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We revisit the fine-tuning problem in the Standard Model (SM) and show the modification in the Veltman
condition by virtue of a minimally-extended particle spectrum with one real SM gauge singlet scalar
field. We demand the new scalar to interact with the SM fields through Higgs portal only, and the new
singlet to acquire a vacuum expectation value, resulting in a mixing with the CP-even neutral component
of the Higgs doublet in the SM. The experimental bounds on the mixing angle are determined by the
observed best-fit signal strength σ/σSM. While, the one-loop radiative corrections to the Higgs mass
squared, computed with an ultraviolet cut-off scale Λ, come with a negative coefficient, the quantum
corrections to the singlet mass squared acquire both positive and negative values depending on the
parameter space chosen, which if positive might be eliminated by introducing singlet or doublet vector-
like fermions. However, based upon the fact that there is mixing between the scalars, when transformed
into the physical states, the tree-level coupling of the Higgs field to the vector-like fermions worsens
the Higgs mass hierarchy problem. Therefore, the common attempt to introduce vector-like fermions to
cancel the divergences in the new scalar mass might not be a solution, if there is mixing between the
scalars.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The discovery of the fundamental particle of mass mh = 125.9±
0.4 GeV at the Large Hadron Collider (LHC) [1,2], highly likely to
be the Higgs boson of the Standard Model (SM), settles the ex-
perimental validation for the long sought missing piece of the SM.
The absence of any new physics signals by the first 20 fb−1 of
data from LHC operating at 8 TeV, on the other hand, casts doubts
on the relevance of our notion of the naturalness problem. At this
very moment of the shutdown of LHC, after a glimpse of what may
be the Higgs boson, understanding the hierarchy problem seems
crucial. In an effective field theory approach with an ultraviolet
cut-off Λ, the Higgs self-energy receives quadratically divergent
corrections from loop diagrams such that

m2
h = (

m2
h

)
bare +O

(
λH , g2

i

)
Λ2, (1)

where mh = √
2λHυH is the physical Higgs mass, λH is the Higgs

self-coupling, and gi are the renormalized couplings of the SM.
Hence, the natural scale for the Higgs mass is O(Λ), and it is un-
natural for it to be less than the ultraviolet cut-off of the theory,
which could be as high as the Planck Scale (MPl ∼ 1019 GeV).
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Originally studied by Veltman [3], the SM one-loop condition of
the quadratic divergences reads

δm2
h = Λ2

16π2

(
6λH + 9

4
g2 + 3

4
g′ 2 − 6g2

t

)
, (2)

where g and g′ are the SU(2)L and U (1)Y gauge couplings of the
SM, respectively, and gt = √

2mt/υH (υH = 246 GeV is the vac-
uum expectation value (VEV) of the Higgs field) is the top quark
Yukawa coupling. Since the contributions to the Veltman condition
(VC) by other fermions are considerably small compared to the one
by top quark, they are not taken into account. The VC demands
that the quadratically divergent terms above add up either to zero,
or to a very small value by virtue of some symmetry of the model.
Now that we know all the masses, based on the requirement that
|δm2

h|/m2
h � 1, the VC is in conflict with the experimental data for

Λ > 780 GeV. There have been various attempts to protect Higgs
mass from destabilizing by introducing a new set of particles and
interactions. Chief among them is Supersymmetry, which solves
the gauge hierarchy problem introducing supersymmetric partners
of the SM particles with masses around TeV (see [4] for a review
on supersymmetry and [5] as a recent work on the VC in a High-
Scale Supersymmetric model). So far, however, no compelling sign
of experimental evidence for supersymmetry has been found in
the searches at the Large Hadron Collider (LHC) [6]. Other possible
solutions are Little Higgs Models [7], Large and/or Warped Extra
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Dimensions [8]. There exists also a very different perspective, mo-
tivated by anthropic considerations [9], arguing that the notion of
the naturalness of the weak scale should be abandoned.

In the present work, we show the effect of extending the scalar
sector of the SM minimally, by introducing a real gauge singlet
scalar field that only couples with the Higgs doublet, on the VC.
The phenomenology of singlet scalars has been extensively studied
by [10] as a hidden sector, by [11,12] as a dark matter candidate,
and their effect on the stability condition has been previously dis-
cussed in [13,14]. We discuss also the radiative corrections for real
singlet scalar, and as opposed to what has been found in the litera-
ture, we show that even a small mixing angle might yield interest-
ing results, and that introducing singlet or doublet vector fermions
might not be a valid scenario for both scalars in the model (Higgs
boson and singlet scalar) in the presence of mixing between the
two.

2. The model

We consider the simplest extension of the SM by introducing
a real singlet scalar field S . We impose an additional Z2 symmetry
under which S is odd. The most general, renormalizable, symmet-
ric Lagrangian density reads,

LHS = (DμH)† DμH + 1

2
∂μS∂μS − V HS, (3)

where

V HS = μ2
H H† H + λH

(
H† H

)2 + μ2
S

2
S2 + λS

4
S4 + λ

2
H† H S2, (4)

is the potential, and H is the SM Higgs doublet. The potential is
bounded from below for λH > 0 and λS > 0, and the minimum
of the potential breaks the electroweak symmetry spontaneously
via non-zero vacuum expectation value (VEV) of the Higgs doublet,
〈H〉 = υH/

√
2, generating masses for the SM particles. Depending

on whether the real singlet scalar develops a VEV or not, the VC
takes different forms. In the subsequent analysis, we focus on the
former. However, in explaining the details of our model, we will
follow a pedagogical strategy, and include also the details of the
model where S is not developing a VEV.

2.1. Singlet VEV vanishes

If the real singlet scalar does not acquire a VEV, minimum of
the potential occurs at

υ2
H = −μ2

H

λH
, υ2

S = 0. (5)

Using the parametrization of the Higgs field above the vacuum as

H = 1√
2

(
H3 + iH4

υH + H1 + iH2

)
, (6)

the mass squared values of H1 ≡ h (the CP-even neutral compo-
nent of the Higgs doublet) and the S fields (for later convenience,
we use σ for the corresponding physical real singlet scalar) are
obtained as

m2
h = 2λHυ2

H , m2
σ = μ2

S + λ

2
υ2

H . (7)

In this scenario, with υS = 0, there is no mixing between the Higgs
and the new scalar field. Therefore, they appear naturally in their
mass eigenstates. Moreover, as it can be seen in Eq. (4), despite
there is no mixing, the quartic interaction term λ

4 σ 2h2 between
the σ and h fields still exists as long as λ 	= 0.
2.2. Singlet VEV does not vanish

If the real singlet scalar acquires a non-zero VEV, the minimum
of the potential occurs at

υ2
H = 4λSμ

2
H − 2λμ2

S

λ2 − 4λHλS
, υ2

S = 4λHμ2
S − 2λμ2

H

λ2 − 4λHλS
. (8)

Using the parametrization of the Higgs field above the vacuum as
in Eq. (6), and for the real singlet scalar as S = υS + S we obtain
the mass squared mixing matrix for the fields H1 and S

M2
H1,S =

(
2λHυ2

H
λ
2 υHυS

λ
2 υHυS 2λSυ

2
S

)
. (9)

After diagonalization, the mass matrix yields the masses of the
physical scalar h (Higgs field) and σ fields as follows:

m2
h = υ2

H

(
λH + λSυ

2
S H +

√(
λH − λSυ

2
S H

)2 + λ2

4
υ2

S H

)
,

m2
σ = υ2

H

(
λH + λSυ

2
S H −

√(
λH − λSυ

2
S H

)2 + λ2

4
υ2

S H

)
, (10)

where υS H = υS
υH

. The mixing angle in terms of model parameters
reads

tan 2θ = λυS H

λSυ
2
S H − λH

. (11)

As expected, the mixing angle θ is proportional to λ.
Below, we study in detail the latter case to analyze the contri-

butions to the VC coming from the singlet sector.

3. Phenomenology

The presence of one real singlet scalar field S , with VEV υS ,
modifies the VC for the Higgs mass, not only due to its direct
coupling to the SM Higgs doublet, but also its mixing with the
neutral, CP-even component of the doublet, which allows tree-level
interactions of the new scalar with the SM fields. We carry our cal-
culations up to one-loop order.

The VC is modified with the addition of one real singlet scalar
field as follows (see Appendix A for the vertex factors):

δm2
h = Λ2

16π2

[
cos4 θ

(
λ

2
+ 3λH

)
+ sin4 θ

(
λ

2
+ 3λS

)

+ sin2 2θ

(
3λH

4
+ 3λS

4
+ λ

4

)
+ sin2 θ

(
3λ

2

)

+ cos2 θ

(
3λH + 9

4
g2 + 3

4
g′ 2 − 6g2

t

)]
. (12)

In the limit of no mixing (i.e., cos θ → 1, sin θ → 0) the modi-
fied VC reduces to the original one given in Eq. (2), except the
term Λ2

16π2
λ
2 , which appears regardless of the mixing, and disap-

pears if and only if λ = 0. The reason is that vanishing of mass
mixing (θ → 0) does not guarantee vanishing of the quartic mix-
ing ( λ

2 H† H S2). The latter gives contribution to the VC even when
θ → 0.

The mass of the physical field σ is also shifted via the quadrat-
ically divergent quantum corrections.

δm2
σ = Λ2

16π2

[
cos4 θ

(
λ

2
+ 3λS

)
+ sin4 θ

(
λ

2
+ 3λH

)

+ sin2 2θ

(
3λH

4
+ 3λS

4
+ λ

4

)
+ cos2 θ

(
3

2
λ

)

+ sin2 θ

(
3λH + 9

g2 + 3
g′ 2 − 6g2

t

)]
. (13)
4 4
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Fig. 1. VC for the Higgs boson for λH = λS = 0.1. Contours represent δm2
h in units

of Λ2. The shaded regions are excluded either because they represent non-physical
situations or by the experiments. The light-gray shaded region is where υS H =
υS /υH < 0, light-green shaded region is where m2

σ is negative, and light-orange
shaded region is ruled out at the LHC via the best-fit signal strength measure-
ments σ/σSM = cos2 θ = 0.87 ± 0.23. In this plot, there is always a region satisfying
123 GeV � mh � 129 GeV and the region for singlet mass is mσ � 108 GeV. In-
troducing vector fermions entails the undesired effect of making the negative δm2

h
even more negative. (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)

In the limit of no mixing δm2
σ reduces to Λ2

16π2 (2λ + 3λS ), which
well agrees with the results in [13]. To illustrate the change in the
VC, satisfying the experimental bounds, we plot in Figs. 1 and 2,
δm2

h/Λ2 and δm2
σ /Λ2, respectively, as a function of the mixing

angle θ and the quartic coupling λ. Both plots are produced for
λH = λS = 0.1 (keeping λS small ensures the new scalar to be
lighter than the Higgs boson), and the range of other parameters
are set based on the following constraints:

• The observed best-fit signal strength at the LHC σ/σS M =
cos2 θ = 0.87 ± 0.23 [2] restricts the allowed region for the
mixing angle to be either in the interval 0 � θ � π/5 for the
positive roots or 4π/5 � θ � π for the negative roots of cos2 θ .

• The mass of the fundamental scalar discovered at the LHC is
found to be at mh = 125.9 ± 0.4 GeV [1,2]. Figs. 1 and 2 are
produced by slightly extending this bound to be in the range
123 GeV � mh � 129 GeV, which restricts the range of quartic
coupling to be −0.9 � λ� 0.08.

• Constraints from electroweak precision observables (EWPO),
are taken into account which favor the mass of the heavier
scalar in an extended SM scenario with a real singlet to be be-
low 220 GeV, when the mixing is maximal [15]. In Ref. [11]
the ranges of the parameters are given as −3 � λ � 3 and
0 � λH � 3, based on the detailed analysis of the branching
fractions of the heavier scalar which agrees well with the pa-
rameter space chosen in our model. Moreover, in Table 2 of
Ref. [11], the parameter space is defined for 30 fb−1 of data
from CMS, which are respected in defining the ranges of the
parameters used in Figs. 1 and 2.

• The physical states are ensured by the condition υS H =
υS/υH > 0 which restricts the mixing angle to be either in
the interval 0 � θ < π/4 or in π/2 � θ < 3π/4. Note that, as
it follows from Eqs. (11) and (10), υS H is undefined at θ = π/4
Fig. 2. VC for the real singlet scalar for λH = λS = 0.1. Contours represent δm2
σ in

units of Λ2. The shaded regions are excluded either because they represent non-
physical situations or by the experiments. The light-gray shaded region is where
υS H = υS /υH < 0, light-green shaded region is where m2

σ is negative, and light-
orange shaded region is ruled out at the LHC via the best-fit signal strength mea-
surements σ/σS M = cos2 θ = 0.87 ± 0.23. In this plot, there is always a region sat-
isfying 123 GeV � mh � 129 GeV and the region for singlet mass is mσ � 108 GeV.
When λ > −0.15 we have δm2

σ � 0. Therefore, for λ < −0.15, introducing vector
fermions entails the undesired effect of making the negative δm2

σ even more nega-
tive. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

and 3π/4, so as the masses of the physical scalars. We exclude
these points in our analysis.

• The combination of the constraints by the LHC (first bullet)
and the requirement that υS H > 0 (fourth bullet), together re-
strict the range of mixing angle to be 0 � θ � π/5, which
prescribes the parameter space of θ into a narrow region.

• The parameter λS , restricts the parameter space by the con-
dition that the physical masses of the scalars have to be real,
which is satisfied when 16λHλS > λ2. In our plots, we take
λH = λS = 0.1, which gives λ2 < 0.16 or −0.4 < λ < 0.4. This
constraint is shown in our plots as light-green shaded areas
where m2

σ becomes negative when λ < −0.4.

In Figs. 1 and 2, the shaded regions are the exclusions, namely, the
light-gray shaded region is where the condition υS H = υS/υH > 0
cannot be satisfied, the light-green shaded region is because
m2

σ > 0 is violated, and light-orange region is ruled out at the
LHC via the best-fit signal strength measurements. Within the
allowed parameter space, the range for the real singlet mass is
mσ � 108 GeV, and there is always a parameter space satisfying
123 GeV � mh � 129 GeV. In Fig. 1, the contours represent δm2

h
in the units of Λ2. When λS is increased, the contours in Fig. 1
shift to the left. As it is apparent from Fig. 1, the quantum correc-
tions to the Higgs mass squared, due to the presence of only one
additional real singlet scalar have the correct sign, decreasing the
negativity. However, the allowed parameter space is very much re-
stricted via the experimental and phenomenological constraints. It
can be inferred from this figure that, the larger the values of λ,
the closer we are to the solution of fine-tuning problem, and the
allowed range for the mixing angle is 0 � θ � π/5. Note that, the
dark red, thick, solid contour line, having δm2

h/Λ2 = −0.027, in-
tersects with the point at θ = 0 and λ = 0, and well agrees with
the pure SM result on radiative corrections to the Higgs mass. We
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Fig. 3. The quadratic divergences in the mass squared values of Higgs and real sin-
glet scalar in unit of Λ2 as a function of λ. The plot is produced for λH = λS = 0.1
and θ = 4π/25. The ranges for δm2

h/Λ2 and δm2
σ /Λ2 are taken to be consistent

with Figs. 1 and 2. Contours indicate the values of λ. The light-gray shaded regions
are excluded because the interval 123 GeV < mh < 129 GeV cannot be satisfied in
these regions. There is no allowed parameter space satisfying the cancellation of
quadratic divergences in both the Higgs and the real singlet masses, simultaneously.

have the zero contour line, indicated by the thin red solid curve.
However, it is excluded both by the LHC best-fit signal strength
measurements σ/σS M = cos2 θ = 0.87 ± 0.23, and by the condition
that υS H = υS/υH � 0. The exact cancellation could be achieved
via the addition of more scalars [13].

In Fig. 2, on the other hand, the contours represent δm2
σ in

units of Λ2, and the contour lines on the upper and lower halves,
shift towards the center if λS is increased. The quantum correc-
tions of the mass squared of the new physical state come with
negative sign for the smaller values of λ, and turn positive if
λ > −0.15.

In Fig. 3, we plot δm2
h/Λ2 and δm2

σ /Λ2 as a function of the
quartic coupling λ. We choose λH = λS = 0.1 and θ = 4π/25 (as
a point in the allowed parameter space of both δm2

h in Fig. 1,
and of δm2

σ in Fig. 2). Changing the mixing angle does not shift
the positions of the contour lines, however, the allowed parame-
ter space for λ is different for different θ values. The larger val-
ues of θ requires λ to be negative for satisfying the Higgs mass
bound 123 GeV � mh � 129 GeV. The light-gray shaded regions
are the exclusions valid for all allowed parameter space of θ (i.e.,
0 � θ � π/5 and 4π/5 � θ � π ). It is clear from this figure that,
there is no allowed parameter space to satisfy the cancellation of
the quadratic divergences in both the Higgs and the new scalar
mass squares, simultaneously.

In the literature, the common attempt to get rid of the
quadratic divergences in the mass squared of the additional scalar
is to introduce either singlet or doublet vector fermions (the chiral
fermions do not couple to singlet scalar S), which brings a nega-
tive contribution to δm2

σ . The corresponding Lagrangian density for
vector fermions reads

Lψ = ψ̄ i/Dψ − μψψ̄ψ − λψψ̄ψ S. (14)

Note that, S being odd under Z2 symmetry calls for ψ → iγ5ψ ,
and the physical mass of the vector fermion is mψ = μψ + λψυS .
Introduction of such fermions in the scenario with mixed scalar
states worsens the naturalness problem in the mass squared of
the new physical scalar for λ < −0.15. By the same token, on
the grounds that there is mixing between the CP-even scalar of
the Higgs doublet and real singlet scalar S , when transformed
into the physical states, there emerges tree-level coupling of the
Higgs boson to vector fermions, which makes the already negative
δm2

h even more negative, and therefore, fine-tuning problem in the
Higgs mass with the additional vector fermions also gets worse.

It is important to note that the results presented here are con-
clusive only for one-loop effects. Higher order corrections might
bring a marginal change. We refer the reader to [16] for higher
order corrections.

4. Conclusion

Now that the main task of the LHC, to shed light on our under-
standing of the electroweak symmetry breaking mechanism, has
been successfully accomplished with the discovery of the Higgs
boson [1,2], the naturalness problem in its mass has become essen-
tial to comprehend. To address the issue, we consider the simplest
extension of the SM with an additional real singlet scalar, which
develops a VEV after electroweak symmetry breaking, and inter-
acts with the SM fields via its direct coupling to the SM Higgs
doublet. The mixing between the neutral, CP-even component of
the SM Higgs doublet, and the additional field S , allows the physi-
cal state σ to have tree-level couplings to the SM fields.

We found that, the minimal modification of the SM with the
addition of one real singlet scalar has the right effect on δm2

h ,
decreasing the negativity, though one needs to introduce more
scalars to cancel the divergence completely, since the effect is very
little in the allowed parameter space. The quadratic divergence on
δm2

σ also comes with an overall negative coefficient for λ < −0.15.
Therefore, the typical venture to cancel the divergences in the
singlet scalar mass by introducing vector fermions might not be
a solution for the additional scalar sector when λ < −0.15, and it
seems not to be a viable scenario from the Higgs boson point of
view in the case of mixing between the scalars, as it enhances δm2

h ,
too. To conclude, we can state that it is difficult, if not impossible,
to naturalize the SM Higgs boson by coupling it to singlet scalars,
and that the additional vector fermions in this scenario might en-
tail the undesired effect of enhancement in both δm2

h and δm2
σ .
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Appendix A

Below we show the vertex factors used in this work.

λhhhh = −6i

[
λH cos4 θ + λS sin4 θ + λ

4
sin2 2θ

]
,

λσσσσ = −6i

[
λH sin4 θ + λS cos4 θ + λ

4
sin2 2θ

]
,

λhhσσ = − i

2

[
(3λH + 3λS − 2λ) sin2 2θ + 2λ

(
sin4 θ + cos4 θ

)]
,

λh(σ )W +
μ W −

ν
= i

2
g2υH gμν cos θ(sin θ),

λhh(σσ )W +
μ W −

ν
= i

2
g2 gμν cos2 θ

(
sin2 θ

)
,

λh(σ )Zμ Zν = i
g2

ZυH gμν cos θ(sin θ),

2
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λhh(σσ )Zμ Zν = i

2
g2

Z gμν cos2 θ
(
sin2 θ

)
,

λhh(σσ )H2 H2 = −i
[
2λH cos2 θ

(
sin2 θ

) + λ sin2 θ
(
cos2 θ

)]
,

λhh(σσ )H3 H3 = −i
[
2λH cos2 θ

(
sin2 θ

) + λ sin2 θ
(
cos2 θ

)]
,

λhh(σσ )H4 H4 = −i
[
2λH cos2 θ

(
sin2 θ

) + λ sin2 θ
(
cos2 θ

)]
,

λh(σ )tt̄ = −i√
2

mt

υH
δabδαβ cos θ(sin θ),

where g2
Z = g2 + g′ 2, and g and g′ are SU(2)L and U (1)Y gauge

couplings of the SM, respectively. The subscripts a, b appearing
in the last vertex factor represent the color indices, and the sub-
scripts α, β are the spinor indices.
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