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ABSTRACT 

 

ADSORPTION OF REFORMER OFF-GAS ON NaX ZEOLITE AND  

METAL ORGANIC FRAMEWORK (MIL53(Al)): EQUILIBRIA AND 

KINETICS 

 

Synthetic gas produced from steam methane reforming (SMR off -gas) is a 

mixture of H2, CO, CO2, and CH4 can be used in fuel cell after purification. In this study 

adsorption as a purification tool was used to obtain high H2 content of gas mixture from 

SMR off gas. Zeolites and metal organic framework were used as an adsorbent. CO2 

equilibrium studies on K rich NaX zeolites, prepared with ultrasonic and traditional 

methods, and metal organic framework MIL53 (Al) shows high adsorption on zeolites 

than MIL53(Al) up to 1 atm. K rich  zeolites give lower adsorption than NaX zeolite. 

Adsorption isotherms obtained for MIL53 (Al) is linear ( favorable for zeolites). This 

makes MIL53(Al) is  an promising adsorbent for high pressure application. Adsorption 

equilibrium at 5 atm shows that NaX zeolite is good adsorbent for the SMR off gas with 

the following orders: CO2>CH4>CO> H2.  

Kinetics of SMR off gas in MIL 53 (Al) were studied by using  Zero Length 

Column (ZLC) method. The results show that the calculated diffusivities are strongly 

dependent on temperature but weakly dependent on purge flow rate. The study reveals 

that transport is controlled by intracrystalline diffusion. The activation energy on 

diffusion are nearly same (about 41 kJ/mol) and  not change with respect to kinetic 

diameter of SMR off gases. Heat of SMR off gas adsorption on MIL53(Al) obtained 

from Henry’s constant shows that adsorption is exothermic. The study shows that the 

ZLC method is an effective tool to investigate the diffusion kinetics of SMR off-gas 

gases in MIL53(Al). 
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ÖZET 

 

REFORMER ÇIKIŞ GAZININ NAX ZEOLİTİ VE METAL ORGANİK 

AĞ YAPISI (MIL53(Al)) ÜZERİNDE ADSORPLANMASI: DENGE VE 

KİNETİK 

 

Metanın buharla reformasyonundan üretilen sentetik gaz (SMR off-gas) H2, CO, 

CO2, ve CH4 karışımdır, saflaştırmadan sonra yakıt hücresinde kullanılabilir. Bu 

çalışmada SMR çıkış gazı karışımından yüksek miktarda H2 elde edebilmek için 

adsorpsiyon saflaştırma aracı olarak kullanılmıştır.Adsorbent olarak zeolitler ve metal 

organik ağ yapısı kullanılmıştır. Ultrasonik ve geleneksel metodla hazırlanmış K zengin 

zeolitler ve  metal organik ağ yapısı MIL 53(Al) üzerindeki  CO2 denge çalışmaları 1 

atm’ e kadar zeolitlerde MIL53(Al) dan daha yüksek adsorplama göstermiştir. K zengin 

zeolitler NaX zeolitinden daha düşük adsorplama göstermiştir. MIL53 (Al) için elde 

edilen adsorpsiyon izotermleri doğrusaldır. Bu MIL53 (Al) adsorbentini yüksek basınç 

uygulamaları için bir umut verici adsorbent yapar. 5 atm deki adsorpsiyon dengesi 

CO2>CH4>CO> H2 sıralaması ile NaX zeolitinin SMR çıkış gazı için iyi bir adsorbent 

olduğunu göstermektedir. 

SMR çıkış gazının MIL 53 (Al) üzerinde kinetiği zero length coumn (ZLC) 

yöntemi ile çalışılmıştır. Sonuçlar, hesaplanan difuzyon katsayılarının sıcaklığa güçlü 

şekilde bağlı ama akış hızına daha zayıf bağlı olduğunu göstermiştir. Çalışma, sistemin 

kristal içi difüzyon tarafından kontrol edildiğini ortaya koymaktadır. SMR çıkış 

gazlarının difüzyon üzerindeki aktivasyon energileri neredeyse aynıdır (yaklaşık 41 

kJ/mol) ve SMR off gazlarının kinetic çapı ile değişmemektedir. MIL53(Al) üzerinde 

Henry sabitinden elde edilen SMR çıkış gazlarının adsorpsiyon ısıları adsorpsiyonun 

ekzotermik olduğunu göstermektedir. Çalışma ZLC yönteminin MIL 53 (Al) 

adsorbentinde reformer çıkış gazlarının difüzyon kinetiğini araştırmak için etkili bir 

araç olduğunu göstermektedir. 

 

 

 

 

 

 



vi 

 

TABLE OF CONTENTS 

 

LIST OF FIGURES ....................................................................................................... viii 

 

LIST OF TABLES ............................................................................................................ x 

 

CHAPTER  1. INTRODUCTION ................................................................................... 1 

 

CHAPTER 2. GAS ADSORPTION ............................................................................... 4 

 2.1. Gas Adsorption Equilibrium ................................................................. 5 

 2.2. Gas Adsorption Kinetics ..................................................................... 12 

 2.3. Zero Length Column (ZLC): Theory ................................................. 16 

 2.4. Selectivity ........................................................................................... 20 

 

CHAPTER  3. ADSORBENTS ..................................................................................... 23 

 3.1. Zeolites ............................................................................................... 23 

 3.2. Metal Organic Frameworks (MOFs) .................................................. 27 

 3.2.1.Synthesis of MOFs ....................................................................... 34 

 3.2.2.Application of MOFs ................................................................... 35 

 

CHAPTER  4. GAS ADSORPTION PROPERTIES OF MOFs ................................... 38 

 

CHAPTER  5. EXPERIMENTAL STUDIES ............................................................... 48 

 5.1.Materials .............................................................................................. 48 

 5.2.Preparation of the NaX and KNaX zeolite adsorbents ........................ 48 

 5.3. Characterization .................................................................................. 48 

 5.4. Adsorption Equilibrium Studies ......................................................... 49 

 5.4.1. CO2 interaction with adsorbent surface  ..................................... 49 

 5.4.2. SMR Off-gas Adsorption  ........................................................... 49 

 5.5. Adsorption Kinetic Studies: ZLC Adsorption System  ...................... 51 

 5.6.Error Anlaysis ...................................................................................... 53 

 

 



vii 

 

CHAPTER  6.RESULTS AND DISCUSSIONS .......................................................... 55 

 6.1.Characterization of Adsorbents ........................................................... 55 

 6.1.1. Zeolite Adsorbents ...................................................................... 55 

 6.1.2. MIL 53 (Al)  Adsorbent .............................................................. 62 

 6.2. Adsorption Equilibrium Studes .......................................................... 64 

 6.2.1. CO2 interaction with Adsorbent Surface .................................... 65 

 6.2.2. SMR off-gas CO2, CH4, CO and H2 Adsorption ...................... 71 

 6.3. Adsorption Kinetic Studies:  Zero Length Column (ZLC)................. 78 

 

CHAPTER  7. CONCLUSION ..................................................................................... 88 

 

REFERENCES ............................................................................................................... 90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

LIST OF FIGURES 

 

Figure                                                                                                     Page 

Figure 2.1.  Representative Zero Length Column  ..................................................... 17 

Figure 3.1.  Faujasite structure showing cation sites (I, II, III) and locations of 

 oxygen atoms .......................................................................................... 23 

Figure 3.2.  Metal components and ligands to create 1D, 2D or 3D MOF's  

 (Schröder, 2010) ...................................................................................... 27 

Figure 3.3.  View of MIL 53 structure with (SBUs, coordination bonds, linker) ...... 29 

Figure 3.4.  Structural switching of the MIL 53 system on CO2 adsorption .............. 30 

Figure 3.5.  Schematic representation of synthesis MOFs ......................................... 34 

Figure 5.1.  Experimental apparatus ........................................................................... 50 

Figure 5.2.  Zero Length Column configurations ....................................................... 52  

Figure 6.1.  SEM images of adsorbents: (a) NaX (b) S50 (76) (c) S70 (81) (d) 

U50 (79) (e)   U70(83)  ........................................................................... 57 

Figure 6.2.  X-ray diffraction patterns of zeolite adsorbents ...................................... 58 

Figure 6.3.  TG curves of zeolite adsorbents .............................................................. 59 

Figure 6.4. DSC curves of zeolite adsorbents ........................................................... 59 

Figure 6.5.  FT-IR spectra of the zeolites between (a) 400-4000 and (b) 400-

1600 cm- Wavelength ............................................................................ .61 

Figure 6.6.  SEM images of MIL 53(Al) ................................................................... .62  

Figure 6.7.  X-ray diffraction patterns of MIL53(Al)  ............................................... .62 

Figure 6.8.  TG curves of MIL 53 (Al) ....................................................................... 63 

Figure 6.9.  FT-IR spectra of MIL 53(Al) .................................................................. 64 

Figure 6.10.  CO2 adsorption isotherm of the zeolites and MOFs at 278K (a)  

 and 298K  (b) .......................................................................................... 66 

Figure 6.11.  CO2 adsorption isotherm of NaX zeolite at 298 K ( error bar is 

obtained after  two measurements) ........................................................ .67 



ix 

 

Figure 6.12.  Adsorption isotherms of CO2 at 278 K of NaX zeolite  

 (o: experimental,   ............................ linecurve fittings Langmiur:   

 Freundlich: Sips: Toth: model 

equations ................................................................................................. 68 

Figure 6.13.  Change in heat of adsorption with loading ............................................. 71 

Figure 6.14.  CO2, CH4, CO, H2 adsorption equilibrium on zeolite NaX at 298 K 

(a), 313K(b) ............................................................................................. 72 

Figure 6.15.  Change in amount adsorbed amount with charge pressure .................... .73 

Figure 6.16.  Adsorption isotherms of CO2, CH4, CO, H2 ( : experimental points 

at 298K and : experimental points at 313K,  

 curve fitting lines Sips:  Langmiur Toth: 

model equations ....................................................................... 75 

Figure 6.17.  CO2 desorption curves at 100 °C  for 3h, 6h, 20h regeneration 

periods (purge flow rate of 100 ml/min) ................................................. 78 

Figure 6.18.  Effect of purge helium flow rate on the desorption of CO2, CH4, 

H2, CO ..................................................................................................... 80 

Figure 6.19.   Effect of temperature on the response curves of CO2, CH4, H2, CO 

(Helium flow rate=100 ml/min) .............................................................. 83 

Figure 6.20.  Variation of Henrys law constant and diffusivity and with 

temperature for adsorption of CO2, CH4, H2, CO  .................................. 85 

Figure 6.21.  Figure 6.21. The kinetic selectivity, SA/B, for MIL 53(Al) ................... 87 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

LIST OF TABLES 

 

Table    Page 

Table 2.1.  The IUPAC classification for adsorption isotherms ...................................... 6 

Table 2.2. Studies with Zero Length Column (ZLC) technique in literatüre ................ 15 

Table 3.1.  Zeolite: X  .................................................................................................... 24 

Table 3.2. Selected Studies for ion exchange in NaX zeolite ....................................... 26 

Table 3.3.  Examples of MOFs structure (Adam et al. 2008) ........................................ 28 

Table 3.4:  Some examples of rigid MOFs .................................................................... 31 

Table 3.5.  Some examples of flexible MOFs ................................................................ 33 

Table 4.1.  Properties of adsorbate gases used in this study .......................................... 39 

Table 4.2.  Gas adsorption properties of some rigid MOFs ........................................... 40 

Table 4.3.  Summary of gas adsorption in flexible MOFs ............................................. 42 

Table 4.4.  CO2 adsorption properties of Zeolites and all-silica microporous solid, 

Aluminium phosphates, MOFs and amine modified mesoporous silica. .... 44 

Table 6.1.  Textural properties of adsorbents ................................................................. 56 

Table 6.2. TG and DSC data of the zeolites  ................................................................. 60 

Table 6.3.  Isotherm Model fitting for CO2  adsorption data ........................................ 70 

Table 6.4.  Model Fitting and parameters of CO2, CH4, CO and H2 adsorption on 

NaX zeolite (± 95 % confidence interval) ................................................... 76  

Table 6.5.  Variation of parameters with temperature and flow rate for CO2, CH4, 

H2, CO on MIL 53 (Al) ............................................................................... 82 

Table 6.6.  Sorbate properties and heat of adsorption, activation energy values ........... 85 

 



1 

 

CHAPTER 1 

 

INTRODUCTION 

 

Hydrogen is an environmentally clean energy fuel. It produces from various 

resources. But in the world most of the hydrogen is produced by Steam Methane 

Reforming (SMR) processes because of its efficiency and lowest investment cost (Liu et 

al., 2005). Steam methane reformer off-gas (SMR-off gas) contains CO2, (10-25%), CH4 

(1.3-8%), CO (0.25-10%) as impurities besides the hydrogen. Hydrogen can be used as 

an energy source into a fuel cell. However its application needs high purity hydrogen. 

For example PEM fuel cells hydrogen quality is given that at least %99.99. So these 

impurities must be removed. As a result of that, it is critical to remove impurities from 

the off-gas to separate and optimize the hydrogen production.  

Gas separation techniques include cryogenic distillation, membrane-based, and 

adsorption-based technologies. Since the invention of synthetic-zeolites in the 1940s, 

with the emergence of various adsorbents and the development of adsorption-based 

separation processes, adsorption has become a key gas separation tool in industry 

(Yang, 2002). With the synthesis of more and more new sorbent materials with different 

porosity and surface properties for green separation procedures, adsorptive separation 

will become increasingly more important. Thus, adsorptive separation will likely play a 

key role in future energy and environmental technologies notable examples are H2 and 

CH4 purifications. Conceptually, adsorptive gas separation processes can be divided 

into two types: bulk separation and purification. The former involves adsorption of a 

significant fraction (10% or more by weight) from a gas stream, while the latter implies 

less than 10 wt% adsorption of a gas stream (usually less than 2 wt %). 

A general process of adsorptive gas separation or purification includes passing a 

gas mixture through a column packed with adsorbents or fixed-bed adsorbers to yield a 

product enriched in the more weakly adsorbed component. This is then followed by 

desorption of the strongly adsorbed component so that adsorbent can be reused. The 

high separating power is the result of the continuous contact and equilibration between 

the gas and adsorbent.  
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In adsorptive separation processes, gas separation is achieved based on the 

differences of adsorption capability of different components in the adsorbent. The 

performance of any such process is directly determined by the characteristics of the 

adsorbent in both adsorption equilibrium and kinetics. The related basic principles of 

adsorption are described in detail in several monographs. In addition to acceptable 

textural properties, a promising adsorbent should possess not only good adsorption 

capacity and selectivity, but also favorable adsorption kinetics and regenerability. To 

satisfy these requirements, the adsorbent should first have a reasonably high surface 

area as well as relatively large pore sizes for porous materials to allow adsorbate 

molecules to approach the interior surface.  

Adsorbent choosing is very important for the rational design of the off-gas 

adsorption process, where the adsorption equilibrium and diffusion coefficients in the 

crystals of adsorbents are also great importance. Commonly used materials for gas 

separation and purification in industry are mainly limited to four types: activated 

carbon, zeolites, silica gel, and activated alumina. In the last decade, MOFs as a new 

family of nanoporous materials (Yaghi et al., 1998) are assembled by directly bonding 

metal clusters with organic linkers, thus there is no need to use structure-directing 

agents as for zeolites. In contrast to the tetrahedral building blocks in zeolites, MOFs 

can be synthesized from a large selection of inorganic clusters (e.g. square-shaped, 

trigonal, tetrahedral and octahedral) and organic linkers (e.g. carboxylates, imidazolates 

and tetrazolates). Consequently, MOFs possess a wide range of surface areas and pore 

sizes, and have been considered versatile materials for adsorption (Luizei et al., 2004). 

MOFs have very high capacity at high pressures; however, at atmospheric pressures 

their capacity is lower as compared to other sorbents.  Volumetric and manometric 

method most widely used for gas adsorption. However, they are time consuming 

methods. Zero length column (ZLC) method is relatively inexpensive method and can 

be used to measure the nature of the diffusion parameters, diffusion coeffcient (D) and 

Henry constants (K) (Barcia et al., 2005). 

The general objectives of this study are to provide fundamental adsorption data 

(equilibrium and kinetic) of SMR off-gases (CO2, H2, CH4, CO) on zeolite NaX and 

MOF adsorbents. The studies in this thesis have been discussed in 3 parts. In the first 

part, the development of the adsorbent for CO2, the highest impurity in the reformer off 

gas (10-25 %), is targeted. We studied CO2 adsorption on two types of adsorbents: K 

rich NaX zeolites which were prepared with ultrasonic and traditional methods and 
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metal organic frameworks (MOFs): MIL 53. Even the adsorption of CO2 in 

conventional ion-exchanged X zeolites has been studied previously (Walten et al., 

2006). There has not been an investigation of ultrasound effect in the preparation of K 

exchanged NaX zeolite and its effect on CO2 adsorption. 

 In the second part of this study, we have measured high-pressure adsorption 

equilibrium of SMR-off gases on zeolite NaX, MOF at 278, 298 K and pressures 

ranging (0 to 5) atm by constructed volumetric system in our laboratory. In the third 

part of this thesis, the diffusion of SMR-off gas in a MIL-53 adsorbent has been 

investigated by the ZLC method. In literature there are limited kinetic studies with ZLC 

technique. Also, there are no kinetic studies have been reported about MOFs with SMR-

off-gas in literature with ZLC or without ZLC technique. The effect of purge flow rate 

and temperature on the diffusion character is investigated and the diffusion mechanism 

is also discussed. ZLC method validity was investigated and realistic diffusion 

coefficients in MIL-53 adsorbent were determined. 
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CHAPTER 2 

 

GAS ADSORPTION 

 

Adsorption is defined as the enrichment of one or more components in an 

interfacial layer between solid (adsorbent) and fluid (adsorptive). If one component of a 

mixture is adsorbed more strongly than the others, a surface phase rich in strongly 

adsorbed species (adsorbate) is created. This enrichment forms the basis of separation of 

mixtures by adsorption operations. There are a lot of applications of the adsorption 

technologies: separation of gases (air separation, air conditioning, air purification, 

sewage gas purification, flue-gas purification, hydrogen separation from primary gas 

mixture and etc.), pollution control, respiratory protection, biological application, 

heterogeneous reaction applications.  

Key componenet of adsorption, adsorbents are classified according to the pores 

by The International Union of Pure and Applied Chemistry (IUPAC); microporous 

(diameter < 20 Å), mesoporous (20 Å < diameter < 500 Å), macroporous (diameter > 

500 Å). This is the important criteria for choosing adsorbent in any adsorption-based 

technology. 

Based on the nature of the bonding between the adsorbate molecule and the 

adsorbent surface, adsorption can be categorized as either physical adsorption, which 

doesn’t involve chemical bonding or chemisorption which involves chemical bonding. 

Absorption should not be mixed up with adsorption. Adsorption occurs at any pressure 

and temperature and molecules of gases or liquids stick to the surface of a solid 

material. Absorption is bulk or volume phenomenon and pressure or temperature is not 

necessary for process (Keller and Staudt, 2005). 

Besides to adsorption; cryogenic distillation, membrane processes, chemical 

absorption and physical absorption techniques can be also used to separate the mixtures. 

The unique advantage of adsorption over other separation methods is the higher 

selectivity that can be achieved by adsorbents. The effectiveness of separation is 

directly determined by the characteristics of the adsorbent in both adsorption 

equilibrium and kinetics. 
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2.1. Gas Adsorption Equilibrium 

 

Adsorption equilibrium is established after considerable contact of the gas with 

the adsorbent surface.  The relation between the amount adsorbed N, the equilibrium 

pressures P, and the adsorption temperature T can be represented in the general form: 

 

f N P T( , , )  0                  (2.1) 

 

At the specific temperature T, Eq. 2.1 can be reduced by the adsorption isotherms as 

follows: 

 

N f P T ( )                                                   (2.2) 

 

And 

 

P f N T 1( )                                    (2.3) 

 

The adsorption isotherms, Eq. 2.2, are most frequently used in studies of 

adsorption equilibrium and are represented by mathematical equations such as 

Langmuir, Freundlich, Sips, Toth model equations.  Equation 2.1 also can be described 

by following form, and is called by the adsorption isoster: 

P f T N ( )                                                 (2.3) 

However, adsorption isoster can not be measured directly because it is 

impractical to hold N constant. Instead, the value of the adsorption isosteres can be 

interpolated from a group of the adsorption isotherms at various temperatures. Besides, 

the linearity of the isosteres has been employed as a useful criterion on the internal 

consistency of the experimental isotherms. 

Adsorption isotherm gives information about the relationship between the gas 

amount adsorbed and pressure (or relative pressure) at constant temperature. The overall 

shape of an isotherm is governed by the nature of the gas-solid system, the pore 

structure of the adsorbent and the operational temperature. Adsorption isotherms are 

classified into microporous or mesoporous adsorbent and single or multilayer 

adsorption, according to IUPAC classifications (Table 2.1). IUPAC classifications are 
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used as general guidelines in studying the characteristics of gas adsorption on 

adsorbents. 

 

Table 2.1. The IUPAC classification for adsorption isotherms  

(Source: Do, 1998). 

 

(cont. on next page) 
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   Table 2.1. (Cont.) 

 

 

An adsorption isotherm is a constant temperature equilibrium relationship 

between the quantity of adsorbate per unit of adsorbent and the equilibrium 

concentration of adsorbate. The adsorption models help to characterize the adsorbent for 

certain application. Adsorption equilibrium can be more described by adsorption 

isotherms. The parameters of these models indicate the extent of heterogeneity of the 

adsorbent being investigated. In this study, the interaction parameters of the zeolites and 

MOF adsorbents have been determined by using the models stated in this chapter. 
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Different model equations were applied to the adsorption data obtained from 

volumetric studies in order to get information regarding the heterogeneity of the 

adsorbent surfaces. The models applied to the data are Langmuir, Sips and Toth model 

equations. By making use of the data obtained from the heterogeneity parameters of the 

applied equations, interpretation of the results is made. 

The simplest theoretical model for monolayer adsorption is due to the Langmuir 

model (Equation 2.4). The basic assumptions on which the model is based on are as 

follows;  

The basic assumptions on which the model is based on are as follows;  

 Molecules are adsorbed at a fixed number of well-defined localized sites.  

 Each site can hold one adsorbate molecule. 

 All sites are energetically equal.  

 There is no interaction between molecules adsorbed on neighboring sites 

 

bP

bPq
q m




1
            (2.4) 

 

Where qm (mmol/g adsorbent) represents the monolayer adsorption capacity, 

P(kPa) is the gas pressure inside the pores in equilibrium with qm and b (kPa
-1

) is 

another adsorption equilibrium constant, related to the Henry constant by K = bqm 

Henry constant is in fact equilibrium constant and, shows the usual van Hoff 

temperature dependence. It measures the intrinsic affinity of the adsorbent for a specific 

adsorbate that can be used to provide quantitative comparisons of adsorption 

affinity.Parameter b, called as an affinity constant or Langmuir constant, is shows how 

strong an adsorbate molecule is attracted onto a surface.When the affinity constant b is 

large, the surface is covered more with adsorbate molecule as a result of the stronger 

affinity of adsorbate molecule towards the surface. Besides, increase in temperature 

decreases the amount physisorbed due to the greater energy acquired by the adsorbed 

molecule to desorp. 
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Tóth model is actually a modification of Langmuir model, which has the 

advantage of predicting the right adsorption limits when pressure approaches zero and 

infinite values, thus reducing deviation errors between experimental data and calculated 

values of adsorption equilibrium. This model is derived from the potential theory and 

assumes a quasi-gaussian energy distribution in which most of the adsorption sites have 

a smaller adsorption energy than the peak adsorption energy. Tóth equation has three 

adjustable parameters, and is a useful tool to describe adsorption equilibrium on 

heterogeneous systems and multilayer adsorption. 3-empirical extension of the 

Langmuir isotherm that leads to Toth model equation,  

 

nn

m

bP

bPq
q

/1))(1( 
                                                     (2.5) 

 

where n is Toth equation constant.  Toth equation is reduced to the Langmuir 

equation for n= 1.  

The Freundlich isotherm is first conceived as an empirical model, although it can 

be derived from the assumption that the surface is composed of “patches”, following an 

exponential decay energy distribution with a Langmuir-type isotherm behavior on each 

“patch”. However, the equation does not account for Henry’s law behavior at low 

surface coverage and for the saturation of the adsorbed phase. It is possible to interpret 

Freundlich model equation theoretically in terms of adsorption on an energetically 

heterogeneous surface. 

 

dkcq                                          (2.6) 

 

where k is a temperature-dependent constant, d is equation constant. 

This equation often successfully correlates experimental data for low and 

intermediate values of amount adsorbed q as stated in literature (Do, 1998). However, 

this model gives no limit to adsorption capacity, making the amount adsorbed go to 

infinity when the concentration increases. 

To overcome this limitation of Freundlich model, the Sips model isotherm 

which is a modified Freundlich equation that included the asymptotic saturation effect, 

can be used. Simply the Sips model in which describes the adsorption including 
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interactions between the adsorbate and adsorbent is generalization of both Langmiur 

and Freundlich models.  

 

n

n

m

bP

bPq
q




1
                                           (2.7) 

 

Sips and Freudlich equations are not obey Henry’ s law, not appropriate at low 

pressure. In general, the interpretation of experimental adsorption isotherms can be 

realized in terms of adsorption model equation. It is also important to note that a general 

theory of adsorption that includes all factors affecting a given process can lead to such a 

complicated model equation of isotherm. Therefore, the simplicity of a given theory can 

offer a great advantage in understanding adsorption phenomena of various adsorbate-

adsorbent systems. 

Physically, molecules prefer to adsorb onto sites of high energy and then as 

adsorption progresses molecules then adsorb onto sites of decreasing energy, resulting 

in a slower rise in the amount adsorbed versus pressure. The contribution of solid 

toward heterogeneity is the geometrical and energetical characteristics, such as the 

micropore size distribution and the functional group distribution (they both give rise to 

the overall energy distribution which characterizes the interaction between the solid and 

the adsorbate molecule). The contribution of the adsorbate molecule is its size, shape 

and conformation. All these factors will affect the system heterogeneity, which is 

macroscopically observed in the adsorption isotherm and dynamics. Therefore, by 

measuring adsorption equilibrium, isosteric heat, and dynamics, one could deduce some 

information about heterogeneity, which is usually characterized by a so called apparent 

energy distribution. 

 

Heat of Adsorption 

 

The heat evolved during adsorption, heat of adsorption can be determined by 

calculating the isosteric heats from adsorption isotherms, measured at two different 

temperatures. Heat of adsorption is related to the energy of bonds formed and thus 

represents a measure of the strength of the interaction (Yang, 1997). 

It has been well known that the adsorption phenomena is accompanied by 

evolution of heat since adsorbate molecules are more stabilized on the adsorbent surface 
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than in the bulk phase. In addition, the amount of heat evolution by unit adsorption 

depends on the system adopted. Thus, information concerning the magnitude of the heat 

of adsorption and its variation with surface coverage can provide useful information 

concerning the nature of the surface and the adsorbed phase. The heat of adsorption at 

constant amount adsorbed N can be calculated from the slopes of the isosteres, using the 

Clausius-Clapeyron equation for adsorption: 
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The the isosteric heat of adsorption qst is denoted as H  at zero loading. If 

experimental isotherms are available at two different temperatures, the value of qst is 

given by: 
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where P1 and P2 are the equilibrium pressures at temperatures T1 and T2 respectively, 

when the amount adsorbed  N is constant. For useful description of adsorption 

equilibrium data at various temperatures, it is important to have the temperature 

dependence form of an isotherm equation. The temperature dependence of the Sips 

equation is given by equation 2.10. 
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 The temperature dependence of the Toth equation is given by equation 2.11. 
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The parameters b and t are temperature dependent parameter of Toth model 

equation. Q (J/mol) and   values are calculated from equation 2.12 and 2.13, 
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respectively. Q (J/mol) value is a measure of the heat of adsorption and parameter   is 

calculated by using toth model constants for different temperature values from equation 

2.12 and 2.13. We have assumed that the temperature variation of qm is negligible with 

this approach (Do, 1998). 
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where b0, b  and n, n0  values are  Toth model constants at different temperatures at T0 

and T respectively. 

 

2.2. Gas Adsorption Kinetics 

  

 Pore diffusion has been widely studied in connection with its influence on the 

overall kinetics of gas adsorption. Four mechanisms of transport may be identified: 

moleculer diffusion, Knudsen diffusion, transition diffusion and surface diffusion. The 

effective diffusivity is thus a complex quantity which often includes contibitions from 

more than one mechanism. In the Knudsen diffusion regime, the molecules do not 

interact with one another, so that they move in straight lines between points on the pore 

channel surface. Molecular diffusion, often called simply diffusion, is the thermal 

motion of all gas particles at temperatures above absolute zero. The rate of this 

movement is a function of temperature, viscosity of the fluid and the size of the 

particles. In moleculer diffusion the resistance to flow arises from collisions between 

diffusing molecules. Moleculer diffusion will be the dominant transport mechanism 

when mean free path of the gas (avarage distance travalled between the moleculer 

collsions) is small relative to the pore diameter.  There must be a wide range of 

conditions under which both Knudsen and moleculer diffusion are significant. In the 

transition regime both wall collisions and inter moleculer collisions contribute to the 

resistance and effective diffusivity. There is in addition to possibility of direct 

http://en.wikipedia.org/wiki/Absolute_zero
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contributions to the flux from transport through the phiysically adsorbend layer on the 

surface of pore and this is referred to as surface diffusion. 

A proper understanding of how to a gas molecule adsorbs and diffuses in a 

porous adsorbent medium is crucial to the successful application of adsorption. 

However, the measurement of adsorption kinetics is also fundamental for modeling 

adsorption processes since the transport of mass into and out of the adsorbent can affect 

significantly the performance of industrial processes.  

A variety of microscopic methods: pulsed field gradient Nuclear magnetic 

resonance (NMR), NMR relaxation, quasi elastic neutron scattering QENS and 

macroscopic methods: uptake rate measurement, frequency response, infrared 

spectroscopy and chromatographic methods, are used for the measurement of 

diffusivities in porous materials Bekkum et al., 2001; Karge and Weitkamp, 2008).  

NMR and QENS are the microscopic method and equilibrium measurements are made 

on a scale smaller than dimensions of an individual crystal by following the mean 

square displacement of the molecules in a known time interval. NMR technique is a 

non-invasive technique allows the observation of molecular transport in porous media 

without any disturbance of their intrinsic molecular dynamics. Pulsed-field gradient 

NMR (PFG NMR) is able to provide direct information about the rate of molecular 

migration in the intracrystalline space and follow molecular diffusion paths from 100 

nm up to 100 μm (Rouquerol et al., 1999). Neutron spin-echo technique is also 

microscopic method and depends on measuring the rate of a catalytic reaction under 

diffusion-controlled conditions. 

Single crystal membrane permeation, FTIR and the recently developed 

interference microscopy technique can be classified as mesoscopic methods and to be 

applied at the scale of the individual crystal.  

Macroscopic methods measure the transport diffusion and depend on measuring 

the flux under a well defined gradient of concentration. If the small sample of adsorbent 

is subjected to change in ambient concentration (or partial pressure) of sorbate, it is the 

most obvious way to measure intracrystalline diffusion with direct measurement of the 

adsorption or desorption rate. If the diameter of the diffusing molecule is slightly 

smaller than the pore diameter, diffusion within an ideal micropore is fast and difficult 

to measure by macroscopic methods. Slow transport diffusion is easily measured 

macroscopically when the molecular diameter of the sorbate approaches the minimum 

diameter of the pore, the diffusional activation energy increases and the diffusivity 
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drops by orders of magnitude but it is inaccessible to microscopic techniques. 

Especially in batch measurements, transient uptake rate measurements are subject to 

intrusion of heat transfer limitations at low pressures.  

 Eic and Ruthven (Eic et al., 2002) developed a Zero Length Column (ZLC) 

chromatographical technique to overcome the effect of axial dispersion, the external 

mass transfer resistances and heat transfer on the diffusion, in the late 1980s.This 

technique directly measure transport diffusivities in porous adsorbent particles. Zero 

Length Column (ZLC) chromatographical technique involves a purge of a previously 

equilibrated sample to obtain a curve of fractional desorption versus time. The diffusion 

time constant can be obtained by matching the desorption dynamic curve to the 

theoretical solution of the diffusion equation. This method can eliminate the intrusion of 

axial dispersion, heat transfer and bed diffusion resistances by the use of large crystals, 

low adsorbate concentration and very small adsorbent sample amount as well as high 

carrier flow rate during desorption. It is a simple and inexpensive technique for 

obtaining the diffusion coefficient.  

In this study, the diffusion of SMR-off gases in a MIL 53(Al) adsorbent has been 

investigated by the ZLC method. As you can see from Table 2.2. in literature there are 

limited kinetic study using  ZLC method. Also, there are no kinetic studies have been 

reported about MOFs with SMR-off gases in literature. Krungleviciute et al.,(2008) 

have reported that in Cu-BTC the time to reach equilibrium was comparable for Ar and 

CF4.They used these results to establish kinetic selectivity for the same two gases in 

another variety of MOF, RPM1-Co. Peralta et al., reported a kinetic studies for the 

separation of hydrocarbon in Cu-BTC (Peralta et al., 2009).Saha et al., studied metal–

organic framework (MOF-177, MOF 5) for H2 adsorption. The hydrogen adsorption 

equilibrium and kinetic data were measured (Saha et al., 2008). 
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Table 2.2. Studies with Zero Length Column (ZLC) technique in literature. 

Studies Adsorbent Adsorbate Gas analyzer Reference 

Sorption and Kinetics of 

CO2 and CH4 in 

binderless beads of 13X 

zeolite 

13X zeolite CO2 Mass 

spectrometer 

Silva et 

al., 2001 

Diffusion of linear 

paraffins in silicalite 

studied by the ZLC 

method in the presence 

of CO2 

Silicalite n-butane 

n-hexane 

n-octane  

n-decane and 

CO2 

GC 

chromatograph 

Guimarães 

et al., 

2010 

 

Evaluation of the main 

diffusion path in novel 

micro-mesoporous 

zeolitic materials with 

the zero length column 

method 

UL-ZSM5  

ZSM-5, 

ZSM-12  

Al-Meso-

100 

n-heptane 

Toluene 

GC 

chromatograph 

Malekian 

et al., 

2007 

Diffusion of linear 

paraffins in NaCaA 

studied by the ZLC 

method 

NaCaA Linear 

Alkanes 

GC 

chromatograph 

Brandani 

and 

Gunadi, 

2006 

Measurement of 

adsorption equilibrium 

by the Zero Length 

Column (ZLC) 

Technique Part 1: Single 

Component system 

CaA, 

NaLSX 

CO2, N2  

CO, CH4 

(pure / 

mixture) 

Mass 

spectrometer  

Brandani 

et al., 

2003 

Adsorption of propane 

and propylene onto 

carbon molecular sieve 

Carbon 

moleculer 

sieve CMS) 

4A 

Propane N35 

propylene 

N24  

GC 

chromatograph 

Grande et 

al., 2003 

(cont. on next page) 
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Table 2.2. (Cont.) 

Improved estimation of 

zeolite diffusion 

coefficients from zero-

length column 

experiments 

Silicalite Benzene 

Ethylbenzene 

GC 

chromatograph 

Loos et 

al., 2000 

Analysis of ZLC 

desorption curves for 

liquid systems  

NaX Benzene 

Hexane 

GC 

chromatograph 

Ruthven 

and 

Brandani, 

1995 

Diffusion of light 

alkanes in silicalite 

studied by the zero 

length column method 

Silicalite n-butane 

Isobutane 

Propane 

GC 

chromatograph 

Hufton 

and 

Ruthven, 

1993 

 

2.3. Zero Length Column (ZLC): Theory 

 

In a zero length column, the assumptions used to obtain a mathematical 

expression for response curves are as follows:  

 Adsorbents have spherical geometry. 

 Gas behavior is ideal. 

 The process is isothermal because of the small quantity of adsorbent.  

 Perfect mixing throughout the ZLC cell, if the holdup in the fluid phase is neglected. 

 Axial dispersion and mass transfer resistance can be neglected. Because 

instantaneous equilibration is assumed at the external surface of the adsorbent 

particles in the very small column (ZLC).  

 The equilibrium relationship between adsorbed phase and fluid phase will be linear 

at sufficiently low concentrations. This linear relationship is commonly referred to 

as Henry’s law (K).  

 The self supported adsorbent has a porous structure containing micropores and the 

mass transfer control is limited by micropore diffusion, Dc, due to crystal structure. 

 Micropore diffusion coefficient (or crystalline diffusivity), Dc, is constant and does 

not change with concentration. 
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Figure 2.1. Representative Zero Length Column.  

 

The mass balance around the adsorbent  
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and  into the fluid phase of the ZLC column 

0



cF
dt

qd
V

dt

dc
V

sf
                         (2.15) 

where


q  is the overall amount adsorbed per unit particle volume, Vf (cm
3
) is the 

volume of fluid in column, Vs is the volume of solid phase, F is the purge volumetric 

flow rate, c is the gas-phase concentration of adsorbate, and t is time. Analytically 

solution of differential equations 2.14 and 2.15 with fallowing the boundary and initial 

conditions 
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Analytic solution equation for ZLC system (Crank 2003); 
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and  
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n cot n + L - 1 = 0                                    (2.19) 

 

where L is the time constant ratio shows the relation between the flow rate and the 

controlling steps.  
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where ms is the sample mass,   is the pore wall density, s is the particle density, and 

p  is the particle porosity. 

When the Equation 2.18 is differentiated and substituted into Equation 2.15 the 

gas phase concentration of adsorbate is expressed as; 

 

 

          (2.22) 

 

 

In ZLC technique, there are two alternatives for extracting the relevant 

parameters. One is the long-time (LT) asymptote of desorption curve (Eic et al., 2002) 

which is linear on a semilogarithmic plot. The other is the short time (ST) approximate 

method (Hufton et al., 1993) which fits the initial part of the response curve for 

obtaining the diffusion time constant. Both methods have their own disadvantage 

(Hufton et al., 1993) and may yield diffusivity values differing by as much as an order 

of magnitude. The reason is that both methods are simplified and have some deviations 

from experiment. Further, different time regions are chosen in fitting the desorption 

curve, and the nature of the errors is different in these regions. LT analysis uses only the 

data from the tail of desorption curve, which is the region of greatest experimental 

uncertainty. On the other hand, in ST analysis, the effect of any experimental error in 

initial time and dead-volume contribution is very significant. Moreover, when particle 

size is not uniform, larger deviation is caused if the same average diameter is used in the 
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two methods (Han et al., 1999). Some effort has been made to develop a full-time (FT) 

(Loos et al., 2000) method, in which diffusion parameters can be extracted by fitting the 

entire desorption curve, but they are not widely used because of their greater 

complexity. 

For full time (FT) method, the experimental desorption curve was fitted to Eqs. 

(2.20-22) using a nonlinear least squares method to obtain the best fitting parameters 

Dc/R
2
 and L. For the large values of t, only the first root of Equation 2.19 contributes to 

the summation part of the Equation 2.22, it reduces to; 

 

                                  

               (2.23) 

 

 

The micropore diffusion coefficient, Dc, and the dimensionless Henry constant, 

K, can be determined from the slope and intercept of a plot of ln(C/Co) versus t. This 

procedure is referred to the LT method. 

For small values of t, gas phase adsorbate concentration can be also expressed as 

in equation 2.24. 
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D and K are estimated from the slope and the intercept of a plot of C/Co versus t
-

1/2
 by the time analysis. This procedure is referred to as the ST method. Both LT, ST 

cases performed at high flow rates such that the effluent concentration is determined by 

the rate. This means that sorbate diffuses out of the adsorbent particles.  

When the ZLC experiment is performed at a sufficiently low flow rate, then L is 

small and the desorption rate is controlled entirely by convection. In other words, the 

adsorbate phase is always in equilibrium with the gas phase as the following equation; 

(Brandani and Ruthven 2005).  

 



q (t) = KC(t)                           (2.25) 

 



20 

 

When L is small,  is small and n cot n can be replaced by the first term of the 

Equation 2.25 and equal to approximately L  
2
/3. Then, the concentration response 

curve as the simple exponential form can be written as; 
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The response curve is independent of the flow rate under equilibrium control. A 

plot of ln (c/co) vs. time should give a straight line through the origin with slope -

F/(KVs+Vf). When K has a large value, KVs value should be higher than Vf. The slope 

yields directly the value of the dimensionless Henry’s Law constant (K). 

The temperature dependence of the diffusivity is correlated by the Arrhenius 

form: 

 

)/exp(0 RTEDD                               (2.27) 

E is the activation energy for surface diffusion can be obtained by 
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where Do (m
2
 s

-1
) is the pre-exponential factor of the diffusion process independent 

from the temperature, Ea (J mol
-1

) is the activation energy for adsorbates in a given 

adsorbents, R (J mol
-1

K
-1

) is the gas constant, and T (K) is temperature. Further, the 

isosteric heat of adsorption at zero loading, qst, is obtained from the Henrys law 

constant, K, following  
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2.4 Selectivity 

 

Suitable adsorbent is the first step to provide efficiency of an adsorption 

separation process. Adsorbent with sufficiently high selectivity and capacity is required 
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for an economic separation process. The selectivity may depend on a difference either 

adsorption equilibrium or kinetics. However, most of the adsorption processes used 

depends on equilibrium selectivity. To consider the processes, separation factor can be 

defined as (Ruthven, 1984); 
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where X and Y are the mole fractions of component A or B in adsorbed and fluid phase 

at equilibrium, respectively. 

Separation factor generally varies with temperature and composition. Therefore, 

suitable conditions must be selected to maximize the separation factor. However, 

separation factor is independent of composition and equal to the ratio of the Henry’s 

law constants to relevant components for an ideal Langmuir system given in Equation 

2.31. This approach works well for some systems such as CH4-CO2 in 5A and NaX 

zeolite and very quick and reliable method of estimating separation factors (Karge and 

Weitkamp, 2008; Ruthven, 1984). 
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where pA and pB are the sorbate pressure for A and B component , respectively. qA and 

qB are the adsorbed phase concentration for A and B component, respectively. The 

product (qmb)i corresponds to the initial slope of the isotherm, or Henry’s constant (K), 

for component i. Hence, the adsorbent selectivity is equivalent to the ratio of the initial 

slopes of the isotherms of the two components, or KA/KB. It should be noted that the 

selectivity has resulted in a constant value simply because of the nature of the Langmuir 

isotherm. 

The chromatographic methods have also the advantage to provide information 

on the adsorption kinetics. Kinetic separations are used especially with molecular sieve 

adsorbents. The kinetic selectivity is determined by the ratio of intracrystalline 

diffusivities for the components (Ruthven, 2011; Ruthven and Reyes, 2007) given in 

Equation 2.32.  
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CHAPTER 3 

 

ADSORBENTS 

 

Aluminosilicate zeolites, activated carbon, activated clays are used generally for 

the separation of gas and vapor mixtures.  

 

3.1. Zeolites 

 

Zeolites comprise a three-dimensional crystal network of Si and Al atoms, which 

are present in the form of SiO4 and (AlO4)
–
 tetrahedral. Tetrahedrons join together in 

shared oxygen atoms with various regular arrangements, to form hundreds of different 

three-dimensional crystal frameworks (Kaduk et al., 1995). 

The three dimensional zeolite channels have 12 ring windows. The crystal structure 

of a zeolite consists of cages and supercages. The molecules to be adsorbed reach the 

cages and supercages by the windows. The cages are the smaller cells than the 

supercages which may even contain cages as seen in Figure 3.1 (Savitz et al., 1999). 

 

 

Figure 3.1. Faujasite structure showing cation sites (I, II, III) and locations of oxygen 

atoms  

 

 Zeolite has negative charges compensated by Na
+
 ions.The pore size openings 

which can be tuned by exchange of the sodium ions against other mono-, di-, or 

trivalent cations allow the separation of gas mixtures for example; SMR off-gas 

separation, CO2 capture from flue gas by a molecular sieve effect consisting in the 
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sorption uptake of smaller molecules and hindering of adsorption of larger molecules 

relate to the critical diameter of the pore opening (Buhl et al., 2004). 

Aluminosilicate zeolites have pores of uniform size contrary to the other 

adsorbents. The NaX is a synthetic aluminosilicate zeolites composed of Si, Al, Na, and 

O atoms. Its chemical formula is Na86[(A102)86.(SiO2)106].264H20. Data related to 

structures of X zeolites are summarized in Table 3.1. 

 

Table 3.1. Zeolite: X  

(Source: Breck, 1974) 

Chemical Composition 

Typical oxide formula                   : Na2O.Al2O3.2.5SiO2.6H2O 

Typical unit cell contents              : Na86[(AlO2)86(SiO2)106].264H2O 

Variations                                      : Si/Al=1 to 1.5 and Na/Al=0.7 to 1.1 

Crystallographic Data 

Symmetry                                      : Cubic 

Density                                          :1.93g/cc 

Unit cell volume                            :15,362-15,670 Å
3
 

Structural Properties 

Framework                                    : Truncated octahedra,  cages, linked 

                                                        tetrahedrally through D6R2s in arrangement. 

Contains  

 eight cavities, 13 Å in diameter in each cell 

Void Volume                                : 0.50 cc/cc 

Framework density                       : 1.31 g/cc 

Channel system                            : Three-dimensional 

Hydrated free apertures                 : 12-ring, 7.4 Å, and 6-ring, 2.2 Å 

Dehydrated free apertures             : 7.4 Å 

Largest molecule adsorbed           : (C4H9)3N 

Kinetic diameter                            : 8.1Å 

 

Adsorption properties of zeolite can be changed with modification such as  

cation exchange, impregnation. These techniques are used to introduce metal into 

zeolites. Impregnation in which pores are filled with a solution of metal salt of sufficient 

concentration to give correct loading is the simplest and most direct method. Ion 
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exchange is the reversible interchange of ions between a solid and a liquid. There is no 

permanent change in the structure of the solid, which is the ion exchange material. 

Usually, contacting a zeolite with a salt solution of different cation performs ion 

exchange; one type of cation is replaced with other. 

The ion exchange process: 

 

zAB
zB

(z)+ zBA
zA

(s)+              zAB
zB

(s)+ zBA
zA

(z) 

 

Where zA and zB are the charges of the exchange cation A and B and the subscript z and 

s refer to the zeolite and solution, respectively. 

A widely recognized modification of adsorbent is to replace the Na
+
 ions with 

other metal ions (e.g., Li
+
, K

+
, Mg

2+
, Ca

2+
, Ce

3+
) and then reduce them in situ so that the 

metal atoms are deposited within the framework. The resultant material displays the 

properties associated with a supported metal catalyst. Ion exchanged cation can induce 

new catalytic features in many reactions especially in liquid phase reactions, by their 

different size and chemical structure (Sheldon et al., 1998). 

The ultrasound increases Li
+
, Ca

2+
 and Ce

3+
 ion exchange rate in comparison 

with the undisturbed (Kaya et al., 2012) changes the size distribution and character of 

crystal (Nishida 2004). In literature, ultrasonic method as compared to the traditional 

exchange method was found to be very effective on the exchange amount at equilibrium 

(Kaya et al., 2012). Ultrasound acted like a co-driven force of concentration of counter 

ions in solution due to cavitation effect of ultrasound field and increased the 

equilibrated values in ion exchange process. 

Literature review for ion exchange performed generally with traditional method 

was given in Table 3.2. Even the adsorption of CO2 in conventional ion-exchanged X 

zeolites has been studied previously (Walten et al., 1998). There has not been an 

investigation of ultrasound effect in the preparation of K exchanged NaX zeolite and its 

effect on CO2 adsorption. Among the adsorbents zeolites are most commonly used 

adsorbents for CO2 adsorption at 1 atm. Acidic CO2 molecule can adsorb on the basic 

surfaces. Barthomeuf suggested that the base strength of zeolites increased along with 

an increase of the aluminum content because of the lower electronegativity of aluminum 

compared to that of silicon. (Barthomeuf, 2003). The presence of aluminum atoms in 

zeolites introduces negative framework charges that are compensated with 

exchangeable cations such (extraframeworkcations).The modification of zeolites via the 
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introduction of large and electropositive, polyvalent cations enhance the adsorption of 

acidic CO2.Walten et al showed that the CO2 adsorption of the X zeolites increased as 

the cation ionic radii decreased:in the order Cs
+
 <Rb

+
 <K

+
 <Na

+
 <Li

+
 (Walton et al., 

2006).  

 

Table 3.2. Selected Studies for ion exchange in NaX zeolite 
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3.2. Metal Organic Frameworks (MOFs) 

 

Metal organic frameworks, MOFs known as coordination polymers (Uemura, et 

al., 2006, Kitagawa et al., 2006), hybrid organic-inorganic materials (Forster et al., 

2002) and organic zeolites (2) are composed of metals (as nodes) and ligands (as 

linkers) which form extended networks via coordinated bonds (Figure 3.2). Each has its 

own focusing point. The use of “coordination polymer” emphasizes the nature of 

bonding. On the other hand, “metal organic framework” emphasizes the composition.  

The one-dimensional (1D), two-dimensional (2D) or three-dimensional (3D) 

metal organic framework structures built by linking linear or nonlinear organic linkers 

and metal clusters often lead to open voids that can hold molecules so called “guest 

molecules” (Figure 3.2). 

 

Figure 3.2. Metal components and ligands to create 1D, 2D or 3D MOF's 

(Source: Schröder, 2010) 

 

Choice of metal components and bridging ligands, specific framework 

topologies are very important, while functionalisation and modification of the ligand 

and metal centers can fine-tune the electronic and chemical nature of the resultant 

framework surface. By appropriate design of metal nodes, ligand bridges, solvent, 

synthetic conditions and templates, MOF materials showing porosity and open 

structures can be prepared. In literature the ultimate goal is to gain full control and 

understanding over the framework structure and synthesis at a predictive level. Such 

design and control remains difficult to achieve in practice (Yaghi et al., 1998) but series 

of analogous materials have been successfully synthesized to afford systematic 
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variations of pore size, shape and functional groups at the pore surface as you can see in 

below Table 3.4 and Table 3.5.  

The most important characteristics for nodes and linkers are their connection 

numbers and their overall geometries. Figure 3.2 illustrates some of the basic motifs 

generated by combinations of different metal nodes and organic linkers. For example, 

Cu (I) ions are known to connect in a tetrahedral stereochemistry to four 4, 4’-bipyridyl 

ligands, and the resulting cationic frameworks {[Cu (4, 4’-bipyridyl) 2]
 +

} have an 

overall polymeric diamonded structure. By manipulation of metal stereochemistry and 

the angular nature of the ligand linkers, highly complex topologies can be generated.  

Most of the porous MOFs are built upon metal clusters, so called secondary 

building units (SBUs). The SBUs serve as “nodes” and coordinate to organic linkers to 

form frameworks. Some examples MOF structure with their inorganic SBUs and 

organic linkers drawn in Table 3.3. It is a metal cluster connected by organic linkers. 

Because of the large size of SBUs, the resultant structures of MOFs are usually porous 

and could have relatively large pores (Chui et al., 1999, Yang et al., 2002).  Pore size 

can also be modified by introducing different length organic linkers.  

 

Table 3.3. Examples of MOFs structure  

(Source: Adam et al., 2008) 
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Most porous MOFs are microporous and their pore diameters less than 2 nm. 

The most advantageous features of these materials are: well-characterized pores, small 

pore diameter, high micropore volume, and high surface area. Their pore structure can 

often be modified not only to adjust pore size and/or shape but also to enhance sorbate-

sorbent interactions (Fletcher et al., 2005).  These microporous MOFs show low thermal 

stabilities (decomposition occurs at T > 300°C). Longer and linear ligands give rise to 

frameworks with less stability (Müller et al., 2006). They have also low hydrolytic 

stability. Decomposition of the framework occurs rapidly if the gas or liquid phase 

contains a few percents of H2O which imposes severe limitations on their usage in 

catalytic oxygenation reactions, where water constitutes a major reaction product (Suh 

et al., 2008). 

MOFs can be categorized into rigid and flexible/dynamic classes. Some 

examples rigid and flexible MOFs with their inorganic and organic units are given in 

Table 3.3 respectively. Rigid MOFs have comparatively stable and robust porous 

frameworks with permanent porosity, similar to zeolites and other inorganic porous 

materials, whereas flexible MOFs possess dynamic, ‘‘soft’’ frameworks that respond to 

external stimuli, such as pressure, temperature, and guest molecules (Suh et al., 2008).  

For MOFs, the entire framework is supported by coordination bonds and/or 

other weak cooperative interactions such as H-bonding,    stacking, and van der 

Waals interaction (Figure 3.3). The flexibility is thus expected even under mild 

conditions (Suh et al., 2008). 

 

Figure 3.3. View of MIL 53 structure with (SBUs, coordination bonds, linker) 
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The most common flexible MOF, MIL (Material Institute Lavoisier)-53 (Al) 

(Table 3.4) built up from chains of octahedra sharing-OH vertices linked by 

terephthalate moieties is superior adsorbent for CO2 adsorption as shown in Figure 3.4. 

This behavior corresponds to two consecutive reversible structural transitions from a 

large-pore (LP) to a narrow-pore (NP) form at very low CO2 loading, and from the NP 

to the LP form at higher CO2 concentration. This structural switching (Figure 3.4) 

implies a 38% change in unit-cell volume, from 1072 Å
3
 (NP) to 1486Å

3
 (LP). 

Furthermore, both of these transitions are accompanied by a mixed-phase (NP/LP) 

domain whose composition varies with CO2 pressure to give the pure NP or LP form 

(Sales et al., 2009). The MIL-53 framework is made of parallel one-dimensional M(OH) 

chains (M = Al, Cr), linked together by 1,4- benzene dicarboxylate (BDC) ligands to 

form linear diamond shaped channels that are wide enough to accommodate small guest 

molecules. 

 

Figure 3.4. Structural switching of the MIL 53 system on CO2 adsorption 

(Source: Sales et al., 2009). 
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Table 3.4: Some examples of rigid MOFs 

Rigid MOF's  
(a) 

pore size (Å) 
pore volume 

(cm
3/

g) 
Inorganic part 

Organic part 
References 

name structure 

Er2(pda)3 3,4 0,005 Er((NO3)(3) 1,4-phenylendiacetic acid 

 

Pan et al., 2003 

Mn(HCOO)2 4,5 0,19-0,22 
MnCl2 

 
Formic acid 

 
Dybtsev et al., 2004 

Mn(ndc) 4 0,4 Mn(NO3)2H2O 2,6-naphthalene dicarboxylic acid 

 

Moon et al., 2006 

Cr3O(H2O)2F(ntc)1,5 

(MIL-100) 
4,4 0,2 Cr(NO3)39H2O 

naphthalene-1,4,5,8-

tetracarboxylic acid  
Surble et al., 2006 

Al2O(OH)18(H2O)3(Al2(OH)49(btc)6 

(MIL-96) 
2,5-3,5 0,32 

Al(NO3)3 9H2O: 

 

1,3,5-benzenetricarboxylic 

acid 

 

Loiseau et al., 2006 

Cu(F-pymo)2 2,9 0,06 
Cu(NO3)23H2O 

 
5-fluoro-2 hydroxypyrimidine 

 
Navarro et al., 2008 

CuBTC 10.8-11.8 1.96 CuNO3(2.5H2O Trimesic acid 

 

Yazaydın et al., 2009 

Zn4(OH2O)3(adc)3-(PCN-13) 3,5 0,3 Zn(NO3)26H2O 1,3-adamantanedicarboxylic acid 

 

Ma et al., 2007 

(cont. on next page) 

 

 

 

 3
0
 

http://images.chemnet.com/suppliers/chembase/239/2394.gif
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Table 3.4. (Cont.) 

Zn(cbIM)2(ZIF-95) 
3,65 

 

0,59 

 
Zn(NO3)24H2O 

(C7H5N2Cl) 

5-chlorobenzimidazole 
 

Wang et al., 2008 

Zn2(cnc)2(dpt) 3,7 0,27 Zn(NO3)24H2O 4-Carboxycinnamic acid 

 

Xue et al., 2008 

Zn3(OH)(p-cdc)2,5 3 0,6 Zn(NO3)24H2O 
1,12-dihydroxy-dicarbonyl- 

1,12-dicarba-closododecaborane 
 

Bae et al., 2008 

Zn4O(btb)2(MOF 177) 7.1-7.6 1,31 Zn(NO3)24H2O 
1,3,5-Tris(4-

carboxyphenyl)benzene 
 

Li et al., 2007 

Zn(ndc)2(dpni) 4-5 - Zn(NO3)24H2O 
2,6-naphthalenedicarboxylate 

 

 

Bae et al., 2008 

Sm4CO3(pyta)6(H2O) 3,5 0,08 Co(NO3)26H2O 
2,4,6-pyridinetricarboxylic 

acid 

 

Li et al., 2008 

Mg3(ndc)3 3,46-3,64 0,62 
Mg(NO3)26H2O 

 

2,6-naphthalenedicarboxylic 

acid 
 

Dinca et al., 2005 

Cd3(OH)2(L)4(H2O)2 5,4 0,12 Cd(NO3)2.4H2O 4-aminophenyl-1H-tetrazole 
 

Zou et al., 2007 

Yb4(m4-H2O)(tatb) (8/3) (SO4)2 

(PCN-17) 
3,5 0,37 

Yb(NO3)3 

 

4,4’,4’'-s-triazine-2,4,6-

triyltribenzoate 

 

Ma et al., 2008 

 
(a)

 Abbreviations: pda = 1,4-phenylendiacetate, ndc = 2,6-naphthalenedicarboxylate, ntc =naphthalene-1,4,5,8-tetracarboxylate, btc =1,3,5-benzenetricarboxylate, adc = 9,10-anthracenedicarboxylate, apt=4-

aminophenyltetrazolate, pyta = 2,4,6-pyridinetricarboxylate, btb=1,3,5-benzenetribenzoate,  F-pymo = 5-fluoropyrimidin-2-olate, , nIM = 2-nitroimidazolate, cbIM = 5-chlorobenzimidazolate, cnc =4-

carboxycinnamic, dpt = 3,6-di-4-pyridyl-1,2,4,5-tetrazine, tatb =4,4’-S-triazine-2,4,6-triyltribenzoate; p-cdc=1,12-dicarba-closo-dode-caborane-1,12-dicarboxylate, DMF=dimethylformamide, dpni = N,N0-di-(4-

pyridyl)-1,4,5,8-naphthalene tetracarboxydiimide  
 

3
1
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Table 3.5. Some examples of flexible MOFs 

Flexible MOF's 
(a)

 
pore size 

(Å) 
Inorganic part 

Organic part 
References 

name structure 

Cu(dhbc)2(4,4’-bipy) 3.3 
Cu(NO3)23H2O 

 
2,5-dihydroxybenzoic acid  

 

Kiteura et al., 2003 

Cu(bdc)2(4,4’-bipy)0,5 4.2 
Cu(NO3)23H2O 

 
1,3benzenedicarboxylic acid 

 

Kiteura et al., 2003 

AlOH(bdc) (MIL-53) 8.5 Al(NO3)39H2O 1,3,5-benzenetricarboxylic acid 

 

Bourrely et al., 2005 

Cr(OH)(bdc)-H2O (MIL-53) 8.5 Cr(NO3)39H2O 1,3,5-benzenetricarboxylic acid 

 

Llewllyn et al., 2006 

Zn(adc)(4,4’-bpe)0,5 3.4 Zn(NO3)24H2O 9,10-Anthracenedicarboxylic acid 

 

Chen et al., 2007 

H2Ni3O(H2O)3(tatb)2H2O-(PCN-5) 5.7 Ni(NO3)26H2O  4,4',4''-s-triazine-2,4,6-triyl-tribenzoic acid 

 

Ma et al., 2007 

Zn(Pur)2(ZIF-20) 2.8 Zn(NO3)24H2O Purinate 

 

Hayashi et al., 2007 

Cu(fma)(4,4’-bpe)0,5 3.6 Cu(NO3)23H2O fumaric acid 
 

Chen et al., 2007 

(a)
 Abbreviations: dhbc = 2,5-dihydroxybenzoate,  bpee = 4,4’-(E)-ethene-1,2- diyldipyridine, Pur = purinate,   bdc = 1,4- benzenedicarboxylate,  tatb = 4,4’,4’’-S-triazine-

2,4,6-triyltribenzoate bipy= bipyridine, fma=fumarate 3
2
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3.2.1. Synthesis of MOFs 

 

Synthesis procedure of MOF (Figure 3.5) involves four main steps: 

crystallization, purification, activation and post synthesis treatments (Meek et al., 2010). 

The synthesis is very sensitive to the conditions such as starting metallic salt, solvents 

and especially the temperature has a high impact and can lead to different structures 

(Farha et al., 2010). MOF crystals are produced almost exclusively by 

hydrothermal/solvothermal, vapor diffusion, microwave and sol gel techniques (Meek et 

al., 2010). Microwave synthesis can reduce the crystallization time considerably 

(Kuppler et al., 2009). The crystals are slowly grown from a hot solution of metal 

precursor and bridging ligands. At low temperatures, the crystal growth can be 

controlled by vapor diffusion. For synthesis at temperatures above 100 °C, solvothermal 

synthesis is used. Solvothermal synthesis involves the use of a solvent (organic or 

inorganic) at elevated temperatures and pressures in a closed system, often in the 

vicinity of its critical point (Sheldrick et al., 1997, Rabenau et al., 1985). The most 

commonly used solvent is water but other solvents such as alcohol, dialkyl formamides 

and pyridine are also used. When water is used as a solvent, the reactions are referred as 

hydrothermal.  

Selection of the solvent is very important, because some metal sources and 

organic linkers have very low solubility or are even insoluble. In order to increase the 

solubility, two or three solvents can be mixed or another solvent may be added to 

increase solubility.  

 

 

 

Figure 3.5. Schematic representation of synthesis MOFs 

 

http://en.wikipedia.org/wiki/Hydrothermal_synthesis
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Metal−organic framework materials (MOFs) are inherently insoluble. This 

renders impossible the purification of MOFs via the conventional methods such as 

distillation, recrystallization, chromatography, sublimation, etc. Purification consists of 

isolation or calcinations to remove starting materials. Purification of MOF materials 

relies upon differences in density between desired and undesired products, filtration and 

calcinations.  In a solvent with appropriate density, one phase of the MOF product 

mixture floats while the others sink. This method is both straight forward and broadly 

applicable (Meek et al., 2010). 

For most applications, it is necessary to remove guest solvent molecules from 

the pores of the MOF without the loss of porosity, a process termed “activation”. The 

removal of the guest molecules (solvent or water from synthesis) without damaging the 

structural integrity of the material is often an additional challenge in activation. 

Traditional activation entails methods for heating the MOF material under vacuum. 

Unfortunately, in many instances this leads to partial or even full loss of porosity. 

Eddaoudi and co-workers were the first to address this problem (Eddaoudi et al., 2002). 

They showed that by exchanging the MOF-incorporated solvent remaining from 

synthesis for a lower boiling point solvent and then removing the solvent under 

relatively mild conditions, MOF porosity could often be retained.  

Post-synthetic treatments of MOFs open up another dimension of structural 

possibilities that might not be achieved by conventional synthesis. A great deal of recent 

work explores covalent modification of the bridging ligands by forming graphite and 

polymer and metal addition. 

 

3.2.2 Aplication of MOFs 

 

MOFs possess a wide array of potential applications (Kitagawa et al., 2004). 

They are summarized as follows: 

 Adsorption 

 Catalysis, Luminescence  

 Drug Delivery 

 Optic  

 Magnetic 

 Catalysis 
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 Ion Exchange  

 Sensing  

 Polymerization 

 

The use of MOFs as solid catalysts is particularly interesting because the pore 

size and functionality of the framework can be adjusted over a wide range for a variety 

of catalytic reactions. It is still an enormous challenge to find out whether the metal 

centers, the ligands or functionalized ligands, or even metal–ligand interactions or 

differences in particle size, can cause unusual catalytic properties. Advantages of MOFs 

as catalyst are seen in the easy separation of a heterogeneous catalyst, the tailoring of 

the pore size to yield selectivity, and/or shape and size selectivity by creating an 

appropriate environment around the catalytic center in the restricted space available 

(Kupler et.al., 2009). 

MOFs can work as catalysts through;  

(i)  coordinatively unsaturated nodes (metal centers),  

(ii) ligands functionalized with organic groups (organocatalysis),  

(iii) metal-complexes (as in homogeneous catalysis) which are incorporated into the 

linking ligand (e.g. as metalloligands) or the pores. 

MOFs that have magnetic or luminescence properties together with size- or 

shape-selective sorption can be potentially applied in sensor devices. For the sensing 

properties of MOFs a direct contact with an electrically conducting material would be 

desirable. Luminescent networks can be prepared by utilizing luminescent organic 

building blocks and/or luminescent metal building blocks, or by utilizing the ligand-to-

metal charge transfer (Zacher et al., 2008). 

MOFs present as optimal drug-delivery materials due to the adjustability of the 

framework’s functional groups and the tunable pore size. With MOFs, the benefits of 

using organic materials (biocompatibility and the ability to uptake large amounts of 

drugs) and inorganic materials (controlled release) may both be utilized (Horcajada 

et.al.2006). 

Gas separation by adsorption is the most domain application for porous MOFs. 

Compared to zeolites and activated carbon materials, porous MOFs exhibit 

exceptionally high surface areas and large pore volumes so they are become a new 

adsorbent for gas separation applications. The development of a new adsorbent in 

industry for gas separation by adsorption normally goes through multiple steps. These 
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steps are materials design and preparation, selective gas adsorption studies, materials 

evaluation, adsorbents preparation scale-up, and separation process design and 

optimization. Currently, the investigation of MOFs as adsorbents in gas separation is in 

its early stage. Most of the research is focused on selective gas adsorption studies based 

on adsorption/desorption isotherm measurements of single gas components, which 

provide the predominant information for adsorbent screening. Nanospaces of MOFs are 

ideal to adsorp various strategic gases like H2 (Müller et al., 2006), CH4 (Düren et al., 

2007), CO2 (Babarao et al., 2008). The adsorption performance of MOFs depends on the 

crystallization and activation steps in synthesis (Chowdhury et al., 2009). 

In this thesis we used MOF (MIL 53(Al)) for the separation of hydrogen from 

steam methane reformer off gas. 
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CHAPTER 4 

 

GAS ADSORPTION PROPERTIES OF MOFs 

 

Adsorptive separation process needed porous solid materials. Zeolites, activated 

carbons, and silica gels are traditional adsorbents. With an increasing need for a more 

efficient, energy-saving procedure for gas separation and environmentally benign 

adsorbents with tailored structures and tunable surface properties must be found. Metal–

organic frameworks (MOFs) are promising candidates as adsorbents for gas separations 

due to their large surface areas, adjustable pore sizes and controllable properties, as well 

as acceptable thermal stability. A survey of selective gas adsorption in rigid, flexible 

MOFs has been given in Table 4.2 and 4.3 respectively. 

The selective adsorption of H2 but not N2 due to size exclusion was also 

observed in Mg3(ndc)3,(Dinca et al., 2005), Cu(F-pymo)2 (Navarro et al., 2008) at 77 K 

as shown in Table 4.1. PCN-17 (Ma et al., 2008) leaded to selective adsorption of H2 

over N2 and CO. This material may thus have applications for the separation of N2 and 

the separation of H2 from CO in fuel-cell applications, as well as the H2 enrichment of 

the N2/H2 exhaust.  

MIL-96 (Loiseau et al., 2006) and Zn2(cnc)2(dpt) (Xue et al., 2008) were also 

found to selectively adsorb CO2 over CH4 based on size/shape exclusion. These 

materials may be useful in the separation of CO2 and CH4, which is an essential 

industrial process for natural-gas purification and landfill-gas separation. Adsorbates 

used in this study are CO, CO2, CH4 and H2 and their properties are given in Table 4.1. 

Gas kinetic diameters obtained from the mean free path are given below. 
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Table 4.1: Properties of adsorptive used in this study 

Properties 

Adsorptives 

CO2 CO CH4 H2 

Normal B.P(K) 216.55 81.66 11.66 20.27 

Tc(K) 304.12 132.85 190.56 32.98 

Vc(cm
3
mol

-1
) 94.07 93.10 98.6 64.20 

Pc(bar) 73.74 34.94 45.99 12.93 

kinetic diameter (Å) 3.3 3.690 3.758 2.89 

Polarizabilityx10
25

/cm
3 

29.11 19.5 25.93 8.042 

Dipole momentx10
18

/esu.cm 0 0.10 0 0 

Quadruple momentx10
26

/esu.cm
2
 4.3 2.5 0 0.662 

 

Several MOFs (Mn(HCOO)2, MIL-100, MIL-96, ZIF-95, Zn2(cnc)2(dpt), 

Mn(ndc)) can selectively adsorb CO2 over CH4 because CO2 has a large quadrupole 

moment whereas CH4 has none (a seen in Table 4.3). The adsorption isotherms of this 

MOF indicated that CO2 was more preferentially adsorbed than CH4.  
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Table 4.2. Gas adsorption properties of some rigid MOFs 

Rigid MOF's  (a) Uptake(mmol/g), (T(K), P(atm)) 
References 

CO2 CH4 CO H2 N2 

Er2(pda)3 0.5(273,1)     None(273,1) Pan et al., (2003) 

Mn(HCOO)2  4.65(195,1) None(195,1)  4.5(78,1) None(78,1) Dybtsev et al., (2004) 

3(ndc)3    2.3(77,1) None(77,1) Dinca et al., (2005) 

MIL-100 3.4(304, 30 ) 1,4  (304, 30)   1 (304, 30 ) Surble et al., (2006) 

MIL-96 3.7(303, 3.5 ) 0.8  (303, 3.5)    Loiseau et al., (2006) 

PCN-13   5.1(77, 1) 2.07(77, 1 ) 3.2(77, 1) Ma et al., (2007) 

Cd3(OH)2(apt)4(H2O)2 3.1(195, 1)   3(195, 1) None(77,1) Zou et al., (2007) 

Sm4CO3(pyta)6(H2O) 0.9(77, 1), 2(195, 1)     Li et al., (2008) 

Cu(F-pymo)2    3.5(77,1 ) None(77,1 ) Navarro et al., (2008) 

ZIF-68 1.48(273,1)  0.14(273, 1)   Banerjee et al., (2008) 

ZIF-95 0,87 (298,1.2) 0,27(298, 1,2) 0,2(298, 1,2 )  0,08 (298, 1) Wang et al., (2008) 

Zn2(cnc)2(dpt) 6.65(195, 1) 3.25(195, 1)    Xue et al., (2008) 

Mn(ndc) 1,5 (273, 1), 3 (195, 1) 0,8 (273,1), 1,7(195, 1)    Moon et al., (2006) 

PCN-17   0.88(77, 1) 4.5(77, 1) 0.89(77, 1) Ma et al., (2008) 

Zn3(OH)(p-cdc)2,5 0,58 (298,0.5) 0,07 (298, 0,5)    Bae et al., (2008) 

Zn3(OH)(p-cdc)2,5 DMC 0,27(298, 0.5) 0,068(298, 0,5)    Bae et al., (2008) 

MOF 177    0.1(298,1)  Li et al., (2007) 

CuBTC 6-10(298,5)   None(298,5)  Yazaydın et al.,(2009) 

Zn(ndc)2(dpni) 4.3(296, 17.5) 2.5(296,17.5)    Bae et al., (2008) 
(a)Abbreviations: pda = 1,4-phenylendiacetate, ndc = 2,6-naphthalenedicarboxylate, ntc =naphthalene-1,4,5,8-tetracarboxylate, btc =1,3,5-benzenetricarboxylate, adc = 9,10-anthracenedicarboxylate, apt=4-

aminophenyltetrazolate, pyta = 2,4,6-pyridinetricarboxylate, btb=1,3,5-benzenetribenzoate,  F-pymo = 5-fluoropyrimidin-2-olate, cbIM = 5-chlorobenzimidazolate, cnc =4-carboxycinnamic, dpt = 3,6-di-4-pyridyl-

1,2,4,5-tetrazine, dpni = N,N0-di-(4-pyridyl)-1,4,5,8-naphthalene tetracarboxydiimide 

3
8
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Mn(ndc) is a 3D microporous MOF with 1D channels in which there exist 

coordinatively unsaturated Mn
II
 sites (Moon et al., 2006). The adsorption measurements 

showed that this MOF has much higher adsorption capabilities for CO2 than for CH4 at 

ambient temperatures. These results have shown that open metal sites in a MOF can aid 

in the separation of (quadru) polar/ non-polar gas pairs such as CO2/CH4. Thus, this 

MOF-based material may have a potential application in PSA units for CO2/CH4 

separation 

It is also of interest that recently developed zeolitic imidizolate frameworks 

(ZIFs) have shown high CO2 storage ability and can capture CO2 from CO2/CO 

mixtures (Banerjee et al., 2008). These frameworks contain large cages interconnected 

by small apertures. For example, in ZIF-68, the large cages have diameters of 7.2 Å 

which is connected by apertures of sizes 4.4Å. At 273 K, the CO2 and CO adsorption 

isotherms showed that all of these ZIFs have a high affinity and capacity for CO2. The 

selective adsorption was further confirmed by breakthrough experiments, which showed 

complete retention of CO2 and passage of CO when they were exposed to a stream 

containing a 50:50 v/v binary mixture of CO2 and CO at room temperature. This 

selectivity can be attributed to the equilibrium effect based on different quadruple 

moments of CO2 and CO, but not the molecular sieve effect because the pores in these 

ZIFs are large enough to allow both gas molecules to enter. 

Er2(pda)3,(Pan et al., 2003) which has a 3D framework structure with 1D circular 

channels and coordinatively unsaturated ErIII sites. The effective dimension of the 

channels is approximately 3.4Å in diameter. Adsorption measurements showed 

selective adsorption of CO2 over Ar and N2, which was attributed to the combined 

effects of size and of host–guest interactions by the authors. 

At room temperature, ZIF95 showed a high affinity and storage capacity for CO2 

over CH4, CO, and N2. The high selectivity for CO2 was ascribed to the combined 

effects of the size of the pore apertures being similar to CO2 and the strong quadrupolar 

interactions of CO2 with N atoms present on the pore surface, whereas it is also relevant 

to the higher critical point of CO2 than those of other gases. In addition, it should also 

be noted that for the same MOF, the adsorption properties may be distinct at different 

temperatures. One such example is Mn(HCOO)2 (Samsenenko et al., 2007). 

As demonstrated above, rigid MOFs have great application potential in CH4, 

CO2, CO, H2, N2 separations because both their pore size and shape and their surface 
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properties can be easily tuned by the selection of metal or metal clusters, ligand design 

and functionalization, as well as by post-synthetic modification.  

Many flexible MOFs have been synthesized but only a few were used for gas 

adsorption (Table 4.3). Comparatively, the gas adsorption in flexible MOFs is more 

complicated than that in rigid MOFs. In most cases, the adsorption isotherms show 

hysteretic behaviors due to framework rearrangements during adsorption-desorption 

processes. Besides size/shape exclusion and adsorbate-surface interaction, structural 

rearrangement must also be taken into account.  

 

Table 4.3. Summary of gas adsorption in flexible MOFs 

Flexible MOF's  
(a) 

 

T 

(K) 

P 

(atm) 

Uptake (mmol/g) 

References 
CO2 CH4 

 

CO 

 

H2 N2 

Cu(dhbc)2(4,4’-bipy) 298 100 3.69 2.9   2 
Kiteura et al., 

2003 

Cu(bdc)2(4,4’-bipy)0,5 298 10 3.15     
Kiteura et al., 

2003 

AlOH(bdc) (MIL-53) 304 30 10 6  no  
Bourrely et 

al., 2005 

Cr(OH)(bdc)-H2O (MIL-

53) 
304 20 7,5 none    

Llewllyn et 

al.,2006 

Zn(adc)(4,4’-bpe)0,5 77 1   none 3.12 none 
Chen et al., 

2007 

H2Ni3O(H2O)3(tatb)2(H2O)-

(PCN-5) 
195 1 4.6 1.88    

Ma et al., 

2007 

Zn(Pur)2(ZIF-20) 273 1 3.15 0.61    
Hayashi et 

al., 2007 

Cu(fma)(4,4’-bpe)0,5 
77 1   none 4  Chen et al., 

2007 195 1 4.5 1.42    

 

(a)
 Abbreviations: dhbc = 2,5-dihydroxybenzoate,  bpee = 4,4’-(E)-ethene-1,2- diyldipyridine, Pur = 

purinate,   bdc = 1,4- benzenedicarboxylate,  tatb = 4,4’,4’’-S-triazine-2,4,6-triyltribenzoate bipy= 

bipyridine 
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When adsorbates enter the pores, frameworks can alter their pore sizes through 

the adjustment of inter-framework distances. Systematic tuning of the dicarboxylate and 

bi-pyridine type ligands has led to a series of this type of MOF, indicating that the 

‘‘rational design’’ approach is useful in tuning the micropores of such MOFs for their 

separation of CO2, CO, CH4 molecules (Chen et al., 2007). 

The structure of the MIL-53 is built up from infinite chains of corner-sharing 

MO4(OH)2 (M ) Al
3+

 , Cr
3+

). This results in a 3D metal organic framework containing 

1D diamond shaped channels with pores of free diameter close to 0.85 nm. The 

chemical formula of the metal benzenedicarboxylate MIL-53 is M(OH)(O2C-C6H4-

CO2) where M denotes the trivalent chromium or aluminum. MIL-53 a flexible MOF, 

showed different adsorption behaviors for CH4 and CO2 (Bourrely et al., 2005). The 

adsorption isotherm of CH4 was typical for a microporous material, whereas the CO2 

isotherm exhibited two steps; above the first step at low pressure the CO2 adsorption 

capacity greatly exceeded that of CH4. The difference between the CH4 and CO2 

isotherms was attributed to the quadrupole moment of the CO2 molecules. For MIL-53, 

(Liywellyn et al., 2006) the adsorption isotherm of CO2 showed very little uptake at 

pressures up to 10 bar, while a distinct high uptake occurred in the 12-18 bar pressure 

range. However, the adsorption isotherm of CH4 showed almost no uptake below 20 

bar. This was attributed to the repulsive effect of the water molecules in the host 

framework and the nonpolar CH4 molecules. 

The selective adsorption of CO2 over CH4 was observed in ZIF-20, (Hayashi et 

al., 2007) which has a 3D porous structure with large cages connected by small 

windows. At 273 K, the CO2 uptake at 760 torr is five times higher than that of CH4 

suggesting a stronger interaction between the pore surface and the CO2 molecules. It is 

interesting to note that the maximum pore aperture (2.8 Å as measure d from the crystal 

structure) of ZIF-20 is smaller than the kinetic diameter of CO2 and CH4. Therefore, it 

was believed that the large cage space in the structure becomes accessible through a 

dynamic window-widening process wherein the ligands swing to allow gas molecules to 

pass. This result demonstrated that molecules with dipole and quadrupole moments 

seem to have a distinct effect on the framework flexibility of some MOFs. 

Cu(dhbc)2(4,4’-bpy),(Kiteure et al., 2003) which in its hydrated form has a 2D 

sheet motif (Kiteure et al., 2003). The sheets have interlocking ridges and hollows 

furnished by the dhbc benzene planes in an upright fashion and are mutually 

interdigitated to create 1D channels with a cross section of 3.6 x4.2 Å.  N2, O2, CO2, and 
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CH4 adsorption isotherms showed initially a flat curve indicative of zero adsorption in 

the low pressure region, followed by an abrupt increase at a specific gate opening 

pressure in each case. For each gas, the adsorption isotherm showed an abrupt decrease 

at another pressure, the gate-closing pressure, leading to a hysteresis loop of sorption. 

 CO2 adsorption is a key step in separation of H2 from SMR-off gas mixture 

because of its highest percentage (10-25%) in the mixture. Adsorption separation by a 

porous material is one of promising methods considered for separation of CO2 from flue 

gas. Table 4.3 lists the novel adsorbents and conditions used for CO2 adsorption. As you 

can see from table, MOFs showed higher CO2 adsorption capacities than other 

adsorbents at high pressure range. MOFs have large surface areas, adjustable pore sizes 

and controllable properties, as well as acceptable thermal stabilities.  These unique 

structure properties of MOFs, make them attractive as adsorbents for CO2 separation 

with properties better than other porous materials, such as silicates, carbons, and 

zeolites.  

 

Table 4.4.  CO2 adsorption properties of Zeolites and all-silica microporous solid, 

Aluminium phosphates, MOFs and amine modified mesoporous silica. 

 

Adsorbents T(K) P(kPa) n(mmol/g) Reference 

Zeolites and all-silica microporous solid 

NaX 306,295 0.67, 1 5.4, 4.5 
Dume et al., 1996 

Harlich et al., 2004 

NaY 295,295 1,1 4.1, 1 Harlich et al., 2004 

Na-ZSM-5, H-ZSM-5 297,295 0,67, 1 1.8, 1.9 
Dume et al., 1996 

Harlich et al., 2004 

Silicalite 295 1 1.4 
Dume et al., 1996 

Harlich et al., 2004 

NaA 298 0.93 4.1 Breck 1956 

Beta-zeolite 303 1 1.8 Xhe et al., 2009 

Na-mordendite 308 10 2.8 Delgado et al., 2006 

Herschelite 298 0.69 2 Fisher et al., 2003 

(cont. on next page) 
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Table 4.4. (Cont.) 

Aluminium phosphates 

ALPO4-5 165 1 3.3 Martin et al., 1998 

ALPO4-14 290 1 2.2 Zhoe et al., 2009 

SAPO4-34 298 1 3.4 Ramos et al., 2008 

MOFs 

MOF-177 298 30 32 Millward et al., 2005 

IRMOF-1/MOF-5 298 30 21 Millward et al., 2005 

IRMOF-6 298 30 18 Millward et al., 2005 

IRMOF-3 298 30 18 Millward et al., 2005 

ZIF-69 273 1 3.1 Hayashi et al., 2007 

ZIF-20 273 1 3.1 Wang et al., 2008 

ZIF-100 298 1.1 0.95 Baurelly et al., 2005 

MIL 53(Al) 304 16 9 Llewelyn et al., 2008 

MIL-100 303 60 18 Llewelyn et al., 2008 

MIL-101(Cr) 298 50 40 Llewelyn et al., 2008 

Cu(BTC) 298 30 11 Milward et al., 2005 

Activated carbon 303 40 11.7 Drage et al., 2009 

Amine modified mesoporous silica 

MCM-41 298 1 2.2 Hvang et al., 2003 

Xerogel 298 1 1.2 Hvang et al., 2003 

 

Millward and coworkers synthesized and studied the sorption properties of CO2 

and N2 (among other gases) in a range of MOFs (Table 4.4). MOF-177 showed a very 

high capacity for adsorbing CO2 at partial pressures above 15 bar, however, the capacity 

was low at small CO2 pressures (Milward et al., 2005). The coordinating metal ion was 

Zn
2+,

 and the organic linker was the benzene 1, 3, 5-tribenzoate group. The observed 

sigmoidal shape of the adsorption isotherm, for MOF-177 and similar MOFs, is still 

under scientific discussion. Walton et al., (2008) demonstrated that the shapes of the 

adsorption isotherms of CO2 in MOF 177. They claimed that the sorbate–sorbate 

electrostatic interactions were essential for predicting the inflections and steps of the 

adsorption isotherms.  

The adsorption equilibrium and diffusion of CO2 on microporous metal–organic 

framework crystals (MOF-5, or IRMOF-1) were studied by Zhao et al., (2009). The 
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Freundlich adsorption isotherm equation can fit well the CO2 adsorption and MOF-5 as 

found to be an attractive adsorbent for separation of CO2 from flue gas.  

Bastin et. al (2008) examined a microporous MOF Zn(bdc)(4,4’- bipy)0.5 (MOF-

508b,)for the adsorption of CO2. Barcia et al., (2008) studied the adsorption of CO2, N2, 

and CH4 on crystals of MOF-508b, at temperatures in the range 303–343 K and at 

partial pressures up to 450 kPa. MOF-508b was found to be very selective for CO2, and 

the loadings of CH4 and N2 were practically temperature independent. The Langmuir 

isotherm model provided a good epresentation of the equilibrium data.  

Zeolitic imidazole frameworks (ZIFs) have structures formed by heterocyclic 

and nitrogen-containing linkers with topologies very similar to those of zeolites. Metals 

play a similar role on ZIFs to that of Si and Al atoms on zeolites, by mainly contributing 

with electrostatic interactions, the vdW contributions can be ignored. This fact makes 

ZIFs substantially different from other MOFs. Using high-throughput experimental 

techniques, Yaghi and coworkers identified a range of candidate materials with a high 

capacity for CO2 adsorption (Hayashi et al., 2007, Wang et al., 2008).   

Cr
3+

 and Al
3+

 ions can be used as the coordinating metals in MOFs. Llewellyn 

and coworkers studied the uptake of CO2 in a series of MOFs, in which Cr
3+

 and Al
3+

 

had been substituted at the coordinating cation positions (Baurelly et al., 2005). The 

Materials Institute of Lavoisier (MIL) solids have been shown to yield large CO2 

uptakes. In particular, MIL-100 and MIL-101 showed very high capacities for CO2 

adsorption at high pressures (Llewelyn et al., 2008). In particular as mentioned earlier, 

MIL-53 shows ‘‘breathing’’ phenomenon upon or host–guest interactions. Such flexible 

and dynamic frameworks are interesting as they open potential applications for high-

performance molecular recognition and high selectivity for guest inclusion and release.  

Hammon et al., studied binary adsorption of CO2 and CH4 in MIL-53(Cr), and 

discussed the possibility of using these MOFs for the PSA applications for CH4 and 

CO2 adsorption (Hamon et al., 2009). 

CuBTC was first reported by Chui et al., (1999) as HKUST-1. CuBTC has 

symmetry and pores of 1.02 nm and 1.2 nm and octahedral side pockets of 0.48 nm 

which are connected to the larger pores by windows of 0.35 nm (Gelb and Gubbins 

1999). The accessible porosity is about 0.34 cm
3
/g (Chui et al., 1999).  

Wang et al., (2002) measured the isotherms of N2, CO2, CO, CH4, O2, N2O, 

C2H4, C2H6, n- C12H26 and H2O up to 1 bar at 295 K on the CuBTC. Senkovska and 

Kaskel (2008) measured methane adsorption up to 200 bar at 303 K. Wang et al., (2002) 
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measured CO2 up to 20 bar at 298 K in addition to the low pressure data results. 

Millward and Yaghi (2005) also measured carbon dioxide at 298 K up to 42.5 bar, 

exceeding the amount adsorbed by Wang et al., (2002). Different syntheses and 

activation procedures were followed leading to the discrepancies. Recently, Chowdhury 

et al., (2009) investigated the influence of different synthesis methods on the adsorption 

performance of CuBTC. Two CuBTC samples were synthesized, one based on the 

procedure described by Wang et al., (2002) giving a BET surface area of 857 m
2
/g, and 

the other one using the synthesis method given by Liu et al., (2007a) resulting in a BET 

surface area of 1482 m
2
/g. Measuring the adsorption of N2, O2, Ar, CO2, C3H8 at 295.25 

K and 318.15 K, a strong influence of the synthesis on the adsorption performance was 

found.   

  Yazaydin et al., (2009) used molecular simulation techniques to predict that CO2 

uptake and selectivity with respect to N2 and CH4 in the Cu-BTC MOF were 

significantly increased by the presence of water molecules coordinated to open metal 

sites in the framework. Yang et al., performed a GCMC simulation of the adsorption 

and separation of CO2 from flue gases (mixtures of CO2/N2/O2) in Cu-BTC MOF, and 

found this a promising material for separating CO2 from flue gases. Keskin et al (2009) 

studied gas adsorption and diffusion in Cu- BTC on the atomic level to predict the 

performance of Cu-BTC membranes for the separation of H2/CH4, CO2/CH4, and 

CO2/H2 mixtures. They found this membrane to have higher selectivities for all three 

mixtures than did MOF-5 membranes. Liang et al., (2009) experimentally studied Cu-

BTC for its potential for CO2 adsorption, and determined the isotherms for CO2, CH4, 

and N2 at various pressures and temperatures. The authors observed a quadrupled 

capacity for CO2 adsorption compared with NaX. Cu-BTC was shown to be unstable at 

moderate temperatures and humid conditions. 

Krungleviciute et al., (2008) have reported that in Cu-BTC the time to reach 

equilibrium was comparable for Ar and CF4.They used these results to establish kinetic 

selectivity for the same two gases in another variety of MOF, RPM1-Co. Peralta et al., 

reported a kinetic studies for the separation of hydrocarbon in Cu-BTC (Peralta et al., 

2009).Saha et al., studied metal–organic framework (MOF-177, MOF 5) for H2 

adsorption. The hydrogen adsorption equilibrium and kinetic data were measured (Saha 

et al., 2011, 2012). 
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CHAPTER 5 

 

EXPERIMENTAL STUDIES 

 

5.1. Materials 

 

Binderless NaX zeolite (CAS: 63231-69-6) (Aldrich)and metal organic 

framework (MIL53(Al)) (Basolite A100) (Sigma Aldrich) were used as adsorbents. 

KCl.9H2O (Merck) was used to prepare salt solution in ion exchange experiment. High 

purity of H2 (> 99.999 %), CH4 (> 99.95 %) and CO2 (> 99.995 %), CO (> 99.995 %), 

were used as adsorbates.  

 

5.2. Preparation of the NaX and KNaX zeolite adsorbents 

 

Binderless NaX zeolite with unit cell formula of Na86(Al86Si106O384) 264H2O, 

and Si/Al:1.23 was used in preparation of KNaX zeolites. The ultrasound enhanced 

introduction of K
 +

 cations into NaX frameworks was performed and compared with 

traditional one. 2 g of zeolite were mixed with 20 mL of 1 M KCl solution for 2h at 50 

or 70 
o
C with water bath shaker (GFL 1092) at 130 rpm or ultrasonic processor (Sonics-

Vibracell-VC 505, frequency; 16 kHz). After ion exchange, the mixtures were 

centrifuged and then zeolite phases were washed with water until Cl
-
 free solution was 

obtained. In adsorbent codes, U and S are expressed as ion exchange method ultrasound 

and shaker respectively. 50, 70 are expressed as synthesis temperature (°C) and Na 

exchange amount (%) are given in parenthesis. 

 

5.3. Characterization 

 

Thermal properties of the adsorbents were analyzed by thermo balance 

(Shimadzu TGA-51/51H) with scanning up to 1000 C at heating rate of 10 C/min. 

Nitrogen atmosphere (40 ml/min) were used for all analyses. Mineralogy and 

crystallinity of the adsorbents were determined by X-ray diffraction (Philips X-Pert Pro 

Diffractometer) using CuK radiation at 45 kV and 40 mA in the 2 range of 50-70
o 
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with 0.2
o
 step size. The micrographs of the adsorbents were taken by using scanning 

electron microscopy (SEM, Philips XL 30S) with LFD and ETD detector at 5.00 and 

3.00 kV under vacuum conditions. 

Fourier Transform Infrared Spectroscopy (FTIR) analysis was carried out in the 

spectral region of 400-4000 cm
-1

 using an FTIR spectrophotometer (Shimadzu FT-IR 

8201).  3 mg of a powder form of adsorbents were taken and completed to 150 mg with 

KBr to remove scattering effects. This powder mixture is then pressed into a pellet with 

a thickness of about 1mm to form homogenous and transparent in appearance. Chemical 

composition of the adsorbents was determined by Inductively Coupled Plasma Atomic 

Emission Spectroscopy (ICP-AES, 96, Varian). Textural properties of adsorbents were 

determined by using a volumetric N2 adsorption instrument (Micromeritics, ASAP 

2010M) at 77K. Prior to adsorption, the samples were degassed for 24 h under vacuum 

better than 10
-5

 mbar at 350 C.  

 

5.4. Adsorption Equilibrium Studies 

 

Adsorption equilibrium studies were divided into two parts. The first part 

included the CO2 adsorption up to 1 atm. Second part explained the SMR Off-gas 

Adsorption up to 5 bars. 

 

5.4.1. CO2 interaction with adsorbent surface 

 

 

Adsorption equilibrium of CO2, on the adsorbents was measured by using 

volumetric adsorption apparatus (Micromeritics ASAP 2010 M) at 278 and 298 K. The 

isotherm data fitted to the Toth and Sips models equations by using Sigma Plot 6.01 

statistical software program. 

 

5.4.2. SMR Off-gas Adsorption  

 

SMR off-gas (CO, CO2, CH4 and H2) adsorption was carried out in the home-

made volumetric adsorption system (Figure 5.1). System mainly consist of   adsorption 

cell (sample chamber(Parr/USA-4563).) , charge vessel, vacuum section. The sample 
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chamber volumes were nominally 600ml. To evaluate the amount of adsorbed gas, 

which is necessary for measuring equilibrium isotherms, a charge vessel were used. The 

vacuum section of the volumetric adsorption system was used to regenerate the 

adsorbent. A vacuum pump (1400N50 Welch Chemstar) with active pirani gauge (KJL 

6006, Kurt J. Lesker) was used in this system. All connections in the apparatus were 

made with 1/4 in. (6.35 mm) stainless-steel tubing and proper swagelok fittings. System 

pressure measurements were accomplished through the use of pressure transducer (Cole 

Parmer, model C 206) operating in the range of 0 to 500 kPa with accuracy±0.1 kPa. 

The determination of the true dead volume of the sample chamber and their associated 

piping was accomplished by a Helium expansion method. To evaluate the amount of 

adsorbed gas, which is necessary for measuring equilibrium isotherms, a charge 

chamber with a total volume of 1000 cm
3
 was used.  

 

Figure 5.1. Experimental apparatus 

 

The experimental procedure for measuring pure gas adsorption isotherms at 5 

atm is as follows. A known mass of adsorbent (10 g in these experiments) was charged 

into the adsorption cell and was regenerated prior to each isotherm measurement at 573 

K under vacuum (10 mbar) for 4h. Gas was introduced into the charge chamber and its 

pressure and temperature were measured. These measurements provided the initial 

number of moles of the gas, n1, by using the virial equations as the equation of state. 
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The gas was then allowed to contact the adsorbent by opening the valve of adsorption 

column. The pressure and temperature were measured after equilibrium has been 

achieved and the number of moles gas remaining in the system, n2, was calculated at the 

new condition. The number of moles introduced to sample chamber was then obtained 

by difference (i.e. n1−n2). A part of this number of moles was adsorbed by adsorbent 

and the other was in the gas phase. In order to know the amount of adsorbed gas by 

adsorbent, thus, one may measure the number of moles in gas phase. Before starting 

adsorption experiments, the dead space Vd is determined with helium gas at ambient 

temperature and low pressure. All calculations were done by using Matcad 14 software 

program. The expected uncertainties in the amounts adsorbed were estimated using 

error propagation in all the measured variables and were confirmed by replicate runs. 

 

5.5. Adsorption Kinetic Studies: ZLC Adsorption System   

 

CO, CO2, CH4 and H2 adsorption on the MIL53 (Al) was studied to determine 

diffusion coefficient by using the home-made ZLC system (Figure 5.2) as given detail 

in previous study (Erten Kaya, 2012). The system includes adsorbent zero length 

column, oven (Binder ED 53), gas flow controllers (Aalborg, DFC 26)) and mass 

spectrometer (Hiden HPR 20). Water vapour trap (Agilent) was placed before the mass 

flow controllers to reduce detoriot effect of water vapor on gas adsorption. Simplified 

zero length column configurations were seen in Figure 5.2. 

The ZLC cell consists of a small amount of adsorbent (2 mg) in powder form  

sandwiched between two sintered discs (35µm) (Alltech) in a 1/8-in. Swagelook fitting. 

Quartz wool was used to close remaining space of ZLC cell and prevent zeolite crystals 

to escape the mass spectrometer (MS). All the connections in the system were 

periodically inspected for leakage with a solution of water and soap. 

The ZLC is located into an oven to regenerate and perform the adsorption 

experiments at desired temperature. Regeneration at 200 °C (1 Kmin
-1

 heating ramp) 

removes water vapor and some impurities by using a flow of helium at 10ml/min for 3 

or 14 h. The adsorbent into ZLC was exposed to a diluted stream of an adsorptive in an 

inert (helium) gas. Therefore, 3 % volume of adsorptive as the initial concentration was 

applied in order to describe the equilibrium by Henry’s law. Adsorption measurements 

were carried out at 303, 343 and 373 K. Finally, purging with He gas was carried out at 
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30, 50, 70, 100 ml/min to obtain desorption (response) curves. The flow rates of both 

the adsorptive and purge streams were controlled by mass flow controllers. The effluent 

concentration of the desorption /response curves was recorded in digital form for data 

processing. 

 

 

 

 

Figure 5.2. Zero Length Column configurations 
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5.6. Error Analysis 

 

Adsorption equilibrium of CO2, CH4, CO, H2 were evaluated and compared with 

isotherm models. All the model parameters were evaluated by nonlinear regression 

using the data fit software (Sigma Plot). The optimization procedure required an error 

function to be defined in order to be able to evaluate the fit of the equation to the 

experimental data. Apart from the regression coefficient (R
2
), the residual or sum of 

square error (SSE) and the standard error (SE) of the estimate were also used to gauge 

the goodness-of-fit: 
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where qi is the observation from the batch experiment i, Qi is the estimate from the 

isotherm for corresponding qi, m is the number of observations in the experimental 

isotherm, and p is number of parameters in the regression model. The smaller SE and 

SSE values indicate the better curve fitting. F-ratio is the ratio of the mean square of the 

predicted model to the mean square of the true error (residual). The F-ratio is a test 

statistic for multiple independent variables. It is calculated as  

 

                                              F ratio = MSM / MSR  

 

where  

 

                                           MS = SSE / doff = degrees of freedom  

 

Subscripted M means 'Model' and indicates the expected systematic variance. 

This is often measured as between measures variation; Subscripted R means 'Residual' 

and indicates the random, unsystematic variance. A good model will have a high mean 

http://changingminds.org/explanations/research/analysis/test_statistic.htm
http://changingminds.org/explanations/research/analysis/test_statistic.htm
http://changingminds.org/explanations/research/analysis/test_statistic.htm
http://changingminds.org/explanations/research/statistics/degrees_freedom.htm
http://changingminds.org/explanations/research/statistics/degrees_freedom.htm
http://changingminds.org/explanations/research/statistics/degrees_freedom.htm
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square for the model; therefore, the larger this ratio, the better the model ‘‘fits’’ the 

experimental data.  

The average uncertainties for measurements were obtained by 

 

Average uncertainity: 









n

ts
                       (5.3) 

 

where t is the student t factor, s is the standart error, n is the number of measurements 

 

The correlation coefficient, R
2
, SE, SSE, F-ratio, and predicted qm (wherever 

applicable) values were used to determine the best fit adsorption isotherm model. So as 

to evaluate the goodness obtained fits, the sum of squares due to the errors (SSE), R
2
, 

the residual degrees of freedom and standard error of estimate associated with the 

output model results were calculated with the help of Sigma Plot software program. 

In the kinetic study, desorption curves for CO2, CH4, CO, H2 and MIL 53 were 

obtained. Good agreement is observed between experiment and theoretical model that 

described in above ZLC theory section. The Sum of square error for the determination 

of model constants was defined as 
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CHAPTER 6 

 

RESULTS AND DISCUSSION 

 

6.1. Characterization of Adsorbents 

 

6.1.1. Zeolite Adsorbents 

 

K
+
 rich NaX zeolite (KNaX) was prepared with the exchange reaction between 

the counter ions, K
+
, and NaX zeolite; 

 

  K
+

(aq) + Na-X(zeo)      Na
+

(aq) + K-X(zeo)                     

(6.1) 

 

Where K is the rate constant of the exchange reaction. Exchange percentage 

amount of Na
+
 ion ( Na ) was calculated;  

      100x
q

qq

o

Nao

Na 






 
                 (6.2) 

 

where qo and qNa (mg g
-1

) are the amount of Na
+
 ions into zeolites initially and at 

any time t, respectively. The maximum Na exchange amount was obtained as 83% and 

81% at 70 
o
C by using ultrasonic processor and shaker, respectively. Although no 

significant effect of the methods on  exchange percent was noted. It was observed that 

temperature were more effective on the exchange of K in NaX zeolite when ultrasound 

processor is used. Textural properties of the adsorbents are given in Table 6.1. In 

adsorbent codes, U and S indicate respectively exchange methods: ultrasound and 

shaker; 50 and 70 numbers display exchange temperature (°C) respectively; the 

numbers in parenthesis are exchange percent of Na. 

 

 

 

K 
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Table 6.1. Textural properties of zeolite adsorbents 

Adsorbent codes AL/m
2
 g

–1
 Vmic/cm

3
 g

–1
 dm/ Å 

NaX 1058 0.37 7,47 

S50 (76) 1036 0.34 7,15 

U50 (79) 902 0.33 6,55 

S70 (81) 899 0.31 6,48 

U70 (83) 857 0.31 5,67 

AL: Surface area from Langmuir method; Vmic and dm: micropore volume and median pore diameter from Howard–

Kawazoe Method 

 

As seen from Table K rich NaX zeolites have lower langmuir surface area and 

micropore volume than NaX zeolite. This can be explained with the restriction of K
+
 

ions, bigger ions than Na
+
 (RK+>RNa+).  

The micrographs of the surface obtained from scanning electron microscope 

show that the crystal size (2 μm) of NaX zeolite did not change with ultrasonic source 

or the methods used in K
+
 ion exchange.   

 

  

 

                                                                        (a) 
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                                (b)                                                         (c) 

 

    

 

(d)                                                           (e) 

Figure 6.1. SEM images of adsorbents: (a) NaX (b) S50 (76) (c) S70 (81) (d) U50 (79) 

(e) U70(83) 

 

Figure 6.2 shows the X-ray diffractogram of the zeolite adsorbents. From the 

XRD spectra of zeolite adsorbents K
+
 ion exchange does not affect the skeleton, just 

changes the local pore in zeolites. The cation exchange resulted in decrease in the peak 

intensity as mentioned in the literature (Jasra et al., 2003; Buhl et al., 2003). As seen 

from the Figure 6.2, the NaX zeolite has the highest peak intensities and highly 

crystalline material but it is reduced with potassium exchange process. This means that 

X-ray diffraction studies of zeolites in powders confirm migration of cations to zeolite 

extraframework sites.  
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Figure 6.2. X-ray diffraction patterns of zeolite adsorbents 

 

Thermal analyses including TG/DSC were used to investigate the change in 

thermal properties of the zeolites such as dehydration behavior. Zeolites were heated 

under N2 flow to high temperatures to complete dehydration. Figure 6.3 shows the 

smooth mass loss of the zeolites from TG curves. As seen from the TG data tabulated 

S50(76) showed the highest dehydration and (the order is: 

S50(76)>NaX>U70(83)>S70(81)>U50(79) (Table 6.1). As seen from the thermal 

gravimetric analyze (TGA) curve (Figure 6.3), the weight loss was occurred up to 200 

o
C due to desorbing free mobile water in the supercages. Between 200-350 

o
C the water 

is desorbed from the hydrated cation complexes in which water is bounded to 

framework oxygens in the small pores of the zeolites as stated by Akbar et al., (2007).   
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Figure 6.3. TG curves of zeolite adsorbents 

 

             

Figure 6.4. DSC curves of zeolite adsorbents 

 

According to DSC curve free and bounded water, were removed with heating up 

to dehydration temperature (Table 6.2). The DSC curve gives an endothermic peak due 

to desorption of water for zeolites below 200C as shown in Figure 6.4. This water is 

related to physically adsorbed water by means of cation. The enthalpy change (H) 
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value is obtained from peak area above DSC curves and tabulated. Enthalpy change 

values of water in zeolites were found higher than vaporization enthalpy of pure water 

(≈2230 J/g at 100 C) which shows how small pores was obtained for K rich  

adsorbents.  

 

Table 6.2.TG and DSC data of the zeolites 

Zeolites 

Mass 

loss 

(%) 

Number of 

water molecules 

desorbed per 

unit cell 

Dehydration 

temperature 

(C) 

H  

(J/g 

zeolite) 

Moisture 

content 

(g water/100 g 

zeolite) 

H  

(J/g 

water) 

NaX  22.5 133 431 1100 21.4 5140 

S50(76) 19.9 126 407 791 18.7 4207 

S70(81) 21.6 156 412 847 20 4131 

U50(79) 21.4 131 422 883 20.2 4350 

U70(83) 20.5 112 503 1130 19.3 5824 

 

FT-IR spectroscopy was used to measure changes in the character of a particular 

symmetric stretching band at 754 cm
-1

 and the double-ring vibration band at 566 cm
-1

, 

characteristic of faujasite zeolites as stated by Zhan et al., (2002).  
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      (a) 

 

      (b) 

Figure 6.5. FT-IR spectra of the zeolites between (a) 400-4000 and (b) 400-1600 cm
-1 

wavelength 

 

 The band at 1645 cm
-1

 is the characteristic of the bending mode in the water 

molecule. Fourier transform infrared spectroscopy showed a decrease in acidity upon 

ion exchange of zeolite as observed from the reduction in the intensity of the peaks 

corresponding to acidic hydroxyl groups (3518 cm
-1

) on the surface of the sodalite cages 

(Jasra et al., 2003).  
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6.1.2. MIL 53 (Al) Adsorbent 

 

Metal organic framework MIL 53 (Al) with demonstrate higher surface area 

(1278 m
2
/g) and micropore volume (0.4 cm

3/
g) than zeolites has small cubic particles 

shape (Figure 6.6). 

 

Figure 6.6. SEM images of MIL 53(Al) 

 

MIL 53(Al) is crystalline material (Figure 6.7) the main peaks are located at 

between 10 and 20 2Theta values which is compitable with literature (Loiseau et al., 

2006). 

 

 

Figure 6.7. X-ray diffraction patterns of MIL53(Al) 
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TG curve of MIL 53 (Al) given (Figure 6.8) exhibited two-stage weight loss. 

The first weight loss occurred below 120 ºC, indicating the removal of the occluded 

water from the structure. In the first weight loss below 120ºC, samples show a 

negligible weight loss (about 5 wt %). The dehydrated structure, which is stable up to 

560 ºC, eventually collapses with the departure of the bound Benzene dicarboxlic acid 

(BDC) acid. At 640 ºC, the final residue is  an amorphous form of Al2O3 

 

 

Figure 6.8. TG curves of MIL 53 (Al) 

 

 

 Figure 6.9 (a,b) shows the IR spectrum of the MIL 53 (Al). The observation of 

the two strong vibrational bands located at 1400 and 1456 cm
-1

 assigned to -CO2 

symmetric stretchings whereas bands at 1506 and 1564 cm
-1

 assigned to -CO2 

asymmetric stretchings of which are coordinated to aluminum. The presence of the 

bands characteristic of the framework -COO
-
 groups indicated the presence of the 

dicarboxylate within MIL 53(Al) sample. The peak at 3429 cm
-1

 attributed to OH 

stretching. The peak at 1693 cm
-1

 for the final sample is the characteristic peak for 

water. 
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(b) 

Figure 6.9. FT-IR spectra of MIL 53(Al) 

 

6.2. Adsorption Equilibrium Studies 

 

Equilibrium studies can be classified as CO2 interaction and gas adsorption 

studies. In the former one the aim is to understand the interaction ( energy distribution, 

heterogeneity etc.) of CO2 with the adsorbent surface in the volumetric adsorption 
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system (ASAP 2010)  at 1 atm. CO2, CH4, CO and H2 adsorption were also studied in 

home-made volumetric system operating at pressure up to 4 bar.  

 

6.2.1. CO2 interaction with Adsorbent surface 

 

Equilibrium isotherm data of CO2
 
on the zeolite and MIL 53 (Al) adsorbents 

were obtained at 278K and 298K. Langmuir, Freundlich, Sips and Toth model equations 

were applied to the data. CO2 isotherms of the adsorbents at 278 and 298K are given in 

Figs. 6.10. a and b respectively. As shown in Figures similar and highly favorable 

adsorption isotherms which are of type 1 according to IUPAC classification was 

observed for zeolite adsorbents. CO2 adsorption show linear isotherm for MIL53(Al) 

adsorbent.  

As the temperature increased the adsorbed amount decreased since adsorption is 

an exothermic process. With the introduction of K ions the effect of temperature on 

adsorption for zeolite adsorbents considerable and the orders as follows; 

NaX >S50 (76) >U50 (79)>S70 (81)> U70 (83).  

Similar order showing that NaX zeolite has the highest adsorption capacity and 

among the modified zeolites can be concluded. Acidic CO2 molecule can adsorb on the 

basic surfaces. The basicity increases by increasing electropositivity of counter balance 

cation.  K
+
 ion has lower electropositivity and ionic radius than those of Na

+
 ion. As it is 

expected, as ion exchange percantage increases from 76 to 83, the CO2 amount 

adsorbed decreases. Barthomeuf suggested that the base strength of zeolites increased 

along with an increase of the aluminum content because of the lower electronegativity 

(higher electropositivity) of aluminum compared to that of silicon. (Barthomeuf, 2003). 

The presence of aluminum atoms in zeolites introduces negative framework charges that 

are compensated with exchangeable cations, namely, counter-balance cations or extra-

framework cations. The modification of zeolites via the introduction of larger and more 

electropositive polyvalent cation enhance the adsorption of acidic CO2. Walten et al., 

showed that the CO2 adsorption of the X zeolites having monovalent counter ions 

increased as the cation ionic radii decreased: in the order Cs
+
 <Rb

+
 <K

+
 <Na

+
 <Li

+
 

(Walton et al., 2006).  
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Figure 6.10. CO2 adsorption isotherm of the zeolites and MOFs at 278K  

(a) and 298K (b) 

 

Error analysis was applied to the isotherm data. The average uncertainties for 

CO2 adsorption on NaX zeolite at 298K was approximately 0.9% (0.001 mmol/g) as 

depicted by the error bars in Figure 6.11. Good agreement between the replicate runs 

was obtained. This yield an expected uncertainty of about 0.9% Again, we have been 

concluded that, the repeated isotherms confirmed the estimated precision of the 

measurements. 
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Figure 6.11. CO2 adsorption isotherm of NaX zeolite at 298 K ( error bar is obtained 

after  two measurements) 

 

Langmuir, Freundlich, Toth and Sips model equations were applied to the 

adsorption data obtained in order to get information regarding the heterogeneity of the 

adsorbent surfaces. Although the adsorption data were fitted to Langmuir, Freundlich, 

Toth and Sips models, (as shown in Figure 6.12 representatively), the data did not fitted 

well with Langmiur and Freundlich model. Toth and Sips isotherm models well 

described the experimental data obtained in this work with high regression coefficient 

(R
2
 >0,98 ), F ratio values and smaller standart error values. 
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Figure 6.12. Adsorption isotherms of CO2 at 278 K of NaX zeolite (o: experimental, 

linecurve fittings Langmiur:  Freundlich: Sips: 

Toth: model equations 

 

For Sips and Toth model equations, usually larger of n value than 1 and lower t 

value than 1, respectively, is the characteristic of the heterogeneous system. System 

heterogeneity has been confirmed the ability of adsorbate of preferentially adsorption 

sites (Cavanati et al., 2004). As we have seen in Table 6.3, the Toth model was found to 

give the best fit for the adsorption data. All t values were found to be smaller than unity. 

It is confirming the sysyem heterogeneity of the adsorbent. It can be emphasized that 

surface heterogeneity favors the adsorption of CO2, since MIL 53 (Al) that show the 

lowest adsorption capacity at two different temperatures, have also the lowest n (highest 

t) values for each temperatures, and therefore the lowest surface heterogeneity. 

However, this information does not point to what is the source of the heterogeneity, 

whether it is the solid structural property, the solid energetical property or the sorbate 

property. In other words, heterogeneity is not a solid characteristic alone but rather it is 

a characteristics of the specific solid and adsorbate pair (Do 1998, Yang 1997). We 

have noted from the table that the parameter t increased with temperature, suggesting 

that the system was "apparently" less heterogeneous as temperature increased (Do 

1990). When the t values are compared at both temperatures, it can be determined that at 

278K, adsorbate-adsorbent system is more heterogeneous since the t values are generally 

greater at 298K. 
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According to Table 6.3, NaX has the lowest t value (0.24 and 0.29 respectively) 

for 278K and 298K indicating that CO2-NaX pair is the most heterogeneous system. As 

it is expected t value increases; the heterogeneity of the system decreases with 

increasing ion exchange percentage from 76 to 83. The surface heterogeneity favors the 

adsorption of CO2, since U70 (86) which show the lowest adsorption capacity at two 

different temperatures, it has also the lowest n (highest t) values for each temperature, 

and therefore the lowest surface heterogeneity between the zeolite adsorbents. Our 

results are agreed with the results obtained in the literature (Walten et al., 2006). The 

KNaX of their study was exchanged 76%, while we achieved 86%. 

Parameter b for Sips and Toth models, called as affinity constant also shows  

how strong an adsorbate molecule is attracted onto a surface. When the affinity constant 

b is large, the surface covered with  adsorbate molecule as a result of the strong affinity 

of adsorbate molecule towards the surface. Besides, as temperature increases, the b 

values decreases. Among the adsorbents highest b value was obtained for MIL 53(Al) 

adsorbent. This is expected because of the linear isotherm shape of the MIL 53 (Al) 

adsorbent isotherms. For zeolite adsorbents highest b value was obtained as 0.34 for 

NaX zeolite adsorbent at 298K. 
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Table 6.3. Isotherm Model fitting for CO2 adsorption data 

 

P: pressure (kPa), q, qm are : the amount adsorbed (mmole CO2/ g zeolite) at any pressure and monolayer coverage respectively 

 

 

 

 

 

 

 Adsorbents 

  NaX MIL 53 (Al) S50(76) U50(79) S70(81) U70(86) 

Isotherm model Parameters 278K 298K 278K 298K 278K 298K 278K 298K 278K 298K 278K 298K 

Sips 

n

n

m

bP

bPq
q

/1

/1

)(1

)(


  

qm(SE) 7.98(0.24) 7.65(0.08) 2.32(0.8) 1.51(0.2) 7.3(0.1) 7.6(0.2) 7.32(0.1) 6.51(0.3) 7.4(0.09) 6.47(0.1) 7.7(0.06) 6.5(0.2) 

b(SE) 0.34(0.04) 0.31(0.004) 7.7(0.003) 7.6(0.001) 0.31(0.02) 0.23(0.0007) 0.22(0.04) 0.2(0.01) 0.19(0.002) 0.17(0.009) 0.15(0.006) 0.14(0.005) 

n(SE) 2.1(0.1) 2(0.02) 1.3(0.01) 1.2(0.03) 1.85(0.03) 1.79(0.03) 1.73(0.08) 1.6(0.16) 1.53(0.04) 1.48(0.06) 1.34(0.02) 1.19(0.08) 

R2 0.9968 0.9998 0.9999 0..9989 0.999 0.9995 0.9956 0.9954 0.9991 0.9978 0.9997 0.9951 

 SE 0.01 0.02 0.03 0.031 0.06 0.05 0.15 0.05 0.05 0.09 0.3 0.12 

SSE 0.16 0.008 0.0008 0.009 0.14 0.05 0.32 0.02 0.03 0.1 0.018 0.19 

F- ratio 2196 34051 113630 4533 17756 23790 1583 6173 6353 2784 22422 1436 

Toth 

)/1())(1( tt

m

bP

bPq
q


  

qm(SE) 7.1(0.4) 6.89(0.4) 1.7 (0.9) 1.4(0.1) 7.3(0.23) 7.1(1) 7.1(0.24) 6.5(0.47) 6.9 0.12) 6.69(0.21) 7.7(0.07) 6.54(0.34) 

b(SE) 0.28(0.04) 0.24(0.04) 18(0.3) 14(0.01) 0.22(0.01) 0.21(0.03) 0.19(0.02) 0.171(0.02) 0.17(0.01) 0.166(0.01) 0.15(0.009) 0.139(0.008) 

t 0.24(0.02) 0.29(0.01) 0.71(0.07) 0.82(0.07) 0.35(0.008) 0.4(0.01) 0.43(0.03) 0.5(0.07) 0.54(0.01) 0.61(0.03) 0.67(0.005) 0.69(0.09) 

R2 0.9973 0.9994 0.99999 0.98 0.9993 0.9990 0.9964 0.9994 0.9994 0.9986 0.9999 0.995 

 SE 0.09 0.04 0.0036 0.11 0.05 0.07 0.13 0.04 0.04 0.07 0.02 0.13 

 SSE 0.13 0.02 0.001 0.001 0.1 0.14 0.026 0.01 0.02 0.06 0.007 0.21 

F- ratio 2596 12334 672295 15310 243357 13049 1950 6590 9433 4351 55712 1301 

6
8
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Isosteric heat of CO2 adsorption 

 

The isosteric heat of adsorption is an important parameter to evaluate the 

adsorption performance of adsorbents. It was calculated by using the Toth equation 

which gives the best result in fitting of experimental data.  

Figure 6.13 shows the variation of the isosteric heat of adsorption for adsorbents 

with loading. The decrease of the isosteric heat with loading physically means that CO2 

molecules prefer to adsorb onto the sites of high energy. As you can see in Figure 6.13, 

there is a decreasing trend in isosteric heats as adsorbate loading increases, which shows 

that all adsorbent samples are strongly heterogeneous and this was also supported by the 

heterogeneity parameters of the Sips and Toth Models (n and t respectively). This high Qst 

is attributed to the strong interaction between the quadrupole moments of CO2 with 

cations.   

 

 

Figure 6.13. Change in heat of adsorption with loading 

 

6.2.2. SMR off-gas CO2, CH4, CO and H2 Adsorption 

 

CO2, CH4, CO and H2 adsorption isotherms on NaX zeolite measured at 298K 

and 313K in our home made volumetric system are shown in Figure 6.14(a,b) 

respectively.  
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Figure 6.14.  CO2, CH4, CO, H2 adsorption equilibrium on zeolite NaX at 298 K (a), 

313K(b) 

 

The amount adsorbed at 400 KPa (values in the parenthesis) for zeolite was 

found to be in the order of   CO2 (3.9, 3.37 mol/kg) > CH4 (1.8, 1.39 mol/kg) >CO (1.6, 

1.04 mol/kg) >H2 (0.16, 0.13 mol/kg) for 298K and 313K respectively. Amount 

adsorbed decreases with increasing temperature as expected from physisorption.  

Comparasion CO2 adsorption isotherms given in Figure 6.11 and 6.14a (on NaX 

zeolite at 298K) shows that the amount adsorbed obtained from home made volumetric 
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system is lower than that from ASAP 2010M depending on the degassing procedure 

applied; a known mass of adsorbent (10 g in these experiments) was regenerated prior 

to each isotherm measurement at 573 K under vacuum (10 mbar) for 4h. Prior to 

adsorption, the samples were degassed for 24 h under vacuum better than 10
-5

 mbar at 

350 C. On the other hand amount adsorbed at 400kPa and 313K 3.5 mmol/g in closed 

home-made system for NaX zeolite is (Si/Al: 1.12) lower that obtained from open 

volumetric system for NaX zeolite (Si/Al:1.23) in (5 mmol/g zeolite) another study 

(Silva et al., 2012). 

Our error analysis indicated that the average uncertainties for CO2, CH4, CO and 

H2 gases adsorption measurements were approximately 3.5% (0.01 mmol/g), 3.2% (0.03 

mmol/g), 2.6% (0.01 mmol/g) and 2.3% (0.0095 mmol/g), respectively as depicted by 

the error bars in Figure 6.15.The error bars generated by error propagation are 

uncertainties in all measured quantities. The repeated isotherms confirmed the estimated 

precision of the measurements. Two replicated runs conducted to confirm our 

measurements shows good agreement between the replicated runs, which yield an 

expected uncertainty of about 3%.  

 

Figure 6.15. Change in amount adsorbed amount with charge pressure 

 

As we have seen in Figure 6.15, the CO2 adsorption increased rapidly when the 

pressure was increased up to 50 kPa but the adsorption after 50 kPa appeared to be 

gradual. At all pressures, adsorption isotherms of CH4 and CO were lower than those of 

CO2, and adsorption isotherm of hydrogen was significantly lower than those of CO2. 
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The H2 amount adsorbed on zeolite NaX was small, and the linearity of the isotherm 

was clearly seen. On the other hand, the CO2 isotherm on zeolite NaX showed a high 

steepness, with an amount adsorbed of 3.9mol/kg (at 298K and 5atm). This  data 

obtained is slightly lower than the reported one in the literature 4.5 mol/kg (at 298K and 

5atm) (Sriwerdane et al., 2001(a); 2001(b), and (Sriwerdane et al., 2001)). 

The adsorption isotherm curves for both temperatures obtained reveal that CO2 

has greater affinity to adsorb rather than CH4. Even though the kinetic diameter of CH4 

(3.8 Å) and CO2 (3.3 Å) are comparable and small enough to pass through the pore 

opening of zeolites (Table 4.1). The specific interaction of quadrapole of CO2 molecule 

with electric field created by cation is also likely the reason for higher adsorption of 

CO2. Non-polar molecules CH4 have low adsorption affinity towards zeolites as 

observed in literature (Hernández-Huesca et al.,1999 and Maurin et al., 2005). Henry’s 

constants were obtained by using the Langmiur adsorption equation to calculate the pure 

component selectivity (Table 6.4). 

At 298K and 5atm, the CH4 amount adsorbed on the zeolite sample was found as 

1.8mol/kg which is comparable with literature. For the same temperature and pressure 

the CH4 amound adsorbed was faund 1.2 mol/kg (Silva et al., 2012).The data presented 

compared very well with the low-pressure data in the linear range and up to100 kPa 

(Rege et al., 2000, Triebe et al., 1996). At higher pressures, deviation of the data with 

previous literature was around 15% (Rolniak et al., 1980). This difference at high 

pressures may be due to different assumptions used for the adsorbed amount 

calculations and the differences in properties of NaX zeolite. 

Hydrogen is the less adsorbed (0.1mol/kg at 298 K and 4 atm) compound on 

zeolite. For comparison purposes, higher adsorption equilibrium capacities of hydrogen 

on NaX zeolite at the same conditions in the literature were reported, i.e, 0.2 mol/kg 

(Sriwerdane et al., 2001(a), (b)). 

The high CO2 adsorption can be attributed to an electrostatic interaction of the 

quadrupole moment of this molecule with the Na
+
 cations present in the adsorbent 

micropores. It was also observed that the isotherms for CO2 are much more favorable 

than others due to a stronger CO2-NaX interaction. As can be seen from the equilibrium 

isotherms in Figure 6.16, the NaX was found to be very selective to CO2. 

Adsorption isotherms were evaluated by using adsorption equilibrium models. 

All experimental isotherms were fitted to the models which were described above gas 
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adsorption models section. The fitted parameter values were listed in Table 6.4 and the 

model curves were plotted in Figure 6.16. 

 

 

 

             (c)                     (d) 

Figure 6.16. Adsorption isotherms of CO2, CH4, CO, H2 ( : experimental points at 

298K and : experimental points at 313K, curve fitting lines Sips:  

Langmiur Toth: model equations 

 

 

 

 

 



76 

 

Table 6.4.  Model Fitting and parameters of CO2, CH4, CO and H2 adsorption on NaX 

zeolite (± 95 % confidence interval) 

P: pressure (kPa), qm: amount adsorbed (mmole / g zeolite) 

 

As seen from Table 6.4 Toth and Sips isotherm models well described the 

experimental data (with higher R
2
 value (>0.98) and F-ratio values (>700) and small 

error values) than Langmiur isotherm model parameters (When parameter n and t are 

unity, we recover the Langmuir equation applicable for ideal surfaces). The parameter n 

for sips model, t for Toth model can be regarded as the parameter characterizing the 

Isotherm model Parameter 
CO2 CH4 CO H2 

298K 313K 298K 313K 298K 313K 298K 313K 

Langmiur 

bP

bPq
q m




1
 

qm(SE) 
4.6 

(0.09) 

4.3 

(0.07) 

2.7 

(0.08) 

2.6 

(0.082) 

2.5 

(0.12) 

2.3 

(0.11) 

0.25 

(0.01) 

0.22 

(0.01) 

bSE) 
0.02 

(0.002) 

0.015 

(0.0016) 

0.06 

(0.0005) 

0.05 

(0.00043) 

0.0046 

(0.0005) 

0.0042 

(0.0003) 

0.004 

(0.0004) 

0.003 

(0.0004) 

R2 0.968 0.976 0.9893 0.9987 0.9848 0.9748 0.98 0.974 

SE 0.17 0.18 0.05 0.04 0.05 0.05 0.0052 0.0032 

SSE 0.7 0.6 0.07 0.06 0.07 0.04 0.006 0.005 

F- ratio 702 700 211 7 2200 1488 1502 1760 1800 

qm b 0.09 0.064 0.16 0.13 0.011 0.0096 10-3 0.00066 

Sips 

n

n

m

bP

bPq
q

/1

/1

)(1

)(


  

qm(SE) 
4.1 

(0.06) 

3.48 

(0.09) 

2.8 

(0.03) 

2.07 

(0.03) 

2.4 

(0.35) 

2.38 

(0.3) 
1.2(0.1) 1.1(0.09) 

b(SE) 
0.025 

(0.001) 

0.021 

(0.01) 

0.056 

(0.001) 

0.0043 

(0.001) 

0.05 

(0.001) 

0.04 

(0.001) 

0.004 

(0.0001) 

0.003 

(0.0001) 

n(SE) 
1.56 

(0.053) 

0.7 

(0.015) 

1.1 

(0.1) 

0.79 

(0.009) 

1.2 

(0.01) 

1.16 

(0.001) 

1.3 

(0.01) 

1.2 

(0.02) 

R2 0.986 0.987 0.9893 0.991 0.9848 0.986 0.9724 0.98 

SE 0.11 0.09 0.05 0.037 0.05 0.05 0.078 0.082 

SSE 0.31 0.28 0.06 0.05 0.07 0.06 0.08 0.074 

F- ratio 771 790 2300 2390 714 800 1020 1100 

Toth 

)/1())(1( tt

m

bP

bPq
q


  

qm 
4 

(0.06) 

3.5 

(0.05) 

3 

(0.6) 

2.37 

(0.4) 

2.5 

(0.6) 
2.4 

1.2 

(0.1) 

1.1 

(0.1) 

b(SE) 
0.1 

(0.001) 

0.094 

(0.0001) 

0.006 

(0.0005) 

0.003 

(0.0004) 

0.0046 

(0.0005) 

0.0044 

(0.0004) 

0.0021 

(0.0002) 

0.0019 

(0.0001) 

t(SE) 
0.21 

(0.003) 

0.18 

(0.003) 

0.8 

(0.02) 

0.7 

(0.015) 

0.9 

(0.01) 

0.8 

(0.01) 

0.8 

(0.01) 

0.71 

(0.01) 

R2 0.9855 0.989 0.9894 0.99 0.9848 0.985 0.986 0.988 

SE 0.12 0.11 0.05 0.04 0.05 0.05 0.04 0.04 

SSE 0.32 0.26 0.06 0.05 0.07 0.06 0.005 0.004 

F- ratio 746 870 3120 3200 1500 1550 1880 1900 

qm b 0.4 0.32 0.018 0.0071 0.011 0.01 2.5*10-3 2*10-3 
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system heterogeneity. As seen in Tables 6.4 t and n values were deviates from unity. 

This could be attributed to the presence heterogeneity of all adsorbent-adsorbate system. 

As we have seen from Table, highest n and lowest t values were obtained for CO2 as 

1.56, 0.21, respectively. We have noted that the parameter n decreased with 

temperature, suggesting that the system was "apparently" less heterogeneous as 

temperature increased (Do 1990). 

Parameter b is called as an affinity constant. It is a measure of how strong an 

adsorbate molecule is attracted onto a surface. When the affinity constant b is larger, the 

surface is covered more with adsorbate molecule as a result of the stronger affinity of 

adsorbate molecule towards the surface. As seen in Table 6.4 highest b value was 

obtained for CO2 and lowest b value was obtained for H2 as expected.  

Toth model and Langmiur model expression reduces to Henry’s law at low 

adsorbate pressure, in other words (Do, 1998): 

 

Kbqqb m
p




)/(lim
0

                           (6.3) 

 

where K is Henry’s law constant. Henry constant is related to the interaction energy 

between the adsorbent and the adsorbate. K values were calculated for Langmuir and 

Toth models. According to the Henry’s constants in Table 6.4, the interaction with CO
2 

was the highest for NaX zeolite (as 0.09 for Langmuir model and 0.4 for Toth model) 

while, the interaction with H2 was the lowest for both models (as 0.001 for Langmuir 

model and 0.0025 for Toth model). 

The primary requirement for an economic separation process is an adsorbent 

with sufficiently high capacity, and selectivity based on difference in either adsorption 

kinetics or adsorption equilibrium. Most of the adsorption processes in current use 

depend on equilibrium selectivity. The selectivity for one adsorbate at a given pressure 

is proportional to its adsorbed concentration at that pressure. For NaX zeolite the 

selectivity order in all the pressure range was the following: CO2>CH4>CO>H2. 

Preferential adsorption of CO2 on zeolite NaX indicated that this material can be used 

for the separation of CO2 from this gas mixture. 
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6.3. Adsorption Kinetic Studies:  Zero Length Column (ZLC) 

 

ZLC is a macroscopic technique for measurement of diffusivity of pure and 

multicomponent gases in porous solids. It is well mixed cell minimizing the external 

heat and mass transfer resistance. In this study, CO2, H2, CO and CH4 adsorbed 

MIL53(Al) in a ZLC  is purged at 34 
o
C, 70 

o
C or 100 

o
C. ZLC are subsequently used 

after regeneration. Regeneration time applied before each adsorption step, and purge 

flow rate (30- 100 ml/min) and temperature applied in desorption steps  are 

investigated. 

 

Effect of regeneration time on ZLC desorption curves and diffusion coefficients 

 

Period of regeneration time (3h, 6h, 20h) were altered to investigate its effect on 

transport parameters. CO2 desorption curve is shown in Fig. 6.17, along with a typical 

run at 100° C and purge rate 100 ml/min. Only % 0, 02 deviations in the diffusivity was 

calculated with change in regeneration time. This reveals that the effect of regeneration 

time on desorption curve may be ignored. 

 

Figure 6.17. CO2 desorption curves at 100 °C  for 3h, 6h, 20h regeneration periods 

(purge flow rate of 100 ml/min). 

  

Controlling Step in ZLC: equilibrium or kinetic 

 

The response curves measured at different flow rates are simple experimental 

test to confirm the equilibrium or kinetic control as stated by Loos et al., (2000) and 
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Iliyas et al., (2008). Figure 6.17 and 6.18 show the response curves obtained in flow rate 

range of 30-100 ml min
-1

. Response curves given in the figures did not overlap showing 

that mass transfer is not controlled by equilibrium.  

The L value, at a given temperature, is proportional to the flow rate (F) and used 

to calculate the equilibrium constant (K) by using Eq. (5.16).The effect of purge flow 

rate on the key parameter L is also appeared in the same equation; 
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                (5.16) 

 

The L value is an important parameter for determining whether the transport 

process is controlled by equilibrium or diffusion (Brandani et al., 1996). If the L value 

is very low (<0.5), i.e., intraparticle transport is much faster than interparticle one and  

desorption process will be controlled by equilibrium effects.  if L is higher than 10, 

mass transfer in ZLC is controlled by only diffusion.  

The response curves were fitted well (the Sum of square error, SSE10
-7

) with 

equation 2.22 and to obtain parameters Dc and L (Table 6.5) by using the crystal size 

(Rc=31.5x10
-5

 cm) volume (Vs =5.68x10
-4

 cm
3
) and mass of solid (ms =2.02 mg):  

 

     

                                                               (2.22) 

 

 

Considering the L values obtained (L=1.1-5.1) it can be concluded that diffusion 

is the controlling step. From table, it may be seen that the diffusion time constant, 

Dc/R
2
, is depend on purge flow rate. The consistency of diffusivity for different purge 

rate indicates that transport process is controlled by intraparticle diffusion rather than by 

equilibrium. 
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Figure 6.18a.  Effect of flow rates on CO2 response curve at 100 ºC. and CO, CH4, H2 

response curves at 34 ºC. 
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Figure 6.18b. Effect of flow rates on CO2 response curve at 100 ºC. and CO, CH4, H2 

response curves at 34 ºC. 
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Table 6.5. Transport parameters of CO2, CH4, H2, CO adsorption on MIL 53 (Al) 

T (°C) F(ml/min) L F/L(ml/min) 100*D/R2  (s-1 ) D (m
2
/s) KVs(ml) K×10

-3
 

                                                                                                  CO2 

34.00 100.00 2.88 34.72 1.40 3.44E-12 829.33 146.00 

70.00 100.00 2.95 33.90 3.27 8.07E-12 345.13 60.76 

100.00 30.00 1.30 23.08 3.29 8.10E-12 

 

  

  50.00 2.39 20.92 3.61 8.90E-12 193.68 34.09 

  70.00 2.70 25.93 3.69 9.10E-12 

 

  

  100.00 3.10 32.26 3.81 9.40E-12 

 

  

                                                                                                 CH4  

34.00 30.00 1.11 27.03 1.05 2.60E-12 

 

  

  50.00 1.90 26.32 1.24 3.06E-12 667.34 117.49 

  70.00 2.69 26.02 1.42 3.50E-12 

 

  

  100.00 3.56 28.09 1.54 3.80E-12 

 

  

70.00 100.00 3.82 26.18 3.29 8.10E-12 265.54 46.74 

100.00 100.00 5.10 19.61 4.05 9.98E-12 161.43 28.42 

                                                                                                  H2   

34.00 30.00 1.13 26.55 0.99 2.45E-12     

  50.00 1.16 43.10 1.25 3.07E-12 1153.59 203.09 

  70.00 2.2 31.82 1.26 3.10E-12     

 

100.00 2.3 43.48 1.38 3.40E-12     

70.00 100.00 2.65 37.74 2.47 6.10E-12 508.27 89.48 

100.00 100.00 2.72 36.76 2.60 6.40E-12 471.98 83.09 

                                                                                                CO   

34.00 30.00 1.11 27.0 0.97 2.4E-12 

925.26 162.89   100.00 1.22 81.96 1.54 3.8E-12 

70.00 100.00 3.82 26.17 2.79 6.9E-12 311.72 54.88 

100.00 100.00 4.2 23.80 3.23 7.9E-12 245.14 43.15 8
0
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Effect of the temperature on ZLC desorption curves and diffusion coefficients  

 

CO2, CH4, H2, CO desorption curves at different temperatures are given in Fig 6.19. It 

reveals a temperature dependence of the curves. The parameters obtained (Table 6.6) are 

affected by temperature in a consistent way; the diffusivity of CO2, CH4, H2, CO in the pores 

increases with increasing temperature; equilibrium constant on the surface of the pores 

decreases with increasing temperature.  

 

 

Figure 6.19.  Effect of temperature on the response curves of CO2, CH4, H2, CO (Helium 

flow rate=100 ml/min).  
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There are evident for Knudsen diffusivity in the pores: the calculated lowest mean free 

path 10
3
 times higher  than average pore diameter of MIL 53(Al); temperature dependency is 

lower for transport diffusivity than molecular diffusivity. 

 

Activation Energy and Isosteric heat of adsorption 

 

Figure 6.21 shows the change in Henry’s constant with reciprocal temperature. It can 

be seen that the Henry’s law constant decreases with increasing temperature, as expected for 

physical adsorption. The Van’t Hoff equation (2.29) with neglecting the differences in heat 

capacities between the adsorptive and adsorbate, can be used to calculate heat of adsorption 

after integration of Van’t Hoff equation:  

 

)/exp(0 RTHKK                            (2.30) 

 

The heat of adsorption, determined from the slope of the Ln K vs 1/T line, according 

to Eq. 2.29, is listed in Table 6.27. The temperature dependence of the diffusivity is correlated 

by the Arrhenius equation (2.27) was used to calculate the diffusive activation energy E; 

 

)
)/1(

ln
(

T

D
RE



                                        (2.28) 

 

where T is the temperature and R is the ideal gas constant. The activation energies derived 

from the diffusivity data as described above are listed in Table 6.7.  
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Figure 6.20. Variation of Henrys law constant and diffusivity and with temperature for 

adsorption of CO2, CH4, H2, CO 

 

Negative heat of adsorption values indicates the adsorption is exothermic; heat is 

evolved. It can be seen that similar heat of adsorption values are obtained for CO2 and CH4 

(49,4 and 47,1 kJ/ mol , respectively) and CO and H2 ( 38.7 and 34.1 kJ/ mol , respectively). 

Specific (Dipole moment and quadropole moment) and Nonspecific (polarizability, dispersion 

and repulsion) contributions are affected to the heat of adsorption values. Even though 

polarizabilities are nearly same (Table 6.6), it is expected higher specific interactions for CO2 

due to high quadropole moment. As a result, higher heat of adsorption and Henry’s law 

constant values were obtained for CO2. Low polarizability of CO and H2 results with lower 

heat of adsorption than CO2 and CH4.  

 

Table 6.6 Sorbate properties and heat of adsorption, activation energy values 

 

 

 

 

 

 

 

 

 

 

Adsorptive 

 

Temperature 

range(°C) 

E 

(kJ/mol) 

H  

(kJ/mol) 

 

Polarizability 

×10
25

/cm
3
 

Kinetic 

diameter 

Å 

 

Dipole 

moment×10
18

 

esu cm 

Quadropole 

moment×10
26

 

esu cm
2
 

 

CH4 

34-100  

41.4 -47.1 25.93 3.8 0 0 

CO 40.9 -38.7 19.5 3.6 0.1098 2.5 

CO2 43.9 - 49.4 29.11 3.3 0 4.30 

H2 41.2 -34.1 8.04 2.8 0 0.662 
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Method Validation 

 

The accuracy of diffusivities obtained above can be validated by using a long time 

method (tail of the response curve)  

       

       (2.23) 

 

which is appropriate for kinetic conditions. It was found that the errors in using 

equation 2.24 are in the range of 2–8.2%, which provides strong support for the values 

obtained by full range procedure. Nevertheless, while the consistency of the results between 

the two methods is reassuring, it is desirable to compare the results with those using FR 

method since all entire desorption curve is considered. It can be concluded that the desorption 

process is significantly diffusion affected at which can be further confirmed a long time 

analysis method (as described above) suggested for the range of 0.5 < L < 5. Since CO2, CH4, 

H2, CO are strongly adsorbed. 

 

Selectivity 

 

The kinetic selectivity gives an idea about which adsorbent is the best to separate gas 

mixture. The kinetic selectivity of gas A over gas B, SA/B depends on both adsorption rate and 

equilibrium.  
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Figure 6.21. The kinetic selectivity, SA/B, for MIL 53(Al) 

 

The selectivities   SCO2/CO, SCO2/H2, SCO2/CH4, SCO/H2, SCO/CH4, SH2/CH4 were calculated 

and presented as a function of temperature (Figure 6.22). The kinetic selectivities are faund as 

around 1 values all temperatures. The lowest selectivities are obtained for CO2/CH4, CO/H2 

pair that faund as lower than 1 values.  

Selectivities are not a strong function of temperature. As seen from ZLC results MIL 

53(Al) is a good adsorbent for H2 compared to the others. 
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CHAPTER 7 

 

CONCLUSION 

 

NaX zeolite, a porous crystalline aluminosilicate, has three dimensional open 

framework consisting of AlO4 and SiO4 tetrahedra linked to each other by sharing all of the 

oxygens. The framework bears negative charges on AlO4 tetrahedron which are balanced by 

an extra-framework cation such as alkaline or alkaline earth ions. These cations are mobile 

and undergo ion exchange. In this study, the introduction of K
+
, ions into NaX frameworks 

was performed. The effect of the temperature (50 
o
C and 70 

o
C) in the exchange were 

examined in the presence of ultrasound. The results were compared with those obtained from 

traditional batch method.  The exchange levels were increased with temperature and 

ultrasound effect. Maximum exchange percent was obtained as 86 for K
+
 ions exchange. The 

ultrasonic method applied in this study was found to effective on the exchange amount at 

equilibrium as similar to Erten et al., studies (Erten et al., 2012). Due to cavitational effect of 

ultrasound field, ultrasound acted like a co-driven force of concentration of counter ions in 

solution. This can be caused an increasing the equilibrated values in ion exchange process. 

Additional to KNaX zeolites, MIL 53 (Al) adsorbent evaluated as a potential 

adsorbent for CO2 adsorption. The MIL 53 (Al) adsorbent has a langmiur specific surface area 

of 1473 m
2
/g. For MIL 53 adsorbent at temperatures of 278 and 298 K all systems show linear 

adsorption isotherm (Yang 1987). Highly favorable CO2 adsorption isotherm was obtained at 

278K and 298K for zeolite adsorbents. The orders for zeolite adsorbents are not changed with 

respect to temperature which are as follows; NaX >S50 (76) >U50 (79)>S70 (81)> U70 (83). 

From the order, it can be concluded that NaX zeolite has the highest adsorption capacity and 

among the modified zeolites. CO2 adsorption data fitting to the theoretical models allows to 

conclude that carbon dioxide adsorption on the adsorbents is related to the surface 

heterogeneity of the adsorbent materials, the data better reproduced by Tóth model. Therefore 

this equation is used to calculate the isosteric heat of adsorption. Isosteric heat of adsorption 

of carbondioxide on adsorbents decreases with loading, which indicates the heterogeneity of 

the CO2-adsorbent systems. 

 We have provided adsorption equilibrium of the gases exiting SMR of-gases.  

Adsorption equilibrium of CO2, CH4, CO and H2 was measured at 278K, 298K between 0–5 
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atm in zeolite NaX. The Langmuir, Sips, Toth models were employed to fit the experimental 

data of H2, CO2, CH4, CO. It was found that Toth, Sips models could describe the adsorption 

isotherms. The following orders of adsorption (from the most adsorbed compound to the less 

adsorbed gas) CO2>CH4>CO>H2 were observed in the sample of NaX zeolite.  

The diffusion kinetics for SMR off-gas on MIL 53(Al) were measured in the 34-100 

°C temperature range by the ZLC method. Thus it minimizes the external resistance to heat 

and mass transfer. The experimental data were well correlated with the model (R
2 

> 0.98 and 

SSE>10
-7

). The low value of the micropore time constant (Dc/r
2
<<0.05) also shows that 

internal mass transfer resistance is the controlling step.A full time range analysis of 

desorption curves was taken to derive diffusion coefficients. The diffusivity obtained is in 

range (2,6–9.98) 10
-12

 cm
2
/s. The diffusivity values are dependent on temperature, flow rate 

and independent from the regeneration time. The study shows that the ZLC method is an 

effective tool for studying the diffusion kinetics of SMR off-gas on MIL 53 (Al). 
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