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Abstract

Based on Jackson’s q-exponential function, we introduce a q-analog of Hermite
and Kampe de Feriet polynomials. It allows us to introduce and solve the q-heat
equation in terms of q-Kampe de Feriet polynomials with arbitrary number of
moving zeros, and to find an operator solution for the initial value problem.
By the q-analog of Cole–Hopf transformation we find a new q-Burgers-type
nonlinear heat equation with cubic nonlinearity, such that in the q → 1 limit it
reduces to the standard Burgers equation. We construct exact solutions for the
q-Burgers equation in the form of moving poles, singular and regular q-shock
soliton solutions. A novel, self-similarity property of the stationary q-shock
soliton solution is found.

PACS numbers: 02.30.Gp, 02.30.Ik, 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well known that the Burgers’ equation in one dimension can be reduced via the Cole–Hopf
transformation to the linear heat equation. It allows one to solve the initial value problem for
the Burgers equation and get exact solutions in the form of shock solitons and their scattering.
In this paper we introduce the q-difference Burgers-type equation with cubic nonlinearity,
linearizable in terms of the q-heat equation. Based on the Jackson q-exponential function,
we introduce q-analogs of the Hermite and the Kampe de Feriet polynomials, representing
moving poles solution for the q-Burgers equation. Then we derive the operator solution of
the initial value problem (IVP) for the q-Burgers equation in terms of the IVP for the q-heat
equation. We construct several particular solutions of our q-Burgers-type equation in the form
of singular and regular q-shock solitons. It turns out that the static q-shock soliton solution of
our equation shows remarkable self-similarity property in the space coordinate x.

2. q-exponential function

The q-number [n]q corresponding to the ordinary number n is defined by [1]

[n]q = qn − 1

q − 1
, (1)
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where q is a parameter, so that n is the limit of [n]q as q → 1. A few examples of q-numbers
are given here: [0]q = 0, [1]q = 1, [2]q = 1 + q, [3]q = 1 + q + q2. In terms of these
q-numbers, the Jackson q-exponential function eq(x) [3] (see [2], p 126) is defined by

eq(x) =
∞∑

n=0

xn

[n]q!
, (2)

where [n]q! = [1]q[2]q · · · [n]q . For q > 1 it is an entire function of x and when q → 1
it reduces to the standard exponential function ex. The q-exponential function can also be
expressed in terms of the infinite product

eq(x) =
∞∏

n=0

1

(1 − (1 − q)qnx)
= 1

(1 − (1 − q)x)∞q
, (3)

when q < 1 and

eq(x) =
∞∏

n=0

(
1 +

(
1 − 1

q

)
1

qn
x

)
=

(
1 +

(
1 − 1

q

)
x

)∞

1/q

, (4)

when q > 1. Thus, the q-exponential function for q < 1 has the infinite set of simple poles

xn = 1

qn(1 − q)
, n = 0, 1, . . . (5)

and for q > 1 the infinite set of simple zeros

xn = − qn+1

(q − 1)
, n = 0, 1, . . . . (6)

The q-derivative is defined as

Dxf (x) = f (qx) − f (x)

(q − 1)x
, (7)

and when q → 1 it reduces to the standard derivative Dxf (x) → f ′(x). Using the definition
of q-derivative one can easily see that

Dx(axn) = a[n]qx
n−1, (8)

Dxeq(ax) = aeq(ax). (9)

3. q-Hermite polynomials

We define the q-analog of Hermite polynomials by the generating function

eq(−t2)eq([2]q tx) =
∞∑

n=0

Hn(x; q)
tn

[n]q!
. (10)

From the defining identity (10) it is not difficult to derive for the q-Hermite polynomials an
explicit sum formula

Hn(x; q) =
[n/2]∑
k=0

(−1)k[n]q!

[k]q![n − 2k]q!
([2]qx)n−2k. (11)

This explicit sum makes it transparent in which way our polynomials Hn(x; q) q-extend the
Hn(x) and how they are different from the known ones in the literature. By q-differentiating the
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generating function (10) with respect to x and t we derive two-term and three-term recurrence
relations correspondingly

DxHn(x; q) = [2]q[n]qHn−1(x; q), (12)

Hn+1(x; q) = [2]q xHn(x; q) − [n]q Hn−1(qx; q) − [n]q q
n+1

2 Hn−1(
√

qx; q). (13)

From this generating function we have the special values

H2n(0; q) = (−1)n
[2n]q!

[n]q!
, (14)

H2n+1(0; q) = 0 (15)

and the parity relation

Hn(−x; q) = (−1)nHn(x; q). (16)

To write the three-term recurrence relation in the local form for the same argument x, we use
delation operator

Mq = qx d
dx , (17)

so that

Mqf (x) = f (qx) (18)

and relation (13) can be rewritten as

Hn+1(x; q) = [2]q xHn(x; q) − [n]q
(
Mq + q

n+1
2 M√

q

)
Hn−1(x; q). (19)

Substituting (12) into (19) we get

Hn+1(x; q) =
(

[2]q x − Mq + q
n+1

2 M√
q

[2]q
Dx

)
Hn(x; q). (20)

By the recursion, starting from n = 0 and H0(x) = 1 we have the next representation for the
q-Hermite polynomials

Hn(x; q) =
n∏

k=1

(
[2]q x − Mq + q

k
2 M√

q

[2]q
Dx

)
· 1. (21)

We note that the generating function and the form of our q-Hermite polynomials are different
from the known ones in the literature [2, 4–6]. Moreover, the three-term recurrence relation
(13) is q-nonlocal and different from the known ones for orthogonal polynomial sets [7].

In the above expression the operator

Mq + q
n
2 M√

q = 2q
n
4 q

3
4 x d

dx cosh

[(
ln q

1
4
) (

x
d

dx
− n

)]
(22)

is expressible in terms of the q-spherical means as

cosh

[
(ln q)x

d

dx

]
f (x) = 1

2

(
f (qx) + f

(
1

q
x

))
. (23)

By notation for the q-shifted product [1]

(x − a)nq = (x − a)(x − qa) · · · (x − qn−1a), n = 1, 2, . . .

which we now apply to the noncommutative operators, so that we should distinguish the
direction of multiplication, we have two cases

(x − a)nq < = (x − a)(x − qa) · · · (x − qn−1a) (24)
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and

(x − a)nq > = (x − qn−1a) · · · (x − qa)(x − a). (25)

Then, we can rewrite (21) shortly as

Hn(x; q) =
((

[2]q x − Mq Dx

[2]q

)
− q

1
2
M√

q Dx

[2]q

)n

√
q >

· 1.

First few polynomials are

H0(x; q) = 1,

H1(x; q) = [2]qx,

H2(x; q) = [2]2
qx

2 − [2]q,

H3(x; q) = [2]3
qx

3 − [2]2
q[3]qx,

H4(x; q) = [2]4
qx

4 − [2]2
q[3]q[4]qx

2 + [2]q[3]q[2]q2 .

When q → 1 these polynomials reduce to the standard Hermite polynomials.

3.1. q-Difference equation

Applying Dx to both sides of (20) and using recurrence formula (12) we get the q-difference
equation for the q-Hermite polynomials

1

[2]q
Dx(Mq + q

n+1
2 M√

q)DxHn(x; q) − [2]qqxDxHn(x; q) + [2]q[n]qqHn(x; q) = 0.

3.2. Operator representation

Proposition 1.

eq

(
− 1

[2]2
q

D2
x

)
eq([2]qxt) = eq(−t2)eq([2]qxt). (26)

Proof. By q-differentiating the q-exponential function with respect to x

Dn
xeq([2]qxt) = ([2]t)neq([2]qxt) (27)

and combining then to the sum
∞∑

n=0

an

[n]q!
D2n

x eq([2]qxt) =
∞∑

n=0

[2]2n
q ant2n

[n]q!
eq([2]qxt), (28)

we have the relation

eq

(
aD2

x

)
eq([2]qxt) = eq

(
[2]2

qat2)eq([2]qxt). (29)

By choosing a = −1/[2]2
q we get the result (26).

�

Proposition 2.

Hn(x; q) = [2]nqeq

(
− 1

[2]2
q

D2
x

)
xn. (30)
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Proof. The right-hand side of (26) is the generating function for the q-Hermite polynomials
(10). Hence, equating the coefficients of tn on both sides gives the result. �

Proposition 3.

eq

(
− D2

x

[2]2
q

)
xn+1 = 1

[2]q

(
[2]q x − (Mq + q

n+1
2 M√

q)Dx

[2]q

)
eq

(
− D2

x

[2]2
q

)
xn. (31)

Proof. We use (30) and relation (20). �

Corrollary 1. If the function f (x) is expandable to the power series f (x) = ∑∞
n=0 anx

n,
then we have the next formal q-Hermite series representation

eq

(
− 1

[2]2
q

D2
x

)
f (x) =

∞∑
n=0

an

Hn(x; q)

[2]nq
. (32)

4. q-Kampe de Feriet polynomials

We define the q-Kampe de Feriet polynomials as

Hn(x, νt; q) = (−νt)
n
2 Hn

(
x

[2]q
√−νt

; q

)
, (33)

so that from (20) we obtain the next recursion formula

Hn+1(x, νt; q) = (
x +

(
Mq + q

n+1
2 M√

q

)
νtDx

)
Hn(x, νt; q).

By the recursion it gives

Hn(x, νt; q) =
n∏

k=1

(
x +

(
Mq + q

k
2 M√

q

)
νtDx

) · 1 (34)

or by notation (25)

Hn(x, νt; q) = (
(x + Mq νt Dx) + q

1
2 M√

q νtDx

)n√
q >

· 1.

Then the first few polynomials are

H0(x, νt; q) = 1,

H1(x, νt; q) = x,

H2(x, νt; q) = x2 + [2]qνt,

H3(x, νt; q) = x3 + [2]q[3]qνtx,

H4(x, νt; q) = x4 + [3]q[4]qνtx2 + [2]q[3]q[2]q2ν2t2.

5. q-heat equation

We introduce the q-heat equation(
Dt − νD2

x

)
φ(x, t) = 0, (35)

with partial q-derivatives with respect to t and x. The solution of this equation expanded in
terms of parameter k

φ(x, t) = eq(νk2t)eq(kx) =
∞∑

n=0

kn

[n]!
Hn(x, νt; q) (36)
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gives the set of q-Kampe de Feriet polynomial solutions for the equation. Then we find the
time evolution of zeros xk(t) for these polynomials in terms of zeros zk(n, q) of the q-Hermite
polynomials:

Hn(zk(n, q), q) = 0, (37)

so that

xk(t) = [2]zk(n, q)
√−νt. (38)

For n = 2 we have two zeros determined by q-numbers,

x1(t) = √
[2]q

√−νt, (39)

x2(t) = −√
[2]q

√−νt, (40)

and moving in opposite directions according to (38). For n = 3 we have zeros determined by
q-numbers:

x1(t) = −√
[3]q!

√−νt, (41)

x2(t) = 0, (42)

x3(t) = √
[3]q!

√−νt, (43)

two of which are moving in the opposite direction according to (38) and one is at rest.

6. Evolution operator

Following similar calculations as in proposition 1 we have the next relation

eq

(
νtD2

x

)
eq(kx) = eq(νtk2)eq(kx). (44)

The right-hand side of this expression is the plane-wave-type solution (36) of the q-heat
equation (35). Equating the coefficients of kn on both sides we get the q-Kampe de Feriet
polynomial solutions of equation

Hn(x, νt; q) = eq

(
νtD2

x

)
xn. (45)

Consider an arbitrary, expandable to the power series function f (x) = ∑∞
n=0 anx

n; then,
the formal series

f (x, t) = eq

(
νtD2

x

)
f (x) =

∞∑
n=0

aneq

(
νtD2

x

)
xn (46)

=
∞∑

n=0

anHn(x, νt; q) (47)

represents a time-dependent solution of the q-heat equation (35). The domain of convergency
for this series is determined by asymptotic properties of our q-Kampe de Feriet polynomials
for n → ∞ and requires additional study.

According to this we have the evolution operator for the q-heat equation as

U(t) = eq

(
νtD2

x

)
. (48)

It allows us to solve the initial value problem

6
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Dt − νD2

x

)
φ(x, t) = 0, (49)

φ(x, 0+) = f (x), (50)

in the form

φ(x, t) = eq

(
νtD2

x

)
φ(x, 0+) = eq

(
νtD2

x

)
f (x), (51)

where we imply the base q > 1 so that eq(x) is an entire function.

7. q-Burgers’ type equation

We introduce the q-Cole–Hopf transformation

u(x, t) = −2ν
Dxφ(x, t)

φ(x, t)
, (52)

where φ(x, t) is the solution of the q-heat equation (35).
Then u(x, t) satisfies the q-Burgers’ type equation with cubic nonlinearity

Dtu(x, t) − νD2
xu(x, t) = 1

2

[(
u(x, qt) − u(x, t)Mx

q

)
Dxu(x, t)

]
− 1

2
[Dx(u(qx, t)u(x, t))] +

1

4ν
[u(q2x, t) − u(x, qt)]u(qx, t)u(x, t).

When q → 1 it reduces to the standard Burgers’ equation

ut + uux = νuxx. (53)

7.1. IVP for q-Burgers’ type equation

Substituting the operator solution (51) to (52) we find the operator solution for the q-Burgers-
type equation in the form

u(x, t) = −2ν
eq

(
νtD2

x

)
Dxf (x)

eq

(
νtD2

x

)
f (x)

. (54)

This solution corresponds to the initial function

u(x, 0+) = −2ν
Dxf (x)

f (x)
. (55)

Thus, for arbitrary initial value u(x, 0+) = F(x) for the q-Burgers equation we need to solve
the initial value problem for the q-heat equation (35) with the initial function f (x) satisfying
the first-order q-difference equation(

Dx +
1

2ν
F (x)

)
f (x) = 0. (56)

8. q-shock soliton solution

As a particular solution of the q-heat equation we choose first

φ(x, t) = eq(k
2t)eq(kx); (57)

then, we find the solution of the q-Burgers equation as a constant

u(x, t) = −2νk. (58)
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Out[2]=
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Figure 1. Singular q-shock soliton.

We note that for this solution of the q-heat equation, we have an infinite set of zeros, and
the space position of zeros is fixed during time evolution at points xn = −qn+1/(q − 1)k,
n = 0, 1, . . ..

If we choose the linear superposition

φ(x, t) = eq

(
k2

1 t
)
eq(k1x) + eq

(
k2

2 t
)
eq(k2x), (59)

then we have the q-shock soliton solution

u(x, t) = −2ν
k1eq

(
k2

1 t
)
eq (k1x) + k2eq

(
k2

2 t
)
eq (k2x)

eq

(
k2

1 t
)
eq (k1x) + eq

(
k2

2 t
)
eq (k2x)

. (60)

This expression is the q-analog of the Burgers shock soliton and for q → 1 it reduces to the
last one. However, in contrast to the standard Burgers case, due to zeros of the q-exponential
function this expression admits singularities for some values of parameters k1 and k2. In
figure 1 we plot the singular q-shock soliton for k1 = 1 and k2 = 10 at time t = 0 with base
q = 10.

It turns out that for some specific values of parameters we can find the regular q-shock
soliton solution. We introduce the cosine q-hyperbolic function

coshq(x) = eq(x) + eq(−x)

2
(61)

or

coshq(x) = 1

2

(
eq(x) +

1

e 1
q
(x)

)
, (62)

and then by using the infinite product representation (4) for the q-exponential function we
have

coshq(x) = 1

2

((
1 +

(
1 − 1

q

)
x

)∞

1/q

+

(
1 −

(
1 − 1

q

)
x

)∞

q

)
.
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Figure 2. The regular q-shock soliton for k1 = 1, k2 = −1, at range (−50, 50).
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Figure 3. The regular q-shock soliton for k1 = 1, k2 = −1 at range (−5000, 5000).

From (5),(6) we find that zeros of the first product are located on the negative axis x, while for
the second product on the positive axis x. Therefore, the function has no zeros for real x and
coshq(0) = 1.

If we choose k1 = 1 and k2 = −1, the time-dependent factors in the numerator and the
denominator of (60) cancel each other and we have the stationary shock soliton

u(x, t) = −2ν
eq(x) − eq(−x)

eq(x) + eq(−x)
≡ −2ν tanhq(x). (63)

Due to the above consideration this function has no singularity on the real axis and everywhere
we have regular q-shock soliton solution.

In figures 2–4 we plot the regular q-shock soliton for k1 = 1 and k2 = −1 at different
ranges of x and q = 10. It is a remarkable fact that the structure of our shock soliton
shows self-similarity property in the space coordinate x. Indeed at the ranges of parameter
x = 50, 5000, 500 000 the structure of shock looks almost the same.
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Figure 4. The regular q-shock soliton for k1 = 1, k2 = −1 at range (−500 000, 500 000)
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Figure 5. Multi q-shock regular for k1 = 1, k2 = −1, k3 = 10, k4 = −10 at t = 0.

For the set of arbitrary numbers k1, . . . , kN

φ(x, t) =
N∑

n=1

eq

(
k2
nt

)
eq (knx) , (64)

we have a multi-shock solution in the form

u(x, t) = −2ν

∑N
n=1 kneq

(
k2
nt

)
eq (knx)∑N

n=1 eq

(
k2
nt

)
eq (knx)

. (65)

In general this solution admits several singularities. To have a regular multi-shock solution
we can consider the even number of terms N = 2k with opposite wave numbers. When N =
4 and k1 = 1, k2 = −1,k3 = 10,k4 = −10 we have the q-multi-shock soliton solution

u(x, t) = −2ν
eq(t) sinhq(x) + 10eq(100t) sinhq(10x)

eq(t) coshq(x) + eq(100t) coshq(10x)
. (66)

In figure 5 we plot the N = 4 case with values of the wave numbers k1 = 1, k2 = −1,
k3 = 10, k4 = −10 at t = 0 and q = 10. To have a regular solution for any time t and given

10
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base q, we should choose proper numbers ki which are not in the form of the power of q. This
question is under study now.
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