
Protocol-Based Testing of Firewalls

Tugkan Tuglular
Department of Computer Engineering,
Izmir Institute of Technology, Turkey

tugkantuglular@iyte.edu.tr

Fevzi Belli
Department of Computer Science, Electrical

Engineering and Mathematics,
University of Paderborn, Germany

belli@upb.de

Abstract—A firewall is the most important tool of
network security defense. Its proper functioning is
critical to the network it protects. Therefore a fire-
wall should be tested rigorously with respect to its
implemented network protocols and security policy
specification. We propose a combined approach for
test case generation to uncover errors both in fire-
wall software and in its configuration. In the pro-
posed approach, abstract test cases are generated
by mutating event sequence graph model of chosen
network protocol and filled with values from policy
specification by using equivalence partitioning and
boundary value analysis. A case study is presented
to validate the presented approach.

Keywords-testing; mutation testing; protocol robustness
testing; conformance testing; firewalls

I. INTRODUCTION
As being most important security defense of a net-

work, firewalls have to be tested to validate that they
work as specified. Most of the work known from secu-
rity literature [1,2] focuses on testing of firewall rules
where firewall implementation is assumed error-free.
However, a firewall may have vulnerabilities as shown
by Kamara et al. [3] or can be hacked and programmed
to behave differently from its specification. A firewall
vulnerability is defined as an error made during fire-
wall design, implementation, or configuration, that can
be exploited to attack the trusted network that the fire-
wall is supposed to protect [3]. Identifying and elimi-
nating vulnerabilities is one of most important goals of
security management.

The firewall specification is mainly composed of
intended security policy and allowed network proto-
cols, which are the main focus of our firewall testing
approach. The intended security policy consists of
firewall rules which configure the firewall behavior
and the allowed network protocols constitute the
important part of firewall’s internal working which can
be described as packet capture, decision making on the
packet under consideration, and packet release. Deci-

sion making operation is carried out with respect to
firewall policy and network protocols. The security
policy is external to the firewall like a configuration
file, whereas packet checking with respect to network
protocols is implemented in the firewall software.

The way to process valid inputs as well as a few
invalid ones is described by the protocol specification.
As conformance testing only verifies an implementa-
tion with respect to its protocol specification, its capa-
bility of error-detection is limited. Furthermore, distur-
bance, misconfiguration and man-made attacks exist in
the Internet. The critical requirement on reliability,
fault tolerance and security of network devices high-
lights the necessity of protocol robustness testing [16].

This paper extends our idea of firewall testing [14],
where we introduced the idea of applying mutation
analysis technique to firewall testing. The novelty of
the present paper stems from following:

(i) The network protocol, the implementation of
which is under test, is modeled using event se-
quence graphs (ESGs).

(ii) The mutants of the network protocol imple-
mentation are generated using mutation oper-
ators specifically defined for ESGs.

(iii) The test case generation is achieved in two
phases. In the first phase, abstract test cases
are generated by producing mutants from the
model of the protocol under consideration. In
the second phase, generated abstract test cases
are converted to concrete test cases using
firewall policy to determine test input values.
Concrete test input values are obtained using
equivalence class partitioning and boundary
value approach.

The present approach can also be applied to specific
high level firewalls [4], which check network packets
and streams with respect to application protocols, such
as HTTP and SOAP, to assure acceptable use of web
services in accordance with the application level secu-
rity policy.

Next section summarizes related work before Sec-
tion 3 outlines the theoretical background of the ap-
proach. The core of the paper, Section 4, explains our

2009 Fourth South-East European Workshop on Formal Methods

978-0-7695-3943-0/09 $26.00 © 2009 IEEE

DOI 10.1109/SEEFM.2009.14

53

model-based mutation testing approach. Section 5
presents the case study we carried out to exemplify the
approach and indicate its characteristic features. Sec-
tion 6 concludes the paper and outlines future work
planned.

II. RELATED WORK
There are three general approaches to firewall test-

ing [2]: penetration testing, testing of the firewall rules,
and testing of the firewall implementation.

Penetration testing is performed to check the fire-
wall for potential breaches of security that can be ex-
ploited. The firewall penetration testing is structured in
the following four steps [15]:

• indirect information collection,
• direct information collection,
• attack from the outside, and
• attack from the inside.
This type of testing targets specific known vulnera-

bilities of firewalls determined through information
collection.

Testing of the firewall rules verifies whether the se-
curity policy is correctly enforced by a sequence of
firewall rules or not. According to Al-Shaer and
Hamed [11], in a single firewall environment, the local
firewall policy may include firewall anomalies, where
the same packet may match more than one filtering
rule. Testing of the firewall rules is used to discover
firewall policy anomalies.

The firewall implementation testing approach eva-
luates the correspondence of firewall rules with respect
to the actions the firewall performs, e.g., it checks
whether a rule indicates to block a packet, but the fire-
wall illegally forwards the packet, which might be
caused by a firewall implementation error [2].

This paper focuses on firewall implementation test-
ing by considering both the network protocol imple-
mentation and policy execution. As far as authors of
this paper could check, there is one similar approach
by Senn et al. [5], who worked on firewall implemen-
tation testing using protocol finite state automata
(FSA) to generate abstract test cases through unique
input/output (UIO) sequences [17] and instantiate ab-
stract test cases with test tuples consisting of

<protocol>, <srcIP>, <dstIP>, <action>

fields of a firewall policy rule. However, our work ge-
nerates abstract test cases from protocol ESG using
mutation operators defined for ESGs and concrete test
cases are built using
<protocol>, <srcIP>, <srcPort>, <dstIP>, <dstPort>, <action>

fields of a firewall rule.
Although not directly related to firewall testing,

Wimmel and Jürjens [6] applied the concept of muta-
tion analysis to specification-based test generation for

security-critical systems. In their work, the test se-
quences are determined with respect to the system’s
required security properties, using mutations of the
system specification and attack scenarios. They also
followed the approach of abstract test case generation
and their concretization to apply to an existing imple-
mentation.

Protocol robustness testing attempts to verify
whether or not implementation under test can function
correctly in the presence of invalid inputs or stressful
environmental conditions. It aims to detect vulnerabili-
ties of protocol specification and protocol implementa-
tions. Invalid inputs include messages with invalid
syntax (i.e., messages which disobey protocol specifi-
cation data formats) and messages with anomalous
semantics (i.e., messages which have valid syntax but
conflict with protocol state, configuration, parameters
and policies). Robustness testing by injecting messages
with invalid syntax is called mutation testing of proto-
col messages [16]. Jing et al. [16] claimed that TTCN-
3, a standard test specification language, reveals strong
excellence in conformance testing, and they applied
TTCN-3 to mutation testing and extended it according
to test requirements. They tested OSPFv2 sufficiently
with a test system based on extended TTCN-3.

In our work, we concentrate on protocols used by
stateful firewalls. For modeling we use ESG notion
which is similar to the concept of event flow graphs
[22, 20]. The latter are used for analysis and validation
of user interface requirements prior to implementation
and testing of the code [23]. The present paper chooses
ESG notation because it intensively uses formal,
graph-theoretical notions and algorithms which are
developed independently from and prior to event flow
graphs [21].

III. THEORETICAL BACKGROUND
While testing a system, a model of the system helps

to predict and control its behavior. Modeling a system
acquires the understanding of its abstraction and there
is the need of a formal specification tool distinguishing
between legal and illegal situations. These require-
ments are fulfilled by ESGs.

A. Event Sequence Graphs
Apart from the notion of FSA, in ESG, the simplifi-

cation by merging the inputs and states helps the test
engineer to easily understand and check the external
behavior of the system, hence the “inputs” and “states”
are turned into “events”.

Basically, an event is an externally observable phe-
nomenon, such as an environmental or a user stimulus,
or a system response, punctuating different stages of
the system activity. Following, we formally define
ESG; a simple example of an ESG is given in Fig. 1.

54

Definition 1. An event sequence graph ESG = (V,
E, Ξ, Γ) is a directed graph where V ≠ ∅ is a finite set
of vertices (nodes), E ⊆ V×V is a finite set of arcs
(edges), Ξ, Γ ⊆ V are finite sets of distinguished verti-
ces with ξ∈Ξ, and γ ∈ Γ, called entry nodes and exit
nodes, respectively, wherein ∀v ∈ V there is at least
one sequence of vertices 〈ξ,v0,…,vk〉 from each ξ ∈ Ξ to
vk = v and one sequence of vertices 〈v0,…,vk,γ〉 from v0
= v to each γ ∈ Γ with (vi,vi+1) ∈ E, for i = 0,…,k-1 and
v ≠ξ,γ.
Ξ (ESG) and Γ (ESG) represent the entry nodes and

exit nodes of a given ESG, respectively. To mark the
entry and exit of an ESG, all ξ ∈ Ξ are preceded by a
pseudo vertex ‘[’ ∉ V and all γ ∈ Γ are followed by
another pseudo vertex ‘]’ ∉ V. The semantics of an
ESG is as follows: Any v ∈ V represents an event. For
two events v, v’ ∈ V, the event v’ must be enabled after
the execution of v iff (v, v’) ∈ E. The operations on
identifiable components of the GUI are controlled
and/or perceived by input/output devices, i.e., elements
of windows, buttons, lists, etc. Thus, an event can be a
user input or a system response; both of them are ele-
ments of V and lead interactively to a succession of
user inputs and expected desirable system outputs.

Definition 2. Let V, E be defined as in Definition 1.
Then any sequence of vertices 〈v0,…,vk〉 is called an
event sequence (ES) iff (vi,vi+1) ∈ E, for i=0,…,k-1.
Moreover, an ES is complete (or, it is called a complete
event sequence, CES), iff v0 ∈ Ξ and vk ∈ Γ.

Note that the pseudo vertices ‘[’, ‘]’ are not
included in ESs. An ES = 〈vi,vk〉 of length 2 is called
an event pair (EP). A CES may invoke no interim
system responses during user-system interaction, i.e., it
may consist of consecutive user inputs and a final
system response.

Our approach assumes that upon a faulty user input
the system has to inform the user, and, wherever possi-
ble, point him or her properly in the right direction in
order to reach the desirable final or interim situation.
Due to this requirement, a complementary view is nec-
essary to consider potential user errors in the modeling
of the system.

Definition 3. For an ESG = (V, E), its completion is
defined as with .

Definition 4. The inverse (or complementary) ESG
is then defined as with .

Fig. 1 illustrates , which can systematically be
constructed in three steps:

• Add arcs in the opposite direction wherever
only one-way arcs exist.

• Add self-loops to vertices wherever none exist.
• Add two-way arcs between vertices wherever

no arcs connect them. Note that they are drawn
bi-directional.
 (the inversion of the ESG) consists of arcs that

will be added to the ESG to construct the
(completion of the ESG). Graphically speaking, miss-
ing edges of the ESG represent undesirable user-
system interactions, i.e., faulty event pairs (FEP). FEPs
can systematically be constructed by using either step
of construction steps.

Definition 5. Let ES = 〈v0,…,vk〉 be an event se-
quence of length k+1 of an ESG and FEP = 〈vk,vm〉 a
faulty event pair. The concatenation of the ES and FEP
then forms a faulty event sequence FES = 〈v0,…,vk,vm〉.
FES is complete (or, it is called a faulty complete event
sequence, FCES) iff v0 ∈ Ξ. The ES as part of a FCES
is called a starter.

CES and FCES are used to form test cases for the
system under test (SUT). The SUT is supposed to ac-
cept test inputs described by CESs in the specified or-
der whereas test inputs described by FCESs should
result in a warning.

Completeness Ratio (CR) is a metric which explains
density of edges in the ESG and is defined as follows:

CR = |E| / |V|2
where |E| is the number of edges in the ESG and |V| =
n is the number of nodes (vertex) in the ESG. CR takes
the values between 0 and 1. Value 1 shows that ESG is
completed graph and Value 0 means null graph. As the
values are getting closer to 1, the density of the graph
gets bigger.

Figure 1. An , its completion and its inversion .

55

B. Mutant Generation
Assuming that the given ESG correctly specifies the

expected, desirable behavior of SUT, the comple-
mented ESG can be used to generate mutants of the
system, i.e., to specify erroneous, undesirable situa-
tions. In other words, to describe, how the system is
not supposed to behave. The given ESG can be
changed by manipulating either the arcs or the events
[7]. Arcs are primarily responsible for correctly
sequencing the events, in our case network events.

Basically, we can generate arc mutants of an ESG
by

• inserting an extra arc in any direction, without
causing a multiple arc in the same direction (arc
insertion, aI-operation), or

• omitting an existing arc (arc omission, aO-
operation).

It is important to note that
• applying the aI-operation to all EPs of an ESG

produces its inversion ESG and leads to the
completion of the ESG given. Based on the
complete ESG and using the algorithms given
in [8], FCESs can systematically be generated
to obtain mutants,

• applying the aO-operation to all EPs of an ESG
generates ES of various lengths that are mutants
to simulate incomplete paths, i.e., deadlocks.

aI- and aO-operations can be applied to an ESG
repeatedly, e.g., n times. This is represented as aIn and
aOn. They can also be combined arbitrarily, e.g., three
arcs inserted or two arcs deleted; represented by aI3 +
aO2. “+” represents the choice as inclusive or.

C. Test Process
The approach introduced in this paper uses event

sequence mutants. Each mutant is covered by either a
CES or FCES. More precisely, test inputs are CES and
FCES of original ESG. If the input is a CES, the SUT
is supposed to successfully proceed it and thus, to suc-
ceed the test and to trigger a desirable event. Accor-
dingly, if a FCES is used as a test input, a failure is
expected to occur which is an undesirable event and
thus, to fail the test. Algorithm 1 below sketches the
optimized test process.

The approach ensures the coverage of ESs of length
n, whereby n=1 is the node coverage, and n>1 is the
coverage of ES of the length>2. Additionally, the cov-
erage of the FEP is also ensured.

The union of the sets of CESs of minimal total
length to cover the ESs of a required length is called
Minimal Spanning Set of Complete Event Sequences
(MSCES). If a CES contains all EPs at least once, it is

called an entire walk. A legal entire walk is minimal if
its length cannot be reduced. A minimal legal walk is
ideal if it contains all EPs exactly once. Legal walks
can easily be generated for a given ESG as CESs, re-
spectively. It is not, however, always feasible to con-
struct an entire walk or an ideal walk. The algorithm to
determine MSCES is given and explained in [18].
Another approach to minimize the number of event
sequences was proposed by Memon et al. [20]. Since it
is impractical to test a SUT for all possible event se-
quences for large number of event sequences, they sug-
gested to identify important sequences through assign-
ing a priority to each event sequence and generate test
cases from these important sequences.

Algorithm 1. Test Process [18].

length: length of the test sequences
Generate appropriate and
FOR k:=2 TO length DO

Cover all ESs of length k by means of CESs subject
to minimizing the number and total length of the
CESs

Cover all FEPs of by means of FCESs subject to
minimizing the total length of the FCESs
Apply the test set to the SUT
Observe the system output to determine whether the
system response is in compliance with the expectation.

IV. APPROACH
We constructed a firewall dataflow model by taking

layers, which deal with network protocol processing
with respect to protocol specification and access con-
trol evaluation in accordance with firewall policy, from
the dataflow model of firewall internals described by
Frantzen et al. [9]. Our firewall dataflow model is pre-
sented in Fig. 2.

After a network packet is received, it may pass vari-
ous layers for some filtering and processing until dy-
namic ruleset layer which is the core of stateful fire-
walls. The dynamic ruleset, or state table, serves to
associate each packet with its connection stream [10].
Part of the protocol, i.e., its FSA, implementation
exists in this layer. Therefore, it is one of our testing
targets. If a packet belongs to a connection that is in
the state table, it bypasses following checks and filters
for performance reasons. Our second testing target is
the execution layer of firewall policy, namely IP and
port filtering layer. Depending on the firewall rules, of
which modeling is explained in Section 4.2, packets
may be dropped in this layer. Furthermore, packets that
are part of an application stream are checked for con-
formance with respect to the chosen application level

56

protocols such as HTTP and SOAP in application level
layer. Our proposed testing approach can be applied to
protocols at any level in the network protocol stack.

Our test case generation consists of two parts. First,
we generate abstract test cases. Abstract test cases are
produced to test the correct stateful handling of a pro-
tocol by a firewall. For example, a stateful packet filter
may be tested to determine whether it correctly handles
TCP traffic. Second, we generate test input data from
the firewall policy. To obtain the concrete test cases,
we instantiate abstract test cases with test input data.

A. Abstract Test Cases
Assuming that the given ESG correctly specifies the

expected, desirable behavior of the protocol, manipu-
lation of event transitions can be used to generate mu-
tants of the protocol, i.e., to specify erroneous, unde-
sirable situations [7]. Using this model-based ap-
proach, a mutant can be generated and it will behave in
a way that the protocol is not supposed to behave. In
this proposed approach, we generate mutants of an
ESG only by inserting an extra arc in any direction and
omitting an existing arc.

B. Concrete Test Cases
In the second phase of the approach, sequence of

firewall rules is converted to a firewall policy tree as
described in [11], which is then used as a test tree.
Each node in the policy tree represents a field of a rule.
A firewall rule is abstracted as

“IF (<protocol>, <srcIP>, <srcPort>, <dstIP>, <dstPort>)
THEN <action>”,

where protocol is a network protocol, such as TCP or
UDP, and action is either ALLOW or DENY. The root
node of a policy tree represents the protocol field, and
the leaf nodes represent the action field, intermediate
nodes represent other fields in order. Every tree path
starting at the root and ending at a leaf represents a rule
in the policy and vice versa. The equivalence class
partitioning divides the input domain of the SUT into a
finite number of partitions or equivalence classes. The
equivalence classes are identified by taking each input
condition – in our approach each field of the rule or
each node of the policy tree – and partitioning it into
two classes [12]. When generating test input data, val-
ues that a hacker might choose are considered in addi-
tion to the boundary values in equivalence classes. Fi-
nally, we instantiate the abstract test cases with the test
input data to obtain concrete test cases.

C. Firewall Evaluator Architecture
Although firewalls are implemented as software,

their method of input and output is network I/O. There-
fore, network packets should be produced, injected,
and collected in order to test a firewall. Test packets
will be derived from generated test cases and those

packets will be sent or injected to the firewall to ana-
lyze its behavior. To be able to analyze and evaluate
behavior firewall under test (FUT) with respect to test
cases, we developed a special architecture as illustrated
in Fig. 3.

Figure 2. Firewall dataflow model.

The test packets are released from packet injection
point (PIP). All the traffic entering and leaving the
firewall is recorded and collected data is analyzed to
obtain test outputs, which are compared with expected
outputs to determine test result. We expect to see al-
lowed packets at the packet leaving point but not the
denied packets. This architecture can also be used to
monitor a firewall constantly to check whether it oper-
ates in accordance with its specification and imple-
mentation.

Figure 3. Firewall evaluator architecture.

57

V. CASE STUDY
If the FUT has a stateful packet filter, as almost all

firewalls do, this means that related automaton for each
stateful protocol is implemented in the firewall soft-
ware. If TCP protocol is supported by the firewall, it
should contain necessary code that executes the au-
tomaton for the TCP protocol, which is presented in
Table 1. The event labels and their event descriptions
are as follows [13]:

• S – Request to open connection,
• SA – Agree to open connection,
• A – Acknowledgement of receipt,
• F1 – Request to close connection,
• F2 – Request to close connection, and
• R – Tear down connection.

TABLE I. TRANSITION TABLE for TCP FSM [13].

Event
State

S SA A F1 F2 R Other

L H1 Ø Ø Ø - Ø Ø
H1 H1 H2 H1 Ø - Ø Ø
H2 H2 H2 X Ø - Ø Ø
X Ø Ø X C1 - C2 Ø
C1 Ø Ø C1 C1 C2 C2 Ø
C2 Ø Ø C2 C2 C2 C2 Ø
Ø Ø Ø Ø Ø Ø Ø Ø

The corresponding ESG of the TCP automaton is

given in Fig. 4. We can now create a mutant for the
ESG of TCP protocol by inserting or omitting arc(s)
using the algorithm presented in [8].

Figure 4. ESG for TCP Protocol.

Since TCP is a reliable protocol, it has a high level
redundancy. Therefore, a mutant created by omitting
only a single arc will not be able to behave altogether
differently. Even though the protocol is reliable, it does
not imply that its implementation is correct and

therefore the implementation should be tested
comprehensively by using mutants created for abstract
test cases.

As an example, the event sequence S-SA-F1 is a
mutant ES for TCP protocol, which means request to
close connection that is not established. At the same
time, the sequence S-SA-F1 is a FCES for TCP proto-
col, which constitutes an abstract test case in our ap-
proach. For this test case, three test packets should be
concretized with source IP address, source port, desti-
nation IP address, and destination port. The IP address
and port values are generated from firewall policy
rules.

Some of the test input data generated using equiva-
lence partitioning and boundary value analysis for the
firewall rule

<tcp, 193.140.248.*, any, *.*.*.*, 25, accept>
are presented in Table 2. Test cases numbered as 2, 3,
and 4 have the given expected output unless there are
other rules concerning the values in the test input data.
The values shown in bold for the second, third, and
fourth test cases are the reason for denying packets
with respect to above firewall rule. The mutant ES can
be instantiated with values presented in Table 2 and
generated network packets can be injected using fire-
wall evaluator architecture.

TABLE II. A SET of GENERATED TEST CASES.

No Test Input Expected
Test

Output
1 tcp,193.140.248.1,80,193.140.250.1,25 allow
2 tcp,193.140.247.1,80,193.140.250.1,25 deny
3 tcp,193.140.249.1,80,193.140.250.1,25 deny
4 tcp,193.140.248.1,80,193.140.250.1,24 deny

VI. CONCLUSION
We proposed a combined approach for test case

generation to uncover errors both in firewall software
and in its configuration. In the proposed approach, ab-
stract test cases are generated by mutating event se-
quence graph model of implemented network protocol
and filled with values from policy specification by us-
ing equivalence partitioning and boundary value analy-
sis. At the moment we apply this approach to some
well-known open source firewalls.

The next step will extend the proposed approach to
cover application firewalls, where we plan to develop
specific test suites for application level protocols such
as HTTP and SOAP to cover web services as well.

REFERENCES
[1] H. Heidi, “Specification based firewall testing,” Master

of Arts Thesis, Texas State University-San Marcos, May
2004.

58

[2] G. Zaugg, “Firewall testing,” Diploma Thesis, ETH
Zürich, 2005.

[3] S. Kamara, S. Fahmy, E. E. Schultz, F. Kerschbaum,
and M. Frantzen, “Analysis of vulnerabilities in Internet
firewalls,” Computers & Security, 22:3, 2003, pp.214-
232.

[4] E. B. Fernandez, “Two patterns for web services
security”, Proceedings of the International Symposium
on Web Services and Applications, Las Vegas, 2004.

[5] D. Senn, D. Basin, and G. Caronni, “Firewall
conformance testing,” TestCom 2005, LNCS 3502,
2005, pp. 226–241.

[6] G. Wimmel and J. Jurgens, “Specification-based test
generation for security-critical systems using
mutations,” ICFEM 2002, LNCS 2495, 2002, pp. 471-
482.

[7] F. Belli, C. J. Budnik, and W. E. Wong, “Basic
operations for generating behavioral mutants,” Proc. 2nd
ISSRE Workshop on Mutation Analysis, IEEE, 2006.

[8] F. Belli and C. J. Budnik, “Minimal spanning set for
coverage testing of interactive systems,” Proc. of Int.
Colloquium on Theoretical Aspects and Computing,
LNCS 3407, 2004, pp. 220-234.

[9] M. Frantzen, F. Kerschbaum, E. E. Schultz, and S.
Fahmy, “A framework for understanding vulnerabilities
in firewalls using a dataflow model of firewall
internals,” Computers & Security Vol.20, No.3, 2001,
pp.263-270.

[10] D. Newman, “Benchmarking terminology for firewall
performance,” RFC 2647, August 1999.

[11] E. Al-Shaer and H. Hamed, “Discovery of policy
anomalies in distributed firewalls”, TINFOCOM, IEEE,
2004, vol.4, pp. 2605-2616.

[12] T. Tuglular, “Test case generation for firewall
implementation testing using software testing
techniques,” Proc. 1st International Conf. on Security of
Inform. & Networks, Trafford Publ., N. Cyprus, 2007,
pp. 196-203.

[13] J. Treurniet and J. H. Lefebvre, “A finite state machine
model of TCP connections in the transport layer,”
(DRDC Ottawa TM 2003-139), Defence R&D Canada –
Ottawa, 2003.

[14] T. Tuglular and F. Belli, “Model based mutation testing
of firewalls,” Fast Abstracts of Testing: Academic &
Industrial Conference, Windsor, UK, August 29-31,
2008.

[15] R. E. Haeni, “Firewall penetration testing,” George
Washington University Report, January, 1997.

[16] C. Jing, Z. Wang, X. Shi, X. Yin, and J. Wu, "Mutation
testing of protocol messages based on extended TTCN-
3," Proceedings of 22nd International Conference on
Advanced Information Networking and Applications,
2008.

[17] K. Sabnani and A. Dahbura, “A protocol test generation
procedure,” Computer Networks and ISDN Systems,
vol.15, 1988, pp. 285–297.

[18] F. Belli and C. J. Budnik, “Test minimization for
human-computer interaction,” J. of Applied Intelligence
7(2), Springer, 2007.

[19] F. Belli, M. Eminov, and N. Gökçe, “Model-based test
prioritizing – a comparative soft-computing approach
and case studies,” KI 2009, LNAI 5803, 2009, pp. 425–
432.

[20] A. M. Memon, M. L. Soffa, and M. E. Pollack,
“Coverage criteria for gui testing”, SIGSOFT Softw.
Eng. Notes, 26(5), 2001, pp. 256–267.

[21] F. Belli, “Finite state testing and analysis of graphical
user interfaces,” Proc. ISSRE’01, IEEE Computer
Society, 2001, pp. 34–43.

[22] A. M. Memon, “An event-flow model of GUI-based
applications for testing,” Softw. Test. Verif. Reliab.,
17(3), 2007, pp. 137–157.

[23] A. M. Memon, M. E. Pollack, and M. L. Soffa,
“Hierarchical GUI test case generation using automated
planning,” IEEE Trans. Softw. Eng. 27(2), 2001, pp.
144-155.

59

