN̄ , ‖	 (t)‖ ≤ ζ	 and eT

n−1en ≤ 1/2 ‖en−1‖2 +
1/2 ‖en‖2, we obtain

V̇1 ≤ −
n−2∑
i=1

‖ei‖2 − 1

2
‖en−1‖2 −

(
λmin (α) − 1

2

)
‖en‖2

− rT r + ρ2
Ñ

(‖z‖)

4kp

‖z‖2 +
m−1∑
i=1

ρ2
i

4kd,i

‖z‖2 (57)

+ ‖r‖ ζN̄ + ‖r‖ ζ	

which can then be rearranged as

V̇1 ≤ −
(

λ1 − ρ2
Ñ

(‖z‖)

4kp

−
m−1∑
i=1

ρ2
i (‖z‖)

4kd,i

)
‖z‖2 + δε2

(58)
where λ1 � min

{
1
2 , λmin (α) − 1

2 , 1 − 1
4δ

}
, δ ∈ R is a

positive bounding constant, ε � ζN̄ + ζ	, and ‖r‖ ε ≤
1
4δ

‖r‖2 + δε2 were utilised. Provided that the controller
gains kd, i and kp are selected sufficiently large (larger than
functions of the initial values of the norm of z(t)), we can
ensure the terms presented in parenthesis in (58) are always
positive, and utilising (52), the following inequality can be
obtained:

V̇1 ≤ −β1V1 + δε2 (59)

where β1 ∈ R is a positive constant. From (51) and (59), we
can conclude that V1 (t) ∈ L∞; therefore, ei(t), i = 1, . . . ,
n, and r(t) are UUB. Standard signal chasing arguments can
then be utilised to prove that all the signals remain bounded
under the closed-loop operation. �
Remark 3: At this point, we would like to highlight the dif-
ferences of the Lyapunov function used in the above proof
and the one given in Equation (22) of Chen et al. (2008).
While the structures of both are similar and the summation
of the norm squares of the error signals ei(t), i = 1, . . . , n,
are the same, the second terms are fundamentally different
(i.e., see Equation (16) in this paper and Equation (8) in
Chen et al. (2008)).

Lemma 4.2: Provided that en(t) and ėn (t) are bounded,
the following expression for the upper bound of the integral
of the absolute value of the ith entry of ėn (t), i = 1, . . . , m,
can be obtained:∫ t

t0

∣∣ėn,i (σ )
∣∣ dσ ≤ γ1 + γ2

∫ t

t0

∣∣en,i (σ )
∣∣ dσ + ∣∣en,i

∣∣
(60)

where γ 1, γ2 ∈ R are some positive bounding constants.

Proof: While the proof is similar to that of the one given in
Stepanyan and Kurdila (2009), it is presented in Appendix 1
for the sake of completeness. �
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Lemma 4.3: Consider the term

L � rT
(
N̄ − (Im + �) CSgn (en)

)
(61)

where �(t) introduced in (48) is a strictly upper triangular
matrix that is a function of reference trajectory and its time
derivatives. Provided that the entries of the control gain C
are chosen to satisfy

Cm ≥ ζN̄m

(
1 + γ2

αm

)
(62)

Ci ≥
⎛⎝ζN̄i

+
m∑

j=i+1

ζ�i,j
Cj

⎞⎠(1 + γ2

αi

)
, i = (m − 1) , . . . , 1

then it can be concluded that∫ t

t0

L (σ ) dσ ≤ ζL (63)

where ζL ∈ R is a positive bounding constant defined as

ζL � γ1

m−1∑
i=1

m∑
j=i+1

ζ�i,j
Cj + γ1

m∑
i=1

ζN̄i
+

m∑
i=1

Ci

∣∣en,i (t0)
∣∣

(64)

Proof: See Appendix 2. �
Remark 4: At this point, we would like to highlight the
differences of Lemma 4.3 in this paper and Lemma 1 in
Xian et al. (2004). In Xian et al. (2004), the term Sgn(en)
is multiplied with a constant gain matrix, while in (61), it
is pre-multiplied with a time-varying uncertain matrix and
then multiplied with a constant gain matrix. Thus, Lemma 1
in Xian et al. (2004) is a special case of Lemma 4.3 in this
paper (i.e., when �(t) is a zero matrix). Additionally, the
proof of Lemma 4.3 also removes the need of boundedness

of ‖ ˙̄N (t) ‖, while Lemma 1 in Xian et al. (2004) requires
it.

Theorem 4.4: Given the uncertain MIMO nonlinear sys-
tem of the form (2), the controller of (23) and (24) ensures
that the tracking error and its time derivatives converge to
zero asymptotically in the sense that∥∥e(i)

1 (t)
∥∥ → 0 as t → +∞ , ∀i = 0, . . . , n

provided that α is chosen to satisfy (50), the entries of C
are chosen to satisfy (62), and kd, i and kp are chosen large
enough compared to the initial conditions of the system.

Proof: Let the auxiliary function P (t) ∈ R be defined as
follows:

P � ζL −
∫ t

t0

L (σ ) dσ (65)

where the terms ζ L and L(t) were defined in (64) and (61),
respectively, and when the entries of the control gain matrix
C are chosen to satisfy (62), from the proof of Lemma 4.3,
we can conclude that P(t) is non-negative. At this stage,
consider the Lyapunov function, denoted by V (s, t) ∈ R,
defined as follows:

V � V1 + P (66)

where s (t) ∈ R
[(n+1)m+1]×1 is defined as

s �
[
zT

√
P
]T

(67)

and V1(t) ∈ R was defined in the proof of Theorem 4.1. By
utilising (9), (66) can be upper and lower bounded in the
following form:

W1 (s) ≤ V (s, t) ≤ W2 (s) (68)

where W1(s), W2 (s) ∈ R are defined as

W1 � λ2 ‖s‖2 , W2 � λ3 (‖s‖) ‖s‖2 (69)

with λ2 � 1
2 min

{
1,m

}
and λ3 � max

{
1, 1

2 m̄ (‖z‖)
}
.

Taking the time derivative of V(t), utilising the time
derivative of (63), cancelling the common terms and fol-
lowing similar steps to that of proof of Theorem 4.1 yields

V̇ = −
n−1∑
i=1

eT
i ei + eT

n−1en − eT
n αen − rT r + [

rT Ñ − kprT r
]

+
[
−

m−1∑
i=1

ri (�i + �i + �i) −
m−1∑
i=1

kd,ir
2
i

]
(70)

which can be rearranged to have the following form:

V̇ ≤ −
n−2∑
i=1

‖ei‖2 − 1

2
‖en−1‖2 −

(
λmin (α) − 1

2

)
‖en‖2

−rT r + ρ2
Ñ

(‖z‖)

4kp

‖z‖2 +
m−1∑
i=1

ρ2
i (‖z‖)

4kd,i

‖z‖2 (71)

≤ −
(

λ4 − ρ2
Ñ

(‖z‖)

4kp

−
m−1∑
i=1

ρ2
i (‖z‖)

4kd,i

)
‖z‖2 (72)

where λ4 � min
{

1
2 , λmin (α) − 1

2

}
. When the controller

gains kp and kd, i for i = 1, . . . , (m − 1) are selected
large enough such that the regions defined by Dz �
{z : ‖z‖ ≤ R} and Ds � {s : ‖s‖ ≤ R} with R defined as

R = min

{
ρ−1

Ñ

(
2

√
kp

1 − β

m

)
, ρ−1

i

(
2

√
kd,i

1 − β

m

)}
(73)
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Figure 1. Link tracking errors.

for i = 1, . . . , (m − 1) are non-empty, from (72) and the
definition of s, one can restate

V̇ ≤ −β ‖z‖2 = −W (s) ,∀s ∈ Ds (74)

where β ∈ R is a positive constant that satisfies 0 ≤ β

< 1. From (66) and (74), it is obvious that V (t) ∈ L∞,
and from the proof of Theorem 4.1, we concluded that all
signals in the closed-loop error system are bounded, and
furthermore, from the boundedness of Ẇ (s), we can state
W(s) is uniformly continuous.

Based on the definition of Ds , another region, S, can be
defined in the following form:

S �
{

s ∈ Ds : W2 (s) < λ3

(
ρ−1

Ñ

(
2
√

kp
1−β
m

))2
}

∩
{

s ∈ Ds : W2 (s) < λ3

(
ρ−1

1

(
2
√

kd,1
1−β
m

))2
}

∩ ...

∩
{

s ∈ Ds : W2 (s) < λ3

(
ρ−1

(m−1)

(
2
√

kd,(m−1)
1−β
m

))2
}

(75)
A direct application of Theorem 8.4 in (Khalil, 2002) can
be used to prove that ‖z(t)‖ → 0 as t → + ∞ ∀s (t0) ∈ S.
Based on the definition of z(t), it is easy to show that ‖ei(t)‖,
‖r(t)‖→ 0 as t → + ∞∀s (t0) ∈ S, i = 1, . . . , n. From (16),
it is clear that ‖ėn (t)‖ → 0 as t → + ∞ ∀s (t0) ∈ S. By
utilising (15) recursively, it can be proven that ‖e(i)

1 (t) ‖ →
0 as t → + ∞, i = 1, . . . , n ∀s (t0) ∈ S. Note that the

region of attraction can be made arbitrarily large to include
any initial conditions by choosing the controller gains kp and
kd, i, i = 1, . . . , (m − 1). This fact implies that the stability
result obtained by the proposed method is semi-global. �
Remark 5: The entries of the control gain matrix C are
required to satisfy (62) which depends on the constant upper
bounds of uncertain system functions, and the entries of the
control gain matrix K are required to be chosen large enough
compared to the initial conditions of the system. While this
is a weakness of the controller, we will address this issue by
utilising the self-tuning strategy that we recently designed
in Bidikli, Tatlicioglu, Bayrak, and Zergeroglu (2013) and
Bidikli, Tatlicioglu, and Zergeroglu (2014) for the family of
the controllers in Xian et al. (2004) as an add-on to adjust
the entries of C and K.

5. Numerical results

To backup the theoretical results presented in the previous
sections, some comparative numerical studies have been
carried out. Similar to Chen et al. (2008), the performance
and liability of the proposed nonlinear robust controller
have been tested on a modified version of the two-link
robot manipulator system with coupling between the two
links taken from Slotine and Li (1991). The equations of
motion are given as (Chen et al., 2008)

[
q̈1

q̈2

]
=
[

M11 M12

M12 M22

]−1 [−bq̇2 −b (q̇1 + q̇2)
−bq̇1 0

] [
q̇1

q̇2

]
+
[

M11 M12

M12 M22

]−1 [
1 1
0 1

] [
τ1

τ2

]
(76)
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Figure 2. Control inputs.

where q1(t), q2 (t) ∈ R denote the joint angles, τ 1(t) and
τ 2(t) are the control inputs, and M11, M12, M22, and b are
explicitly defined as

M11 = a1 + 2a3 cos q2 + 2a4 sin q2 + a5 (cos q̇2 + sin q̇2)

+ a6 (cos q1 + sin q1) (77)

M12 = a2 + a3 cos q2 + a4 sin q2 (78)

M22 = a2 + a7 (cos q̇1 + sin q̇1) (79)

b = a3 sin q2 − a4 sin q2 (80)

where a1 = 4.42, a2 = 0.97, a3 = 1.04, a4 = 0.6, a5 = 0.25,
a6 = 0.2, and a7 = 0.5. It can be seen from (76) and (77)–
(80) that the given model reflects the behaviour of the model
in (1) as it is in the form of (2) with the decomposition in
(3). The control objective is to make q1(t) and q2(t) follow
a sinusoidal reference trajectory chosen as

qd (t) = (1 − exp(−0.3t3))[ 30 sin(t) 45 sin(t) ]T (deg)

(81)

As mentioned in Remark 3, the entries of the con-
trol gain matrices C and K are adjusted by the self-tuning
method in Bidikli et al. (2013) and Bidikli et al. (2014), and
the gains obtained were

α = diag{1, 5}, K = diag{175, 125}, C = diag{5, 5}
(82)

The link position tracking error is depicted in Figure 1,
while the control input is shown in Figure 2. From
Figure 1, it is clear that the tracking control objective was
successfully met.

6. Conclusion

In this work, we presented a continuous nonlinear robust
controller designed for a class of uncertain MIMO nonlinear
systems having non-zero leading principal minors in their
input gain matrices. The stability of the closed-loop system
was investigated via the use of Lyapunov-based arguments.
Specifically, we developed a four-step analysis to prove the
asymptotic stability of the output tracking error and its time
derivatives. The results are also demonstrated via numerical
simulations to illustrate the viability and performance of the
proposed controller.

We would like to compare our result with some of the
closest robust control works in the literature. After consid-
ering the same class of uncertain MIMO nonlinear system
and imposing the same assumptions on the system model,
we extended the results in Chen et al. (2008) to asymp-
totic as opposed to their UUB result. Similarly, in Xian
et al. (2004), the same system model was considered. We
extended the results in Xian et al. (2004) by relaxing the
positive definiteness of the input gain matrix. After this,
the results in (Xian et al., 2004) can now be considered



2922 B. Bidikli et al.

as a special case of our controller (i.e., when DU(X) is an
identity matrix).

While a robust control strategy is employed in this work
to compensate for uncertainties, adaptive methods can also
be utilised. It is apparent that robust controllers rely on worst
case scenario and thus require more control efforts. On the
other hand, adaptive (or neural-network-based) methods can
reduce the control effort by learning some, if not all, of the
model uncertainties.

Our current research studies are devoted to designing an
adaptive extension of the proposed work. It is noted that due
to both matrix decomposition and matrix inverse operation,
the adaptive version of this study is non-trivial.

We would like to compare our work with Xian et al.
(2004) by performing experiments. Experimental verifica-
tion on a robot manipulator can be performed by multiply-
ing the control input torque with a matrix similar to that of
the one in (76).
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function. Thus, m̄
(
x, ẋ, . . . , xn−1

) ≤ m̄ (‖z‖).
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Appendix 1. Proof of Lemma 4.2

Proof: First, we note that if en, i(t) ≡ 0 on some interval, then
ėn,i(t) ≡ 0 on the same interval, and the inequality (60) yields this
qualification. Therefore, without loss of generality, we assume that
en, i(t) is absolutely greater than zero on the interval of [t0, t]. Let
T ∈ [t0, t) be the last instant of time when ėn,i (t) changes sign.
Then, on the interval [T, t], ėn,i (t) has a constant sign, hence∫ t

T

∣∣ėn,i (σ )
∣∣ dσ =

∣∣∣∣∫ t

T

ėn,i (σ ) dσ

∣∣∣∣ = ∣∣en,i (t) − en,i (T )
∣∣
(A1)

From the boundedness of the function ėn,i(t), it follows that there
exists a constant γ > 0 such that

∣∣ėn,i (t)
∣∣ ≤ γ ; therefore,

∫ T

t0

∣∣ėn,i (σ )
∣∣ dσ ≤ γ (T − t0) (A2)

On the other hand, we obtain the following equality from the
application of the mean value theorem in (Khalil, 2002):∫ T

t0

∣∣en,i (σ )
∣∣ dσ = en,i∗ (T − t0) (A3)

where en,i∗ is some constant intermediate value of |en, i(t)| on the
interval [t0, T]. By assumption, en,i∗ is bounded away from zero.
Therefore, by using inequality (A2) and equality (A3), we can
conclude as follows:∫ T

t0

∣∣ėn,i (σ )
∣∣ dσ ≤ γ2

∫ T

t0

∣∣en,i (σ )
∣∣ dσ (A4)

where γ2 = γ /en,i∗ . Combining the relationships in (A1) and (A4),
we can write∫ t

t0

|ėn,i (σ ) |dσ ≤ |en,i (t) | + |en,i (T ) | + γ2

∫ T

t0

|en,i (σ ) |dσ

(A5)
which yields the inequality (60) with definition γ1 �
sup |en,i (T ) |. �

Appendix 2. Proof of Lemma 4.3

Proof: We start our analysis by integrating (61) in time from t0

to t ∫ t

t0

L (σ ) dσ =
∫ t

t0

eT
n (σ ) αT

(
N̄ (σ ) − CSgn (en (σ ))

)
dσ

−
∫ t

t0

eT
n (σ ) αT � (σ ) CSgn (en (σ )) dσ
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+
∫ t

t0

ėT
n (σ ) N̄ (σ ) dσ

−
∫ t

t0

ėT
n (σ ) � (σ ) CSgn (en (σ )) dσ

−
∫ t

t0

ėT
n (σ ) CSgn (en (σ )) dσ (B1)

where (16) was utilised. To ease the presentation, we will consider
each term on the right-hand side of (B1) separately. The first term:

∫ t

t0

eT
n (σ ) αT

(
N̄ (σ ) − CSgn (en (σ ))

)
dσ

=
∫ t

t0

m∑
i=1

αien,i (σ )
(
N̄i (σ ) − Cisgn (en,i (σ ))

)
dσ

≤
m∑

i=1

αi

(
ζN̄i

− Ci

) ∫ t

t0

∣∣en,i (σ )
∣∣ dσ. (B2)

The second term:

−
∫ t

t0

eT
n (σ ) αT � (σ ) CSgn (en (σ )) dσ

= −
∫ t

t0

m−1∑
i=1

αien,i (σ )
m∑

j=i+1

Cj�i,j (σ ) sgn
(
en,j (σ )

)
dσ

≤
m−1∑
i=1

m∑
j=i+1

αiCj ζ�i,j

∫ t

t0

∣∣en,i (σ )
∣∣ dσ. (B3)

The third term:∫ t

t0

ėT
n (σ ) N̄ (σ ) dσ

=
∫ t

t0

m∑
i=1

ėT
n,i (σ ) N̄i (σ ) dσ

≤
m∑

i=1

ζN̄i

∫ t

t0

∣∣ėn,i (σ )
∣∣ dσ

≤
m∑

i=1

ζN̄i

(
γ1 + γ2

∫ t

t0

∣∣en,i (σ )
∣∣ dσ + ∣∣en,i

∣∣) . (B4)

The fourth term:

−
∫ t

t0

ėT
n (σ ) � (σ ) CSgn (en (σ )) dσ (B5)

= −
∫ t

t0

m−1∑
i=1

ėn,i (σ )
m∑

j=i+1

Cj�i,j (σ ) sgn
(
en,j (σ )

)
dσ

≤
m−1∑
i=1

m∑
j=i+1

Cjζ�i,j

∫ t

t0

∣∣ėn,i (σ )
∣∣ dσ

≤
m−1∑
i=1

m∑
j=i+1

Cjζ�i,j

(
γ1 + γ2

∫ t

t0

∣∣en,i (σ )
∣∣ dσ + ∣∣en,i

∣∣) .

The fifth term:

−
∫ t

t0

ėT
n (σ ) CSgn (en (σ )) dσ

= −
∫ t

t0

m∑
i=1

Ciėn,i (σ ) sgn (en,i (σ )) dσ

= −
m∑

i=1

Ci

∫ t

t0

sgn (en,i (σ )) d (en,i)

= −
m∑

i=1

Ci

∫ t

t0

d
(∣∣en,i

∣∣)
= −

m∑
i=1

Ci

∣∣en,i (t)
∣∣+ m∑

i=1

Ci

∣∣en,i (t0)
∣∣ . (B6)

It is noted that, the result of Lemma 4.2 was utilised to obtain the
last lines of (B4) and (B5). After combining the upper bounds in
(B2)–(B6), we obtain∫ t

t0

L (σ ) dσ

≤
m−1∑
i=1

αi

⎡⎣(1 + γ2

αi

)⎛⎝ζN̄i
+

m∑
j=i+1

ζ�i,j
Cj

⎞⎠− Ci

⎤⎦
×
∫ t

t0

∣∣en,i (σ )
∣∣ dσ

+ αm

[(
1 + γ2

αm

)
ζN̄m

− Cm

] ∫ t

t0

∣∣en,m (σ )
∣∣ dσ

+ (
ζN̄m

− Cm

) ∣∣en,m

∣∣
+

m−1∑
i=1

⎛⎝ζN̄i
+

m∑
j=i+1

ζ�i,j
Cj − Ci

⎞⎠∣∣en,i

∣∣
+ γ1

m−1∑
i=1

m∑
j=i+1

ζ�i,j
Cj + γ1

m∑
i=1

ζN̄i
+

m∑
i=1

Ci

∣∣en,i (t0)
∣∣ . (B7)

Based on (B7), we first choose Cm to satisfy (62) to make second
and third expressions on the right-hand side negative, we next
choose Ci starting from (m − 1) with a decreasing order to satisfy
(62) to make the first and fourth expressions on the right-hand
side negative, and finally, we utilised the definition of ζ L in (64)
to obtain (63), thus completing the proof of Lemma 4.3. �
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