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Abstract—A firewall is the most important tool of 
network security defense. Its proper functioning is 
critical to the network it protects. Therefore a fire-
wall should be tested rigorously with respect to its 
implemented network protocols and security policy 
specification. We propose a combined approach for 
test case generation to uncover errors both in fire-
wall software and in its configuration. In the pro-
posed approach, abstract test cases are generated 
by mutating event sequence graph model of chosen 
network protocol and filled with values from policy 
specification by using equivalence partitioning and 
boundary value analysis. A case study is presented 
to validate the presented approach. 
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I. INTRODUCTION 
As being most important security defense of a net-

work, firewalls have to be tested to validate that they 
work as specified. Most of the work known from secu-
rity literature [1,2] focuses on testing of firewall rules 
where firewall implementation is assumed error-free. 
However, a firewall may have vulnerabilities as shown 
by Kamara et al. [3] or can be hacked and programmed 
to behave differently from its specification. A firewall 
vulnerability is defined as an error made during fire-
wall design, implementation, or configuration, that can 
be exploited to attack the trusted network that the fire-
wall is supposed to protect [3]. Identifying and elimi-
nating vulnerabilities is one of most important goals of 
security management. 

The firewall specification is mainly composed of 
intended security policy and allowed network proto-
cols, which are the main focus of our firewall testing 
approach. The intended security policy consists of 
firewall rules which configure the firewall behavior 
and the allowed network protocols constitute the 
important part of firewall’s internal working which can 
be described as packet capture, decision making on the 
packet under consideration, and packet release. Deci-

sion making operation is carried out with respect to 
firewall policy and network protocols. The security 
policy is external to the firewall like a configuration 
file, whereas packet checking with respect to network 
protocols is implemented in the firewall software. 

The way to process valid inputs as well as a few 
invalid ones is described by the protocol specification.  
As conformance testing only verifies an implementa-
tion with respect to its protocol specification, its capa-
bility of error-detection is limited. Furthermore, distur-
bance, misconfiguration and man-made attacks exist in 
the Internet. The critical requirement on reliability, 
fault tolerance and security of network devices high-
lights the necessity of protocol robustness testing [16]. 

This paper extends our idea of firewall testing [14], 
where we introduced the idea of applying mutation 
analysis technique to firewall testing. The novelty of 
the present paper stems from following:  

(i) The network protocol, the implementation of 
which is under test, is modeled using event se-
quence graphs (ESGs).  

(ii) The mutants of the network protocol imple-
mentation are generated using mutation oper-
ators specifically defined for ESGs.  

(iii) The test case generation is achieved in two 
phases. In the first phase, abstract test cases 
are generated by producing mutants from the 
model of the protocol under consideration. In 
the second phase, generated abstract test cases 
are converted to concrete test cases using 
firewall policy to determine test input values. 
Concrete test input values are obtained using 
equivalence class partitioning and boundary 
value approach.  

The present approach can also be applied to specific 
high level firewalls [4], which check network packets 
and streams with respect to application protocols, such 
as HTTP and SOAP, to assure acceptable use of web 
services in accordance with the application level secu-
rity policy. 

Next section summarizes related work before Sec-
tion 3 outlines the theoretical background of the ap-
proach. The core of the paper, Section 4, explains our 
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model-based mutation testing approach. Section 5 
presents the case study we carried out to exemplify the 
approach and indicate its characteristic features. Sec-
tion 6 concludes the paper and outlines future work 
planned. 

II. RELATED WORK 
There are three general approaches to firewall test-

ing [2]: penetration testing, testing of the firewall rules, 
and testing of the firewall implementation. 

Penetration testing is performed to check the fire-
wall for potential breaches of security that can be ex-
ploited. The firewall penetration testing is structured in 
the following four steps [15]:  

• indirect information collection,  
• direct information collection,  
• attack from the outside, and  
• attack from the inside. 
This type of testing targets specific known vulnera-

bilities of firewalls determined through information 
collection. 

Testing of the firewall rules verifies whether the se-
curity policy is correctly enforced by a sequence of 
firewall rules or not. According to Al-Shaer and  
Hamed [11], in a single firewall environment, the local 
firewall policy may include firewall anomalies, where 
the same packet may match more than one filtering 
rule. Testing of the firewall rules is used to discover 
firewall policy anomalies. 

The firewall implementation testing approach eva-
luates the correspondence of firewall rules with respect 
to the actions the firewall performs, e.g., it checks 
whether a rule indicates to block a packet, but the fire-
wall illegally forwards the packet, which might be 
caused by a firewall implementation error [2]. 

This paper focuses on firewall implementation test-
ing by considering both the network protocol imple-
mentation and policy execution. As far as authors of 
this paper could check, there is one similar approach 
by Senn et al. [5], who worked on firewall implemen-
tation testing using protocol finite state automata 
(FSA) to generate abstract test cases through unique 
input/output (UIO) sequences [17] and instantiate ab-
stract test cases with test tuples consisting of  

<protocol>, <srcIP>, <dstIP>, <action> 

fields of a firewall policy rule. However, our work ge-
nerates abstract test cases from protocol ESG using 
mutation operators defined for ESGs and concrete test 
cases are built using  
<protocol>, <srcIP>, <srcPort>, <dstIP>, <dstPort>, <action>  

fields of a firewall rule. 
Although not directly related to firewall testing, 

Wimmel and Jürjens [6] applied the concept of muta-
tion analysis to specification-based test generation for 

security-critical systems. In their work, the test se-
quences are determined with respect to the system’s 
required security properties, using mutations of the 
system specification and attack scenarios. They also 
followed the approach of abstract test case generation 
and their concretization to apply to an existing imple-
mentation. 

Protocol robustness testing attempts to verify 
whether or not implementation under test can function 
correctly in the presence of invalid inputs or stressful 
environmental conditions. It aims to detect vulnerabili-
ties of protocol specification and protocol implementa-
tions. Invalid inputs include messages with invalid 
syntax (i.e., messages which disobey protocol specifi-
cation data formats) and messages with anomalous 
semantics (i.e., messages which have valid syntax but 
conflict with protocol state, configuration, parameters 
and policies). Robustness testing by injecting messages 
with invalid syntax is called mutation testing of proto-
col messages [16]. Jing et al. [16] claimed that TTCN-
3, a standard test specification language, reveals strong 
excellence in conformance testing, and they applied 
TTCN-3 to mutation testing and extended it according 
to test requirements. They tested OSPFv2 sufficiently 
with a test system based on extended TTCN-3.  

In our work, we concentrate on protocols used by 
stateful firewalls. For modeling we use ESG notion 
which is similar to the concept of event flow graphs 
[22, 20]. The latter are used for analysis and validation 
of user interface requirements prior to implementation 
and testing of the code [23]. The present paper chooses 
ESG notation because it intensively uses formal, 
graph-theoretical notions and algorithms which are 
developed independently from and prior to event flow 
graphs [21]. 

III. THEORETICAL BACKGROUND 
While testing a system, a model of the system helps 

to predict and control its behavior. Modeling a system 
acquires the understanding of its abstraction and there 
is the need of a formal specification tool distinguishing 
between legal and illegal situations. These require-
ments are fulfilled by ESGs. 

A.  Event Sequence Graphs 
Apart from the notion of FSA, in ESG, the simplifi-

cation by merging the inputs and states helps the test 
engineer to easily understand and check the external 
behavior of the system, hence the “inputs” and “states” 
are turned into “events”. 

Basically, an event is an externally observable phe-
nomenon, such as an environmental or a user stimulus, 
or a system response, punctuating different stages of 
the system activity. Following, we formally define 
ESG; a simple example of an ESG is given in Fig. 1. 
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Definition 1. An event sequence graph ESG = (V, 
E, Ξ, Γ) is a directed graph where V ≠ ∅ is a finite set 
of vertices (nodes), E ⊆ V×V is a finite set of arcs 
(edges), Ξ, Γ ⊆ V are finite sets of distinguished verti-
ces with ξ∈Ξ, and γ ∈ Γ, called entry nodes and exit 
nodes, respectively, wherein ∀v ∈ V there is at least 
one sequence of vertices 〈ξ,v0,…,vk〉 from each ξ ∈ Ξ to 
vk = v and one sequence of vertices 〈v0,…,vk,γ〉 from v0 
= v to each γ ∈ Γ with (vi,vi+1) ∈ E, for i = 0,…,k-1 and 
v ≠ξ,γ. 
Ξ (ESG) and Γ (ESG) represent the entry nodes and 

exit nodes of a given ESG, respectively. To mark the 
entry and exit of an ESG, all ξ ∈ Ξ are preceded by a 
pseudo vertex ‘[’ ∉ V and all γ ∈ Γ are followed by 
another pseudo vertex ‘]’ ∉ V. The semantics of an 
ESG is as follows: Any v ∈ V represents an event. For 
two events v, v’ ∈ V, the event v’ must be enabled after 
the execution of v iff (v, v’) ∈ E. The operations on 
identifiable components of the GUI are controlled 
and/or perceived by input/output devices, i.e., elements 
of windows, buttons, lists, etc. Thus, an event can be a 
user input or a system response; both of them are ele-
ments of V and lead interactively to a succession of 
user inputs and expected desirable system outputs. 

Definition 2. Let V, E be defined as in Definition 1. 
Then any sequence of vertices  〈v0,…,vk〉 is called an 
event sequence (ES) iff (vi,vi+1) ∈ E, for i=0,…,k-1. 
Moreover, an ES is complete (or, it is called a complete 
event sequence, CES), iff v0 ∈ Ξ and vk ∈ Γ. 

Note that the pseudo vertices ‘[’, ‘]’ are not 
included in ESs. An ES =  〈vi,vk〉 of length 2 is called 
an event pair (EP). A CES may invoke no interim 
system responses during user-system interaction, i.e., it 
may consist of consecutive user inputs and a final 
system response.  

Our approach assumes that upon a faulty user input 
the system has to inform the user, and, wherever possi-
ble, point him or her properly in the right direction in 
order to reach the desirable final or interim situation. 
Due to this requirement, a complementary view is nec-
essary to consider potential user errors in the modeling 
of the system.  

Definition 3. For an ESG = (V, E), its completion is 
defined as  with . 

Definition 4. The inverse (or complementary) ESG 
is then defined as  with . 

Fig. 1 illustrates , which can systematically be 
constructed in three steps:  

• Add arcs in the opposite direction wherever 
only one-way arcs exist. 

• Add self-loops to vertices wherever none exist. 
• Add two-way arcs between vertices wherever 

no arcs connect them. Note that they are drawn 
bi-directional. 
 (the inversion of the ESG) consists of arcs that 

will be added to the ESG to construct the  
(completion of the ESG). Graphically speaking, miss-
ing edges of the ESG represent undesirable user-
system interactions, i.e., faulty event pairs (FEP). FEPs 
can systematically be constructed by using either step 
of construction steps.  

Definition 5. Let ES = 〈v0,…,vk〉 be an event se-
quence of length k+1 of an ESG and FEP = 〈vk,vm〉 a 
faulty event pair. The concatenation of the ES and FEP 
then forms a faulty event sequence FES = 〈v0,…,vk,vm〉. 
FES is complete (or, it is called a faulty complete event 
sequence, FCES) iff v0 ∈ Ξ. The ES as part of a FCES 
is called a starter. 

CES and FCES are used to form test cases for the 
system under test (SUT). The SUT is supposed to ac-
cept test inputs described by CESs in the specified or-
der whereas test inputs described by FCESs should 
result in a warning. 

Completeness Ratio (CR) is a metric which explains 
density of edges in the ESG and is defined as follows: 

CR = |E| / |V|2 
where |E| is the number of edges in the ESG and |V| = 
n is the number of nodes (vertex) in the ESG. CR takes 
the values between 0 and 1. Value 1 shows that ESG is 
completed graph and Value 0 means null graph. As the 
values are getting closer to 1, the density of the graph 
gets bigger. 

 

 
Figure 1. An , its completion  and its inversion . 
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B.  Mutant Generation 
Assuming that the given ESG correctly specifies the 

expected, desirable behavior of SUT, the comple-
mented ESG can be used to generate mutants of the 
system, i.e., to specify erroneous, undesirable situa-
tions. In other words, to describe, how the system is 
not supposed to behave. The given ESG can be 
changed by manipulating either the arcs or the events 
[7]. Arcs are primarily responsible for correctly 
sequencing the events, in our case network events.  

Basically, we can generate arc mutants of an ESG 
by 

• inserting an extra arc in any direction, without 
causing a multiple arc in the same direction (arc 
insertion, aI-operation), or 

• omitting an existing arc (arc omission, aO-
operation). 

 
It is important to note that 
• applying the aI-operation to all EPs of an ESG 

produces its inversion ESG and leads to the 
completion of the ESG given. Based on the 
complete ESG and using the algorithms given 
in [8], FCESs can systematically be generated 
to obtain mutants, 

• applying the aO-operation to all EPs of an ESG 
generates ES of various lengths that are mutants 
to simulate incomplete paths, i.e., deadlocks. 

aI- and aO-operations can be applied to an ESG 
repeatedly, e.g., n times. This is represented as aIn and 
aOn. They can also be combined arbitrarily, e.g., three 
arcs inserted or two arcs deleted; represented by aI3 + 
aO2. “+” represents the choice as inclusive or.  

C.  Test Process 
The approach introduced in this paper uses event 

sequence mutants. Each mutant is covered by either a 
CES or FCES. More precisely, test inputs are CES and 
FCES of original ESG. If the input is a CES, the SUT 
is supposed to successfully proceed it and thus, to suc-
ceed the test and to trigger a desirable event. Accor-
dingly, if a FCES is used as a test input, a failure is 
expected to occur which is an undesirable event and 
thus, to fail the test. Algorithm 1 below sketches the 
optimized test process. 

The approach ensures the coverage of ESs of length 
n, whereby n=1 is the node coverage, and n>1 is the 
coverage of ES of the length>2. Additionally, the cov-
erage of the FEP is also ensured. 

The union of the sets of CESs of minimal total 
length to cover the ESs of a required length is called 
Minimal Spanning Set of Complete Event Sequences 
(MSCES). If a CES contains all EPs at least once, it is 

called an entire walk. A legal entire walk is minimal if 
its length cannot be reduced. A minimal legal walk is 
ideal if it contains all EPs exactly once. Legal walks 
can easily be generated for a given ESG as CESs, re-
spectively. It is not, however, always feasible to con-
struct an entire walk or an ideal walk. The algorithm to 
determine MSCES is given and explained in [18]. 
Another approach to minimize the number of event 
sequences was proposed by Memon et al. [20]. Since it 
is impractical to test a SUT for all possible event se-
quences for large number of event sequences, they sug-
gested to identify important sequences through assign-
ing a priority to each event sequence and generate test 
cases from these important sequences.  

Algorithm 1. Test Process [18]. 

length: length of the test sequences 
Generate appropriate  and  
FOR k:=2 TO length DO 

Cover all ESs of length k by means of CESs subject 
to minimizing the number and total length of the  
CESs 

Cover all FEPs of by means of FCESs subject to 
minimizing the total length of the FCESs 
Apply the test set to the SUT 
Observe the system output to determine whether the 
system response is in compliance with the expectation. 

 

IV. APPROACH 
We constructed a firewall dataflow model by taking 

layers, which deal with network protocol processing 
with respect to protocol specification and access con-
trol evaluation in accordance with firewall policy, from 
the dataflow model of firewall internals described by 
Frantzen et al. [9]. Our firewall dataflow model is pre-
sented in Fig. 2. 

After a network packet is received, it may pass vari-
ous layers for some filtering and processing until dy-
namic ruleset layer which is the core of stateful fire-
walls. The dynamic ruleset, or state table, serves to 
associate each packet with its connection stream [10]. 
Part of the protocol, i.e., its FSA, implementation 
exists in this layer. Therefore, it is one of our testing 
targets. If a packet belongs to a connection that is in 
the state table, it bypasses following checks and filters 
for performance reasons. Our second testing target is 
the execution layer of firewall policy, namely IP and 
port filtering layer. Depending on the firewall rules, of 
which modeling is explained in Section 4.2, packets 
may be dropped in this layer. Furthermore, packets that 
are part of an application stream are checked for con-
formance with respect to the chosen application level 
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protocols such as HTTP and SOAP in application level 
layer. Our proposed testing approach can be applied to 
protocols at any level in the network protocol stack. 

Our test case generation consists of two parts. First, 
we generate abstract test cases. Abstract test cases are 
produced to test the correct stateful handling of a pro-
tocol by a firewall. For example, a stateful packet filter 
may be tested to determine whether it correctly handles 
TCP traffic. Second, we generate test input data from 
the firewall policy. To obtain the concrete test cases, 
we instantiate abstract test cases with test input data. 

A.  Abstract Test Cases 
Assuming that the given ESG correctly specifies the 

expected, desirable behavior of the protocol, manipu-
lation of event transitions can be used to generate mu-
tants of the protocol, i.e., to specify erroneous, unde-
sirable situations [7]. Using this model-based ap-
proach, a mutant can be generated and it will behave in 
a way that the protocol is not supposed to behave. In 
this proposed approach, we generate mutants of an 
ESG only by inserting an extra arc in any direction and 
omitting an existing arc. 

B.  Concrete Test Cases 
In the second phase of the approach, sequence of 

firewall rules is converted to a firewall policy tree as 
described in [11], which is then used as a test tree. 
Each node in the policy tree represents a field of a rule. 
A firewall rule is abstracted as  

“IF (<protocol>, <srcIP>, <srcPort>, <dstIP>, <dstPort>)  
THEN <action>”,  

where protocol is a network protocol, such as TCP or 
UDP, and action is either ALLOW or DENY. The root 
node of a policy tree represents the protocol field, and 
the leaf nodes represent the action field, intermediate 
nodes represent other fields in order. Every tree path 
starting at the root and ending at a leaf represents a rule 
in the policy and vice versa. The equivalence class 
partitioning divides the input domain of the SUT into a 
finite number of partitions or equivalence classes. The 
equivalence classes are identified by taking each input 
condition – in our approach each field of the rule or 
each node of the policy tree – and partitioning it into 
two classes [12]. When generating test input data, val-
ues that a hacker might choose are considered in addi-
tion to the boundary values in equivalence classes. Fi-
nally, we instantiate the abstract test cases with the test 
input data to obtain concrete test cases. 

C.  Firewall Evaluator Architecture 
Although firewalls are implemented as software, 

their method of input and output is network I/O. There-
fore, network packets should be produced, injected, 
and collected in order to test a firewall. Test packets 
will be derived from generated test cases and those 

packets will be sent or injected to the firewall to ana-
lyze its behavior. To be able to analyze and evaluate 
behavior firewall under test (FUT) with respect to test 
cases, we developed a special architecture as illustrated 
in Fig. 3. 
 

 

 

Figure 2. Firewall dataflow model. 

The test packets are released from packet injection 
point (PIP). All the traffic entering and leaving the 
firewall is recorded and collected data is analyzed to 
obtain test outputs, which are compared with expected 
outputs to determine test result. We expect to see al-
lowed packets at the packet leaving point but not the 
denied packets. This architecture can also be used to 
monitor a firewall constantly to check whether it oper-
ates in accordance with its specification and imple-
mentation. 

 

 

Figure 3. Firewall evaluator architecture. 
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V. CASE STUDY 
If the FUT has a stateful packet filter, as almost all 

firewalls do, this means that related automaton for each 
stateful protocol is implemented in the firewall soft-
ware. If TCP protocol is supported by the firewall, it 
should contain necessary code that executes the au-
tomaton for the TCP protocol, which is presented in 
Table 1. The event labels and their event descriptions 
are as follows [13]: 

• S – Request to open connection,  
• SA – Agree to open connection,  
• A – Acknowledgement of receipt,  
• F1 – Request to close connection,  
• F2 – Request to close connection, and  
• R – Tear down connection. 

TABLE I. TRANSITION TABLE for TCP FSM [13]. 

Event 
State 

S SA A F1 F2 R Other 

L H1 Ø Ø Ø - Ø Ø 
H1 H1 H2 H1 Ø - Ø Ø 
H2 H2 H2 X Ø - Ø Ø 
X Ø Ø X C1 - C2 Ø 
C1 Ø Ø C1 C1 C2 C2 Ø 
C2 Ø Ø C2 C2 C2 C2 Ø 
Ø Ø Ø Ø Ø Ø Ø Ø 
 
The corresponding ESG of the TCP automaton is 

given in Fig. 4. We can now create a mutant for the 
ESG of TCP protocol by inserting or omitting arc(s) 
using the algorithm presented in [8].  

 

 

Figure 4. ESG for TCP Protocol. 

Since TCP is a reliable protocol, it has a high level 
redundancy. Therefore, a mutant created by omitting 
only a single arc will not be able to behave altogether 
differently. Even though the protocol is reliable, it does 
not imply that its implementation is correct and 

therefore the implementation should be tested 
comprehensively by using mutants created for abstract 
test cases. 

As an example, the event sequence S-SA-F1 is a 
mutant ES for TCP protocol, which means request to 
close connection that is not established. At the same 
time, the sequence S-SA-F1 is a FCES for TCP proto-
col, which constitutes an abstract test case in our ap-
proach. For this test case, three test packets should be 
concretized with source IP address, source port, desti-
nation IP address, and destination port. The IP address 
and port values are generated from firewall policy 
rules. 

Some of the test input data generated using equiva-
lence partitioning and boundary value analysis for the 
firewall rule  

<tcp, 193.140.248.*, any, *.*.*.*, 25, accept> 
are presented in Table 2. Test cases numbered as 2, 3, 
and 4 have the given expected output unless there are 
other rules concerning the values in the test input data. 
The values shown in bold for the second, third, and 
fourth test cases are the reason for denying packets 
with respect to above firewall rule. The mutant ES can 
be instantiated with values presented in Table 2 and 
generated network packets can be injected using fire-
wall evaluator architecture. 

TABLE II. A SET of GENERATED TEST CASES. 

No Test Input Expected 
Test 

Output 
1 tcp,193.140.248.1,80,193.140.250.1,25 allow 
2 tcp,193.140.247.1,80,193.140.250.1,25 deny 
3 tcp,193.140.249.1,80,193.140.250.1,25 deny 
4 tcp,193.140.248.1,80,193.140.250.1,24 deny 

VI. CONCLUSION 
We proposed a combined approach for test case 

generation to uncover errors both in firewall software 
and in its configuration. In the proposed approach, ab-
stract test cases are generated by mutating event se-
quence graph model of implemented network protocol 
and filled with values from policy specification by us-
ing equivalence partitioning and boundary value analy-
sis. At the moment we apply this approach to some 
well-known open source firewalls. 

The next step will extend the proposed approach to 
cover application firewalls, where we plan to develop 
specific test suites for application level protocols such 
as HTTP and SOAP to cover web services as well. 

REFERENCES 
[1]  H. Heidi, “Specification based firewall testing,” Master 

of Arts Thesis, Texas State University-San Marcos, May 
2004. 

58



[2]  G. Zaugg, “Firewall testing,” Diploma Thesis, ETH 
Zürich, 2005. 

[3]  S. Kamara, S. Fahmy, E. E. Schultz, F. Kerschbaum, 
and  M. Frantzen, “Analysis of vulnerabilities in Internet 
firewalls,” Computers & Security, 22:3, 2003, pp.214-
232. 

[4]  E. B. Fernandez, “Two patterns for web services 
security”, Proceedings of the International Symposium 
on Web Services and Applications, Las Vegas, 2004. 

[5]  D. Senn, D. Basin, and G. Caronni, “Firewall 
conformance testing,” TestCom 2005, LNCS 3502, 
2005, pp. 226–241. 

[6]  G. Wimmel and J. Jurgens, “Specification-based test 
generation for security-critical systems using 
mutations,” ICFEM 2002, LNCS 2495, 2002, pp. 471-
482. 

[7]  F. Belli, C. J. Budnik, and W. E. Wong, “Basic 
operations for generating behavioral mutants,” Proc. 2nd 
ISSRE Workshop on Mutation Analysis, IEEE, 2006. 

[8]  F. Belli and C. J. Budnik, “Minimal spanning set for 
coverage testing of interactive systems,” Proc. of Int. 
Colloquium on Theoretical Aspects and Computing, 
LNCS 3407, 2004, pp. 220-234. 

[9]  M. Frantzen, F. Kerschbaum, E. E. Schultz, and S. 
Fahmy, “A framework for understanding vulnerabilities 
in firewalls using a dataflow model of firewall 
internals,” Computers & Security Vol.20, No.3, 2001, 
pp.263-270. 

[10]  D. Newman, “Benchmarking terminology for firewall 
performance,” RFC 2647, August 1999. 

[11]  E. Al-Shaer and H. Hamed, “Discovery of policy 
anomalies in distributed firewalls”, TINFOCOM, IEEE, 
2004, vol.4, pp. 2605-2616. 

[12]  T. Tuglular, “Test case generation for firewall 
implementation testing using software testing 
techniques,” Proc. 1st International Conf. on Security of 
Inform. & Networks, Trafford Publ., N. Cyprus, 2007, 
pp. 196-203. 

[13]  J. Treurniet and J. H. Lefebvre, “A finite state machine 
model of TCP connections in the transport layer,” 
(DRDC Ottawa TM 2003-139), Defence R&D Canada – 
Ottawa, 2003. 

[14]  T. Tuglular and F. Belli, “Model based mutation testing 
of firewalls,” Fast Abstracts of Testing: Academic & 
Industrial Conference, Windsor, UK, August 29-31, 
2008. 

[15]  R. E. Haeni, “Firewall penetration testing,” George 
Washington University Report, January, 1997. 

[16]  C. Jing, Z. Wang, X. Shi, X. Yin, and J. Wu, "Mutation 
testing of protocol messages based on extended TTCN-
3," Proceedings of 22nd International Conference on 
Advanced Information Networking and Applications, 
2008. 

[17]  K. Sabnani and A. Dahbura, “A protocol test generation 
procedure,” Computer Networks and ISDN Systems, 
vol.15, 1988, pp. 285–297. 

[18]  F. Belli and C. J. Budnik, “Test minimization for 
human-computer interaction,” J. of Applied Intelligence 
7(2), Springer, 2007. 

[19]  F. Belli, M. Eminov, and N. Gökçe, “Model-based test 
prioritizing – a comparative soft-computing approach 
and case studies,” KI 2009, LNAI 5803, 2009, pp. 425–
432. 

[20]  A. M. Memon, M. L. Soffa, and M. E. Pollack, 
“Coverage criteria for gui testing”, SIGSOFT Softw. 
Eng. Notes, 26(5), 2001, pp. 256–267. 

[21]  F. Belli, “Finite state testing and analysis of graphical 
user interfaces,” Proc. ISSRE’01, IEEE Computer 
Society, 2001, pp. 34–43. 

[22]  A. M. Memon, “An event-flow model of GUI-based 
applications for testing,” Softw. Test. Verif. Reliab., 
17(3), 2007, pp. 137–157. 

[23]  A. M. Memon, M. E. Pollack, and M. L. Soffa, 
“Hierarchical GUI test case generation using automated 
planning,” IEEE Trans. Softw. Eng. 27(2), 2001, pp. 
144-155. 

 
 

59


