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Electronic and vibrational properties of PbI2: From bulk to monolayer
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Using first-principles calculations, we study the dependence of the electronic and vibrational properties of
multilayered PbI2 crystals on the number of layers and focus on the electronic-band structure and the Raman
spectrum. Electronic-band structure calculations reveal that the direct or indirect semiconducting behavior of
PbI2 is strongly influenced by the number of layers. We find that at 3L thickness there is a direct-to-indirect band
gap transition (from bulk-to-monolayer). It is shown that in the Raman spectrum two prominent peaks, A1g and
Eg , exhibit phonon hardening with an increasing number of layers due to the interlayer van der Waals interaction.
Moreover, the Raman activity of the A1g mode significantly increases with an increasing number of layers due to
the enhanced out-of-plane dielectric constant in the few-layer case. We further characterize rigid-layer vibrations
of low-frequency interlayer shear (C) and breathing (LB) modes in few-layer PbI2. A reduced monoatomic (linear)
chain model (LCM) provides a fairly accurate picture of the number of layers dependence of the low-frequency
modes and it is shown also to be a powerful tool to study the interlayer coupling strength in layered PbI2.
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I. INTRODUCTION

Over the past decade, successful synthesis of graphene [1,2]
led to an enormous interest in the field of two-dimensional
(2D) materials. However, the lack of a band gap in graphene
restricted its applications and a search for other 2D materials
with a suitable band gap became necessary. With this respect,
many other 2D monolayer materials such as silicene [3,4],
germanene [3], group III-V binary compounds (h-BN, h-AlN)
[5–9], and transition-metal dichalcogenides (TMDs) [10–17]
were successfully synthesized. Recently a post-transition metal
iodide PbI2 was added to the library of 2D monolayer materials
[18].

Lead iodide (PbI2) is a typical layered van der Waals
(vdW) crystal in its bulk form which crystallizes in the well-
known 1T phase. The PbI2 units are also known to form lead
halide perovskites which were recently investigated [19,20].
Its bulk crystal is composed of covalently bonded I-Pb-I
repeating layers that interact weakly with vdW forces [21–25].
The bulk crystal of PbI2 was demonstrated to be a good
semiconductor for photoluminescence, electroluminescence,
and nonlinear optical field applications [26,27]. In addition,
thickness-dependent optoelectronic properties of PbI2 is an-
other important feature of the material. Toulouse et al. found
theoretically that the electronic-band structure of PbI2 exhibits
a shift from a direct gap with 2.38 eV to an indirect-gap
semiconductor with 2.5 eV when its thickness is thinned down
to bilayer or monolayer [21]. In another study, Zhou et al. inves-
tigated the structural stability and strain-dependent electronic
properties of monolayer PbI2 and showed that the band gap
of the material is tunable under biaxial strain in a wide energy
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range of 1–3 eV [28]. Wang et al. confirmed experimentally the
thickness- and strain-dependent photoluminescence properties
of PbI2 [29] and reported that thickness-dependent vdW epi-
taxial strain can be significant and influences substantially the
photoluminescence properties of PbI2. Very recently, Zhong
et al. successfully synthesized large scale monolayer and
few-layer PbI2 with high crystallinity using the physical vapor
deposition (PVD) method [18] and using photoluminescence
measurements showed direct-gap to indirect-gap transition in
PbI2 when going from bulk to monolayer.

One of the most common techniques for the character-
ization of a material is Raman spectroscopy [30] which
gives information about the structural phase of the material
by monitoring the characteristic vibrational energy levels of
the sample. Raman measurement can give information about
the substrate-free number of layers identification of layered
materials [31–33], the strength of the interlayer coupling in
layered materials [33,34], and interface coupling in vdW
heterostructures [35,36]. Absolute and relative activities of
the Raman peaks lead to the determination of different phase
distributions in a material [37–39]. Raman spectroscopy can
also give information about the electronic structure, thickness,
and can be used to probe strain, stability, stoichiometry, and
stacking orders of 2D materials [40].

The PbI2 crystal is known as a good semiconductor
for photoluminescence, electroluminescence, and nonlinear
optical field applications which is also known to possess
important thickness-dependent optoelectronic properties. The
thickness-dependent electronic properties of PbI2 were already
investigated by means of photoluminescence measurements
and ab initio calculations. Here we aim to study the number
of layer dependency of the electronic-band structure of PbI2

and explain the physical origin of the indirect-to-direct band
gap transition. In addition, we investigate the layer-dependent
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vibrational properties of PbI2 in terms of high-frequency
prominent optical peaks and low-frequency interlayer shear
(C) and breathing (LB) modes in order to get information about
the layer-layer interaction in few-layer PbI2.

The paper is organized as follows: Details of the compu-
tational methodology and Raman scattering theory are given
in Sec. II. The evolution of electronic-band structure with the
number of layers is discussed in Sec. III A. In Secs. III B 1 and
III B 2 the evolution of the Raman spectrum of PbI2 from bulk
to monolayer is discussed in terms of the peak frequencies and
Raman activities of high-frequency optical and low frequency
interlayer shear and breathing modes, respectively.

II. COMPUTATIONAL METHODOLOGY

To investigate the structural, electronic, and vibrational
properties of PbI2 crystals, first-principle calculations were
performed in the framework of density functional theory
(DFT) as implemented in the Vienna ab initio simulation
package (VASP) [41,42]. The Perdew-Burke-Ernzerhof (PBE)
[43] form of generalized gradient approximation (GGA) was
adopted to describe electron exchange and correlation. The
van der Waals (vdW) correction to the GGA functional was
included by using the DFT-D2 method of Grimme [44]. The
electronic-band structures were calculated with the inclusion
of spin-orbit coupling (SOC) on top of the GGA and Heyd-
Scuseria-Ernzerhof (HSE) [45] screened-nonlocal-exchange
functional of the generalized Kohn-Sham scheme, respectively.
The charge transfer in the system was determined by the Bader
technique [46].

The kinetic energy cutoff for plane-wave expansion was set
to 500 eV and the energy was minimized until its variation in
the following steps became less than 10−8 eV. The Gaussian
smearing method was employed for the total energy calcula-
tions. The width of the smearing was chosen to be 0.05 eV.
Total Hellmann-Feynman forces were taken to be 10−7 eV/Å
for the structural optimization. 18 × 18 × 1 � centered k-point
samplings were used in the primitive unit cells. To avoid
interaction between the neighboring layers, the calculations
were implemented with a vacuum space of 25 Å.

The phononic properties of PbI2 crystals were calculated in
terms of the off-resonant Raman activities of the phonon modes
at the � point. For this purpose, the zone-centered vibrational
phonon modes were calculated using the finite-difference
method as implemented in VASP. Each atom in the primitive
unit cell was initially distorted by 0.01 Å and the correspond-
ing dynamical matrix was constructed. Then, the vibrational
modes were determined by a direct diagonalization of the
dynamical matrix. The kinetic energy cutoff for plane-wave
expansion was increased to 800 eV with a k-point set of
24 × 24 × 1 in the case of Raman calculations. The k-point set
and kinetic energy cutoff were systematically increased step by
step until convergence for the frequencies of acoustic modes
was reached (0.0 cm−1 for each acoustic mode at the � point).
Once the accurate phonon mode frequencies were obtained at
the � point, the change of the macroscopic dielectric tensor
was calculated with respect to each vibrational mode to get the
corresponding Raman activities [47].

In a Raman scattering experiment, the sample is ex-
posed to light and instantly scattered photons are collected.

The dispersion of the collected photons with respect to a shift
in frequency gives the Raman spectrum. In Raman theory, the
inelastically scattered photon originates from the oscillating
dipoles of the crystal corresponding to the Raman active
vibrational modes.

The treatment of Raman activities is based on Placzek’s
classical theory of polarizability [48]. According to the Placzek
approximation, the activity of a Raman active phonon mode
is proportional to |êsRêi |2 where ês and êi stand for the
polarization vectors of scattered radiation and incident light,
respectively. R is a 3 × 3, second rank tensor known as the
Raman tensor whose elements are derivatives of polarizability
of the material with respect to the phonon normal modes,

R =

⎡
⎢⎢⎣

∂α11
∂Qk

∂α12
∂Qk

∂α13
∂Qk

∂α21
∂Qk

∂α22
∂Qk

∂α23
∂Qk

∂α31
∂Qk

∂α32
∂Qk

∂α33
∂Qk

⎤
⎥⎥⎦, (1)

where Qk is the normal mode describing the whole motion of
individual atoms participating to the kth vibrational phonon
mode while αij is the polarizability tensor of the material. The
term |êsRêi |2 is called the Raman activity which is calculated
from the change of polarizability. For a backscattering exper-
imental geometry the total Raman activity is represented in
terms of Raman invariants given by

α̃s ≡ 1
3 (α̃xx + α̃yy + α̃zz), (2)

β2 ≡ 1
2 {(α̃xx − α̃yy )2 + (α̃yy − α̃zz)2 + (α̃zz − α̃xx )2

+ 6[(α̃xy )2 + (α̃yz)2 + (α̃xz)2]}, (3)

where α̃s and β represent the isotropic and anisotropic parts
of the derivative of the polarizability tensor with respect to
the phonon normal mode, respectively. The importance of
such representation is its invariance under a change in the
sample orientation. Finally, using these forms of symmetric
and antisymmetric polarizability derivative tensors, the Raman
activity RA can be written as

RA = 45α̃2
s + 7β2. (4)

In the rest of the paper, the Raman activities of PbI2 crystals
are calculated using Eq. (4).

III. MONOLAYER-TO-BULK PbI2

A. Electronic-band structure

Like many TMDs, monolayer PbI2 crystallizes in either
the 1H or 1T phase. It was already demonstrated that the
1T phase is the structural ground state of monolayer PbI2

[50]. In the present study, we consider the 1T phase for
PbI2 crystal (see Fig. 1). 1T phase of bulk and monolayer
PbI2 can be represented by a three-atom primitive unit cell.
The bulk crystal is composed of weakly vdW interacting PbI2

layers. In an isolated monolayer crystal, a layer of Pb atoms is
sandwiched between two layers of I atoms which corresponds
to the space group P 3̄m2. Each Pb atom is surrounded by six I
atoms forming a near-octahedral [PbI6]4− unit. When sharing
edges with six neighboring octahedra a monolayer of PbI2 is
constituted (see left panel of Fig. 1). The calculated in-plane
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FIG. 1. Top and side views of bulk PbI2. The lattice parameters
a, b, and c, the octahedral unit [PbI6]−4, layer thickness, and Pb-I
atomic bond length dPb-I, are shown in the inset of the figures. For the
visualization of the atomic structure the software VESTA was used
[49].

and out-of-plane lattice parameters for the bulk crystal are
4.45 and 7.09 Å, respectively. The Pb-I atomic bond length
is 3.23 Å while the interlayer distance is 3.18 Å. In the case
of few-layer PbI2 crystals, the in-plane lattice constant slightly
decreases (4.44 Å) with the corresponding Pb-I bond length
of 3.24 Å. Thus, it is important to note that the structural
parameters are almost independent on the number of layers of
PbI2. Bader charge analysis shows that an amount of ∼ 0.4 e−
is received by an I atom indicating the ionic bonding character
between Pb and I atoms. In addition, as listed in Table I, the
work function (�), which is defined for a semiconductor as the
amount of energy required to remove a charge carrier located
at the Fermi energy to vacuum as a free particle, decreases
rapidly from monolayer to 4L crystal and then slowly upon

TABLE I. From bulk to monolayer PbI2 crystal, the thickness of
PbI2 layers h and energy band gaps including SOC (ESOC

gap ) and HSE06
(EHSE06+SOC

gap ). Location of VBM and CBM edges in the BZ, and the
work function � .

h ESOC
gap ESOC+HSE06

gap VBM/CBM �

(Å) (eV) (eV) (eV)

1L-PbI2 7.13 1.99 2.65 M-�/� 6.10
2L-PbI2 21.39 1.75 2.39 M-�/� 5.99
3L-PbI2 28.52 1.62 2.23 �/� 5.93
4L-PbI2 35.65 1.50 2.18 �/� 5.84
5L-PbI2 42.78 1.47 2.14 �/� 5.82
6L-PbI2 49.91 1.45 2.11(2.38) [18] �/� 5.80
Bulk-PbI2 – 1.40 2.07(2.41) [18] A/A –

further increasing the number of layers. The reason for such
decrease is that as the number of layers increases, the number
of electrons also increases which sets the Fermi level to higher
energies. This leads to a decrease in work function which is
the energy difference between the vacuum level and the Fermi
level.

In order to understand the effect of the thickness on the
electronic properties of PbI2 crystals, we perform electronic-
band structure calculations for different thicknesses of PbI2

crystals (1L, 2L, 3L, 4L, 5L, 6L, and bulk). As shown in
Fig. 2(a), the conduction band minimum (CBM) is located
at the � point in the BZ for all PbI2 crystals. However, as the
number of layers increases from 1L to 3L, the valence band
maximum (VBM) shifts from between the � and K points to
the � point which indicates a transition from indirect-to-direct
band gap for 3L-PbI2. In this section we give our HSE06+SOC
band gap results which approximately gives the correct band
gap for PbI2. The indirect band gap values are 2.65 and
2.39 eV for 1L and 2L crystals, respectively. For 3L and thicker
structures, the VBM shifts to the� point and the direct band gap
for 3L-PbI2 is 2.23 eV. The thickness of 3L-PbI2 (∼ 2.9 nm)
seems to be the critical thickness for such an indirect-to-direct
band gap transition. As the number of layer increases to 6L,
the band gap decreases to 2.11 eV and saturates to 2.07 eV
for bulk-PbI2 (see Fig. 2). Our results for the direct-to-indirect
band gap transition agree with those reported by Toulouse et al.
[21]. However, quantitative differences between our band gap
results and theirs are due to the use of different functionals.
Different from the methodology used by Toulouse et al. [21],
we consider the GGA functional within vdW correction which
is very important for layered materials. Although, it was
pointed out by Toulouse et al., the nature of the band gap
transition in PbI2 is explained through layer-layer interaction
while the change in the band gap is driven by both quantum
confinement and vdW interlayer interaction. In addition, we
aim to understand the behavior of the band gap with the number
of layers by fitting the band gap values to a functional of the
form given in Eq. (5).

In order to compare with the usual particle in a box model for
quantum confinement for which the energy decays as ∼ 1/N2

[51], we fitted the band gap to a general power law of the form
[52]

Egap(N ) = Egap(bulk) + A

Nκ
, (5)

where N is the number of layers. The value Egap(bulk), 2.07 eV,
is the bulk band gap and we obtain κ and A to be 1.3 and 0.6 eV,
respectively. Here since two different physical mechanisms
drive the changes in the band structures, one may also try to fit
the band gap change to a function including both exponential
and power-law forms as suggested by Rudenko et al. [53].
In addition, Tran et al. [52] demonstrated that the quantum
confinement exponent may give different values for the band
gap fits calculated at different levels of the theory (PBE,
GW,. . . ). Indeed, it should be noted that the change in the
band gap is different from 1L-to-3L and from 4L-to-bulk.
In the first thickness regime, the orbital-orbital interaction
between neighboring PbI2 layers dominate the vdW interaction
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FIG. 2. (a) Evolution of electronic-band structure from monolayer to bulk crystal of PbI2. The Fermi energy (EF ) level is set to the valence
band maximum. The red solid and blue dashed lines represent the band structures calculated within SOC and HSE06 on top of GGA, respectively.
(b) The change of band gap with respect to the number of layers. The inset shows the high symmetry points in the BZ.

and drives the indirect-direct band gap transition. However,
for thicker crystals the electrons are mostly confined to the
layers and the relatively small decrease in the band gap can
be attributed to weak interactions between the layers (vdW,
Coulomb, etc.)

The transition from indirect-to-direct band gap semicon-
ducting behavior can be attributed to the orbital hybridizations
between I atoms from the nearest-neighboring layers. As
shown in Fig. 3, in monolayer PbI2 the VBM is composed of
mixed in-plane p orbitals (px and py). When the second layer
is introduced, i.e., the bilayer case, the VBM is composed of
tilted-interacting pz orbitals of the I atoms. As the number
of layers increases to 3, the hybridization between the I atoms
from neighboring layers converts the VBM orbitals completely
to pz orbitals which controls the indirect-to-direct band gap
semiconducting transition. In few-layer PbI2 crystals, it is seen
that this hybridization mostly occurs between the I atoms of
the internal layers and thus the contributions from the outer
layers become negligible. In contrast to the VBM, the CBM
consists of p orbitals of the Pb atoms which are located at the
center of each layer. The CBM has no thickness dependency
since there is no direct interaction between the Pb atoms of the
neighboring layers.

FIG. 3. Atomic orbital character of the valence band maximum
of PbI2 crystals from 1L to 6L. The isosurface value is 5 × 10−6 e/Å3

. The atomic orbitals were visualized using the software VESTA [49].

B. Phonons and Raman spectrum

In this section we discuss the thickness dependency of
the phononic properties of PbI2, through high-frequency op-
tical phonons and low-frequency layer breathing (LB), and
interlayer shear (C) modes by considering their frequencies
and Raman activities. Note that, in crystals where vacuum is
introduced, the Raman activities are normalized with respect
to vacuum by using the thickness h (see Table I) of the PbI2

crystals.
The dynamical stability of each PbI2 crystal is examined by

calculating the corresponding phonon band structure through
the whole BZ. As shown in Fig. 4, all crystals are dynami-
cally stable with no significant imaginary frequencies. Small
negative frequencies in the out-of-plane acoustic (ZA) mode
near the � point are attributed to numerical artifacts which are
caused by small inaccuracies of the FFT grid. To determine
the first-order off-resonant Raman spectrum, we calculate the
zone-centered vibrational phonon modes at the � point of
the BZ. For a PbI2 crystal there are two types of Raman
modes, Eg and A1g . The Eg modes are doubly degenerate
and arise from the opposite in-plane vibration of two I atoms
with respect to the Pb atom, while the A1g mode is associated
with the out-of-plane vibration of only I atoms in the opposite
direction (Fig. 5). Apart from those optical Raman modes, there
are also low-frequency phonon modes which appear in the
Raman spectrum in the low frequency region (generally below
50 cm−1). These low-frequency modes are categorized into
two types: in-plane C and out-of-plane LB vibrational modes.

Initially, the majority of research activities in layered
materials focused on analyzing high-frequency optical phonon
modes which involve vibrations of atoms that stem from the
intralayer chemical bonds. These phonon modes, which are
called intralayer modes, the restoring forces are dominated by
the strength of the intralayer chemical bonds rather than the
vdW type forces which hold the layers together. Because of this
reason, high-frequency intralayer modes are not very sensitive
to the interlayer coupling, and therefore they are of limited use
in the determination of thickness and stacking order.

1. High-frequency optical modes

As given in Table II, the peak frequencies of Eg and A1g

harden as the number of layers increases which is attributed
to the interlayer vdW forces suppressing atomic vibrations.
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FIG. 4. The phonon-band structures of PbI2 crystals from monolayer to bulk.

The frequency of A1g mode displays a hardening from 87.6 to
101.1 cm−1 when going from monolayer to bulk. In the case
of Eg mode, the corresponding frequency shifts from 68.5 to
75.8 cm−1. The relative shift of both phonon modes ��A1g

and ��Eg
are calculated by using

��i = �i (N ) − �i (N − 1)

�i (N )
, (6)

and listed in Table II. As seen in Fig. 6(a), as the number of
layers increases the shift rate decreases and saturates to the
bulk limit.

As in the case of the energy band gap, the evolution of the
phonon frequencies with the number of layers can be fitted by
the formula [54,55]

�(N ) = �bulk − D
a

Nγ
, (7)

where �bulk is the frequency of the optical phonon mode for
bulk crystal and a = 4.45 × 10−8 cm is the lattice constant
of bulk. D and γ are fitting parameters that match the N -
dependent Raman shifts. For both of the prominent optical
phonons A1g and Eg , the calculated frequencies are fitted to
Eq. (7) and the fitted frequencies are listed in Table II and
also are shown in Fig. 6(a). When the calculated frequencies
are fitted for A1g , the parameters D and γ are found to
be 1.55 × 10−8 1/cm2 and 1.83, respectively which gives
the best fit to our calculated frequencies. In the case of Eg

phonon mode, γ = 1.83 is found to be the same while D =
0.64 × 10−8 1/cm2 is smaller than that for A1g . When fitting
the calculated frequencies, the frequencies of the 1L crystal
are omitted because they do not exhibit the same trend of the
few-layer structures. This is mainly attributed to the layer-layer
interaction. As given in Table II, the frequency shift rates of
both phonon modes are largest when going from the 1L crystal
to the 2L crystal. This is can be understood as follows: addition
of a second layer induces additional springs between the layers
that significantly increases the frequency. Our fitted function
can be used to calculate the frequencies of both phonon modes
for arbitrary thickness of PbI2. Zhong et al. [18] reported the
frequency of A1g mode for 2L-, 9L-, and bulk-PbI2 to be
approximately equal (∼ 96 cm−1) while we find (see Table II)
that they can differ by almost 5 cm−1.

The suppression of atomic vibrations by the layer-layer
vdW interaction is more dominant in bilayer and trilayer cases
as supported by the values listed in Table II. As the number of
layers increases, the relative contribution of the interaction with
the outer neighboring layers decreases and thus, the change in
the frequency gets smaller. The main contribution from the
vdW interaction stems from the nearest-neighboring layers in
the center of the few-layer sample.

Zhang et al. [33] developed a diatomic chain model (DCM)
for the intralayer shear (Eg) and breathing (A1g) modes that can
explain the nature of the force constants per unit area, α‖

Pb-I and
α⊥

Pb-I, which are needed to describe the interaction between Pb
and I atoms in a monolayer. Here the component α‖

Pb-I describes
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FIG. 5. (a) The vibrational motion of I atoms in Eg phonon modes for a different number of PbI2 layers. (b) The evolution of Raman
spectrum with respect to the number of layers for the two characteristic prominent peaks. (c) The vibrational motion of I atoms in A1g phonon
mode.
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TABLE II. From bulk to monolayer PbI2: calculated and fitted peak positions of the Raman active phonon modes, Eg(calc), Eg(fit), A1g(calc),
and A1g(fit), the relative frequency shift of each phonon mode with respect to the frequency of the mode in (N − 1)-PbI2, ��A1g

, and ��Eg
.

The Raman activity of phonon modes and their relative ratios, IEg
, IA1g

, and
IA1g

IEg
. The in-plane (εin) and out-of-plane (εout) static (low-frequency)

dielectric constant. The frequencies given in the parentheses are from the literature.

Eg(calc) Eg(fit) A1g(calc) A1g(fit) ��A1g
��Eg

IEg
IA1g

IA1g

IEg
εin εout

(cm−1) (cm−1) (cm−1) (cm−1) (%) (%) ( Å
4

amu ) ( Å
4

amu )

1L-PbI2 68.5 – 87.6 – – – 1.3 0.1 0.1 2.56 1.30
2L-PbI2 73.1 73.0 94.5(96.0) [18] 94.4 7.9 6.7 2.0 3.2 1.6 3.24 1.49
3L-PbI2 74.4 74.5 97.7 97.9 3.4 1.9 3.3 14.3 4.3 3.84 1.70
4L-PbI2 74.9 75.0 99.0 99.2 1.3 0.6 5.8 32.0 5.5 4.28 1.89
5L-PbI2 75.3 75.3 100.0 99.9 1.0 0.5 9.0 56.5 6.3 4.68 2.06
6L-PbI2 75.7 75.5 100.6 100.2 0.6 0.5 12.0 83.7 7.0 4.81 2.18
Bulk-PbI2 75.8 75.8 101.1(96.0) [18] 101.1 – – 32.3 384.4 11.9 6.87 5.68

the in-plane lattice dynamics while the α⊥
Pb-I determines that of

the out-of-plane dynamics between Pb and I atoms. For these
two optical phonon modes, the force constant per unit area can
be related to the phonon frequency by the equations [33]

�A1g
=

(
1√
2πc

)√
2α⊥

Pb-I

μ
,

�Eg
=

(
1√
2πc

)√
2α

‖
Pb-I

μ
, (8)

where μ is the atomic mass per unit area and c is the speed of
light. Due to the vibration of I atoms, the total mass per unit
area is equal to 2mI . Using the frequencies of A1g (87.6 cm−1)
and Eg (68.5 cm−1) in 1L-PbI2 and the mass density of I atom
(mI = 1.24 × 10−4 kg/m2), we find the⊥ and ‖ components of
the force constant per unit area as α⊥

Pb-I = 0.34 × 1021 N/m3

and α
‖
Pb-I = 0.21 × 1021 N/m3 which are approximately 10

times smaller than those for MoS2 (3.46 × 1021 and 1.88 ×
1021 N/m3, respectively) [33]. As listed in Table IV, the
α

‖
Pb-I is also much smaller than that of graphene (33.8 ×

1021 N/m3) [34] indicating the strong C-C bonds in graphene
that results in a high frequency for the in-plane mode in
graphene.

It has been shown for many other 2D layered materials that
not only the peak frequencies but also the activities of Raman
active modes are also key for the determination of the number
of layers [56–58]. In the present study we calculate the first
order off-resonant Raman activities of two prominent, high-
frequency optical phonons Eg and A1g for monolayer, few-
layer, and bulk PbI2 crystals. First of all, the individual Raman
activities of each phonon mode display an increasing trend
with an increasing number of layers. Only in the monolayer
limit, the Raman activity of A1g mode is much lower than that
of Eg . In bilayer and few-layer cases, the contribution of both
in-plane and out-of-plane dielectric constants to the Raman
tensor increases. The reason why the increment in activity of
A1g is much larger than that of Eg can be explained through
the Raman tensors of the two peaks. The Raman tensors of
the two peaks are known from group symmetry of the crystal

structure as

RA1g
=

⎡
⎣a 0 0

0 a 0
0 0 b

⎤
⎦,

REg
=

⎡
⎣c 0 0

0 −c d

0 d 0

⎤
⎦,

⎡
⎣ 0 −c d

−c 0 0
d 0 0

⎤
⎦,

where a, b, c, and d are the derivative of the polarizability
with respect to the considered normal mode. Since Eg is
doubly degenerate, the total Raman activity is the sum of
the activities of two tensors standing for longitudinal and
transverse orientations. In contrast to the Raman tensors of Eg

mode, there is an out-of-plane contribution of the derivative
of polarizability in the Raman tensor of A1g (the number b).
It can be clearly seen that increasing the in-plane dielectric
constant from monolayer to bulk affects the Raman tensors
of both modes (i.e., the values of R11 and R22 are affected).
However, increasing the number of layers results in an increase
of out-of-plane dielectric constant which only influences the
Raman activity of the A1g mode. Another reason for the
higher increase of Raman activity of A1g is the contribution
of the isotropic part of polarizability derivatives to the Raman
activity. As given in Eq. (4), the isotropic part α̃2

s is the sum
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FIG. 6. (a) The shifts in frequencies of Eg and A1g vibrational
modes with respect to the number of layers. (b) The change in Raman
activity ratio of the two prominent peaks as a function of the number
of the layers.
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of the squares of the diagonal terms which is dominant in the
anisotropic part β2.

Also it should be noted that in Raman experiments a
certain polarization direction is used to detect the Raman active
phonon modes. As seen from the Raman tensors, the A1g mode
is observable for only certain polarization angles while the
Eg mode is always observable independent of the polarization
angle of the incident light. For a backscattering configuration,
the polarization vector of incident (ei) and scattered (es) light
are in the xy plane. These two vectors can be represented in
terms of an angle θ which is the angle between the polarization
vectors of incident and scattered light. Setting ei as (cos θ , sin θ ,
0) and es as (1, 0, 0), one may calculate the Raman activities to
be proportional to a2 cos2 θ for A1g and proportional to c2 for
Eg mode. Thus, the activity of Eg mode is independent of the
polarization angle θ while that of A1g is only nonzero when
the polarization directions of incident and scattered lights are
not perpendicular to each other.

Since measured Raman intensities are taken on different
substrates, the Raman intensities can also vary for different ex-
perimental setups (i.e., for different laser energies). Therefore,
the discussion of relative Raman activities of the two prominent
peaks seems to be more reliable for the determination of the
number of layers in layered materials. In this section we discuss

the Raman activity ratio of A1g to that of Eg , i.e.,
IA1g

IEg
. Our

results reveal that in the monolayer limit, the Raman activity
of A1g mode is lower than that of Eg and the corresponding
ratio is about 0.1 [see Fig. 6(b)]. Thus, the relative activity of
A1g can be used to determine the thickness of a PbI2 sample,
i.e., the number of layers. As the numbers of layer increases,
the Raman activity of A1g becomes dominant to that of Eg and
the ratio increases even in the bilayer case.

2. Interlayer shear and layer breathing modes

Zero shift corresponds to Rayleigh (elastic) scattering of
photons which has a very high intensity as compared to
inelastically scattered photons. Since the interlayer C and LB
phonons have usually very low frequencies (several to tens of
wave numbers), the probing of these phonons through Raman
spectroscopy is challenging. The low-frequency characteristic
of the interlayer C and LB phonon modes actually results from
the weak interlayer vdW restoring force. It was shown for other
layered materials, such as graphene and MoS2, that these low-
frequency phonon modes give information about the number
of layers N since the vibrations themselves are rigid motions of
each layer. In contrast to the high-frequency optical phonons,
the interlayer modes have low frequencies and are almost
completely determined by the interlayer restoring forces. The
weak nature of the vdW layer-layer interaction and the fact
that a large ensemble of atoms move together is responsible
for the low frequencies which typically yields frequencies well
below ∼ 100 cm−1. Due to their layer sensitivity to interlayer
coupling, low-frequency Raman modes have recently started
to attract increasing attention for the determination of the
interfacial coupling and the thickness of the sample [34].

Interlayer shear (C) modes:. The interlayer C modes are
assigned to the in-plane rigid-layer vibrations of each PbI2

layer. The frequencies of C and LB modes are smaller than
∼ 50 cm−1 which is a natural result of the weak vdW forces.
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FIG. 7. (a) The vibrational character of interlayer C modes from
2L-to-6L. The Raman activity (R) and infrared activity (IR) of each
phonon mode are given below the mode. The same colors correspond
to the same phonon modes in different few-layer PbI2. (b) The
Raman spectrum of low-frequency interlayer C phonon modes for a
different number of layers of PbI2 crystal. (c) The change in frequency
of interlayer C modes. Results of DFT calculations and LCM are
compared.

1T-PbI2 belongs to the D3d point group which is independent
of the number of layers. In contrast, the Raman or infrared
activity of a C mode strongly depends on whether N is even
or odd.

For the N -layer PbI2 sample, one should count 2 × (N − 1)
C modes where the coefficient 2 corresponds to the degeneracy
of the modes. The C modes are either Raman or infrared active
for even number PbI2 (EN-PbI2) layers while for odd number
PbI2 layers (ON-PbI2), they are either Raman active or both
infrared and Raman active. As seen in the right panel of Fig. 6,
one C mode appears in 2L-PbI2. As the number of layers
becomes three, this mode splits into two branches one of which
hardens and the other softens with increasing N . So for each
number of layers, an additional mode appears with increasing
N . As seen in Fig. 6(b) connecting each branch of the C modes
with dashed and solid lines shows a series of conelike curves.
For example, the shear mode C1 (denoted by red color) exhibits
the opposite rigid vibration of each PbI2 layer with respect to
each other as shown in Fig. 6. As N increases from 2L-to-6L,
its frequency hardens from 11.7 cm−1 in 2L-PbI2 to 19.3 cm−1

in 6L-PbI2 and reaches 20.3 cm−1 in bulk-PbI2 (Fig. 7).
As modeled for other 2D layered materials, the physics of

C and LB modes can be obtained using a simple linear chain
model (LCM). Since each PbI2 layer exhibits a rigid vibration,
they can be considered as a single mass and then the LCM is
constructed. Such approximation has been proven to work very
well for 2D layered materials [33,34,59]. The frequency of C1

in bulk crystal is related to that of 2L-PbI2 by the relation

�(C2,1) = �(Cbulk)/
√

2. (9)
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TABLE III. From 2L-to-6L PbI2 crystal, the frequencies and Raman or infrared activity of C and LB modes. The following notations are
used: R Raman active, IR Infrared active, and IR+R both infrared and Raman active.

C1 C2 C3 C4 C5 LB1 LB2 LB3 LB4 LB5

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

2L-PbI2 14.2 – – – – 24.5 – – – –
(R) (R)

3L-PbI2 17.4 10.0 – – – 16.8 30.8 – – –
(IR+R) (R) (R) (IR)

4L-PbI2 18.6 14.2 7.5 – – 12.7 24.4 33.4 – –
(R) (IR) (R) (R) (IR) (R)

5L-PbI2 19.3 16.4 12.0 6.2 – 10.3 20.1 28.6 34.9 –
(IR+R) (R) (IR+R) (R) (R) (IR) (R) (IR)

6L-PbI2 19.7 17.5 14.3 10.0 5.0 8.7 17.0 24.7 31.1 36.1
(R) (IR) (R) (IR) (R) (R) (IR) (R) (IR) (R)

Using the relation given by Eq. (9), the frequency of C1 in the
bulk limit is calculated to be 20.1 cm−1 which is very close
to that of bulk crystal (20.3 cm−1) calculated within DFT. By
the same methodology, one can calculate the frequencies of all
C modes for bulk crystals by using the calculated Ci values
which are listed in Table III.

As we relate the bulk frequency of a C mode to its frequency
in N -PbI2 by Eq. (9), it is also possible to generate all the C
mode frequencies from that of the 2L-PbI2 crystal. As stated
by Zhang et al. [33], their LCM is applicable to any layered
material. They reported that the general approach is to calculate
the μ for the monolayer of a given material, and then from the
knowledge of the frequency of C in 2L sample, one can predict
the relation between the frequency and N for the different
branches in any layered material. The relation between the
frequency of C modes with N is given by the formula

�C (N ) = �C (2)

√
1 ± cos

(
N0π

N

)
, (10)

where �C (N ) is the frequency of the C mode in N -PbI2 while
�C (2) represents that of the 2L sample and N0 is an integer,
N0 = 1, 2, 3, 4,. . . . As listed in Table III, the frequency of
C in 2L-PbI2 is found to be 14.3 cm−1. Using Eq. (10), one
can find the frequencies of the two branches in 3L-PbI2 which
are 17.5 and 10.1 cm−1 for the higher and lower branches,
respectively. These values are very close to the frequencies
calculated directly by the small displacement method (17.4
and 10.0 cm−1 for higher and lower branches, respectively).
It is obvious that for the C modes in layered materials, the
LCM matches well with the calculated frequencies using the
small-displacement methodology.

As in the case of high-frequency optical modes, the inter-
layer C mode frequency can also be represented in terms of the
force constant per unit area α and the reduced mass of a rigid
layer μ as

�C =
(

1√
2πc

)√
α

‖
I-I

μ
, (11)

where α
‖
I-I denotes the in-plane nearest-neighboring interlayer

force constant per unit area between two I atoms and c is the
speed of light. Because of the rigid vibration of each layer,

one can assume one layer as a ball with mass mPb + 2mI. This
relation allows us to calculate the force constant k

‖
I-I = Aα

‖
I-I

where A is the area of the unit cell. The individual mass
densities of Pb and I atoms per unit cell area are mPb =
2.02 × 10−7 and mI = 1.24 × 10−4 kg/m2, respectively. Now,
using these mass densities in Eq. (11) we find the interlayer
force constant per unit area α

‖
I-I for the C mode in 2L-PbI2 as

α
‖
I-I = 1.61 × 1019 N/m3 which is lower than that reported

for MoS2 (2.82 ×1019 N/m3) [33] (see Table IV). This is
exactly the reason why the frequency of C mode in 2L-PbI2

(14.3 cm−1) is lower than that of 2L-MoS2 (23.0 cm−1)
[33]. It is also possible to calculate the force constant k

‖
I-I

between two PbI2 layer by multiplying α
‖
I-I by the unit cell

area which gives 2.8 N/m which is slightly larger than that
reported for MoS2 (2.7 N/m) [33]. Moreover, the interlayer
shear modulus can also be calculated by multiplying α

‖
I-I by the

equilibrium distance between two adjacent PbI2 layers which
is the effective thickness of the monolayer crystal (7.13 Å). The
corresponding shear modulus is found to be 11.6 GPa which
is lower than that of MoS2 (18.9 GPa) [33].

In addition to the peak frequencies, the Raman activity of
the C modes strongly depends on the number of layers whether
it is odd or even. The Raman activity of C1 is distinguishable
for EN-PbI2 and ON-PbI2 crystals. Our results reveal that the
Raman activity values of C1 in EN-PbI2 are approximately 104

times that of ON-PbI2. As listed in Table III, the C2 modes are
Raman active for ON-PbI2 and infrared active for EN-PbI2 and

TABLE IV. Parallel α
‖
Pb-I and perpendicular α⊥

Pb-I force constants
per unit area between Pb and I atoms. Those between I atoms from
nearest-neighboring PbI2 layers α

‖
I-I, and α⊥

I-I. For comparison, the
values for graphene and MoS2 are also listed. The unit of the force
constant per unit area is N/m3.

α
‖
Pb-I α⊥

Pb-I α
‖
I-I α⊥

I-I

PbI2 0.21 × 1021 0.34 × 1021 1.61 × 1019 4.78 × 1019

α
‖
C-C α⊥

C-C α
‖
C-C α⊥

C-C

Graphene [34] 33.8 × 1021 – 1.28 × 1019 10.7 × 1019

α
‖
Mo-S α⊥

Mo-S α
‖
S-S α⊥

S-S

MoS2 [33] 1.88 × 1021 3.46 × 1021 2.82 × 1019 8.90 × 1019
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the mode.

its frequency hardens from 9.2 to 17.2 cm−1 from 3L-to-6L.
The frequency evolution of the other C modes are also listed
in Table III. As shown in the right panel of Fig. 6, for EN-
PbI2 crystals there are N

2 Raman active C modes while the
remaining ( N

2 − 1) are infrared active. However, in the case
of ON-PbI2 the number of Raman active modes are ( N−1

2 ) and
the remaining half of the C modes are both infrared and Raman
active.

Interlayer breathing (LB) modes:. In contrast to the C
modes, the interlayer LB modes are assigned to the out-of-
plane rigid-layer vibrations of each PbI2 layer. There are N − 1
nondegenerate LB modes in an N -PbI2 crystal. Similar to the
case of C modes, as N increases each LB mode generates
two branches one at higher and one at lower frequencies. The
frequencies of the additional branches also obey the relation
given in Eq. (10). Moreover, the bulk frequency of any LB
mode can also be predicted by using the relation given in
Eq. (9).

As in the case of the C modes, the total number of interlayer
LB modes depend on the number of layers in the crystal. In
an N -layer PbI2, there exists (N − 1) LB modes which are
nondegenerate. The LB modes are either Raman active or
infrared active depending on the number of layers in the PbI2

crystal. As shown in the right panel of Fig. 8, the Raman active
LB modes exist when the vibration is totally symmetric with
respect to an axis perpendicular to the out-of-plane direction.
For those LB modes, the out-of-plane vibration of layers has
mirror symmetry along the out-of-plane direction. However,

the infrared active LB modes do not exhibit such mirror
symmetry that is why the dipole moment changes instead of
the polarizability. As the number of layers increases, each LB
branch generates additional branches one of which is Raman
active and the other is infrared active. Thus, for EN-PbI2 there
occurs N

2 Raman active LB modes while the remaining ( N
2 − 1)

are infrared active. In the case of ON-PbI2 the number of
Raman active modes is equal to the number of infrared active
modes. By the same analogy with C modes, LB modes form a
series of conelike curves as shown in Fig. 8(c). For example,
the LB1 (denoted by red color) demonstrates the opposite rigid
vibration of each PbI2 layer with respect to each other in
out-of-plane direction as shown in Fig. 8(c). As N increases
from 2-to-6, its frequency softens from 24.5 cm−1 in 2L-PbI2

to 8.7 cm−1 in 6L-PbI2. Moreover, the evolution of frequencies
of LB modes with the number of layers N can be explained by
the relation given in Eq. (10). For example, the LB mode of
2L-PbI2 generates two additional branches in 3L-PbI2 one with
higher and the other with lower frequency. Using the frequency
of 2L crystal we find the frequencies of the two branches in
3L-PbI2 to be 30.0 and 17.3 cm−1 for the higher and lower
branches, respectively. These results agree with the frequencies
calculated by using the small-displacement methodology.

By using the relation given in Eq. (11), one can cal-
culate the out-of-plane nearest-neighboring interlayer force
constant per unit area between two I atoms as α⊥

I-I = 4.78 ×
1019 N/m3 which is approximately half of that of MoS2

(8.90 × 1019 N/m3) [33]. The corresponding interlayer force
constant is k⊥

I-I = 8.2 N/m which is slightly larger than the
value for MoS2 (7.8 N/m) [33]. The difference between the
force constant per unit area is therefore due to the larger unit cell
area of PbI2 when compared with that of MoS2. The value for
PbI2 is also smaller than that of graphene as listed in Table IV.
The difference between different layered materials is due to the
different interlayer interactions between the individual layers.
Thus, it is possible to conclude that the interlayer interaction
between PbI2 layers in few-layer crystal is slightly smaller than
those between graphene and MoS2 layers. One also should note
that as listed in Table IV, the interlayer force constants per unit
area are approximately 100 times smaller than those for the
intralayer which means that in layered materials the intralayer
atomic bondings are much stronger than the interlayer atomic
interactions.

The LB mode in 2L-PbI2 is found to be Raman active
with a relatively high Raman activity as shown in Fig. 6(a).
As mentioned above, the generated branches harden with N

and are Raman active for EN-PbI2 whose Raman activity
display a decreasing trend. Thus, its observation becomes more
difficult asN increases. However, the soften one approximately
conserves its Raman activity for different N values. The reason
for such different behavior in Raman activity can be understood
through the strength of the vibrations of each layer. For the
LB modes which soften with an increasing number of layers,
the vibration strength of the inner layers are much weaker
than those of the outer layers. Apparently the change of the
polarizability and its volume is large. However, in EN-PbI2 for
the LB modes which harden as the number of layers increase,
strong vibrations occur between the layers in the middle of
the crystal and thus, the change of polarizability occurs in a
relatively smaller volume which gives much smaller Raman
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activity. Although the Raman activity changes from one LB
mode to another and for a different number of layers, the
shift of the peak frequencies is more distinguishable for the
determination of the layer-layer interaction and the number N

of layers rather than the Raman activities of the LB modes.

IV. CONCLUSIONS

In the present study the number of layer-dependent elec-
tronic and vibrational properties of PbI2 crystals were inves-
tigated by focusing on the evolution of the band gap, peak
frequencies, and corresponding activities of the Raman active
phonon modes. Our results revealed that the direct or indirect
gap semiconducting character of PbI2 crystals are strongly
influenced by the number of layers. In addition, an indirect-
to-direct band gap transition is predicted for 3L-PbI2. The
layer-dependent Raman spectrum revealed that both prominent
optical peaks A1g and Eg display phonon hardening with an
increasing number of layers which is attributed to the interlayer
vdW forces which suppress the atomic vibrations resulting in
phonon hardening in directly stacked layered materials. More-

over, the relative Raman activities of A1g and Eg peaks display
an increasing trend from monolayer to bulk samples due to
the strong enhancement of activity of A1g with increasing
thickness which is especially important for the determination
of the monolayer PbI2. We further characterized rigid-layer
vibrations both for shear (C) and layer-breathing (LB) modes
of few-layer PbI2. Our study reveals that a reduced monoatomic
(linear) chain model (LCM) provides a fairly accurate picture
of the thickness dependence of the low-frequency modes and
is also a powerful tool to study the interlayer coupling strength
in layered PbI2.
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