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Experimental and
numerical investigation of
the effect of interlayer on
the damage formation in a
ceramic/composite armor
at a low projectile velocity

A Tasdemirci and G Tunusoglu

Abstract
The damage formation in a multilayered armor system without and with an interlayer
(rubber, Teflon, and aluminum foam) between the front face ceramic layer and
the composite backing plate were investigated experimentally and numerically. The
projectile impact tests were performed in a low-velocity projectile impact test system
and the numerical studies were implemented using the nonlinear finite element code
LS-DYNA. The results of numerical simulations showed that the stress wave trans-
mission to the composite backing plate decreased significantly in Teflon and foam
interlayer armor configurations. Similar to without interlayer configuration, the rub-
ber interlayer configuration led to the passage of relatively high stress waves to the
composite backing plate. This was mainly attributed to the increased rubber interlayer
impedance during the impact event. The numerical results of reduced stress wave
transmission to the backing plate and the increased damage formation in the ceramic
front face layer with the use of Teflon and foam interlayer was further confirmed
experimentally.

Keywords
Interlayer, armor, LS-DYNA, stress wave, multilayer

Dynamic Testing and Modeling Laboratory, Department of Mechanical Engineering, Izmir Institute of

Technology, Gulbahce, Urla, Izmir, Turkey

Corresponding author:

A Tasdemirci, Dynamic Testing and Modeling Laboratory, Department of Mechanical Engineering, Izmir

Institute of Technology, Gulbahce Koyu, Urla, Izmir 35430, Turkey.

Email: alpertasdemirci@iyte.edu.tr

Journal of Thermoplastic Composite

Materials

2017, Vol. 30(1) 88–106

ª The Author(s) 2015

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0892705715584410

journals.sagepub.com/home/jtc

http://www.sagepub.co.uk/journalsPermissions.nav
https://doi.org/10.1177/0892705715584410
http://journals.sagepub.com/home/jtc


Introduction

Layered structures are widely employed in structures subjected to impact loading to

mitigate the stress wave propagation. An example of such structures is composite

armor, also known as integrated composite armor. Composite armor is constituted

by two layers of materials, each functioning differently. The front face’s hard

ceramic layer deforms the projectile severely, gradually reducing the kinetic energy

of the projectile and the resultant pressure developed on the composite backing

plate. The ceramic layer is commonly constructed of tiles because the tiles facilitate

the easy replacement of damaged sections. The second layer, the composite backing

plate, absorbs the remaining kinetic energy of the projectile by matrix and fiber

fracture, fiber–matrix debonding, and microbuckling. In order to understand the

intricate stress wave transmissions and reflections from and in between the layers

and interfaces of the composite armor, analytic and numerical investigations have

been carried out previously, examples of which can be found in literature.1–4 Since

the replacement of a continuous composite backing plate is rather difficult, the

reduction of the pressure developed and the damage formed on the composite

backing plate is of paramount importance. The insertion of a low impedance

interlayer including rubber,5,6 aluminum foam,7 and thick adhesives8–10 between the

ceramic and composite layer increased stress wave reflections to the front layer and

distributed the load to a wider area of the composite backing plate and hence

reduced the damage formation in the composite backing plate. Furthermore, rubber

interlayer was reported to retain the fragmented ceramic tiles attached to it after the

projectile impact, increasing the multi-hit capability.5 In a previous study, the

present authors showed both experimentally and numerically that the insertion of

Teflon and aluminum foam interlayers significantly reduced the stress wave trans-

mission to the composite layer when impacted with an armor-piercing projectile.11

Meanwhile, the experiments with armor-piercing projectiles come with several

drawbacks, even if it represents the real threat to the armor. Firstly, the obliquity of

the impact varies between each test, leading to different types of damage formation

in the layers tested at similar projectile velocities. Secondly, the recovery of the

fractured and shattered ceramic tiles is not always possible. Although attaining very

high impact velocities is difficult using a laboratory scale projectile impact test

system, it provides better control of the test variables and makes it possible to

recover the fragmented ceramic pieces in a confined chamber. In this study, the

stress wave propagations in a composite armor were investigated with the same

configurations as reported by Tasdemirci et al. 11 at relatively low impact velocities

using a laboratory scale projectile impact test system. The effect of interlayer

thickness on damage formation was also investigated numerically based on an equal

areal density. Aluminum foam interlayer configuration was selected as the baseline:

the interlayer thicknesses were then changed accordingly to obtain the same areal

density in all configurations. For the case of without interlayer configuration, the

thickness of the composite layer was increased to attain the same areal density as for

the interlayer configurations.
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Experimental

The low-velocity projectile impact test system used in the experiments is shown in

Figure 1. The experimental setup consisted of a pressure vessel, triggering valve, sabot,

barrel, and target chamber. The projectile was guided in the barrel using a polyurethane

foam sabot (18 g) (Figure 1(a)). The pressure vessel propelled the projectile against

the target, which was firmly fixed on the target frame inside the impact chamber

(Figure 1(b)). The initial projectile velocity was measured using a laser barrier located

at the front of the target in the impact chamber (Figure 1(c)). The residual velocity of

the projectile was measured in the same setup by means of a laser barrier placed at the

back of the target, when perforation occurred in the test. The projectile was an AISI

E52100 steel sphere, 12.7 mm in diameter and 8 g in weight. The mass of the projectile

was close to that of a 7.62 mm M61 type AP projectile core.

The front face of the tested armor plate (250 � 250 mm2) was constructed of 25

square-shaped alumina ceramic tiles (Bitossi Corbit 98) of 50 � 50 � 5 mm3 in size

(Figure 2(a)).

The continuous composite backing plate was 14 mm thick and prepared by vacuum-

assisted resin transfer molding using 30 layers of plain weave E-glass fabric with an areal

density of 0.6 kg/m2 and having a [0/90] ply orientation (i.e. the fabric warp direction is

at 0� and the weft direction is at 90�). The thicknesses of the ethylene propylene diene

monomer (EPDM) rubber (Shore A60), Teflon (PolarchipTM, a trademark of W. L. Gore,

Inc., Newark, Delaware, USA) and aluminum metal foam (0.438 g/cm3) interlayers

were, respectively, 1.5, 2, and 14 mm.

The steel projectile was fired from a 5 m distance with a velocity of 200 + 5 m/s. The

multilayered armor configuration without interlayer was also impact tested for com-

parison. Following the impact tests, the tested plates were cut across using a diamond

saw and the damage formation in the subsequent layers was observed visually. In all

Figure 1. (a) Projectile impact test setup, (b) target frame, and (c) laser barriers.
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Figure 2. (a) Multilayer armor target and (b) finite element model of the projectile and target.
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tests, no perforation of the composite backing plate occurred, while the front face

ceramic layer fractured but remained attached to the composite backing plate or inter-

layer material after the test.

Modeling

The numerical models of the tested armor configurations were implemented in the

finite element code of LS-DYNA 971.12 The multilayered armor test plate

(Figure 2(a)) was modeled using a full model with no additional symmetry definition

(Figure 2(b)). The numerical model shown in Figure 2(b) consisted of spherical steel

projectile and fixed multilayer armor test sample. The armor tile was fixed (both

translations and rotations were prevented) with a 3 cm width zone around its outer edge

to simulate the target frame fixation of test sample. The projectile impacted the sample

at a velocity of 200 m/s.

The AISI E52100 steel projectile was modeled using the Johnson–Cook (JC) flow

stress model.13 The equivalent stress in the JC flow stress model �eq

� �
is given as a

function of equivalent plastic strain "eq

� �
and plastic strain rate _"ð Þ and temperature

(T ) as,

�eq ¼ Aþ B"n
eq

� �
1þ C ln _"�eq

� �� �
1� T �mð Þ; ð1Þ

where, A, B, n, C, and m are the material model parameters and _"�eq ¼
_"eq

_"0
is the

dimensionless plastic strain rate, where _"0 is the reference strain rate. The non-

dimensional temperature T�ð Þ is defined as T � ¼ T � Trð Þ= Tm � Tð Þ, where Tr and Tm

are the reference and melting temperature, respectively. The JC model constants of the

AISI E52100 steel used in the model was taken from literature14 and are tabulated in

Table 1.

The Johnson–Holmquist II (JH-2)15 material model, a pressure- and strain–rate-

sensitive material model developed for representing the high strain rate constitutive

behavior of dense ceramics, was used to simulate damage formation and dynamic failure

of the ceramic layer. In this material model, a definition of the intact and fractured

strength, a pressure–volume relationship that can include bulking, and a damage model

that transitions the material from an intact state to a damaged state are included. The

normalized equivalent stress for the strength is:

�� ¼ ��i � D ��i � ��f
� �

; ð2Þ

Table 1. Johnson–Cook material model parameters for spherical steel projectile.14

� (g/cm3) G (GPa) A (MPa) B (MPa) n m

7.75 81.8 2000 477 0.18 1.00
Tm (K) Tr (K) C Cp (J kg�K) "f _"0(1/s)
1763 300 0.012 477 2.0 1.0
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where, ��i is the normalized intact equivalent stress, ��f is the normalized fracture stress,

and D is the damage parameter varying between 0 and 1. The normalized intact

equivalent stress can be calculated from the following equation:

��i ¼ A P� þ T �ð ÞN 1þ Cln _"�ð Þ ð3Þ

and the normalized fracture stress is given as:

��f ¼ B P�ð ÞM 1þ Cln _"�ð Þ � SFMAX ð4Þ

where P�, T �, and _"� refer to normalized pressure, tensile strength, and strain rate,

respectively. These values are normalized by the equivalent stress at the Hugoniot

elastic limit. SFMAX is the maximum fracture strength. The damage is expressed

as:

D ¼
X�"P

�"P
f

; ð5Þ

where �"P is effective plastic strain during cycle of integration and �"P
f refers to

the fracture plastic strain under a constant pressure. The plastic strain to fracture is

given by:

"P
f ¼ D1ðP� þ T�ÞD2 ; ð6Þ

where D1 and D2 are damage constants. The material model constants of alumina

ceramic used in the model were taken from the work by Krashanitsa and Shkarayev16

and are tabulated in Table 2.

Table 2. Johnson–Holmquist material model parameters for ceramic layer.16

Parameter Description Value

�0 Density 3.89 g/cm3

G Shear modulus 123 GPa
HEL Hugoniot elastic limit 8.00 GPa
A Intact strength constant 0.949
N Intact strength constant 0.2
C Strain rate constant 0.007
B Fracture strength constant 0.1
M Fracture strength constant 0.2
SFMAX Max strength of failed mat’l/HEL stress 1.0
T Tensile strength 0.262 GPa
K1 Pressure (EOS) constant 186 GPa
K2 Pressure (EOS) constant 0
K3 Pressure (EOS) constant 0
BULK Bulking constant 1.0
D1 Damage constant 0.001
D2 Damage constant 1.0
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The E-glass/polyester composite layer was modeled (30 layers) with MAT162

(MAT_COMPOSITE_DMG_MSC) material model.12 The material model MAT162 is

based on the Hashin’s failure criteria,17 which allows the user to monitor the initiation

and progression of different failure modes including tensile and compressive fiber

failure, fiber crush, matrix failure, and delamination. Element erosion is also taken into

account in the material model. The material model parameters of E-glass/polyester

composite were taken from the work by Tunusoglu et al.18 and are tabulated in Table 3.

The rubber interlayer was modeled with the Ogden material model.19 In this

material model, the rubber is considered to be fully incompressible since its bulk

modulus greatly exceeds shear modulus. Rate effects are also taken into account

through linear viscoelasticity.

The Teflon interlayer was modeled with the crushable foam material model. This

material model is dedicated to the modeling of crushable foams with optional damping

and tension cutoff. The unloading is fully elastic and tension is treated as elastic—

perfectly plastic at the tension cutoff value. The material model constants of EPDM

rubber and Teflon were taken from the work by Tasdemirci and Hall20 and are tabulated

in Table 4.

The aluminum foam was modeled with the MAT_HONEYCOMB material model.12

In this model, the behavior is assumed to be orthotropic before compaction and the stress

tensors are uncoupled with zero Poisson’s ratio. The normal and shear load displacement

curves can be defined as input. However, shear load–displacement curves are not always

readily available, and it is assumed that the shear stress is the half of normal stress.7 The

shear and elastic moduli of the compacted foam vary linearly and constantly increase to

those of the bulk material with respect to the relative volume. The material model

constants of the aluminum foam were taken from the work by Ergonenc21 and are

tabulated in Table 5. In the Ogden, the crushable foam and the MAT_HONEYCOMB

Table 3. Material properties of a E-Glass/polyester composite.18

Density (�) 1.850 g/cm3

Elastic modulus, EA; EB; EC 18.2, 18.2, 6.2 GPa
Poisson’s ratio, �BA; �CA; �CB 0.08, 0.14, 0.15
Shear modulus, GAB, GAB, GCA 1.79, 1.52, 1.52 GPa
In-plane tensile strength, SAT; SBT

400 MPa
In-plane compressive strength, SAC; SBC

330 MPa
Out of plane tensile strength, SCT 50 MPa
Fiber crush, SFC 500 MPa
Fiber shear, SFS 200 MPa
Matrix mode shear strength, SAB; SBC; SCA 30, 30, 30 MPa
Residual compressive scale factor, SFFC 0.3
Friction angle, PHIC 10
Damage parameter, AM1, AM2, AM3, AM4 2.0, 2.0, 0.5, 0.35
Delamination, SDELM 1.2
Eroding strain, E_LIMIT 0.2
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material models, the stress–strain curves,20,21 were used as input and the least squares fit

to the experimental stress–strain curves were applied during the initialization phase.

The armor and projectile were modeled using eight-node solid elements with single

integration point. Eroding surface to surface contact was used to define the contacts

between all contacting surfaces. There was no initial gap and bonding defined between

the tiles and the interlayers. For the element failure on the exterior surfaces, additional

eroding contact options were defined. In the model, the elements do not contribute to

the dynamics of penetration when the effective plastic strain attains a predefined limit.

The interface between the layers is redefined automatically when erosion starts. The

mesh sensitivity of the used model was previously checked by varying the element sizes

of the projectile and the layers. In accord with this, a minimum element size of 0.5 mm in

the impact zone was chosen.11 The coding of the tested armor configurations is as fol-

lows: without interlayer, with rubber (WR) interlayer, with Teflon (WT) interlayer, and

with aluminum foam (WF) interlayer. Besides these, three additional configurations

having the same areal density as the WF interlayer configuration were also modeled. In these

configurations, the thicknesses of the rubber and Teflon interlayers were increased from 1.5

mm to 5.1 mm (WR51) and from 2 mm to 8 mm (WT8), respectively. For the without

interlayer configuration, the thickness of the composite was increased from 14 mm to 17 mm

(WO17) in order to have the same weight as for the WR51 and WT8 configurations.

Results and discussion

In the experiments and simulations, no perforation of the targets was detected.

Figure 3(a) and (b) shows, respectively, the evolution of projectile residual velocity

Table 5. Mechanical properties of Aluminum foam.21

Material

Modulus of
uncompressed

material
(Eu; GPa)

Density,
� (kg/m3)

Poisson’s ratio of
the densified

foam (�densified)

Yield
stress
(�y;

MPa)

Volume
fraction of
densified
foam (�f)

Modulus of
densified

foam
(Ec GPa)

Aluminum
foam

0.170 438 0.28 104 0.29 69

Table 4. Mechanical properties of EPDM rubber and Teflon.20

Material
Modulus of

elasticity (GPa)
Poisson’s

ratio
Density
(kg/m3) Other

EPDM rubber – 0.4995 1200 �1 ¼ �4.684 MPa
�2 ¼ 0.1954 MPa
�1 ¼ �1.856; �2 ¼ 2.992

Teflon 3.65 0.25 760 –
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and projectile residual mass with time for the simulation of the seven investigated

different armor configurations. The projectile velocity declines steeply approxi-

mately within the first 20 μs for all configurations approximately to 12 m/s for WT,

to 10 m/s for WF, to 5 m/s for WR51 and WT8, and to 3 m/s for WO, WO17, and

WR interlayer configurations as shown in Figure 3(a). For all the configurations

investigated, the projectile shatters and breaks into small fragments and after

approximately 100 μs, the velocity of fragments stabilize. Similar to the residual

velocity, the projectile erosion is rapid approximately with the first 20 μs for all

configurations as seen in Figure 3(b). Following the initial rapid rate of erosion, the

erosion starts to slow down gradually. Since the numerical code still erodes the

elements of the projectile in contact with the target even after the velocity of the

projectile decreases significantly, a slight delay occurs between the times at which

the projectile velocity and the projectile mass stabilize. The smallest erosion is seen

in the WR configuration, while the largest erosion is seen for the WR51 interlayer

configuration. Intermediate projectile erosions are seen in WT, WO, WO17, WT8,

and WF interlayer configurations between WR51 and WR interlayer configurations.

Figure 4 shows the numerical force–time (through-thickness) history in the

projectile impact direction at the interlayer–composite interface. It is noted in the

same figure that in both cases without interlayer (WO and WO17) and rubber (WR

and WR51) interlayer configurations, the force transmitted to the composite layer

increases rapidly to a maximum approximately in the first 20 μs. It is also noted in the

same figure that the increase in the composite plate thickness has no significant effect

on the stress wave transmission. The rapid increase in the force transmitted to the

composite layer in rubber interlayer configurations is due to the increased rubber

stiffness during the course of deformation and increasing the thickness of rubber

interlayer from 1.5 mm to 5.1 mm is not effective in reducing the stress wave

Figure 3. Numerical projectile: (a) residual velocity and (b) residual mass versus time.
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transmitted to the backing plate. The stiffness of the rubber interlayer increases as it is

radially constraint by the neighboring material. A similar result was previously

reported for the rubber interlayer in a similar composite armor by Gama et al.5,6

However, the Teflon and foam interlayer significantly reduce the force transmitted to

the composite plate, and approximately in the first 20 μs almost no force is transmitted

to the composite layer as seen in Figure 4. The filtering effect of the interlayer

materials on the pressure transmission to the composite plate was also previously

reported for an aluminum foam interlayer between a ceramic and a composite layer.7

The highest force transmission occurs in without (WO and WO17) and rubber

interlayer (WR and WR51) configurations (approximately 130 kN) and the lowest in

the WT8 interlayer configuration (approximately 3 kN). Opposite to the rubber

interlayer, the increase in thickness of the Teflon layer, from 2 mm to 8 mm, results in

a reduction and a delay in the stress wave transmission. The highest force transmission

in the WF interlayer configuration is 25 kN at 80 μs. The filtering capability of the

Teflon interlayer is noted to be higher than that of aluminum foam for the investigated

interlayer thicknesses and for the same areal density. The reduced force transmission

to the composite backing layer in Teflon and WF interlayer configurations also

confirms the increased force reflections from the interlayer to the ceramic layer.

Figures 5(a) to (c) shows sequentially the total internal, kinetic, and eroded internal

energy histories of ceramic layer. In accordance with the above-mentioned criteria, the

ceramic layer shows higher total internal energy for Teflon (WT and WT8) and WF

Figure 4. The numerical variation of the through–thickness force component with time at the
interlayer-composite interface.
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interlayer configurations and lower internal energy for rubber and without interlayer

configurations (Figure 5(a)). The internal energy of the ceramic layer sequentially

decreases from Teflon interlayer (WT8 and WT) to aluminum foam interlayer (WF),

rubber interlayer (WR and WR51), and without interlayer (WO and WO17) config-

urations. The numerical simulations do not indicate a significant effect of increasing

the thicknesses of both the rubber and Teflon interlayers on the internal energy of the

ceramic layer. The kinetic energy transferred to the ceramic layer by the projectile in the

Teflon and aluminum foam interlayer configurations is also significantly greater than

that of the rubber and without interlayer configurations as shown in Figure 5(b). The

eroded internal energy basically indicates the projectile kinetic energy dissipation

Figure 5. The numerical energy histories of the ceramic layer: (a) internal energy, (b) kinetic
energy, and (c) eroded internal energy.
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through deformation and erosion. As shown in Figure 5(c), Teflon and aluminum

interlayer configurations are also more efficient than rubber and without interlayer

configurations in terms of eroded internal energy. However, the increase in the thickness

of both rubber and Teflon interlayers results in reduced eroded internal energy of

ceramic layer.

The total internal and kinetic energy of the composite layer, as opposite to the ceramic

layer, are higher in the rubber and without interlayer configurations than those in the

Teflon and aluminum foam interlayer configurations as shown in Figures 6(a) and (b).

The higher internal energy in the composite layer of rubber and without interlayer

configurations in fact shows the higher stress transmission to the composite layer. For the

WT8 case, both total internal and kinetic energy of the composite layer remained at

significantly lower values.

Figures 7(a) to (d) shows sequentially the damage contours of the ceramic layer in

WO, WR, WT, and WF interlayer configurations. In all configurations, the impact

damage in the ceramic layer is localized around the projectile impact zone. It is noted

that the damage in the ceramic layer in WO and WR interlayer configurations is

constraint within the impacted ceramic tile (Figure 7(a) and (b)), while the ceramic

damage in WT and WF interlayer configurations spreads laterally to neighboring tiles

(Figures 7(c) and (d)). The spreading of the ceramic layer damage in WT and WF

interlayer configurations indicates that the load transferred to the composite backing

plate is distributed over a larger area, which is preferable in designing armors with

multilayer materials. The damage formation in the ceramic layer of WO17 and WR51

configurations is limited to the center tile right under the projectile impact zone

(Figure 8(a) and (b)), similar to the WO and WR configurations.

As the dimensions of each ceramic tile were comparable with the diameter of the

projectile, it was not possible in the experiments to hit the target right at the center of

Figure 6. The numerical energy histories of the composite plate: (a) total internal energy and
(b) kinetic energy.
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middle tile. Figure 9(a) to (d) shows the pictures of the ceramic tiles after impact in

WO, WR, WT, and WF configurations, respectively. From the photos of the edge-shot

WO and WR configurations seen in Figure 9(a) and (b), it is possible to conclude that

the WO configuration ceramic layer fragments into larger size pieces. A similar

comparison can also be made for the center-shot WT and WF configurations seen in

Figures 9(c) and (d). The number of radial cracks emanating from the projectile impact

zone of the WF configuration is seen to be higher than that of the WT configuration.

These observations are in close agreement with the numerically determined damage

contours in the ceramic layer.

Figure 10(a) to (d) shows the delamination damage area in the composite

backing plate in WO and WR, WT, and WF interlayer configurations, respec-

tively. The delaminated area of the composite layer is visually observed to be

localized around the top outermost plies. The delamination damage in the com-

posite layer is relatively smaller in the WT interlayer configuration (Figure 10(c))

than those in the WO and WR interlayer configuration (Figures 10(a) and (b)).

Figure 7. Damage contours in the ceramic layer 500 �s after impact: (a) WO, (b) WR, (c) WT,
and (d) WF configuration.
WO: without interlayer; WR: with rubber interlayer; WT: with Teflon interlayer; WF: with alumi-
num foam interlayer.
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However, in the WF interlayer configuration, no visible delamination is observed

(Figure 10(d)).

Figure 11(a) to (d) show the corresponding numerically observed delamination

damage in WO and WR, WT, and WF interlayer configurations, respectively. Numerical

results are in excellent agreement with those of experimental. Damage is significantly

lesser in WT interlayer configuration (Figure 11(c)) and no composite damage is seen in

WF configuration (Figure 11(d)).

Figure 12(a) to (c) shows the numerical delamination damage in WO17, WR51, and

WT8 interlayer configurations, respectively. As can be seen from Figures 12(a) and (b),

the thickness increase in both no interlayer and rubber interlayer configurations do not

result in a significant effect on the damage formation in the composite plate. However,

increasing the Teflon interlayer thickness in the WT8 configuration leads to no damage

in the composite plate (Figure 12(c)). This also confirms the reduced stress wave

transmission to the composite backing plate with increasing Teflon interlayer thickness

from 2 mm to 8 mm.

Figure 8. Damage contours in the ceramic layer 500 �s after impact: (a) WO17, (b) WR51, and
(c) WT8 configuration.
WO: without interlayer; WR: with rubber interlayer; WT: with Teflon interlayer.
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These results clearly indicate the importance of the interlayer material and its

thickness in the composite armor design. The interlayer significantly alters the

damage initiation and propagation in the ceramic layer. Similar results were also

found for the same armor configurations of larger test samples tested using armor-

piercing projectiles at a relatively high impact velocity,11 while more controlled

and lower impact velocity tests were conducted in the present study using a laboratory

scale impact test system. Two effects of interlayer materials on the response of the

composite armor are detected. The presence of a low-impedance interlayer decreases

the force developed on the composite backing plate and lead to fragmentation and

spreading of the damage in the ceramic layer. The fragmentation of the ceramic layer

is caused by the reflection of the compressive stress waves at the ceramic–interlayer

interface due to the acoustic impedance mismatch induced by the interlayer. The

lateral spreading of the damage zone is favorable in reducing the transmitted stress to

Figure 9. The pictures of the ceramic tiles after impact in (a) WO, (b) WR, (c) WT, and (d) WF
configuration.
WO: without interlayer; WR: with rubber interlayer; WT: with Teflon interlayer; WF: with alumi-
num foam interlayer.
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the composite backing plate as previously noted in a study in which the use of thicker

layers of adhesive between ceramic and backing aluminum plate resulted in stress

distribution over a wider area of aluminum plate.10 Present results gave some essence

on the effect of interlayer on damage formation at a low impact velocity using a

laboratory-scale projectile impact test system.

Conclusions

The effect of interlayer material on the stress wave propagation behavior of a multi-

layered armor without and with low impedance interlayers was investigated experi-

mentally and numerically using a low velocity projectile impact test system. The used

test system allowed the recovery of the fragmented ceramic layer. Numerical results

showed that the interlayer material had a strong influence on the stress propagation and

Figure 10. The back-face views of the composite backing plate after impact: (a) WO, (b) WR,
(c) WT, and (d) WF configuration.
WO: without interlayer; WR: with rubber interlayer; WT: with Teflon interlayer; WF: with alumi-
num foam interlayer.

Tasdemirci and Tunusoglu 103



the fragmentation of the ceramic layer and damage formation in the composite backing

plate. Teflon and aluminum foam interlayers greatly reduced the stress wave transmis-

sion to the composite backing plate and increased the damage on the front ceramic layer.

It was found that the impedance of the rubber interlayer increased rapidly at the

beginning of the projectile impact and lead to relatively higher stress transmission to the

composite backing plate, similar to without interlayer configuration. The reduced stress

transmissions to the backing plate and increased damaging of the ceramic layer with the

use of Teflon and aluminum foam interlayer were confirmed experimentally by obser-

ving the damage formed in the composite backing plate visually.
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