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Abstract. In this article, the thermodynamics of regular black holes with a cosmic string passing through
them is studied. We will observe that the string has no effect on the temperature as well as on the relation
between entropy S and horizon area A.

1 Introduction

The notion of a black hole was firstly predicted by John Michell in 1783. Later, in 1915, the modern concept of black
holes was developed with Einstein’s general theory of relativity. However, because of the singularity at the center,
they were also seen as the proof of the breakdown of the very same theory. We can solve this singularity problem by
constructing a spherically symmetric non-singular (regular) black hole (RBH), Bardeen was the first to build in [1].
This and many other RBH models violate the strong energy condition which allows to break the singularity [2].

Cosmic strings are thought to be one-dimensional topological solitons that formed in the early universe during
phase transitions [3]. Locally, the string does not produce a gravitational field, but is globally conical. That means
that, outside the string, we see observable effects like light deflection [4–6]. There are studies on finding cosmic strings
that include this property, like the Capodimonte-Sternberg-Lens candidate no. 1 (CSL-1) [7,8]. Another study is on
finding gravitational wave bursts produced by cosmic strings [9–13]. All these studies were promising, however, they
do not have an exact observation of cosmic strings.

In this paper, we study how the string affects the thermodynamics properties of the RBH largely studied in [14].
We shall observe that it has not that much of an effect after all.

We will use the natural units throughout this paper, that is G = � = c = kB = 1.

2 Regular black holes and cosmic strings

Since regular black holes have metrics with spherical symmetry, one can build the following metric in the (t, r, θ, φ)
coordinates:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + α2 sin2 θdφ2), (1)

where the cosmic string parameter is α = 1 − 4μ, and μ is the mass per unit length of the string. The metric term
f(r) is

f(r) = 1 − 2m(r)
r

. (2)

The mass function [15] is given by

m(r) =
M0

[
1 + ( r0

r )q
] p

q

, (3)

where M0 and r0 are mass and length parameters, respectively. For an asymptotic flat spacetime, p and q are positive
integers [15]. For p = 3 and q = 2, and p = q = 3, the Bardeen and Hayward regular black holes are obtained,
respectively. It is required for p to be equal to 3, because in the limits of small r of the mass function in eq. (3), we
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have a de Sitter core, firstly shown in [16,17] and improved in the 90s, see [18–21]. If r0 < M0, two solutions, r = r±,
arise, where r− is the inner and r+ is the outer horizon. The outer horizon is located at r+ ≈ 2m(r), as can be seen
in eq. (2).

3 Temperature

We will derive the temperature in two ways: with the surface gravity κ, and with the tunneling effect.
The surface gravity is

κ =
1
2

df(r)
dr

∣
∣
∣
∣
r+

. (4)

In 1974, Hawking discovered that black holes emit radiation [22], therefore have a (Hawking) temperature given by

Tκ =
κ

2π
. (5)

By using the metric in eq. (1), the mass function in eq. (3), and M0, which can be found by f(r+) = 0, we can easily
show that

f ′(r) =
2M0(1 − ( r0

r )q)−
p
q −1[1 − (p − 1)( r0

r )q]
r2

, (6)

κ =
f ′(r)

2

∣
∣
∣
∣
r=r+

=
M0[1 − (p − 1)( r0

r+
)q][1 + ( r0

r+
)q]−

p
q −1

r2
+

, (7)

M0 =
r+

2

[
1 +

(
r0

r+

)q] 3
q

(8)

and, therefore,

Tκ =
1

4πr+

[
1 − 2

(
r0

r+

)q] [
1 +

(
r0

r+

)q]−1

. (9)

The Hawking radiation was largely studied in [23–25].
The second way to calculate the temperature is the tunneling effect. Since only the radial trajectories are of interest,

near the horizon our metric can be studied as

ds2 = f(r)dt2 +
dr2

f(r)
. (10)

The Klein-Gordon equation for a scalar field φ with mass mφ is

�
2gμν∇μ∇νφ − m2

φφ = 0, (11)

where gμν∇μ∇ν is known as the D’Alembert operator, �. The D’Alembertian is defined as

� =
1

√
|g|

∂i

√
|g|gij∂j , (12)

where g = det(gij), with i, j = μ, ν. We can write the metric tensor gμν as

gμν =
(−f(r) 0

0 f(r)−1

)
,

⇒ gμν =
(−f(r)−1 0

0 f(r)

)
.

Now we can calculate the D’Alembert operator. We can clearly see that g = det(gμν) = −1. Using the equation in (12),

�φ =
1

√
| − 1|

∂μ

√
| − 1|gμμ∂μ +

1
√

| − 1|
∂ν

√
| − 1|gνν∂ν , (13)
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where the other terms are equal to zero. Therefore,

�φ = −f(r)−1∂2
t φ + ∂rf(r)∂rφ + f(r)∂2

rφ. (14)

Put this in eq. (11),
�

2
[
f(r)−1∂2

t φ + ∂rf(r)∂rφ + f(r)∂2
rφ

]
− m2

φφ = 0. (15)

We divide everything by �
2 and multiply by f(r) and get

∂2
t φ + f(r)∂rf(r)∂rφ + f(r)2∂2

rφ −
m2

φ

�2
f(r)φ = 0. (16)

We can write the f(r)∂rf(r)∂rφ part as 1
2∂rf(r)2∂rφ. So the final form is

−∂2
t φ + f(r)2∂2

rφ +
1
2
∂rf(r)2∂rφ −

m2
φ

�2
f(r)φ = 0. (17)

To solve this equation, we use the WKB method, which has the ansatz solution given as

φ(t, r) = exp
[
− i

�
I(t, r)

]
. (18)

We put this in eq. (17);

− ∂2
t e−

i
�

I(t·r) + f2∂2
re−

i
�

I(t·r) +
1
2
∂rf

2∂re
− i

�
I(t·r) −

m2
φ

�2
fe−

i
�

I(t·r) = 0, (19)

i

�
∂2

t I +
1
�2

(∂tI)2 − i

�
f2∂2

r I − 1
�2

f2 (∂rI)2 − i

�

1
2
∂rf

2∂rI −
m2

φ

�2
f = 0. (20)

Multiply by �
2,

�∂2
t I + (∂tI)2 − i�f2∂2

r I − f2(∂rI)2 − i�
1
2
∂rf

2∂rI − m2
φf = 0. (21)

The lowest order of � yields the following Hamilton-Jacobi equation:

(∂tI)2 − f(r)2(∂rI)2 − m2
φf(r) = 0 (22)

and the split action form is
I(t, r) = −Et + W (r), (23)

W (r) is the spatial part of the action, and is found to be

W± = ±
∫

dr

f(r)

√
E2 − m2

φf(r), (24)

where ± corresponds to the outgoing and ingoing particles, respectively. Our focus for the Hawking radiation is the
classically forbidden solutions W+(r), which cross the event horizon r+.

The coordinate invariant proper spatial distance is [26]

dσ2 =
dr2

f(r)
. (25)

The approximation of f(r) near the horizon r+ gives

f(r) = f ′(r+)(r − r+), (26)

thus

σ = 2
√

r − r+√
f ′(r+)

, (27)

where 0 < σ < ∞.
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Then W+(r) reads

W+(r) =
2

f ′(r+)

∫
dσ

σ

√

E2 − σ2

4
m2

φf ′(r+)2 =
2πiE

f ′(r+)
+ real contribution. (28)

So the tunneling probability is given as

Γ ≈ e−2ImI = e
− 4πE

f′(r+) . (29)

If we approach eq. (29) like the Boltzmann factor e−E/T , we get the Hawking temperature as

Tt =
f ′(r+)

4π
= Tκ, (30)

which is the same temperature as we found from the surface gravity, κ.
As we can see, the temperature we have found is not different from the one in [14]. Thus, the results are the same:

we obtain the Schwarzschild temperature by setting r0 = 0, M0 = M and r+ to the Schwarzschild radius, that is
TSch = 1/4πr+. And, with a little computation we see that (with or without cosmic strings, in this context) RBHs
are colder than the Schwarzschild black holes.

4 Entropy

Having r+ ≈ 2m(r) as the position of event horizon, with the aid of eq. (1), we have the following horizon area:

A = 4παr2
+ = 16παm2. (31)

Since the area is α-dependent, we have to follow the method given in [4] to see the relation between S and A.
The following entropy relation is used,

dS =
dE

T
, (32)

where E is the measured energy of the black hole by an observer at infinity. Since with the string the spacetime is no
longer asymptotically Minkowskian (flat), E �= M .

Let Tμν be the stress tensor for some matter field propagating on the spacetime, representing the Hawking radiation
or classical matter that is thrown into the black hole. Also, let ξμ = (1, 0, 0, 0) be the timelike Killing vector for our
metric in eq. (1); then ξμTμν is a covariantly conserved vector current and the rate of flow of energy in or out of the
black hole may be written as

Ė =
∮

ξμTμνdΣν , (33)

where the surface integral is taken over the horizon. The metric for a black hole given in eq. (1) with slowly changing
mass

m(r) = m(r, t) = m0 + ṁt, (34)
where m0 and ṁ are constants. The Einstein tensor for this metric is

Gμν = G(0)
μν + G(1)

μν + O(ṁ2), (35)

where

G(0)
μν = Λgμν ,

G(1)
μν = Rμν − 1

2
Rgμν ;

Rμν and R are the Ricci tensor and Ricci scalar, respectively, and Λ is the cosmological constant [27]. G
(0)
μν = 0 and

we neglect terms O(ṁ2). The Einstein equations, Gμν = 8πTμν then lead to

Ė =
1
8π

∫

r=r+

Gμνξμd
ν∑

=
1
8π

∫

r=r+

2ṁ

r2

√
gθθgφφdθ dφ

=
1
8π

2αṁ

r2

∫

r=r+

r2 sin θ dθ dφ

Ė = αṁ. (36)

As we can see, this solution confirms that the energy at infinity E and the mass parameter m are not identical.
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Now, if we use the new relation dE = αdm, and the Hawking temperature T = 1
8πm , in eq. (32),

dS = α
dm

dT

S = 8πα

∫
mdm

= 4παm2. (37)

Comparing it to eq. (31), we clearly see that

S =
1
4
A, (38)

which shows that the relation between S and A is not different with a string present from the relation that Beken-
stein [28] and Hawking [22] stated.

5 Conclusion

Our purpose in this paper was to study the effects a cosmic string has on the thermodynamics properties of the RBH.
We observed the string does not change the temperature of the RBH. The relation of entropy and horizon area is also
seen unchanged with a string present. We had to use a method given in [4] to find the entropy.

The author is grateful to Ali Övgün for getting her to study this topic and answering all of her questions with patience.
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