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ABSTRACT 
 This research has aspired to build a system which is capable of solving problems 

by means of its past experience, especially an autonomous agent that can learn from trial 

and error sequences. To achieve this, connectionist neural network architectures are 

combined with the reinforcement learning methods. And the credit assignment problem 

in multi layer perceptron (MLP) architectures is altered. In classical credit assignment 

problems, actual output of the system and the previously known data in which the 

system tries to approximate are compared and the discrepancy between them is 

attempted to be minimized. However, temporal difference credit assignment depends on 

the temporary successive outputs. By this new method, it is more feasible to find the 

relation between each event rather than their consequences.     

 Also in this thesis k-means algorithm is modified. Moreover MLP architectures 

is written in C++ environment, like Backpropagation, Radial Basis Function Networks, 

Radial Basis Function Link Net, Self-organized neural network, k-means algorithm. 

And with their combination for the Reinforcement learning, temporal difference 

learning, and Q-learning architectures were realized, all these algorithms are simulated, 

and these simulations are created in C++ environment.  

 As a result, reinforcement learning methods used have two main disadvantages 

during the process of creating autonomous agent. Firstly its training time is too long, 

and too many input parameters are needed to train the system. Hence it is seen that 

hardware implementation is not feasible yet. Further research is considered necessary. 
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ÖZ 
 Hazırlanan bu tez bazı yapay zeka öğrenme metodlarını makina mühendisliği 

bakış açısından incelemektedir. Bilgisayar teknolojisindeki gelişmeler pek çok 

disiplinde olduğu gibi makina mühendisliğinde de problem çözme metodlarını geriye 

döndürülemez bir şekilde değiştirmiştir. 

 Hazırlanan bu tezin amacı geçmiş deneyimlerine dayanarak öğrenebilen bir 

sistem geliştirmektir, özelde ise, deneme yanılma ile öğrenen otonom bir ajan 

geliştirmektir. Bu amacı gerçekleştirmek için bağlantısal yapay sinir ağları takviyeli 

öğrenme metodları ile birleştirilmiştir. Ve sistemin o anki çıktısı ile yakınsamaya 

çalıştığı değer arasındaki farkı en küçüklemeye çalışan klasik kredi atama metodu 

yerine, geçici başarılı hamleler arasındaki farkı en küçüklemeye  çalışan geçici farklar 

metodu kullanılmıştır. Bu yeni metodun avantajı olaylarla yalnız sonuç arasındaki 

ilşkiyi değil aynı zamanda olayların birbiriyle olan ilşkilerini de yakalamaya 

çalışmasıdır.  

 Ayrıca bu tez çalışması sırasında K-means algoritmasında değişiklikler yapılmış, 

çeşitli çok tabakalı algılayıcı algoritmaları C++ ortamında gerçeklenmiştir. Bu 

algoritmalar Backpropagation, Radial Basis Function Network, Radial Basis Function 

Link Net, Self-organized neural network, k-means algoritmalarıdır. Bu algoritmalar 

takviyeli öğrenme metodlarından geçici farklar metodu ve Q-learning algoritmaları ile 

birlikte C++ ortamında gerçeklenmiştir. 

 Sonuç olarak, uygulanan takviyeli öğrenme metodlarının gerçek problemlere 

uygulanmasına engel olan iki yönü olduğu görülmüştür bunlar; programların öğrenme 

sürelerinin çok uzun ve yapay sinir ağlarını eğitebilmek için gerekli olan girdi sayısının 

çok fazla olmasıdır. İleride yapılacak çalışmalarda bunların iyileştirilmesi 

gerekmektedir.  
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CHAPTER 1 

 

 

INTRODUCTION 

 
Throughout the history, humans have always been fascinated by intelligence. It 

is this very trait that separates homo sapiens from other living beings. Philosophers, 

thinkers, scientists all attempted to understand and make a definition of such an 

intangible yet such a conspicuous quality as intelligence. Understanding the secrets of 

the human brain will always be an interesting research area for scientists.  

Artificial Intelligence research areas comprise many mathematical methods and 

biologically inspired architectural methods as well. This research mostly built on the 

Neural Networks (NNs) methods. The author prefers to use NNs, because they have 

strong approximation capabilities, yet suffers from generalization difficulties. And it is 

proven to be a robust function approximator. 

Connectionist NNs are inspired from biological structures, but it is only 

inspiration that should be kept in mind. To understand what is placed behind this 

inspiration, biological neurons will be briefly discussed. Biological neurons are 

comprised of three parts; Axon, dendrite, and soma. In this structure, dendrites are used 

to supply the input data, and then the system responds through the axon after the input is 

processed at soma. As it is the case with the biological neurons, an algorithm can be 

developed by Object Oriented programming methods. C++ computer language has been 

used to create Simulated Artificial Neural Networks (SANNs).  

 Developing simulated artificial neural networks in C++ IDE brings us great 

flexibility. Once a node is described as a class, then it can be reused for another time. 

Also C++ programming language is much faster than the other editors like MATLAB.  
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Figure 1.1 A biological neuron  

 

The connectionist NNs first developed in the simplest form by Widrow and Hoff 

[1] which consist of two layers, input layer and output node but only the output node 

has an activation function, which is a linear function and it can only solve linearly 

separable problems. This simple architecture named ADALINE NN. 

After ADALINE NN, new architectures are developed like Multi Layer 

Perceptrons (MLP). In MLPs some new activation functions are utilized like sigmoid or 

Gaussian activation functions. 

Indeed AI methods can be subsumed into three main categories, they are 

supervised, unsupervised and reinforcement algorithms. MLPs are the most popular and 

widely used supervised algorithms. Supervised algorithms need input-output pairs. With 

these pairs, through the error propagation, network approximates a function. Apart from 

supervised algorithms in unsupervised algorithm there is no error to back propagate and 

there is no target to reach, instead, this type of algorithms only works on input pairs and 

tries to arrange inputs according to pre-specified rules. These rules can be some 

declaration such as minimize the cluster centers or distance between inputs and cluster 

centers. Reinforcement learning (RL) attempts to learn from its past experience and it is 

expected that after each trial it is going to respond more rationally. In this research all 

these AI methods are used.  

Self-Organized NNs are used as an unsupervised learning method, which is 

developed by Teuvo Kohonen [2]. And Radial basis NNs and Backpropagation NNs are 
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used as MLP. Q-Learning and Temporal Difference reinforcement learning are 

implemented as reinforcement algorithms. 

 

1.1 Motivation 

AI methods are not a panacea, indeed these methods were developed to create 

intelligent systems, and however their mathematical power, robustness and their ease of 

implementation make them widely used tools both in engineering and operational 

sciences, also Neural Network models are used for simulating and understanding the 

nature of the biological neurons. 

If the parameters can be tuned appropriately, the system can be easily identified 

to be built and predictions can be made over its future behavior.  

We are inspired from the nature and during this research an autonomous agent is 

intended to be built, that can learn from its environment and respond to new conditions 

rationally. In nature, there are relatively simple animals that can carry out many 

complex daily tasks, and we want to create a system which resembles these relatively 

simple yet skillful biological animals.  But it remains only as an inspiration at the 

moment and the rest is simulations, mathematical modeling and crude experimentation.  
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CHAPTER 2 

 

 

MULTI LAYER PERCEPTRONS 
 MLP algorithms will be described in the following sections. MLPs 

fundamental points will be introduced at back propagation section. Then Radial Basis 

Function NN and Radial Basis Function Link Net structures will be discussed.  

 

2.1 Back propagation 

 Having developed ADALINE linear separator, there are still some questions, 

like, is there a computational method that this structure can be used in multiple layers? 

If we can find a way prompt the middle layer nodes to respond in an appropriate way to 

approximate the associated output? This procedure is named credit assignment problem.  

 Back propagation (BP) algorithm was the answer to these questions. This 

algorithm and architecture was the first developed MLP architecture, it can contain 

more than one output and more than one middle layer.  

 BP algorithm is needed because so far only the linear separator was used and 

from the classification point of view, they can only separate the clusters that can be 

divided by a line. However in real life problems there are too many complex situations 

exist that we have to use more intricate lines. MLP structure and algorithm gives us that 

opportunity. 

 
Figure 2.1 Linearly separable two clusters 

 

 To train a MLP, Gradient Descent method can be used. This method provides us 

a tool to direct the middle layer nodes to follow the appropriate direction to minimize 

the distance between the target value and the actual output. 
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 To train the network, input values and target values are used in which 

represented by “x” and “t” symbols respectively.  

 
Figure 2.2 Architectural structures of ADALINE NNs.   

 

 In BP algorithm every middle and output layer uses an activation function. 

Mostly sigmoid activation functions are used, hence the output of the network will be 

between 0 and 1. Also Gaussian distribution can be used as an activation function 

because of the formation of the function this structure is named as Radial Basis NN. 

 In MLP every input layer node is connected to the every middle layer node and 

every middle layer node is cooperated to the every output layer node. Process begins 

when the input data is presented to the input layer. Consequently, these data is 

multiplied by the corresponding link value which is called weight. This multiplication is 

used to weight the input values. After the multiplication is done, summation of this 

value is presented to the activation function and this process goes on to the end of the 

output layer. After this procedure output value compared with the expected output value 

and the distance between them are taken as an error to back propagate. Hence, it is 

called back propagation.  

∑ −=
=

J

j
jj ztE

1

2)(                                              ( )1  

 

 “E” represents the total error term and “z” is the actual output for the input “j”.  



 

 6 

 
Figure 2.3 Structures of MLPs.  

 

 The BP scheme is in the following form: 

 The derivative of the error with respect to the weight connecting i to j is; 

 

ij
ij

y
W
E δ=

∂
∂                                                             (2) 

 To change weights from unit i to unit j by; 

ijij yW ηδ−=∆                                                       (3) 

 

      Where;                   

iy
jδ

η
 

                       

                                    

 Every  middle layer node employs an activation function. BP process, a sigmoid 

function is used because sigmoid function can easily be calculated and differentiable 

form. 

ae
afy −+

==
1

1)(                                                   (4) 

 And its derivative is; 

is the learning rate  ( 0>η ) 
is the error for unit j 
 
is the input from unit i 



 

 7 

))(1)(()(' afafaf −=                                              (5) 

 Every input value is calculated in weighted form; 

 

)()( xfTwxy =                                                 (6) 

 It is crucial to compute the error term for both output units and the middle units. 

 For output unit 

                              (7) 

 

 For hidden unit 

.)1( ∑−=
k

kijjjj Wyy δδ                                         (8) 

 

 Gradient descent algorithm physically means that, magnitude of error and the 

direction is calculated so as to minimize the error, new weight values are driven in the 

opposite direction. The learning rate determines the amount of update in the specified 

direction.                             

 

2.2 Radial Basis Function NNs 

 Radial basis function NN (RBFNN) was first developed in 1964 as potential 

function [3, 4], but first used for non-linear regression in [5]. RBFNNs were brought to 

widespread attention by Broomhead & Lowe [6] and Moody & Darken [7]. 

 RBFNNs are widely used because they can be trained in a fast and robustly 

manner. Also it has strong scientific base. RBFNNs have the same structure with MLP. 

Every input layer node is connected to the every middle layer node and every middle 

layer node is connected to the every output node.  

RBFNNs use Gaussian distribution function as an activation function; 

22

2)(

2
1)( σ

σπ
ϕ

mx

ex

−−
=                                                  (9) 

 

 Where x is the input, m is mean and σ expression is the standard variance. 

Gaussian function given in (9) gives the maximum value when the center of the 

distribution and the input value are the same. If the input datum is very close to the 

).( targetyykk −=δ
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cluster center, Gaussian function produces an output which is very close to unity. On the 

other hand if the datum is far from the center, the output value will be close to zero. 

This decrease from 1 to zero is proportional to datum point distance from the center. Its 

distribution can be seen at figure 2.4. As output nodes are the summation nodes. 

 

 
Figure 2.4 Gaussian function 

 
 

Figure 2.5 Structure of RBFLN.  

 Some slight modification can be done on this architecture. Every input layer 

node can be combined to the every output layer node like bias nodes. With these 

architectural changes better approximation performance can be obtained and this 

structure is named as Radial Basis Function Link Net (RBFLN) [8] and it is stated that it 



 

 9 

gives better performance than RBFNN. Because with the RBFLN algorithm additional 

links that combine the input nodes to the output nodes also gives us a chance to cover 

the linear portion of the feature space. Its structure can be seen at the figure 2.5.  

 RBFNN is needed because even the old structures are capable of drawing some 

complex separator line, the clusters can not be separated appropriately. In these 

situations the density distribution around the unknown datum can be used to separate 

these clusters. There is a method to find the density which is named Parzen’s method of 

density estimation 

 

2.3 Parzen’s Method of Density Estimation 

 Parzen [9], suggested an excellent method for estimating the uni-variate 

probability density function from random sample. As the sample size increases this 

method converges to the true density function. Parzen’s probability density function 

(PDF) estimator uses a weight function, W (d), which is called a kernel, has its largest at 

d=0 and which decreases rapidly as the absolute value of d increases. One of these 

weight functions is centered at each training sample point, with the value of each 

sample’s function at a given abscissa x being determined by the distance d between x 

and that sample point. His PDF estimator is a scaled sum of that function for all sample 

cases. 

Parzen’s method mathematically stated as in the following form. A sample of 

size n from a single population is collected. And an estimated density function is 

obtained like Gaussian.  

∑
=

−=
n

i
ixxW

n
xg

1
)(1)(

σσ
                                         (10) 

 The scaling parameter sigma defines the width of the bell curve that surrounds 

each sample point. Calculating the appropriate sigma value has profound effect on the 

solution, if it is too small because individual training cases to exert too much influence, 

losing the benefit of aggregate information. Values of sigma that are too large cause so 

much blurring that the details of the density are lost, often distorting the density 

estimate badly. 

 We have considerable freedom in choosing the weight function. There are 

surprisingly few restrictions on its properties. [9] And [10] state them explicitly. There 

are some simple definitions to develop a new weight function. 
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 -The weight function must be bounded. 

∞<||W(d)sup
d

 

 -The weight function must rapidly go to zero as its argument increases in 

absolute value. This restriction, which is the most likely violated by careless 

experimenters, is expressed in two conditions.  

∞<∫
∞+

∞−
dxxW |)(|  

 

0|)(|lim =
→∞

xxW
x

 

 -The weight function must be properly normalized if the estimate is going to be 

a density function, rather than just a constant multiple of a density function. 

 

∫
∞+

∞−
=1)( dxxW  

 -In order to achieve correct asymptotic behavior, the window must become 

narrower as the sample size increases. If we express sigma as a function of n, the sample 

size, two conditions must be true. 

0lim =
→∞

n
n

σ  

 

∞=
→∞

nn
n

σlim  

 

2.4 Training Methods 

  Both RBFNN and RBFLN can be trained with the same procedure except for 

the additional links. And again the gradient descent training algorithm is used. 

According to this algorithm centers, sigma terms and all weights are updated following 

the given procedure. 

 

Error term is found by; 

∑







∑ −=

= =

Q

q

J

j
jj ztE

1 1

2)(  
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Where; 

J  =1.....J (J is the number of output nodes) 

m=1....M (M is the number of middle layer nodes) 

q =1....Q (Q is the number of inputs) 

t  = Target 

C= Center of a cluster 

S = σ (sigma) 

 

 

 

 

 

 

 

                Output value is given as in the following formulation; 

 

 

 

 For this section calculations are given for the RBFLN shown in figure 2.5 

however it can easily be implemented to the RBFNN case. 

 The RBFNN has an input layer of N nodes, a hidden layer of M nodes and an 

output layer of J nodes. Calculation begins when the input vectors x are presented to the 

input layer. The outputs from the m-th hidden layer neurode and the j-th output layer 

neurode, respectively, for the q-th input exemplar vector are  

 





 −−= )2/(exp 22)(

m
mqq

m vxy σ                                    (11) 

 

.)/1(
1

)()(





 ∑ +=

=

M

m
j

q
mmj

q
j byuMz                                             (12) 

 “v” stands for the cluster center and the “σ ” stands for the spread parameter. 

 Where m=1…M and j=1 …J. The weights mju  are on the connection lines from 

the hidden layer to the output layer. “b” term represents the bias term, if it is employed. 

)/()()1( WEtWtW ∂∂−=+ η

)/()()1( CEtCtC ∂∂−=+ η

)/()()1( SEtStS ∂∂−=+ η

[ ]
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
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=

M

m
mmjj WMz

1
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 Given a sample of Q input exemplar feature vectors and a set of Q associated 

output target vectors 

 

                            { }Qqx q ,......1:)( =                   and                  { }Qqt q ,......1:)( =  

 

The training of an RBFNN consists of  the following two stages: i) initialization 

of the centers, spread parameters and weights; and ii)weight and parameter adjustment 

to minimize the output total sum squared error E (TSSE) defined as the sum of the 

partial sum-squared errors (PSSEs) in 

 

{ }∑ ∑ ∑
= = = 








−==
Q

q

Q

q

J

j

q
j

q
j

q ztEE
1 1 1

2)()()( )(                       (13) 

 

 The RBFLN output components differ from equation for RBFNNs and are given 

by 

[ ]



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
 ++= ∑∑
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N

n

q
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M

m

q
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q
j xwyuNMz

1
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1

)()( )/(1                      (14) 

  

 Training on the weights is extremely quick via steepest descent per iteration  
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 Each center (v) and spread parameter (σ ) can also be updated with steepest 

descent via 
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2.5 Responsive Perturbation Training 

Responsive perturbation training (RPT) is a newly proposed [11] algorithm in 

the traning arena. It uses the general philosophy of combining genetic algorithms (GA) 

and simulated annealing (SA). Nonetheless, in RPT, both the GA and the SA are 

changed in such a way that neither is the original optimization method other than the 

slight semblance in the guidelines. For example, when a population is created, 

individuals are not converted to binary strings, since no crossing occurs. Instead of 

selecting the best performing individuals, only the best  is kept.  

Perturbation replaces the crossing. A new family of individuals are created by 

perturbing the best solution. This guarantees that all the offsprings are the variations of 

the best parent.  The pertubation is a gaussian noise, whose variance is monotonically 

decreasing or simply given by a function, added to the selected individual. 

RPA is a simple and robust algorithm. Its simplicity saves on CPU time. Weight 

and sigma update equations are given by  

 

S (i,j) = S(i,j)  + (percent error) * R, 

 

w (i,j)       =     w(i,j)     + (percent error) * R, 

Where i=1...K,   j=1...number of individuals, and  

R = k * r. Here k is a suitable coefficient, less than unity, and r is Gaussian noise with 

zero mean.  

Thus RPA is an error-driven process. With the carefully arranged coefficient, weight 

and spread parameters are perturbed less and less in amplitude by use of the error term. 

This eliminates the occasional need for hill-climbing. Unless the error reaches a certain 

level, the perturbation amplitude never drops and the algorithm keeps searching within a 

specified search radius. At the outset, error is high and a rough search starts, and a 

neighborhood of solution is sought to converge to. Once the neighborhood is roughly 

spotted, the search closes in on the optimal vectors. Usually, towards the final stages of 

the search, noise variance is reduced, and the coupled effect of error and the reduced 

noise variance help smoothen the computed vectors. 
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Figure 2.6 Responsive Perturbation Algorithm [11]. 

 

2.6 How Does It Work? 

 Apart from the BP in RBFNN, every middle layer represents a cluster which has 

a center in Gaussian distribution and they are represented by the mean (m) and cluster 

diameter which is given by sigma (σ ). If we can represent the feature space with an 

optimum number of clusters and appropriate sigma and mean, function can be more 

easily approximated. And if the feature space can be sufficiently covered, systems 

response will be improved.   

 However many nodes can be used at middle layer which means that more 

clusters are used and it gives more accurate solutions, on the other hand operator should 

avoid from over-fitting because it will not be a healthy solution. 

 And with the RBFLN algorithm additional links that combine the input nodes to 

the output nodes also gives us a chance to cover the linear portion of the feature space. 

 It can easily be seen that the RBFNN needs cluster centers and we will see that 

these centers can be initialized more accurately than a random process. A unsupervised 

algorithm and a supervised algorithm are utilized to compliment them.  

 

2.7 Clustering Algorithms 

 In a real world problem most of the time data must be arranged to make them 

useful in applications where number of data is too many to calculate, most of the time 

plenty of data is available, so their number must be decreased. Even in these conditions 

a new datum must be classified correctly especially in pattern recognition application. 
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However as in the RBFNN, cluster centers must be known. With clustering algorithms 

cluster centers can be found appropriately to cover the feature space. 

 To visualize the clustering methods, following application will be introduced. 

For the following data some vehicles are shown as a point in the figure 2.7 according to 

their weight and speed. 

 As in the table 2.1, if a vehicle’s correct cluster is not known, at first sight it is 

hard to recognize from the list of data. However if the data is drawn to a table it is more 

easy to obtain the relation between these data.  

 Normalized data are used for this application to obtain more healthy solutions 

and it is a good practice to use normalized data. In this application there are six clusters 

sports vehicles, medium market cars, trucks, race cars, semi-expensive and sports 

vehicles.  

 Instead of drawing a figure, an algorithm can be written to do this. In literature 

there are some algorithms. In the following section these algorithms will be examined. 

The author prefers k-means and SONN application to represent the supervised and 

unsupervised algorithms respectively. 

 

Table 2.1 Vehicle speed and weight information 
Experimental Data Sheet       Normalized 

  Speed Weight       Speed Weight 

1 220 1300 Sports Vehicles       0.5571    0.3182 

2 230 1400           0.5952    0.3446 

3 260 1500           0.7095    0.3711 

4 140 800 

Medium Market 

Cars       0.2524    0.1860 

5 155 950           0.3095    0.2256 

6 130 600           0.2143    0.1331 

7 100 3000 Trucks         0.1000    0.7678 

8 105 2500           0.1190    0.6355 

9 110 3500           0.1381    0.9000 

10 290 475 Race Cars       0.8238    0.1000 

11 275 510           0.7667    0.1093 

12 310 490           0.9000    0.1040 

13 180 1050 Semi-expensive       0.4048    0.2521 

14 200 1100 Sports Vehicles       0.4810    0.2653 

15 205 1000           0.5000    0.2388 
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Figure 2.7 Graphical representations of vehicles  

 

2.7.1 Self-Organizing Neural Networks 

 Self-organizing neural network (SONN) is first developed by Teuvo Kohonen 

(1982). SONN is an algorithm that can be used to cluster data. Indeed MLP type neural 

networks can also be used for clustering. However MLP type algorithms are known as a 

supervised algorithm, it means that network is trained with some known data and then 

the network response is used for clustering unknown data. 

 For SONN, there is no error to back propagate or desired output for the system 

instead system decides its response according to the results that find with its algorithm.  

 Its structure consists of two layers input layer and kohonen layer, as it is shown 

at the figure 2.8.  
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Figure 2.8 Structure of SONN  

 

 Input layer is used to present the data. Kohonen layer nodes and their positions 

represent the topological position of clusters and its link values can be assumed as their 

center position.  

 Computation begins when the input data presented to the input layer. And every 

input datum is compared with every kohonen layer node and their Euclidian distance is 

calculated. After this calculation a winner node is found for each input datum as 

follows. 

 

 

  

 Where )(,0 tn k : the thk  node in the input layer at the time “t”. )(),(,1,0 tw yxk→  

represents the link value which is combined to the thk node in the input layer from node 

at kohonen layer which is placed at (x,y). 

 Algorithm of SONN is inspired from biology. In human brain there is a layer 

which is called cerebral cortex. At cerebral cortex biological process depends on lateral 

interaction like SONN. As in the figure 2.9 after calculation of the winning node, 

winning node and its neighbors are updated. Nodes that are placed outside of this 

boundary do not participate in learning. 
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Figure 2.9 Step functions that used to determine the nodes within the neighborhood  
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s whether this node participates in learning or not. “H” represents 

hborhood of the winning node and it is decreased as the time is 

rate parameter (Lr) should be decreased appropriately. 

d learning rate parameter should be minimum for the last 10% of 

 are updated according to the following procedure.   

)1()()1( ),(,1,0,,0),(,1,0 +∆+=+ →→→ ttWt kikjikjik

))()1()(()1 ),(,1,0,0)1()1( twtntLrcolrowN jikitwintwin →++ −+=



 

 

2.7.2 K-Means Algorithm 

 K-means algorithm is a widely used clustering algorithm. Its strength comes 

from its simple mathematical fundamentals, hence it can be easily implement able. 

However k-means algorithm has supervised type and heuristic nature. So it must be 

applied for many k terms. 

 Term “k” comes from the initialized number of clusters hence before running the 

program, we know, how many clusters we are going to have. This procedure tries to 

divide the feature space into number of “k” slices, according to the Euclidian distance 

equation. Performance index for the ith cluster; 

 

 

 

This algorithm is iterative k based on minimization of a performance index F. 

K: Number of clusters specified by user. 

F: Sum of squared distance of all points in a cluster to the cluster center. 
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The k-means algorithm finds locally optimal solutions with respect to the 

clustering error. It is a fast iterative algorithm that has been used in many clustering 

applications. It is a point-based clustering method that starts with the cluster centers 

initially placed at arbitrary positions and proceeds by moving the cluster centers at each 

step in order to minimize the clustering error. The main disadvantage of the method lies 

in its sensitivity to initial positions of the cluster centers. Therefore, in order to obtain 

near optimal solutions using the k-means algorithm several runs must be done differing 

in the initial positions of the cluster centers. 

    -1- It implies that the data clusters are ball-shaped because it performs 

clustering based on the Euclidean distance.  

    -2-Also there is the dead-unit problem. That is, if some units are initialized far 

away from the input data set in comparison with other units, they then immediately 

become dead without learning chance any more in the whole learning process. 

    -3-It needs to pre-determine the cluster number. When k equals to optimum 

number of k, the k-means algorithm can correctly find out the clustering centers. 

Otherwise, it will lead to an incorrect clustering result, where some of centers do not 

locate at the centers of the corresponding clusters. Instead, they are either at some 

boundary points among different clusters or at points biased from some cluster centers. 

 

2.7.3 K-means as a NLP problem 

Clustering problem is solved from a NLP standpoint. Rather than applying the 

standard procedure, helpful constraints are added to have more control over the 

segmentation process. For example, the first constraint may help eliminate outlier 

clusters if certain clusters fail to contain enough samples. The second constraint, 

however, is only indirectly controllable by use of h, the minimum prescribed number of 

samples that a cluster ought to possess, and determines the maximum allowable 

allotment of samples to any cluster during the running of the code.  

                                                                                                                                                                      

Terminology 

 

ki : Clusters,  i = 1..K, 

 

K : The total number of clusters, 
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h :  The minimum number of data points required in a cluster to constitute a cluster. 

 

N : The total number of  data, 

 

D : Data space, a dim x N matrix. 

 

di : Vector of dimension dim, i = 1 .. N, 

 

Pi : The number of data points in ith cluster, i = 1 ..K, 

 

ci :  ith cluster center of dimension dim, i = 1 .. K. 

 

 

Dk
K

i
i =

=
Υ

1
                                                             (19) 

 

 

∅=ji kk Ι ,       i j≠                                                 (20) 

 

-2- States that no fuzzy membership exists between the clusters and the clustering is, in 

fact, a hard clustering.  

 

DP ⊂⊆ ih                                                             (21) 

N 2≥≥ K                                         (22) 

 

The Problem Statement; 

Minimize Cost Function 

J = )djci(
1 1

2
∑ ∑ −
= =

K

i

N

j
,   kidj ∈                                            (23) 

 

s.t. 

 

i) hPi ≥ ,    where i = 1... K,                                                                                            (24) 

and 
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ii) 



 ∑ −−−≤

−

=

1

1
r )()P(

i

r
i hiKNP ,  

Where i = 1... K.                                                                                     (25) 

 

The constraint (24) enforces the lower limit in that the number of data within any cluster 

may not be less than the prespecified h, and (25), given the data space, determines the 

upper limit. 

 

It should be noted that 

 

∑ =
=

K

i
i NP

1
                                                         (26) 

 

And the membership to any cluster is derived as follows  

 

N .. 1  j  ..K, 1  k i,     ,
else

ki     ,d-c if  

 

2
jk

2

==∈

≠≤−∈

kj

jiij

kd

dckd
                                         (27) 

 

2.8 Combining Techniques 

 Learning techniques are often divided into supervised, unsupervised and 

reinforcement learning (RL). Supervised learning requires the explicit provision of 

input-output pairs. And the task is constructing a mapping from one to the other. 

Unsupervised learning has no concept of target data, and performs processing on the 

input data. In contrast, RL uses a scalar reward signal to evaluate input-output pairs and 

hence discover, through trial and error, the optimal outputs for each input. In this sense, 

RL can be thought of as intermediary to supervised and unsupervised learning since 

some form of supervision is present, albeit in the weaker guise of the reward signal. 

This method of learning is most suited to problems where an optimal input-output 

mapping is unavailable a priori, but where a method for evaluating any given input-

output pair is available instead. 

 Often these three learning paradigms can be combined. For example, supervised 

learning may be used to achieve forms of unsupervised learning as in the auto-
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associative MLP of [12]. Conversely, unsupervised learning can be used to support 

supervised learning as, for example, in radial basis networks [13] and also the SOM-

MLP hybrid model of [14]. Alternatively, supervised learning can be embeded within an 

RL framework. Examples are common, the Q-AHC algorithm of [15] (Based on the 

adaptive heuristic critic (AHC) and actor-critic models of [16], [17], the backgammon 

learning application of [18,19], the QCON arhitecture of [20], and the lift scheduler of 

Crites and [21], all of which make use of the MLP and the backpropagation training 

algorithm. Similarly, unsupervised learning may also be used to provide representation 

and generalization within RL as in the self-organizing map (SOM) based approaches of 

[22, 23]. 

 In this research, radial basis function NN is used as a main function 

approximator. In the process, it is crucial to cover the feature space. It is known that, to 

cover the feature space radial basis cluster centers must be chosen appropriately. If the 

centers can not be obtain appropriately computation time takes to long and most 

probably the results will not be healthy.  

 To obtain the cluster centers the author prefers to use K-Means and SONN. 

Additionally slight modifications are made on K-Means algorithm and also its 

performance is compared. 

2.8.1 SONN & RBFNN 

 When the SONNs are used, number of clusters that will be obtained at the end of 

the process is not known or given initially. This is very useful for the process that the 

system is searching through the unknown region. Sometimes our data base is very huge 

and it needs to be diminished that can be used in process. Otherwise it needs huge time 

to be processed. 

 It is much better when the cluster represented by a center and the cluster’s 

diameter instead of great number of data point. This flexibility can be implemented 

through the nature of RBFNN. 

 This algorithm will be discussed deeply at the simulations and experiments 

section. However its simple architecture will be given in this section. 

2.8.2 K-Means & RBFNN 

 In this combining techniques section, aim is to find the right cluster centers 

appropriately and in the previous section unsupervised algorithm is used however in this 

algorithm a supervised algorithm was used. 



 

 

Both conventional K-means algorithm and the author modified K-means 

algorithm need to be given initial number of cluster centers. Hence k-means algorithm 

has a draw back. So, if the number of clusters can not be given appropriately, most 

probably the solutions will be incorrect. Also this algorithm will be discussed in depth 

at simulation and experiments' section. 
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Figure 2.10 Combined structures of SONN&RBFNN  
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CHAPTER 3 

 

 

REINFORCEMENT LEARNING 
 Reinforcement learning dates back to the early days of cybernetics and work in 

statistics, psychology, neuroscience, and computer science. In the last five to ten years, 

it has attracted increasing interest in the machine learning and artificial intelligence 

communities. Its promise is beguiling a way of programming agents by reward and 

punishment without needing to specify how the task is to be achieved. But there are 

formidable computational obstacles to fulfilling the promise [24]. 

 Reinforcement learning is the problem faced by an agent who must learn 

behavior through trial-and-error interactions with a dynamic environment. The work 

described here has a strong family resemblance to widely mentioned work in 

psychology, but differs considerably in the details and in the use of the word 

reinforcement." It is appropriately thought of as a class of problems, rather than as a set 

of techniques. 

 There are two main strategies that are used in reinforcement problems. First is to 

search the space to find the optimal solution, which is used in genetic algorithms and 

some other novel search techniques. And the other is statistical and dynamic 

programming methods. The author prefers to use these statistical methods. There is no 

formally justified method.  

 In the following sections, some fundamental reinforcement lexicon will be 

briefly discussed and then other crucial points will be given. For instance, should the 

agent explore the environment? Or should it trust its previous knowledge? If the answer: 

yes the agent should explore the environment and then there is another question. How 

often should the agent explore. At this point trade off between exploration and 

exploitation will be discussed. 

 To realize how a reinforcement learning agent behave or decide. TD (λ ) and Q-

Learning algorithms is going to be presented. 
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3.1 Reinforcement-Learning Model 

In the standard reinforcement-learning model, an agent is connected to its 

environment via perception and action, as depicted in Figure 3.1 [24]  On each step of 

interaction the agent Receives an input, i, and some indication of the current state, s, of 

the environment; the agent then chooses an action, a, to generate as output. The action 

changes the state of the environment, and the value of this state transition is 

communicated to the agent through a scalar reinforcement signal, r. The agent's 

behavior, B, should choose actions that tend to increase the long-run sum of values of 

the reinforcement signal. It can learn to do this over time by systematic trial and error, 

guided by a wide variety of algorithms that are the subject of later subsections of this 

thesis. 

 

 
Figure 3.1 Reinforcement agent and its interrreaction with environment 

  

The model consists of 

    A discrete set of environment states, S; 

    A discrete set of agent actions, A; and 

    A set of scalar reinforcement signals; generally between {0, 1}, or the real numbers. 

The figure 3.1 also includes an input function I, this parameter settle on how the agent 

views the environment state; we will assume that it is the identity function. An intuitive 

way to understand the relation between the agent and its environment is with the 

following example dialogue [24].  

Environment: You are in state 65. You have 4 possible actions. 

Agent: I'll take action 2. 
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Environment: You received a reinforcement of 7 units. You are now in state 15. You 

have 2 possible actions. 

Agent: I'll take action 1. 

Environment: You received a reinforcement of -4 units. You are now in state 65. You 

have 4 possible actions. 

Agent: I'll take action 2. 

Environment: You received a reinforcement of 5 units. You are now in state 44. You 

have 5 possible actions. 

... 

... 

The agent's job is to find a policyπ , mapping states to actions, that maximizes some 

long-run measure of reinforcement. We expect, in general, that the environment will be 

non-deterministic; that is, that taking the same action in the same state on two different 

occasions may result in different next states and/or different reinforcement values. This 

happens in our example above: from state 65, applying action 2 produces differing 

reinforcements and differing states on two occasions. However, we assume the 

environment is stationary; that is, that the probabilities of making state transitions or 

receiving specific reinforcement signals do not change over time. 

 Reinforcement learning differs from widely studied supervised learning 

algorithm. In reinforcement learning there is no input/output pairs. Supervised 

algorithms are trained to give the known solution for the known input, however in 

reinforcement learning algorithm the agent tries to learn the optimum through the trial 

and error sequences. It is the most important difference.  

 Reinforcement learning agent should be able to gather the appropriate data and 

exploration and exploitation dilemma should be solved. 

 Some aspects of reinforcement learning are closely related to search and 

planning issues in artificial intelligence. AI search algorithms generate a satisfactory 

trajectory through a graph of states. Planning operates in a similar manner, but typically 

within a construct with more complexity than a graph, in which states are represented by 

compositions of logical expressions instead of atomic symbols. These AI algorithms are 

less general than the reinforcement-learning methods, in that they require a predefined 

model of state transitions, and with a few exceptions assume determinism. On the other 

hand, reinforcement learning, at least in the kind of discrete cases for which theory has 
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been developed, assumes that the entire state space can be enumerated and stored in 

memory an assumption to which conventional search algorithms are not tied.   

 

3.2 Models of Optimal Behavior 

 To start the optimal behavior or learning algorithms, there is a question that 

needs to be answered. What will be the optimality and how should the agent take into 

account its future. And how should the agent decide about its actual action. In literature 

there are three main methods to find the optimality.  

 The finite-horizon model is the easiest to think about; at a given moment in time, 

the agent should optimize its expected reward for the next h steps: 






 ∑

=

h

t
trE

0
                                                         (28) 

there is no need to worry about what will happen after this sequence. In this and 

subsequent expressions, tr  represents the scalar reward received t steps through the 

future. This model can be used in two ways. In the first, the agent will have a non-

stationary policy; that is, one that can change over time. On its first step it will take 

what is termed an h-step optimal action. This is defined to be the best action available 

given that it has h steps remaining in which to act and gain reinforcement. On the next 

step it will take a (h-1)-step optimal action, and so on, until it finally takes a 1-step 

optimal action and terminates. In the second, the agent does receding-horizon control, in 

which it always takes the h-step optimal action. The agent always take action according 

to the same policy, but the value of h limits how far ahead it looks in choosing its 

actions. The finite-horizon model is not always suitable. In many cases we may not 

know the precise length of the agent's life in real applications. 

The infinite-horizon discounted model takes the long-run reward of the agent 

into account, but rewards that are received in the future are geometrically discounted 

according to discount factor, (where 10 <≤ γ ): 

 






 ∑

∞
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t

t rE γ                                                               (29) 

  

 We can explain in several ways. It can be seen as an interest rate, a probability 

of living another step, or as a mathematical trick to bind the infinite sum. The model is 

conceptually similar to receding-horizon control, but the discounted model is more 
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mathematically tractable than the finite-horizon model. This is a main reason for the 

wide attention this model has received. 

 Another optimality criterion is the average-reward model, in which the agent is 

supposed to take actions that optimize its long-run average reward: 

 


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1lim                                                           (30) 

 This method is called as a gain optimal policy; it can be seen as the limiting case 

of the infinite-horizon discounted model as the discount factor approaches 1 [26]. 

Problem with this criterion is that there is no way to discriminate between two policies, 

one of which gains a large amount of reward in the initial phases and the other of which 

does not. Reward gained on any initial prefix of the agent's life is surpassed by the long-

run average performance. It is possible to generalize this model so that it takes into 

account both the long run average and the amount of initial reward than can be gained. 

In the generalized, bias optimal model, a policy is preferred if it maximizes the long-run 

average and ties are broken by the initial extra reward. Figure 3.2 [24] contrasts these 

models of optimality by providing an environment in which changing the model of 

optimality changes the optimal policy. In this example, circles represent the states of the 

environment and arrows are state transitions. There is only a single action choice from 

every state except the start state, which is in the upper left and marked with an incoming 

arrow. All rewards are zero except where marked. Under a finite-horizon model with h 

= 5, the three actions yield rewards of +6.0, +0.0, and +0.0, so the first action should be 

chosen; under an infinite-horizon discounted model with = 0.9, the three choices yield 

+16.2, +59.0, and +58.5 so the second action should be chosen; and under the average 

reward model, the third action should be chosen since it leads to an average reward of 

+11. If we change h to 1000 and to 0.2, then the second action is optimal for the finite-

horizon model and the first for the infinite-horizon discounted model; however, the 

average reward model will always prefer the best long-term average. Since the choice of 

optimality model and parameters matters so much, it is important to choose it carefully 

in any application. 

The finite-horizon model is appropriate when the agent's lifetime is known; one 

important aspect of this model is that as the length of the remaining lifetime decreases, 

the agent's policy may change. A system with a hard deadline would be appropriately 

modeled this way. The relative usefulness of infinite-horizon discounted and bias-
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optimal models is still under debate. Bias-optimality has the advantage of not requiring 

a discount parameter; however, algorithms for finding bias-optimal policies are not yet 

as well-understood as those for finding optimal infinite-horizon discounted policies. 

 
Figure 3.2 Comparing Models of Optimality. All unlabeled arrows produce a reward of 

zero. 

 

3.3 Exploitation versus Exploration 

Main difference between reinforcement learning and supervised learning is that 

a reinforcement-learner must explicitly explore its environment. In order to underline 

the problems of exploration, we treat a very simple case in this section. The 

fundamental issues and approaches described here will, in many cases, and can be used 

to understand the more complex issues in the following chapters. 

 The simplest possible reinforcement-learning problem is known as the k-armed 

bandit problem, which has been the subject of a great deal of study in the statistics and 

applied mathematics literature [26]. The agent is in a room with a collection of k 

gambling machines (each called a “one-armed bandit" in colloquial English). The agent 

is permitted a fixed number of pulls, h. Any arm may be pulled on each turn. The 

machines do not require a deposit to play; the only cost is in wasting a pull playing a 

suboptimal machine. When arm i is pulled, machine i pays off 1 or 0, according to some 

underlying probability parameter ip , where payoffs are independent events and the spi  

are unknown. What should the agent's strategy be? 

 This problem illustrates the fundamental tradeoff between exploitation and 

exploration. The agent might believe that a particular arm has a fairly high payoff 

probability; should it choose that arm all the time, or should it choose another one that it 

has less information about, but seems to be worse? Answers to these questions depend 

on how long the agent is expected to play the game; the longer the game lasts, the worse 
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the consequences of prematurely converging on a sub-optimal arm, and the more the 

agent should explore. 

 There is a wide variety of solutions to this problem. We will consider a 

representative selection of them, but for a deeper discussion and a number of important 

theoretical results, see the book by [26]. We use the term “action" to indicate the agent's 

choice of arm to pull. This eases the transition into delayed reinforcement models.  

 

3.4 Dynamic-Programming Approach 

If the agent is going to be performing for a total of h steps, it can use basic 

Bayesian analysis to solve for an optimal strategy [26]. This requires an assumed prior 

joint distribution for the parameters{ }ip , the most natural of which is that each ip  is 

independently uniformly distributed between 0 and 1. We compute a mapping from 

belief states to actions. Here, a belief state can be represented as a tabulation of action 

choices and payoffs: { }kk wnwnwn ,.........,.........,,, 2211  denotes a state of play in which 

each arm i has been pulled in  times with iw  payoffs. We write 

( )kk wnwnwnV ,.........,.........,,, 2211
*  as the expected payoff remaining, given that a total 

of h pulls are available, and we use the remaining pulls optimally.  

If ∑ =
i

i hn , then there are no remaining pulls, and. This is the basis of a recursive 

definition. If we know the iw  value for all belief states with t pulls remaining, we can 

compute the *V  value of any belief state with t + 1 pulls remaining: 

( ) EikwknwnwnV max,.........,.........2,2,1,1
* = (Future payoff if agent takes action i, 

then acts    optimally for remaining pulls)         

                                                                         

Where ip  is the posterior subjective probability of action i paying off given in , iw  and 

our prior probability. For the uniform priors, which result in a beta distribution,  

ip  = ( iw  + 1) = ( in  + 2). 

The expense of filling in the table of *V  values in this way for all attainable belief 

states is linear in the number of belief states times actions, and thus exponential in the 

horizon. 
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3.5 Delayed Reward 

In reinforcement learning most of the case, the agent's actions determine not 

only its immediate reward, but also the next state of the environment. These 

environments can be thought of as networks of bandit problems, but the agent must take 

into account the next state as well as the immediate reward when it decides which action 

to take. In the long run the agent also determines the future rewards. The agent will have 

to be able to learn from delayed reinforcement: it may take a long sequence of actions, 

receiving unimportant reinforcement, and then finally arrive at a state with high 

reinforcement. The agent must be able to learn which of its actions are desirable based 

on reward that can take place arbitrarily far in the future. 

 

3.6 Markov Decision Processes 

For the delayed reinforcement modeling, Markov decision processes (MDPs) 

can be used to describe. An MDP consists of 

-a set of states S, 

-a set of actions A, 

-a reward function RASR →×: , and 

-a state transition function )(: SAST ∏→× , where a member of )(S∏ is a probability 

distribution over the set S (i.e. it maps states to probabilities). We write ),,( sasT ′  for 

the probability of making a transition from state s to state s′  using action a. The state 

transition function probabilistically specifies the next state of the environment as a 

function of its current state and the agent's action. The reward function specifies 

expected instantaneous reward as a function of the current state and action. The model is 

Markov if the state transitions are independent of any previous environment states or 

agent actions. 

There are many good references to MDP models [27, 28, 29, and 30].  

 

3.7 Finding a Policy Given a Model 

Before searching algorithms for learning to move in MDP environments, we will 

explore techniques for determining the optimal policy given a correct model. These 

dynamic programming techniques will serve as the foundation and inspiration for the 

learning algorithms to follow. We restrict our attention mainly to finding optimal 

policies for the infinite-horizon discounted model, but most of these algorithms can be 
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assumed similar for the finite horizon and average-case models as well. We rely on the 

result that, for the infinite-horizon discounted model, there exists an optimal 

deterministic stationary policy [27]. 

We will speak of the optimal value of a state-it is the expected infinite 

discounted sum of reward that the agent will gain if it starts in that state and executes 

the optimal policy. Using π  as a complete decision policy, it is written  



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                                                   (31) 

The optimal value function is unique and can be defined as the solution to the 

simultaneous equations 
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Which assert that the value of a state s is the expected instantaneous reward plus 

the expected discounted value of the next state, using the best available action. Given 

the optimal value function, we can specify the optimal policy as  

 


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3.8 Learning an Optimal Policy 

In the previous section we reviewed methods for obtaining an optimal policy for 

an MDP assuming that we already had a model. The model consists of knowledge of the 

state transition probability function ),,( sasT ′  and the reinforcement function R(s,a). 

Reinforcement learning is primarily concerned with how to obtain the optimal policy 

when such a model is not known in advance. The agent must interact with its 

environment directly to obtain information which, by means of an appropriate 

algorithm, can be processed to produce an optimal policy. 

At this point, there are two ways to proceed. 

-Model-free: Learn a controller without learning a model. 

- Model-based: Learn a model, and use it to derive a controller. 

Which approach is better? This is a matter of some debate in the reinforcement-learning 

community. A number of algorithms have been proposed on both sides. This question 
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also appears in other fields, such as adaptive control, where the dichotomy is between 

direct and indirect adaptive control. 

The biggest problem facing a reinforcement-learning agent is temporal credit 

assignment. How do we know whether the action just taken is a good one, when it might 

have far reaching effects? One strategy is to wait until the “end" and reward the actions 

taken if the result was good and punish them if the result was bad. In ongoing tasks, it is 

difficult to know what the “end" is, and this might require a great deal of memory. 

Instead, we will use insights from value iteration to adjust the estimated value of a state 

based on the immediate reward and the estimated value of the next state. This class of 

algorithms is known as temporal difference methods [31]. We will consider two 

different temporal-difference learning strategies for the discounted infinite-horizon 

model.  

 

3.9 TEMPORAL DIFFERENCE LEARNING 
So far, some neural network and classification methods are discussed. These 

methods can be assumed as prediction methods. For instance, classification methods 

predict the cluster of the unknown data. Also conventional neural network methods 

predict the output for unknown input according to the known input output pairs. These 

methods assign credits by means of the difference between actual output and the 

predicted output. Temporal Difference Learning methods assign credits by means of the 

temporally successive predictions. Although such temporal difference methods have 

been used in samuel’s checker player, Holland’s bucket brigade and in the Adaptive 

Heuristic Critic. The author prefers to use TD methods because it requires less memory 

and less computational time than conventional methods and it gives better results for 

real world problems. In literature there are some real world applications show that TD 

methods deserve to be investigated and used in real engineering and robotics problems. 

Especially [17] applied the TD method to Backgammon and obtains the world master 

level backgammon player computer software.  

This research purpose is to create an autonomous agent that is capable to learn 

from its past experience. After having built this kind a system, there is no need to know 

the output that should be instead it is enough to gather sensory inputs from the 

environment and let the agent learn its optimal behavior. Fro instance, agent should 

predict whether this formation will led to win or end up with loss or from the cloud 
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formation it can be capable to predict whether it is going to be rain or not. For particular 

economic condition whether the stock market will rise [32]. 

 Apart from conventional learning algorithm credit assignment is made by 

means of the difference between temporary successive predictions, whether there is a 

change between the predictions over time. For example, suppose a weatherman attempts 

to predict on each day of the week whether it will rain on the following Saturday. The 

conventional approach is to compare each prediction to the actual outcome whether or 

not it does rain on Saturday. A TD approach, on the other hand, is to compare each day's 

prediction with that made on the following day. If a 50% chance of rain is predicted on 

Monday, and a 75% chance on Tuesday, then a TD method increases predictions for 

days similar to Monday, whereas a conventional method might either increase or 

decrease them depending on Saturday's actual outcome.  

 TD methods have two kinds of advantages over conventional prediction 

learning methods. First, they are more incremental and therefore easier to compute. For 

example, the TD method for predicting Saturday's weather can update each day's 

prediction on the following day, whereas the conventional method must wait until 

Saturday, and then make the changes for all days of the week. The conventional method 

would have to do more computing at one time than the TD method and would require 

more storage during the week. The second advantage of TD methods is that they tend to 

make more efficient use of their experience: they converge faster and produce better 

predictions. We argue that the predictions of TD methods are both more accurate and 

easier to compute than those of conventional methods.  

The earliest and best-known use of a TD method was in [33] celebrated checker-

playing program. For each pair of successive game positions, the program used the 

difference between the evaluations assigned to the two positions to modify the earlier 

one's evaluation. Similar methods have been used in [34] bucket brigade, in Adaptive 

Heuristic Critic [16, 17], and in learning systems studied by [35, 36, 37]. TD methods 

have also been proposed as models of classical conditioning [38, 39, 40, 41, and 42].   

Although TD prediction method is applied successfully, TD method can not be 

understood theoretically, most probably because it is being used in complex problems. 

In these systems TD employed as a better evaluation function predictor.  

The TD method explanation is focused on numerical prediction processes rather 

than on rule-based or symbolic prediction. The approach taken here is much like that 
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used in connectionism and in Samuel's original work our predictions are based on 

numerical features combined using adjustable parameters or "weights."  

This research uses TD methods with conventional methods in some simple 

application to compare their performance. TD methods presented here can be directly 

extended to multilayer networks.  

 

3.9.1 TEMPORAL DIFFERENCE AND SUPERVISED METHODS IN 

PREDICTION POBLEMS 

 Supervised learning techniques are known as the most important and widely 

used learning paradigms. Supervised learning methods try to approximate the relation 

between input and output pairs. After learning takes place, when the input presented, the 

system responds it according to this relation. This paradigm has been used in pattern 

classification, concept acquisition, learning from examples, system identification, and 

associative memory. For example, in pattern classification and concept acquisition, the 

first item is an instance of some pattern or concept, and the second item is the name of 

that concept. In system identification, the learner must reproduce the input-output 

behavior of some unknown system. Here, the first item of each pair is an input and the 

second is the corresponding output.  

  Supervised learning methods can be applied any type of learning 

algorithms. If the pair wise tabulation of the used data can be obtained, the supervised 

algorithm can be trained. For whether forecasting one can gather data for Monday 

prediction as input and Saturday actual output as the target value to predict the 

Saturday’s whether in the same way Tuesday and Wednesday’s data can be trained 

according to the actual output of the Saturday. It is easy to understand and analyze. It is 

called supervised prediction method and it is widely used. However it is not preferable 

and this type of prediction method is not appropriate for this kind of problem. 

 

3.9.2 SINGLE STEP AND MULTI-STEP PREDICTION 

 In TD methods there are two types of prediction methods; one of them is the 

single step prediction and the other one is called the multi-step prediction problem. In 

single step prediction correctness of the prediction will be given at each step. In multi-

step prediction the correctness of the prediction is not revealed until more then one step 

takes place, however partial information is revealed at each step. For example, the 

weather prediction problem mentioned above is a multi-step prediction problem because 
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inconclusive evidence relevant to the correctness of Monday's prediction becomes 

available in the form of new observations on Tuesday, Wednesday, Thursday and 

Friday. On the other hand, if each day's weather were to be predicted on the basis of the 

previous day's observations that is, on Monday predict Tuesday's weather, on Tuesday 

predict Wednesday's weather, etc. one would have a single-step prediction problem, 

assuming no further observations were made between the time of each day's prediction 

and its confirmation or denial on the following day. 

 In single step application it is not possible to distinguish the difference from 

supervised algorithm. Hence the advantage of the TD learning paradigm can be obtained 

in multi step prediction problem. For example, predictions about next year's economic 

performance are not confirmed or disconfirmed all at once, but rather bit by bit as the 

economic situation is observed through the year. The likely outcome of elections is 

updated with each new poll, and the likely outcome of a chess game is updated with 

each move.  

 In real world many single step prediction can be thought as multi step prediction. 

For pattern recognition problem mostly supervised algorithms are used with known 

correctly classified pair of data. However when human sees something, he or she has a 

concept about the object that is seen and after each perception this concept is updated 

with the information that gives us a capability to update. 

 

3.9.3 Computational issues 

 In this section some practical issues is going to be discussed with the theoretical 

issues. During this section TD family of learning will be discussed on the basis of 

supervised learning procedure. Mostly on Widrow-Hoff learning rule as it was 

discussed. And then other different TD learning procedures will be introduced. 

 We consider multi-step prediction problems in which experience comes in 

observation-outcome sequences of the form zxxxx m ,,.....,, 321 where each tx is a vector 

of observations available at time t in the sequence, and z is the outcome of the sequence. 

Many such sequences will normally be experienced. The components of each tx  are 

assumed to be real-valued measurements or features, and z is assumed to be a real-

valued scalar. For each observation outcome sequence, the learner produces a 

corresponding sequence of predictions ,,.....,, 321 mPPPP  each of which is an estimate of 

z. In general, each tP  can be a function of all preceding observation vectors up through 
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time t, but, for simplicity, here we assume that it is a function only of tx . The 

predictions are also based on a vector of modifiable parameters or weights, w. tP 's 

functional dependence on tx and w will sometimes be denoted explicitly by writing it as 

),( wxP t .  

 Learning can be described as the update procedure of the w. In TD learning 

weights are updated after a sequence completed and a terminal state is reached. Not 

after each observation.  

∑∆+=
=

m

t
twww

1
                                                     (34) 

 This procedure can be cast into more or less incremental phases. One can update 

the weights after each observation or all the sequences completed.  

 Supervised learning algorithm considers the input and output as 

pairs ),(),........,(),,( 21 zxzxzx m . The increment in weights depends on the difference 

between tP  and z, as the time progresses. The supervised learning formulation can be 

given as in the following form. 

,)( twtt PPzw ∇−=∆ α                                           (35) 

 α term stand for the learning parameter and effect the learning. twP∇  term 

stands for the partial derivative of the term tP  with respect to each component of w. 

 For example, consider the special case in which tP  is a linear function of tx  and 

w, that is, in which ∑== i tt
T

t ixiwxwP )()( , where w(i) and )(ixt  are  the i'th 

components of w and tx , respectively. In this case we have ,ttw xP =∇  and the 

formulation reduces to the well known Widrow-Hoff rule [1]:  
 

,)( tt
T

t xxwzw −=∆ α                                            (36) 

 This linear learning method is also known as the "delta rule," the ADALINE, 

and the LMS filter. It is widely used in connectionism, pattern recognition, signal 

processing, and adaptive control. The basic idea is that the difference 

txTwz − represents the scalar error between the prediction, txTw , and what it should 

have been, z. This is multiplied by the observation vector tx  to determine the weight 

changes because tx  indicates how changing each weight will affect the error. For 
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example, if the error is positive and )(itx  is positive, then )(tiw  will be increased, 

increasing t
T xw and reducing the error. The Widrow-Hoff rule is simple, effective, and 

robust.  

 Having being given formulation is for the one layer problems generalization has 

already been made in Backpropagation procedure. In this case tP is solved in multilayer 

structure as a nonlinear case. However, only difference is the way to solve the partial 

differential of the gradient twP∇ . 

 In these equations there is a disadvantage, tw∆ depends on the final outcome z. It 

means that all the formation until the final sate must be stored and the sequential process 

is not allowed. 

 However in TD methods this process can be changed into incremental procedure 

by the change; if tPz − assumed as the sum of all predictions.  

∑ −=−
=
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kkt PPPz )( 1                                                   (37) 

Hence the fallowing formulation can be obtained; 
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 At the end converting to the equation (34); 

∑∇−=∆
=

+
t

k
kwttt PPPw

1
1 )(α                                             (39) 

 Unlike (38), this equation can be computed incrementally, because each tw∆  

depends only on a pair of successive predictions and on the sum of all past values 

for twP∇ . This saves substantially on memory, because it is no longer necessary to 

individually remember all past values of twP∇ . Equation (39) also makes much milder 

demands on the computational speed of the device that implements it; although it 

requires slightly more arithmetic operations overall (the additional ones are those 

needed to accumulate  ∑ ∇=
t
k kwP1  ), they can be distributed over time more evenly. 

Whereas (39) computes one increment to w on each time step, (38) must wait until a 
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sequence is completed and then compute all of the increments due to that sequence. If M 

is the maximum possible length of a sequence, then under many circumstances (39) will 

require only 1/Mth of the memory and speed required by (38).   

 Equation (39) is called TD (1) procedure. This type of learning algorithms are 

called  )(λTD  procedure and this will be investigated in the following section. 

 

3.9.4 )(λTD  Learning procedures 

Influence of TD learning procedure comes from its sensitivity of to the changes 

between successive predictions. However supervised algorithms are sensitive to the 

changes between the predictions and the final outcome. When there is a change occurs 

between tP  and 1+tP  then it effects the changes on weights tw∆ . These changes predict 

the difference between the all input data or the some portions of the previous inputs. 

When the equation (39) is applied to a prediction problem, all the predictions are 

affected equally. However for some reasons when latest predictions make more 

alternation on the system, this will give more correct solution. It can be obtained by the 

following formulations. In which alterations to the predictions of observation vectors 

occurring k steps in the past are weighted according to kλ for 10 ≤≤ λ : 
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 For λ =1 equation (40) will be equal to the equation (39). And this procedure is 

called as the TD (λ ) algorithms. Hence the equation (39) called as TD (1). 

 Change of past predictions can be weighted in ways other than the exponential 

form given above, and this may be appropriate for particular applications. However, an 

important advantage to the exponential form is that it can be computed incrementally. 

Given that te  is the value of the sum in (40) for t, we can incrementally compute te  + 1, 

using only current information. 
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 When the term λ is chosen less then 1, the learning procedure weight changes 

differ from any supervised learning. And this difference reaches its maximum point 

when the term λ  is chosen as 0. If the term λ  equals to the 0, it means that weight 

changes affected by the most recent changes. 

twttt PPPw ∇−=∆ + )( 1α  

 With these calculations, supervised learning algorithm is obtained with a little 

difference. The term z, which is final outcome, is replaced by the term 1+tP . This shows 

that supervised learning mechanism is the same when the λ  term is chosen as 0. 

 

3.9.5 )(λTD  Learning procedures outperforms supervised scheme? 

 In literature there are some examples that show TD learning scheme outperforms 

supervised algorithms. However there is an intuitive denial, because in supervised 

learning the final outcome is known and the predictions are updated according to this 

actual information. On the other hand TD learning procedure tries to minimize the 

temporal difference. With this scheme one can converge more rapidly and accurately in 

dynamic world problems, which is ubiquitous. Almost any real system is a dynamical 

system, including the weather, national economies, and chess games. In this section, we 

develop two illustrative examples: a game-playing example to help develop intuitions, 

and a random-walk example as a simple demonstration with experimental results.  

  

3.9.6 A Game Playing Example 

 Game playing consists of sequences of positions. Some of them is lead our game 

to win while others lead to loss. This can be backgammon or one of the card games. For 

example there is a state that we know that with 90% probability it leads to loss but with 

only 10% probability leads to win. However after a novel game formation this “bad” 

game condition is played and it leads us to win. How one can assign the credits to these 

game positions. This situation is showed at the figure 3.3.  
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Figure 3.3 A novel game position that can reach win or loss. 

 

 Classical supervised learning procedure assigns the credits according to the final 

outcome however this will affect the novel position as well. However TD methods 

assign credits according to the temporal difference between successive predictions. 

Indeed there is a disadvantage that in this example, we have ignored the possibility that 

the bad state's previously learned evaluation is in error. Such errors will inevitably exist 

and will affect the efficiency of TD methods in ways that cannot easily be evaluated in 

an example of this sort. The example does not prove TD methods will be better on 

balance, but it does demonstrate that a subsequent prediction can easily be a better 

performance standard than the actual outcome.   

 This game-playing example can also be used to show how TD methods can fail. 

Suppose the bad state is usually followed by defeats except when it is preceded by the 

novel state, in which case it always leads to a victory. In this odd case, TD methods 

could not perform better and might perform worse than supervised-learning methods. 

Although there are several techniques for eliminating or minimizing this sort of 

problem, it remains a greater difficulty for TD methods than it does for supervised-

learning methods. TD methods try to take advantage of the information provided by the 

temporal sequence of states, whereas supervised-learning methods ignore it. It is 

possible for this information to be misleading, but more often it should be helpful.  
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3.9.7 A Random Walk Example 

 So far TD methods discussed in a relatively complex way, however to make 

clear the definition and to pave the way to theoretical results the notion of the TD 

learning must be understood. In the following section there is an example which can be 

also used to identify the nature of the Markov decision process. In the following 

example which is called Bounded Random Walks.  

 In the bounded random walks, agent can choose an action to move right or left. 

Game is terminated when the agent reaches to the one of the terminal state. This play 

ground is shown in the figure 3.4. 

 

 
Figure 3.4 Random walk example. 

 

 Terminal states are the right most or the left most states in which “G” or “A” 

respectively. Every game starts from the state “D”. If either edge state (A or G) is 

entered, the walk terminates. A typical walk might be DCDEFG. Suppose we wish to 

estimate the probabilities of a walk ending in the rightmost state, G, given that it is in 

each of the other states.  

 When the linear supervised learning scheme is used, and the final outcome given 

when the system reaches to the state A z=0, if reaches to the state G z=1. The learning 

methods estimated the expected value of z; for this choice of z, its expected value is 

equal to the probability of a right-side termination. For each non-terminal state i, there 

was a corresponding observation vector ix ; if the walk was in state i at time t 

then ixtx = . Thus, if the walk DCDEFG occurred, then the learning procedure would be 

given the sequence XD, XC, XD, XE, X F, 1. The vectors { }ix  were the unit basis 

vectors of length 5, that is, four of their components were 0 and the fifth was 1 (e.g., XD 

=(0,0,1,0,0)T), with the one appearing at a different component for each state. Thus, if 

the state the walk was in at time t has its 1 at the ith component of its observation 

vector, then the prediction t
T

t xwP =  was simply the value of the ith component of w. 

We use this particularly simple case to make this example as clear as possible. The 
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theorems we prove later for a more general class of dynamical systems require only that 

the set of observation vectors { }ix  be linearly independent. 

 

3.9.8 Theoretical Approach to the TD Learning 

 So far, TD learning procedure has been discussed in a more heuristic way. 

However to understand the way it works and how it works, some theoretical notions 

need to be developed also to make further development more scientific approach is 

needed. In the following section this theoretical approach will be developed. The theory 

developed here relate to the linear TD (0) procedure and a class of tasks characterized 

by the random walk example discussed in the previous section. Two major results are 

presented: 1) an asymptotic convergence theorem for linear TD (0) when presented with 

new data sequences; and 2) a theorem that linear TD (0) converges under repeated 

presentations to the optimal estimates. Finally, how TD methods can be viewed as 

gradient-descent procedures.    
 
3.9.10 TD (0) Learning  

 Through this section process is assumed as a Markov decision process, in which 

next state depends only on the current state. The states are defined as in the following 

form, T stands for the terminal states and N stands for the non-terminal states. The term 

ijP  stands for the probability of transition from state i to state j. In which the agent 

stands at state i, ),( TNjNi ∪∈∈ . The "absorbing" property means that indefinite 

cycles among the non-terminal states are not possible; all sequences except for a set of 

zero probability eventually terminate. Given an initial state 1q , an absorbing Markov 

process provides a way of generating a state sequence 1,.......321 ,, +mqqqq , 

where Tmq ∈+1 . the initial state is chosen probabilistically from among the non-

terminal states will be assumed, each with probability iµ . As in the random walk 

example, the learning algorithms direct knowledge of the state sequence will not be 

given, but only of a related observation-outcome sequence zxxxx m ,,, ,......321 . Each 

numerical observation vector tx  is chosen dependent only on the corresponding non-

terminal state tq , and the scalar outcome z is chosen dependent only on the terminal 

state 1+mq . In what follows, we assume that there is a specific observation vector ix  
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corresponding to each non-terminal state i such that if iqt = , then it xx = . For each non-

terminal state j, we assume outcomes z are selected from an arbitrary probability 

distribution with expected value jZ . 

 To go forward for this section, it needs to be proved that this learning scheme 

converges asymptotically. This problem can be cast into map the input states ix s into 

the final outcome z. That is, we want the predictions ),( wixP  to equal { }izE | , Ni ∈∀ . 

Let us call these the ideal predictions. Given complete knowledge of the Markov 

process, they can be computed as follows:   
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For any matrix M, let [ ]ijM  denote its ij'th component, and, for any vector v, let 

[ ]iv  denote its i'th component. Let Q denote the matrix with entries [ ] ijpijQ =  

for Nij ∈ , and let h denote the vector with components [ ] ∑ ∈= Tj jzijpih for Ni ∈ . 

Then we can write the above equation as  
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kQ  is the probabilities of going from one non-terminal state to another in k 

Steps; for an absorbing Markov process, these probabilities must all converge to 0 as 

∞→k .  

For any absorbing Markov chain, for any distribution of starting probabilities iµ , 

for any outcome distributions with finite expected values jz , and for any linearly 

independent set of observation vectors{ }Niix ∈| , there exists an 0>ε such that, for all 

positive a < e εα <  and for any initial weight vector, the predictions of linear TD (0) 

(with weight updates after each sequence) converge in expected value to the ideal 

predictions . That is, if nw  denotes the weight vector after n sequences have been 

experienced, then  
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{ } { } Ni
i

hQIizEnwT
ixEn ∈∀



 


 −−==∞→ ,1|lim  

PROOF: Linear TD (0) updates nw  after each sequence as follows, where m denotes the 

number of observation vectors in the sequence: 
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mqxmqxT

nwztqxtqxT
nwtqxT

nwnwnw αα  

 Where
tqx  is the observation vector corresponding to the state tq  entered at time 

t within the sequence. This equation allows us to separate the system into transition 

from initial state to the next state.  

  

∑
∈

∑
∈

−+−+=+
Ni Nj

ixixT
nwzijnixixT

nwjxT
nwijnnwnw )()(1 αα  

  Where ijn  denotes the number of times the transition ji →  occurs in the 

Sequence. (For Tj ∈ , all but one of the ijn  is 0.) 

 In this process random number generator is used hence the actions that is taken 

by agent are independent o each other. Expected value of each state can be calculated as 

in the following form. 

{ } ∑
∈

∑
∈

−+∑
∈

∑
∈

−+=+
Ni Tj

ixixT
nwjzijPid

Ni Tj
ixixT

nwjxT
nwijPidnwnwnwE )()(|1 αα                    

 Where id  is the expected number of times the Markov chain is in state i in one 

sequence, so that iji pd  is the expected value of ijn . 

1)( −−= QITTd µ  

 Where [ ] idid = and [ ] ii µµ = , Ni ∈ . Each id  is strictly positive, because any 

state for which 0=id  has no probability of being visited and can be discarded. Let nw  
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denote the expected value of nw . Then, since the dependence of { }nn wwE |1+  on nw  is 

linear, we can write  

 

∑
∈

∑
∈

∑
∈

∑
∈

−+−+=+
Ni Nj Ni Tj

ixixT
nwjzijpidixixT

nwjxT
nwijpidnwnw )()(1 αα  

an iterative update formula in nw  that depends only on initial conditions. Now we 

rearrange terms and convert to matrix and vector notation, letting D denote the diagonal 

matrix with diagonal entries [ ] iii dD =  and X denote the matrix with columns ix . 
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 when the following equation is assumed 0))((lim =−−→∞
nQIXDTXIn α  and 

the following theorem is true, if 0lim =∞→
n

n A , then I-A has an inverse, and 

∑∞
==−− 0

1)( i
iAAI . Equations converge to 

XDhTXQIXDTXIInwTX
n

αα 1)))(((lim −−−−=
∞→

 

 

XDhTXXTXDQI αα 11)(11)( −−−−−=  
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hQI 1)( −−=  

 

{ } Ni
i

hQInwT
ixE

n
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

 −−=

∞→
,1)(lim  

This is the desired result. Note that 1−D  must exist because D is diagonal with 

all positive diagonal entries, and 1)( −XX T must exist. 

It thus remains to show that 0))((lim =−−∞→
nQIXDTXIn α . We do this by 

first showing that D (I-Q) is positive definite, and then that )( QIXDX T −  has a full set 

of eigen values all of whose real parts are positive. This will enable us to show that a 

can be chosen such that all eigen values of )( QIXDXI T −−α  are less than 1 in 

modulus, which assures us that its powers converge.  

 

3.9.11 Gradient Descent in TD Learning 
Gradient descent learning method is widely used in MLP. This method 

guaranties to converge if the learning rate chosen small enough and the number of 

iteration is suffice to converge. Gradient descent method is also called as hill climbing 

method. Which is tries to minimize the overall error j (w). In this method gradient of the 

overall error is calculated and the system’s weights tuned through the opposite direction. 

This can be formalized as follows. 

)( twjwtw ∇−=∆ α  

Where the term α  represents the learning rate and gives us the step size for the hill 

climbing.  

 For the multi step prediction problem, system tries to approximate the term 

),( wxpp tt = to the term { }txzE |  and the error can be calculated by the difference 

between target value and the prediction’s Euclidian distance. 

 

{ }( ){ }2),(|)( wxpxzExEwj −=  
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 where Ex{ } denotes the expectation operator over observation vectors x. J(w) 

measures the error for a weight vector averaged over all observation vectors, but at each 

time step one usually obtains additional information about only a single observation 

vector. The usual next step, therefore, is to define a per-observation error measure 

Q(w,x) with the property that { } )(),( wjxwQEx =  . For a multi-step prediction problem,  

 

{ }( )2),(|),( wxpxzExwQ −=  

 

 To determine the each step’s increment gradient of the each error is computed as 

following ),( txwQw∇ , and if the following equation is assumed 

correct { } )(),( wjwxwQwxE ∇=∇ . Weight update rule becomes as follows; 

 

),( txwQwtw ∇−=∆ α  

 

{ }( ) ),(),(|2 wtxpwwtxptxzE ∇−= α  

 

 In this prediction problem { }txzE |  is not known or predicted initially. One can 

use supervised learning methods to predict the expected value. In this case { }txzE |  is 

matched to the actual outcome z. On the other hand if the TD method is used { }txzE |  is 

matched to the next state prediction ),1( wtxp + . In the last case the TD (0) prediction 

method is obtained, in which every prediction approximate to the subsequent prediction.   

 

3.10 Q-Learning 

 Q-learning was first developed by Watkins [44, 45]. Q-learning is relatively 

simple and easy to implement. Because of these specifications, it is widely used. If 

),(* asQ is the discounted expected value of the taking action a in state s. Note that 

)(* sV  is the value of s assuming the best action is taken initially, and so 

),(max)( ** asQsV a= . ),(* asQ  can hence be written recursively as   

 

∑ ′′′+=
′′

),(*max),,(),(),(*
asQsasTasRasQ

a

γ  
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 Note also that, since ),(*max)(* asQasV = , we have ),(maxarg)( * asQs a=π  

as an optimal policy.  

 Q-learning procedure can be cast into iterative form. At each step agent takes the 

action which has maximum Q value. These values are stored in tabular form. And if 

each state visited infinitely, while the term α is decayed appropriately. Q values 

approximate the optimal value with probability 1 [44, 46, and 47].  

 After the Q values approximate to the optimal values, greedy action selection 

method can be used. In literature, there is no formally justified method for the 

exploration & exploitation dilemma. 

 

3.11 Problem Description  
 The problem is to build a system which can interact with its environment, and 

learns from its past experience in dynamically changing conditions. To achieve this 

task, system must be capable of learn in trial and error sequence. However how can the 

system know that its action is reasonable or optimal in that condition? To test whether 

the chosen action leads to win or lose, a utility must be assigned to tell the system it is 

improving itself or it has to try something else. In the figure 3.1 a solution to this 

problem is proposed by [46]. This system can be improved by adding extra networks. 

 
Figure 3.1 Framework for connectionist Q-learning. 

  

 In the figure 3.1 connectionist Q-learning is given as an example. And in the 

following its algorithm is given as a pseudo code. 

1. x← current state; for each action ),(, ixutilUi i ←  

2. a ← select(U,T);  

3. Perform action a; (y;r) ←new state and reinforcement; 
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4. { }actionskkyutilru ∈+←′ |),(maxγ  

5. Adjust utility network by backpropagating error U∆  

through it with input x, where 


 −′

=∆
0

Uu
Ui   

6. Go to 1. 

  Generally speaking, the utility of an action a in response to a state x is equal to 

the immediate payoff r plus the best utility that can be obtained from the next state y, 

discounted by γ  Therefore, the desired util function must satisfy  

 

{ }actionskkyutilru ∈+←′ |),(maxγ  
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CHAPTER 4 

 

 

EXPERIMENTS  
 So far supervised, unsupervised and reinforcement learning algorithms are 

discussed. During the preparation of this thesis many applications are made. In this 

chapter, these experiments and their results will be discussed.  

 Neural network applications are all written in C++ ID environment. Their 

interface samples are given at appendix A.   

 

4.1 Simulation for Combined Techniques  
Two combinations were simulated. First SON and RBFLN with gradient descent 

training, and secondly K-means and RBFNN with RP training. The simulation data are 

obtained from [24] and in appendix B.  For RPT, case 1, R is 0.15 and R is reduced by 

an amount of 0.01 every 10% of the running of the code. For case 2, again R is taken 

0.15, and reduced by 25% after the first half of the training, and in the last tenth of the 

running, it is reduced by 90%. RP training was run for 5000 epochs for both cases, and 

the rate of acceptance based on the fitness is about half for the first case and one third 

for the latter.  

In this study, two novel ideas have been presented. K-means clustering is 

formulated as a NLP, and by specific constraints, outlier clustering was eliminated. 

Once a minimum number of samples to be contained in a cluster was specified, no such 

cluster is allowed below that certain limit.  

And finally, a new heuristic training is proffered. Training of a RBF neural 

network has been carried out by two distinct ways. In the first, a self organizing map is 

used to cluster a given data set and then the cluster centers are used to train RBFLN 

parameters via gradient descent. In the second, K-means clustering is used to partition 

the set. Then the centers were fed to the RBFNN. Spread constants and the weights were 

trained by use of responsive perturbation training. 
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Figure 4.1 Windows interface for the combined NNs. 

The results in the simulations have shown that this method is already promising. 

Yet further analysis on how to pick the error coefficient, and a more elaborate error 

function to lower the perturbation amplitude will enhance the overall network training 
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Table 4.1 Experiment results 

 

Original 

test data 

RBF with 

SON  

11 clusters 

RBF with 

SON  

13 clusters 

RBF with 

SON  

Every datum 

is a center 

Responsive 

Perturbation 

Testing, 10 

individuals(1) 

Responsive 

Perturbation 

Testing, 10 

individuals.

(2) 

66 67.0 67.3 67.8 66.5230 69.0616 

66 59.8 59.7 61.8 60.7654 64.1022 

81 59.8 55.0 65.5 62.0122 70.0467 

53 45.5 44.6 44.8 49.6030 65.5347 

79 78.8 79.9 86.8 84.3361 85.3412 

Error 23.29 28.0 19.69 13.26 11.65 

 

4.2 TEST BASE FOR TD and Q-LEARNING 

 The TD and Q-learning methods are tested in simulations. In these simulations a 

square shape room is drawn. And an agent is placed to an initial position, and then the 

agent is asked to go to the predefined target position. This configuration can be assumed 

as a car backing problem. After some trial and error sequences, the agent reaches the 

target directly, both in Q-learning and TD prediction. However there is a difference 

between the rooms that the agent initially roamed. There is an obstacle in Q-learning 

simulation, but there is no obstacle for the TD learning.  

                          90 squares                                                        50 squares 

 

 

 

 

 

 

 

 

 During the Q-learning application, 5050× square room was used. The initial 

starting position was x=15, y=15.The target position to which the agent tries to reach is 

        90 
squares 

 Figure 4.2 Room for 
 Q-learning 

        50 
squares 

Figure 4.3 Room for 
 TD learning 
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placed at x=70, y=30. Simulation results can be seen as screen shots in figure 4.4 and 

4.5. 

 

 
 

 

 
 

Figure 4.4 Windows application results for Q-learning 
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Figure 4.5 After learning took place, agent directly found the target 

 

 In these figures red squares and the green squares stand for the same room, 

however learning takes place at red square and after learning, at the green square agent 

is initialized to the starting point, and then reaches the target in a much better way. One 

can ask why the agent is not asked to follow the shortest path instead of trial and error 

sequence. The reason is that, if there happens to be an obstacle on the shortest path 

agent may not escape from the obstacle. 

 On the other hand the test base for the TD learning is little different from the   

Q-learning room. In TD learning there is no obstacle. Agent is initialized at starting 

point x=20, y=20, and the target is positioned at x=40, y=40.  

 During the Backpropagation-TD learning training one of the most important 

problems is to represent the dynamic environment. At the first experiment direct state 

position of the agent is presented to the network, it means that the network has two 
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inputs and one output. These two inputs are directly given ‘x’ and ‘y’ coordinates of the 

agent. And the one output stands for the success probability of the agent’s action, which 

is taken from here and leads to win or lose. However these two inputs did not suffice to 

represent the dynamic environment. And the agent could not reach to the target.    

 In the second experiment, the room, in which the agent roams, is divided into 

four subsections. Therefore the network has six inputs and one output. Again the agent 

could not reach the target. However, as in the figure 4.6 the four sub areas can easily be 

seen. In that figure the brighter the color, the higher the success probability. That means 

the agent tries to follow the bright colors. 

 
Figure 4.6 TD learning results: Room is divided into four regions. 

 

 The upper part of the figure 4.6, 4.7 and 4.8, which are blue colored, shows the 

explored region by the agent.    

 Previous simulation shows that, if the number of input is enough to represent the 

environment, agent can learn from trial and error sequence. So this time the number of 

input is increased to 102. Where, 50 inputs for the x axis and 50 inputs for the y axis to 

represent the position of the agent. Lastly two inputs for the exact position of the agent. 

At this time agent could learn and reach the target as in the figure 4.7. 
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Figure 4.7 After learning took place, agent is able to go directly. 

 

 If the learning parameters can be tuned appropriately, learning can take place 

much faster. 

 
Figure 4.8 If the learning parameters are changed appropriately, learning can take place 

much faster. 
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CHAPTER 5 

 

 

CONCLUSIONS 
 Through this research, various AI methods are investigated. And their formal 

definitions and fundamentals are given with their applications as well. Aim of this 

research was to develop a system which interacts with its environment. And during this 

interaction with the environment the system will be capable of gathering information 

about its environment and response to the dynamic changes in a reasonable way. 

 In this thesis learning methods are divided into three main groups, these are 

supervised algorithms, unsupervised algorithms and reinforcement learning in which the 

genetic algorithms are included. MLP algorithms are utilized as supervised algorithms. 

In the subsequent sections Backpropagation NNs, RBFNNs, and RBFLNs are 

discussed. Their fundamentals are given and then their performance and robustness are 

compared with each other. SONNs and K-means algorithms are discussed as 

unsupervised methods. And, K-means algorithm is modified by author and it is shown 

that this new modified K-means outperform the classic k-means algorithm. 

 Reinforcement learning is the most important subject of this thesis, since 

reinforcement learning gives us an ability to teach the agent or system by its past 

experience. Also the supervised and unsupervised methods are utilized to improve the 

reinforcement learning. Finally, supervised methods are used as complementary 

methods for reinforcement learning. In literature there are some other applications that 

used unsupervised learning scheme with reinforcement learning. 

Temporal difference method has studied intensively in the reinforcement 

learning chapter, which was the method discussed in depth. Also the Q-learning method 

is discussed and simulated. When the performance of these two reinforcement methods 

are compared, for the simple one obstacle case Q-learning seams faster than TD 

learning. However because of the memory usage of the Q-learning, generalization 

capability is lower than the TD learning procedure. On the other hand training time of 

the TD learning is too long because of the trial and error scheme. The navigation 

application which is presented in this thesis takes between two and four hours according 

to the initial position of the target and the agent. Also in literature TD-Backgammon 

training time is given as several months. 
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 In the future, training time must be decreased. In literature there is no way 

formally presented to heal this training time problem for all cases. Also there is another 

difficulty to implement the TD learning method to complex real world problems. 

Connectionists TD structure needs many inputs to represent the environment and the 

dynamic system. These problems are yet to be tackled as future work. 
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APPENDIX A 

 

CODE INTERFACE SAMPLES   
 These codes are developed from [50]. There are thousands of rows codes, hence  

 It is not possible to show all the codes.  

class Base_Link   // Base Neural-Network Link class 

     { 

     private: 

 

          static int ticket; 

 

     protected: 

          int id;                     // ID number for link 

          double *value;              // Value(s) for Link 

          Base_Node *in_node;         // Node instance link is comming from 

          Base_Node *out_node;        // Node instance link is going to 

          int value_size; 

 

     public: 

          Base_Link( int size=1 );       // Constructor 

   ~Base_Link( void );            // Destructor for Base Links 

   virtual void Save( ofstream &outfile ); 

   virtual void Load( ifstream &infile ); 

   inline virtual double Get_Value( int id=WEIGHT ); 

   inline virtual void Set_Value( double new_val, int id=WEIGHT); 

          inline virtual void Set_In_Node( Base_Node *node, int id ); 

          inline virtual void Set_Out_Node( Base_Node *node, int id ); 

          inline virtual Base_Node *In_Node( void ); 

          inline virtual Base_Node *Out_Node( void ); 

          inline virtual char *Get_Name( void ); 

          inline virtual void Update_Weight( double new_val ); 

          inline int Get_ID( void ); 

          inline virtual double In_Value( int mode=NODE_VALUE ); 
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          inline virtual double Out_Value( int mode=NODE_VALUE ); 

          inline virtual double In_Error( int mode=NODE_ERROR ); 

          inline virtual double Out_Error( int mode=NODE_ERROR ); 

          inline virtual double Weighted_In_Value( int mode=NODE_VALUE ); 

          inline virtual double Weighted_Out_Value( int mode=NODE_VALUE ); 

          inline virtual double Weighted_In_Error( int mode=NODE_VALUE ); 

   inline virtual double Weighted_Out_Error( int mode=NODE_VALUE ); 

   inline virtual int Get_Set_Size( void ); 

          inline virtual void Epoch( int mode=0 ); 

     }; 

//------------------------------------------------------------------------------ 

class LList    // Linked-List Support Class 

     { 

     private: 

 

          struct NODE 

               { 

               NODE *next, *prev; 

               Base_Link *element; 

               }; 

 

          NODE *head,*tail,*curr; 

          int count; 

 

     public: 

          LList( void ); 

          ~LList( void ); 

   int Add_To_Tail( Base_Link *element ); 

          int Add_Node( Base_Link *element ); 

   int Del_Node( void ); 

   int Del( Base_Link *element ); 

   int Find( Base_Link *element ); 

          inline void Clear( void ); 

          inline int Count( void ); 
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          inline void Reset_To_Head( void ); 

          inline void Reset_To_Tail( void ); 

          inline Base_Link *Curr( void ); 

          inline void Next( void ); 

          inline void Prev( void ); 

     }; 

//-------------------------------------------------------------------------- 

class Base_Node            // Base Neural-Network Node 

      { 

      private: 

    static int ticket; 

 

      protected: 

    int id;             // Identification Number 

    double *value;      // Value(s) stored by this node 

    int value_size;     // Number of Values stored by this node 

    double *error;      // Error value(s) stored by this node 

    int error_size;     // Number of Error values stored by this node 

 

    LList in_links;     // List for input links 

    LList out_links;    // List for output links 

 

      public: 

    Base_Node( int v_size=1, int e_size=1 );     // Constructor 

    ~Base_Node( void  );                         // Destructor 

    LList *In_Links( void ); 

    LList *Out_Links( void ); 

    virtual void Run( int mode=0 ); 

    virtual void Learn( int mode=0 ); 

    virtual void Epoch( int code=0 ); 

    virtual void Load( ifstream &infile ); 

    virtual void Save( ofstream &outfile); 

    inline virtual double Get_Value( int id=NODE_VALUE ); 

    inline virtual void Set_Value( double new_val, int id=NODE_VALUE ); 
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    inline virtual double Get_Error( int id=NODE_ERROR ); 

    inline virtual void Set_Error( double new_val, int id=NODE_ERROR ); 

    inline int Get_ID( void ); 

    inline virtual char *Get_Name( void ); 

    void Create_Link_To( Base_Node &to_node, Base_Link *link ); 

    virtual void Print( ofstream &out ); 

    void Set_Centers (Base_Node *from_node); 

    double Compute_Distance(); 

    double Compute_Sigma (Base_Node *Onode); 

    virtual double Transfer_Function(); 

    double Compute_Min_Distance(Base_Node *Onode,int dump); 

    double Update_Sigma(double Lr,double output_error,double weight, 

    double node_value,double distance,double prev_sigma); 

    void Update_Center(double error,double lr); 

    virtual void Learn2(int mode, int dump, int additive, int inputs,double Lr); 

 

    friend void Connect( Base_Node &from_node, Base_Node &to_node, 

    Base_Link *link ); 

    friend void Connect( Base_Node &from_node, Base_Node &to_node, 

    Base_Link &link ); 

    friend void Connect( Base_Node *from_node, Base_Node *to_node, 

    Base_Link *link ); 

    friend int Disconnect( Base_Node *from_node, Base_Node *to_node); 

 

    friend double Random( double lower_bound, double upper_bound ); 

      }; 

//-------------------------------------------------------------------------- 

class Feed_Forward_Node : public Base_Node  // This derived class provides 

   {                                 // a generic feed-forward 

                                            // neural-network node which 

                                            // can be used by the ADALINEs 

                                            // and Backprop networks. 

 

          protected: 
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               virtual double Transfer_Function( double value ); 

 

          public: 

               Feed_Forward_Node( int v_size=1, int e_size=1 );  // Constructor 

               virtual void Run( int mode=0 ); 

        virtual char *Get_Name( void ); 

   }; 

//-------------------------------------------------------------------------- 

class RB_Node : public Feed_Forward_Node 

     { 

     protected: 

 

      double *Center; 

//      virtual double Transfer_Function(double value/*Base_Node *Onode*/); 

     public: 

   RB_Node( int v_size=1, int e_size=0 );  // Default of 1 value set member 

(NODE_VALUE) 

   virtual char *Get_Name( void ); 

   void Set_Centers (Base_Node *from_node/*,Base_Node *to_node*/); 

   double Compute_Sigma (/*Base_Node *Main_Node,*/Base_Node *Onode); 

   double Update_Sigma(double Lr,double output_error,double weight, 

   double node_value,double distance,double prev_sigma); 

   virtual void Save(ofstream &outfile); 

   virtual void Load(ifstream &infile); 

 

 

 

   void Creat_Center(int num) 

   { 

   Center=new double[num]; 

   for (int i=0;i<num;i++) 

   Center[i]=0.0; 

   } 

   void Set_Center(double new_val,int id) { Center[id]=new_val;} 
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   double Get_Center(int id) {return Center[id];} 

     }; 

//----------------------------------------------------------------------------- 

class RB_Link : public Base_Link 

     { 

     public: 

   RB_Link( int size=1 );  // default of 2 link value set members (WEIGHT, 

DELTA) 

   virtual void Save( ofstream &outfile ); 

   virtual void Load( ifstream &infile ); 

 /*  virtual char *Get_Name( void ); 

   virtual void Update_Weight( double new_val );*/ 

     }; 

//----------------------------------------------------------------------------- 

class RB_Output_Node : public RB_Node 

     { 

     public: 

   RB_Output_Node( double lr, double mt, int v_size=3, int e_size=1 ); 

  // default of 3 value set members (NODE_VALUE, LEARNING_RATE, 

MOMENTUM) 

  // default of 1 error set member (NODE_ERROR) 

   virtual void Save(ofstream &outfile); 

   virtual void Load(ifstream &infile); 

     protected: 

   virtual double Compute_Error( int mode=0 ); 

   virtual void Learn( int mode=0); 

   virtual void Learn2( int mode=0,int dump=0, int additive=0,int inputs=0,double 

Lr=0); 

 

   virtual char *Get_Name( void ); 

   virtual void Run (int mode=0); 

     }; 

//----------------------------------------------------------------------------- 

class RB_Middle_Node : public RB_Node 
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     { 

     public: 

   RB_Middle_Node(int v_size=10, int e_size=1 ); 

// default of 3 value set members 

(NODE_VALUE,LEARNING_RATE,MOMENTUM) 

// default of 1 error set member (NODE_ERROR) 

  // additionaly 5 centers 

  //and 1 sigma 

  //1 distance 

   virtual char *Get_Name( void ); 

   void Set_Sigma(double new_val) {Sigma=new_val;} 

   double Get_Sigma() {return Sigma;} 

   double Compute_Distance(/*Base_Node *Node*/); 

   virtual double Transfer_Function(/*Base_Node *Onode*/); 

  //   double Compute_Min_Distance(Base_Node *Onode,int dump); 

 

   virtual void Save(ofstream &outfile); 

   virtual void Load(ifstream &infile); 

     protected: 

   virtual double Compute_Error( int mode=0 ); 

   double Sigma; 

 //  virtual void Run(Base_Node *Node); 

     }; 

//----------------------------------------------------------------------------- 

 

class RB_Additive_Node : public RB_Node 

     { 

     public: 

   RB_Additive_Node (double lr, double mt, int v_size=10, int e_size=1); 

  // default of 3 value set members 

(NODE_VALUE,+LEARNING_RATE,+MOMENTUM) 

  // default of 1 error set member (NODE_ERROR) 

  // additionaly 5 centers 

  //and 1 sigma 
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  //1 distance 

   virtual char *Get_Name( void ); 

   void Set_Sigma(double new_val) {Sigma=new_val;} 

   double Get_Sigma() {return Sigma;} 

   double Compute_Distance(/*Base_Node *Node*/); 

   virtual double Transfer_Function(/*Base_Node *Onode*/); 

  //   double Compute_Min_Distance(Base_Node *Onode,int dump); 

 

   virtual void Save(ofstream &outfile); 

   virtual void Load(ifstream &infile); 

     protected: 

   virtual double Compute_Error( int mode=0 ); 

   double Sigma; 

 //  virtual void Run(Base_Node *Node); 

     }; 

//-------------------------------------------------------------------------- 
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APPENDIX B 
 

TEST DATA 

 

No: 

Cutting 

Speed Feed Time Fx Fz Flank Wear 

1 200 0.05 10 150 110 38 

2 200 0.05 20 180 120 48 

3 300 0.05 60 200 120 114 

4 200 0.1 10 220 190 38 

5 200 0.1 20 230 150 58 

6 200 0.1 60 270 190 59 

7 250 0.1 10 200 150 51 

8 300 0.1 20 230 190 89 

9 300 0.05 40 180 120 81 

10 200 0.05 80 180 140 79 

11 250 0.05 50 220 200 89 

12 200 0.05 60 250 120 74 

13 300 0.05 20 130 80 58 

14 200 0.05 100 220 90 84 

15 250 0.05 20 150 120 53 

16 250 0.05 60 220 120 99 

17 300 0.1 10 210 140 56 

18 200 0.1 40 260 190 71 

19 200 0.1 30 250 210 66 

20 200 0.05 70 210 110 76 

21 250 0.05 40 220 130 79 

22 200 0.05 30 150 10 53 

23 250 0.1 20 230 170 81 

24 200 0.05 40 200 120 66 

25 200 0.05 50 210 120 66 

Max 300 0.1 100 270 210 114 

Min 200 0.05 10 130 10 38 

 


