

INTRUSION DETECTION SYSTEM ALERT
CORRELATION WITH OPERATING SYSTEM

LEVEL LOGS

A Thesis Submitted to
The Graduate School of Engineering and Sciences of

İzmir Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by
Mustafa TOPRAK

December 2009
İzmir

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324142002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We approve the thesis of Mustafa TOPRAK

Prof. Dr. Sıtkı AYTAÇ
Supervisor

Assist. Prof. Dr. Tuğkan TUĞLULAR
Committee Member

Prof. Dr. Şaban EREN
Committee Member

11 December 2009

Prof. Dr. Sıtkı AYTAÇ
Head of the Department of
Computer Engineering

Assoc. Prof. Dr. Talat YALÇIN
Dean of the Graduate School of

Engineering and Sciences

 iii

ABSTRACT

INTRUSION DETECTION SYSTEM ALERT CORRELATION WITH

OPERATING SYSTEM LEVEL LOGS

Internet is a global public network. More and more people are getting connected

to the Internet every day to take advantage of the Internetwork connectivity. It also

brings in a lot of risk on the Internet because there are both harmless and harmful users

on the Internet. While an organization makes its information system available to

harmless Internet users, at the same time the information is available to the malicious

users as well. Most organizations deploy firewalls to protect their private network from

the public network. But, no network can be hundred percent secured. This is because;

the connectivity requires some kind of access to be granted on the internal systems to

Internet users. The firewall provides security by allowing only specific services through

it. The firewall implements defined rules to each packet reaching to its network

interface. The IDS complements the firewall security by detected if someone tries to

break in through the firewall or manages to break in the firewall security and tried to

have access on any system in the trusted site and alerted the system administrator in

case there is a breach in security. However, at present, IDSs suffer from several

limitations. To address these limitations and learn network security threats, it is

necessary to perform alert correlation.

Alert correlation focuses on discovering various relationships between

individual alerts. Intrusion alert correlation techniques correlate alerts into meaningful

groups or attack scenarios for ease to understand by human analysts. In order to be sure

about the alert correlation working properly, this thesis proposed to use attack scenarios

by correlating alerts on the basis of prerequisites and consequences of intrusions. The

architecture of the experimental environment based on the prerequisites and

consequences of different types of attacks, the proposed approach correlates alerts by

matching the consequence of some previous alerts and the prerequisite of some later

ones with OS-level logs. As a result, the accuracy of the proposed method and its

advantage demonstrated to focus on building IDS alert correlation with OS-level logs in

information security systems.

 iv

ÖZET

SALDIRI TESPİT SİSTEMİ ALARMLARININ İŞLETİM SİSTEMİ LOG

KAYITLARI İLE KORELASYONU

İnternet genel bir küresel ağdır. Giderek daha çok insan internete bağlı olmanın

avantajlarından faydalanmaktadır. Ancak internet faydanın yanında birçok riski de

beraberinde getirmektedir. Çünkü hem zararsız hem de zararlı kullanıcılar internete

bağlı durumdadır. Herhangi bir özel ağ internet erişimine açıldığında, zararsız

kullanıcılar yanında kötü niyetli kullanıcılara da sistem açılmış olur. Birçok

organizasyon kendi özel ağını genel ağdan ayrımak için güvenlik duvarlarını

kullanmaktadır. Ancak güvenlik duvarları bir ağı yüzde yüz güvenli kılmaz. Bunun ana

nedeni, genel ağ ile özel ağ arasında bazı erişim haklarının verilmesinden

kaynaklanmaktadır. Güvenlik duvarı sadece belirli servislere erişim hakları

tanımlayarak ağ güvenliğini sağlamaktadır. Güvenlik duvarı üzerinde tanımlı kural

setlerine göre ağ paketlerinin erişimine izin verir. Bu noktada saldırı tespit sistemleri

güvenlik duvarının oluşturduğu ağ güvenliğini tamamlamaktadır. Eğer bir ağ kullanıcısı

güvenlik duvarını kırmaya ya da özel ağdaki bir sistemi kontrol etmeye çalışırsa; saldırı

tespit sistemi saldırı ile ilgili olarak sistem yöneticisini uyarır. Bununla beraber saldırı

tespit sistemlerinin bazı kısıtları da vardır. Bu kısıtları belirlemek ve ağ güvenliğini

tehdit eden faaliyetleri öğrenmek için saldırı tespit sistemi alarmları korelasyona tabi

tutulur.

Alarm korelasyonu saldırı tespit sistemi alarmları arasındaki ilişkileri ortaya

çıkarmaya odaklanmaktadır. Saldırı alarmları için korelasyon teknikleri alarmları ve

saldırı senaryolarını kullanıcıları için anlamlı ve kolay anlaşılır hale getirmektedir.

Alarm korelasyonunun doğru çalıştığına emin olmak için bu tez çalışması saldırı

senaryolarını kullanıp, üretilen alarmları saldırı önkoşul ve sonuçlarına dayanarak

korelasyona tabi tutar. Deney ortamının mimarisi çeşitli saldırıların önkoşul ve

sonuçlarına dayanarak, alarmları bir önceki alarmın sonucu ve bir sonraki alarmın da

nedeni olarak belirleyip; işletim sistemi kayıtları ile eşleştirmektedir. Sonuç olarak ele

alınan yöntemin kesinliği ve faydaları, saldırı tespit sistemi alarmlarının işletim sistemi

kayıtları ile korelasyonu sonucunda gösterilmiştir.

 v

TABLE OF CONTENTS

LIST OF FIGURES ... vii

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. INTRUSION DETECTION SYSTEM .. 4

2.1. The Definition of an IDS and Its Need.. 5

2.2. IDS Terminology ... 6

2.3. Types of IDSs .. 7

2.3.1. Detection Technique .. 8

2.3.2 Audit Source Location .. 10

2.3.3 Behavior on Detection .. 12

2.4. Details of Detection Techniques.. 13

2.4.1. Intrusion Detection Using Signature.. 14

2.4.2. Intrusion Detection Using Protocol Anomalies 15

2.4.3. Intrusion Detection Using Stateful Signatures............................. 16

2.5. Response Options for IDS ... 17

2.5.1. Active Responses... 17

2.5.2. Passive Responses.. 19

2.6. Snort... 19

2.6.1. Snort Modes... 22

2.6.2. Components of Snort ... 24

CHAPTER 3. COMPLEX EVENT PROCESSING.. 27

3.1. Event Driven Systems.. 28

3.2. Real-time Computing... 29

3.3. Coral8 Engine .. 30

3.4. Using Continuous Computing Language... 32

3.5. Continuous Computing Language Queries.. 34

3.6. Building Custom Complex Event Processing Applications 39

 vi

CHAPTER 4. INTRUSION DETECTION ALERT CORRELATION 41

4.1. Alert Correlation Techniques .. 43

4.1.1. Similarity-based Correlation.. 44

4.1.2. Correlation Based on Predefined Attack Scenarios..................... 46

4.1.3. Correlation Based on Prerequisite and Consequence of Attacks. 48

4.2. Integrating Alert Correlation and OS-Level Dependency Tracking.. 49

4.3. Alert Correlation Graphs ... 51

CHAPTER 5. PROPOSED ARCHITECTURE AND EXPERIMENTAL

ENVIRONMENT .. 54

5.1. The Architecture of the Intrusion Alert Correlation 54

5.2. Details of Alert Correlation Scenario .. 58

5.3. Experimental Results ... 59

CHAPTER 6. CONCLUSION AND FUTURE WORK... 62

REFERENCES .. 63

APPENDIX A. CSV ALERT LOGS... 67

 vii

LIST OF FIGURES

Figure Page

Figure 2.1. Snort packet pathway... 21

Figure 2.2. Components of Snort ... 24

Figure 3.1. Coral8 architecture .. 32

Figure 3.2. Using CCL in Coral8... 33

Figure 3.3. The simplest CCL query statement ... 34

Figure 3.4. A CCL expression query example... 35

Figure 3.5. The input and output of the CCL expression query 35

Figure 3.6. The input and output of the sliding count-based window example........... 36

Figure 3.7. The input and output of the jumping count-based window example 37

Figure 3.8. The simple join query example ... 37

Figure 3.9. The input and output of the simple join query example 38

Figure 3.10. The simple event pattern matching query example 39

Figure 4.1. Correlation Process Overview... 43

Figure 4.2. The formula for overall similarity computation .. 45

Figure 4.3. An example of chronicles .. 47

Figure 4.4. Pseudo-code of graph generation algorithm.. 52

Figure 4.5. The architecture of the intrusion alert correlation 53

Figure 4.6. A hyper alert correlation graph discovered in the 2000 DARPA

 intrusion detection evaluation datasets .. 53

Figure 5.1. TurkDex network structure.. 55

Figure 5.2. Security monitoring by using IDS alert correlation server........................ 58

Figure 5.3. The correlation graph... 59

Figure 5.4. OS-Level objects corresponding to the alerts in the alert

correlation scenario.. 60

Figure 5.5. The new correlation graphs ... 61

 1

CHAPTER 1

INTRODUCTION

Intrusion detection techniques can be roughly classified into two categories:

misuse detection and anomaly detection. To perform misuse detection, a repository of

all known attack patterns is necessary. Misuse detection systems examine security

events to see whether they match these attack patterns. If they are, the corresponding

security events are flagged as attacks. To perform anomaly detection, a repository of

normal behaviors for each entity is usually necessary. Anomaly detection systems

monitor each entity’s activity, and once they find an entity’s behavior significantly

deviates from the normal profile, an alert is generated (Xu and Ning 2006).

Many IDSs have been designed, implemented and deployed into networks (Xu

and Ning 2006). They are a line of defense to protect digital assets. Though many novel

designs and improvements have been proposed, at present, IDSs still suffer from a few

drawbacks:

• IDSs may flag thousands of alerts every day, thus overwhelming security

officers.

• Among all the alerts reported by IDSs, false alerts (false positives) are

mixed with true alerts. In addition, it is very possible that a large

percentage of alerts are false alerts. This may make the alert investigation

very challenging.

• At present, IDSs cannot guarantee the detection of all attacks. In other

words, they may miss some attacks, which could be critical for security

officers to understand the current security threats.

These limitations of IDSs make security investigation not only time-consuming,

but also error-prone. It is very challenging for security officers to fully learn the security

threats in their networks as well as over the Internet.

To address these challenges, various alert correlation techniques have been

proposed in recent years. To help us better understand these alert correlation methods

which roughly classified into four categories:

 2

1. The approaches based on similarity between alert attributes: These

approaches can group alerts through computing attribute similarity

values.

2. The techniques based on predefined attack scenarios: These techniques

construct attack scenarios through matching alerts to predefined scenario

templates.

3. The methods based on prerequisites and consequences of attacks: These

methods build attack scenarios through matching the consequences of

earlier attacks with the prerequisite of later attacks.

4. The approaches based on multiple information sources: These

approaches provide frameworks to model different types of information

and may further perform reasoning based on IDS alerts and other

information.

Several researchers investigated integrating additional information sources into

alert correlation to improve its quality (Zhai, et al. 2006). These approaches can

improve the performance of correlation by integrating different sources of security-

related information. However, the correlation results are still not yet satisfactory (Zhai,

et al. 2006). This thesis purposes to harness OS-level event logging and dependency

tracking to improve the accuracy of alert correlation. It tracks dependency causing

events such as process forking and file operations in the system event log, and spans up

a tree of system objects connected by these events from the target object.

The Coral8 complex event processing engine is integrated with IDS alerts and

OS-level dependency tracking logs via Coral8 input adapters in comma separated value

files format. This integration method based on the following observations: Firstly, most

attacks have corresponding operations on specific OS-level objects. Secondly, other

than a few exceptions, if one attack prepares for another, the later attack’s

corresponding operations would be dependent on the earlier one’s. Coral8 performs

user-defined SQL based correlation methods which based on the above and produces

the correlated alerts to security officers.

The reminder of this chapter is organized as follows: In chapter 2, intrusion

detection systems (IDSs) are defined, the classification of IDSs is provided. Also it

contains the information about the detection methods of IDSs and their response after

detecting an intrusion. Chapter 3 defines Coral8 complex event processing tool and their

properties and includes some Coral8 queries to execute some correlation examples for

 3

some special scenarios. Chapter 4 discusses intrusion alert correlation and its techniques

with some examples. Chapter 5 surveys an alert correlation scenario for the technique of

prerequisite and consequence approaches. A custom structure has also been built to

investigate the correlation method with some metric values in the alert correlation

scenario. In Chapter 6, conclusion is processed along with future work.

 4

CHAPTER 2

INTRUSION DETECTION SYSTEM

The Internet is a global public network. With the growth of the Internet and its

potential, there has been subsequent change in business model of organizations across

the world. More and more people are getting connected to the Internet every day to take

advantage of the new business model popularly known as e-business. Internetwork

connectivity has therefore become very critical aspect of today’s e-business.

 There are two sides of business on the Internet. On one side, the Internet brings

in tremendous potential to business in terms of reaching the end users. At the same time

it also brings in a lot of risk to the business (Sans 2001). There are both harmless and

harmful users on the Internet. While an organization makes its information system

available to harmless Internet users, at the same time the information is available to the

malicious users as well. Complete physical isolation of the information system from all

possible suspicious users would be a simple and effective way of denying possible risks,

but it may be unacceptable because the physical isolation may render the information

system unable to perform its intended function.

Network security technology is very important to avoid security risks. There are

several techniques and tools that are used to provide network security. Network security

aims is confidentiality, integrity and availability of data so providing this aim firewalls

are one of the well-known tools that are very helpful in network security. Basically, a

firewall separates the private network from the external and non-secure environment. A

firewall that is located between the private network and Internet enforces a predefined

network security policy by controlling network traffic passing over it. A network

security policy is composed of a set of rules that defines what types of connections are

allowed between internal and external networks. Additionally, a security policy defines

the action that should be performed when a violation of policy is detected (Erdogan

2008).

Different organizations across the world deploy firewalls to protect their private

network from the public network. But, when it comes to securing a private network

from the Internet using firewalls, no network can be hundred percent secured. This is

 5

because; the business requires some kind of access to be granted on the internal systems

to Internet users. The firewall provides security by allowing only specific services

through it. The firewall implements a policy for allowing or disallowing connections

based on organizational security policy and business needs. The firewall also protects

the organization from malicious attack from the Internet by dropping connections from

unknown sources.

2.1. The Definition of an IDS and Its Need

Intrusion detection is the process of monitoring and searching networks of

computers and systems for security policy violations (Bace 2000). IDSs are software

and hardware products that automate this monitoring and analysis process. An IDS

inspects all inbound and outbound network activity, system logs and events, and

identifies suspicious patterns or events that may indicate a network or system attack

from someone attempting to break into or compromise a system (Webopedia 2002).

 The question is, where does an IDS fit in the design. Theoretically, IDSs work

like a burglar alarm. For example, the lock system in a car protects the car from theft.

But if somebody breaks the lock system and tries to steal the car, it is the burglar alarm

that detects that the lock has been broken and alerts the owner by raising an alarm.

IDS complements the firewall security in a similar way. The firewall protects an

organization from malicious attacks from the Internet and the IDS detects if someone

tries to break in through the firewall or manages to break in the firewall security and

tries to have access on any system in the trusted side and alerts the system administrator

in case there is a breach in security. It is also assumed that most IDSs attempt to detect

suspected intrusion and they alert the system administrator that an attack may be taking

place so that they can respond accordingly.

IDSs have gained acceptance as a necessary addition to every organization’s

security infrastructure. The organizations have several compelling reasons to acquire

and use IDSs. Some of them are listed below (Bace and Mell 2001):

• To prevent problematic behaviors by increasing the perceived risk of

discovery and punishment for those who would attack or otherwise abuse

the system,

 6

• To detect attacks and other security violations that are not prevented by

other security measures,

• To detect and deal with the preambles to attacks (commonly experienced

as network probes and other reconnaissance activities),

• To document the existing threat to an organization,

• To act as quality control tool for security design and administration,

especially for large and complex enterprises,

• To provide useful information about intrusions that take place, allowing

detailed analysis, recovery, and correction of causative factors.

Therefore, an IDS is a security system that monitors computer systems and

network traffic and analyzes that traffic for possible hostile attacks originating from

outside the organization and also for system misuse or attacks originating from inside

the organization.

2.2. IDS Terminology

Alert/alarm: A signal suggesting a system has been or is being attacked.

Undetected bad traffic (false negative): Failure to identify malicious traffic as

an attack. This is the worst thing that can happen, because it means the IDS failed to do

its job. Failing to detect an attack can occur when an IDS does not have adequate or

comprehensive intrusion detection mechanisms in place. It also occurs when new

attacks are created and then missed by poorly implemented detection mechanisms

(OneSecure 2001). While it is virtually impossible to detect every attack, the goal of

any system should be to minimize the number of undetected attacks.

Detected bad traffic (true negative): Identifying “real attacks” as an attack.

This is the ideal result of an IDS. The ability to detect bad traffic with speed and

reliability is referred to as intrusion detection accuracy. All other functions of the

system hinge on this capability (OneSecure 2001). The more accurate the system, the

more trusted its abilities. A system must have proven accuracy before enabling it to take

the necessary actions (such as dropping the connection) to the secure network.

Identifying good traffic as an attack (false positive – false alarm): False

alarm or false positive. This is the most troublesome and time-consuming aspect of IDS

solutions. It occurs when the IDS sees something in legitimate and benign traffic that

 7

makes it believe there is an attack (OneSecure 2001). It is detrimental because each and

every alarm needs to be investigated in order to determine whether an attack was

successful and assess any resulting damage. Every moment spent investigating a false

positive reduces the time available to investigate real threats. The result is that false

positives can erode trust in the product; sometimes causing real attack alarms to be

overlooked (the “crying wolf” effect). Most IDSs can be tuned to try to reduce the

occurrence of false positives, however, the tuning process is often long and involved,

sometimes taking weeks to accomplish (OneSecure 2001). In addition, because of the

management design of current IDSs, tuning is often an all or nothing approach. This

means that security managers must choose whether or not to look for a certain attack. If,

in the interest of reducing false positives, the detection of certain attacks is turned

completely “off”, those attacks will be able to go by the IDS completely undetected.

Nevertheless, false positives are not the result of poor software design by IDS

vendors. As Stefan Axelsson demonstrated in his 1999 ACM presentation (Axelsson

1999), there are some fundamental mathematical constraints that make false positives

endemic to the whole paradigm of real-time signature (pattern) recognition. Deviations

from baseline norms can be caused by a variety of factors, many of them innocuous. So,

false positives are inherently part of signature-based intrusion detection schemes or any

other type of anomaly detection system.

Identifying good traffic as good traffic (true positive): An ideal result of

intrusion detection mechanisms, identifying good traffic for what it is good traffic

(OneSecure 2001).

Noise: Data or interference that can trigger a false positive.

Site policy: Guidelines within an organization that control the rules and

configurations of an IDS.

Site policy awareness: The ability an IDS has to dynamically change its rules

and configurations in response to changing environmental activity.

Confidence value: A value an organization places on an IDS based on past

performance and analysis to help determine its ability to effectively identify an attack.

Alarm filtering: The process of categorizing attack alerts produced from an IDS

in order to distinguish false positives from actual attacks (Whitman, et al. 2009).

 8

2.3. Types of IDSs

There exist various IDS products in the market today. These products are

categorized in several ways according to their different characteristics (Debar, et al.

1999):

Detection technique: Behavior based (misuse detection) and knowledge based

(anomaly detection).

Audit source location: Host log files (host based) and network packets

(network based).

Behavior on detection: Passive and active.

2.3.1. Detection Technique

Intrusion detection is a set of techniques that are used to detect suspicious

activity both at the network and host level (Rafeeq 2003). The detection technique

describes the characteristics of the analyzer (Debar, et al. 1999). When the IDS uses

information about the normal behavior of the system it monitors and it is qualified as

misuse detection. When the IDS uses information about the attacks, it is qualified as

anomaly detection.

Misuse detection IDS: Knowledge-based intrusion detection techniques apply

the knowledge accumulated about specific attacks and system vulnerabilities. The IDS

contains information about these vulnerabilities and looks for attempts to exploit them.

When such an attempt is detected, an alarm is triggered (Debar, et al. 1999). In other

words, any action that is not explicitly recognized as an attack is considered acceptable.

Essentially, the IDS looks for a specific attack that has already been documented. Like a

virus detection system, misuse detection software is only as good as the database of

attack signatures that it uses to compare packet against. Therefore, the accuracy of

misuse IDS is considered good. However, their completeness requires that their

knowledge of attacks be updated regularly.

Misuse detection provides various benefits. One of the benefits is that the

signature definitions are modeled on known intrusive activity. Furthermore, the user can

examine the signature database and quickly determine which intrusive activity the

misuse detection system is programmed to alert on. Another benefit is that the misuse

 9

detection system begins protecting the network immediately upon installation. One final

benefit is that the system is easy to understand. When an alarm fires, the user can relate

this directly to a specific type of activity occurring on the network.

Along with the numerous benefits, misuse detection systems also have their

share of drawbacks. One of the biggest problems is maintaining state information for

signatures in which the intrusive activity encompasses multiple discrete events (that is,

the complete attack signature occurs in multiple packets on the network) (Carter 2002).

Another drawback is that the misuse detection system must have a signature defined for

all of the possible attacks that an attacker may launch against the network. This leads to

the necessity for frequent signature updates to keep the signature database of the misuse

detection system up-to-date. One final problem with misuse detection systems is that

someone may set up the misuse detection system in their lab and intentionally try to find

ways to launch attacks that bypass detection by the misuse detection system.

Anomaly detection IDS: Anomaly detection techniques assume that an

intrusion can be detected by observing a deviation from normal or expected behavior of

the system or the users (Debar, et al. 1999). The model of normal or valid behavior is

extracted from reference information collected by various means. The security manager

defines the baseline or normal state of the network’s traffic load, breakdown, protocol,

and typical packet size. The IDS later compares this model with the current activity. If a

deviation is observed, an alarm is generated. In other words, anything that does not

correspond to a previously learned behavior is considered intrusive. Therefore, the IDS

might be complete, but its accuracy is a difficult issue. The anomaly detection technique

is as good as its normal model definition.

Anomaly detection systems offer several benefits. First, they can detect insider

attacks or account theft very easily. If a real user or someone using a stolen account

starts performing actions that are outside the normal user profile, it generates an alarm.

Second, because the system is based on customized profiles, it is very difficult for an

attacker to know with certainty what activity he can do without setting off an alarm.

Probably the largest benefit, however, is that intrusive activity is not based on a specific

traffic that represents known intrusive activity as in a misuse IDS. An anomaly

detection system can potentially detect an attack the first time it is used (Debar, et al.

1999). The intrusive activity generates an alarm because it deviates from normal

activity, not because someone configured the system to look for a specific stream of

traffic.

 10

Like every IDS, anomaly detection systems also suffer from several drawbacks.

The first obvious drawback is that the system must be trained to create the appropriate

user profiles. During the training period to define what normal traffic looks like on the

network, the network is not protected from attack (Debar, et al. 1999). Maintenance of

the profiles can also become time-consuming. Nevertheless, the biggest drawback to

anomaly detection is probably the complexity of the system and the difficulty of

associating an alarm with the specific event that triggered the alarm. Furthermore, there

is no guarantee that a specific attack will be generate an alarm. If the intrusive activity is

too close to normal user activity, then the attack will go unnoticed. It is also difficult to

know which attacks will set off alarms unless actually test the attacks against the

network using various user profiles (Carter 2002).

2.3.2. Audit Source Location

The audit source location distinguishes among IDSs based on the kind of input

information they analyze. This input information can be audit trails, system logs or

network packets.

Host based IDS (HIDS): In a HIDS, activities on each individual computer or

host are examined. Host audit sources are the only way to gather information about the

activities of the users of a given machine. On the other hand, they are also vulnerable to

alterations in the case of a successful attack. This creates an important real-time

constraint on host-based IDSs, which have to process the audit trail and generate alarms

before an attacker taking over the machine can subvert either the audit trail or the IDS

itself. It is advisable to place HIDSs on all mission-critical systems, even those that

should not, in theory, allow external access.

The major benefit of a host based monitoring system verifies success or failure

of an attack. Since a HIDS uses system logs containing events that have actually

occurred, they can determine whether an attack occurred or not with greater accuracy

and fewer false positives than a network based system. Second, a host based IDS sensor

monitors user and file access activity including file accesses, changes to file

permissions, attempts to install new executables etc. A host based IDS sensor can also

monitor all user logon and logoff activity, user activities while connected to the

network, file system changes, activities that are normally executed only by an

 11

administrator. Operating systems log any event where user accounts are added, deleted

or modified. The HIDS can detect an improper change as soon as it is executed. Third,

host based systems can detect attacks that network based system sensors fail to detect.

For example, if an unauthorized user makes changes to system files from the system

console, this kind of attack goes unnoticed by the network sensors. Although HIDS does

not offer true real-time response, it can come extremely close if implemented correctly.

Many current host-based systems receive an interrupt from the operating system when

there is a new log file entry. This new entry can be processed immediately, significantly

reducing the time between recognition and response (SANS Institute 2001). There

remains a delay between when the operating system records the event and the HIDS

recognizes it, but in many intruders can be detected and stopped before damage is done.

There are two major drawbacks to a host based IDS. The first difficulty is having

incomplete network picture and necessity to support multiple operating systems. The

other difficulty lies in the fact that a host based IDS needs to run on every system in the

network. This requires verifying support for all of the different operating systems that

used on the network.

Network based IDS (NIDS): NIDS analyze the individual packets flowing

through the network. NIDSs often consist of a set of single-purpose sensors placed at

various points in a network. These units monitor network traffic, performing local

analysis of that traffic and reporting attacks to a central management console. NIDSs

analyze traffic moving across the network in much greater than a firewall. Therefore,

NIDSs can detect malicious packets that are designed to be overlooked by a firewall’s

simplistic filtering rules. NIDSs also watch for attacks that originate from within the

network. That is why, they are complements for firewalls.

A network based monitoring system has the benefit of seeing and coordinating

attacks that are occurring across an entire network very easily. Seeing the attacks

against the network gives a clear indication of the extent to which the network is being

attacked. Furthermore, because the monitoring system is only examining traffic from

the network, it does not have to support every type of operating system that used on the

network. NIDSs use live network traffic for real-time attack detection. Therefore, an

attacker cannot remove the evidence (SANS Institute 2001). Many hackers understand

audit logs, they know how to manipulate these files to cover their tracks, frustrating host

based systems that need this information to detect an intrusion. NIDSs add valuable data

for determining malicious intent. A network based IDS placed outside of a firewall can

 12

detect attacks intended for resources behind the firewall, even though the firewall may

be rejecting these attempts. Host based systems do not see rejected attacks that never hit

a host inside the firewall. This lost information can be critical in evaluating and refining

security policies.

One disadvantage of NIDS is that encryption of the network traffic stream can

essentially blind the NIDS. Reconstructing fragmented traffic can also be a difficult

problem to solve. Probably the biggest drawback to network based monitoring,

however, is that as networks become increasingly larger (with respect to bandwidth), it

becomes more difficult to place a network based IDS at a single location on the network

and capture all traffic successfully (Carter 2002). This then requires the utilization of

more sensors throughout the network, which increases the costs of the IDS.

As a final consequence of audit source location categorized IDSs, network based

IDS is normally more effective than host based IDS due to the fact that a single system

can monitor multiple systems and resources.

2.3.3. Behavior on Detection

Behavior on detection describes the response of the IDS to attacks. When it

actively reacts to the attack by taking either corrective closing holes or proactive

logging out possible attackers, closing down services actions, then the IDS is said to be

active (Debar, et al. 1999). If the IDS merely generates alarms including paging, etc, it

is said to be passive.

Passive system: Many IDSs merely log the intrusion and the security

administrator is notified by email or pager etc. This is known as passive response

intrusion detection, as it does not actively attempts to stop the intrusion. Instead, a

system administrator or someone else will have to respond to the alarm, take

appropriate action to halt the attack, and possibly identify the intruder. Modern IDSs

offer a wide range of options to send notifications of intrusions, including pager, cell

phone, email, SNMP trap messages, or simply a message box on the administrator’s PC.

It is important to make sure that the notifications are send in a secure manner to prevent

the attacker from intercepting or altering them (Debar, et al. 1999).

Active system: Active response IDSs automatically take action in response to a

detected intrusion. The exact action differs per product and depends on the severity and

 13

type of attack. A common active response is increasing the sensitivity level of the IDS

to collect additional information about the attack and the attacker. Another possible

active response is making changes to the configuration of systems or network devices

such as routers and firewalls to stop the intrusion and block the attacker. This could

involve blocking the source address of the attacker, restarting a server or service,

closing connections or ports, and resetting TCP sessions (Debar, et al. 1999).

2.4. Details of Detection Techniques

As mentioned earlier, there are several types of IDSs which are classified into

their detection techniques, audit source location, and behavior on detection. In 2.3.1

Detection Technique, the IDSs categorized as misuse and anomaly detection system

according to their using detection techniques. Rafeeq also commented the IDSs working

principle that are used to detect suspicious activity at the network and host level by a set

of detection techniques (Rafeeq 2003). At this point, the details of detection techniques

are discussed below to have an idea about the working principle of IDSs.

The ideal performance on an IDS is to identify as many attacks as possible and

limit the number of false alarms (OneSecure 2001). Unfortunately, there is no single

detection mechanism available today and an IDS can deploy to detect every type of

attack. As a result, only a system that combines a variety of technologies to detect

different types of attacks can get the job done. The most common way to implement a

combination of detection techniques was to purchase two or more products and run

them together. The two most commonly available network intrusion detection

mechanisms on the market today are signature based and statistical protocol anomaly

based detection (OneSecure 2001). Signature based systems look for known attack

patterns (signatures) in traffic. Signature detection finds attacks for which a signature

written, but it is unable to detect new attacks or many very complicated attacks.

Protocol anomaly detection based systems, on the other hand, do a good job of detecting

some of the unknown attacks, but are unable to identify attacks that operate without

violating any protocols. All IDSs use the following detection techniques in the market:

• Intrusion detection using signature,

• Intrusion detection using protocol anomalies,

• Intrusion detection using stateful signatures.

 14

2.4.1. Intrusion Detection Using Signature

The evaluation of NIDSs started with the implementation of a non-intrusive

packet monitor, called a sniffer because of its ability to “sniff” the packets on the

network. Intrusion detection vendors applied to the packet monitoring concept to build

systems that performed packet signature detection (OneSecure 2001). Signature based

detectors analyze system activity, looking for events or sets of events that match a

predefined pattern of events that describe a known attack. They compare events and

packets with signatures stored in their database and find out the matching ones. The

most common form of signature based detection used in commercial products specifies

each pattern of events corresponding to an attack as a separate signature (Bace and Mell

2001). Signature detection finds attacks for which a signature is written and it is very

effective at detecting attacks without generating an overwhelming number of false

positives.

However, there are many drawbacks to signature based approach to intrusion

detection, especially if effort is placed entirely on building up a large repository of

attack signatures, without regard to how the traffic is reassembled, decoded, normalized

and analyzed. It is a problem when information is transmitted over the network; the

information is split into numbered TCP segments that are sent as packets. In an ideal

world, the packets would be transmitted in sequence and without loss. But,

unfortunately, that is not the case. When a message is actually transmitted, the network

will deliver the packets randomly (out of sequence) or as even smaller pieces of data

(called fragments), which are broken down by networking devices, such as routers, to

facilitate ease of transmission. Even worse, for whatever reason, packets can get “lost”

or can be duplicated (OneSecure 2001).

Another disadvantage of this mechanism is that it is unable to detect new

attacks. Therefore, it must be constantly updated with signatures of new attacks.

However, signature updates may sometimes result in inability of detecting previously

detected attacks. Lastly, signature based detectors cannot detect many very complicated

attacks.

 15

2.4.2. Intrusion Detection Using Protocol Anomalies

Protocol anomaly detection, which is sometimes called protocol analysis, is the

ability to analyze packet flows (the uni-directional communication between two

systems) to identify irregularities in the generally accepted Internet rules of

communication (OneSecure 2001). Those rules are defined by open protocols and

published standards (RFC-Request for Comment), as well as vendor defined

specifications for communication between networked devices.

Protocol anomaly detection attempts to save time by first identifying the

protocol and looking specifically for anomalous activity or attack patterns relevant to

that protocol. By doing so, it can do a much more targeted and thus more effective

search (TopLayerNetworks 2002). In other words, protocol anomaly detection identifies

traffic that does not meet specifications or violets the relevant standards. Once an

irregularity is identified, it can be used to make network security decisions. This is very

effective in detecting suspicious activity such as a buffer overflow attack.

The advantages of protocol anomaly detection are that it can detect (OneSecure

2001):

• Unknown and new attacks, based on the fact that these attacks deviate

from protocol standards,

• Attacks that bypass systems that implement other detection techniques,

• Slightly modified attacks that change the format of known attack

patterns, with no effect on the strength of the attack to evade signature

based systems

An example of detecting the FTP bounce attack using protocol anomaly is

described below (OneSecure 2001):

The FTP bounce attack exploits a design flaw in the specifications of FTP. To

download or upload files, a user must first connect to an FTP server. When this

happens, the server requires the client to send the IP address and port number to which

the file should be sent to or taken from. This is done via a mechanism called a “Port

Command”. However, the port command specification does not limit the IP address to

the user’s address. Because of this, an attacker can tell the FTP server to open a

connection to an IP address that is different from the user’s address and then use the

open port to transfer files containing a Trojan through the FTP server onto the victim.

 16

Since protocol anomaly detection is designed to look network relationships and

determine whether both sides are acting within the normal specifications, IDS can parse

the requests in a port command whenever seen and compare it to the IP address from

which the port command arrived. If they do not match, the IDS needs to send an alarm.

Protocol anomaly based systems do a good job of detecting some of the

unknown attacks like the one described. But their main drawback is that they are unable

to identify attacks that operate without violating any protocols, such as Trojan or Worm.

These attacks install and open up a backdoor on a network resource. This backdoor lays

inactive until the attacker activates it and takes control over the resource. Besides that,

protocol anomaly detection systems usually produce a large number of false alarms due

to the unpredictable behaviors of users and networks.

2.4.3. Intrusion Detection Using Stateful Signatures

Another alternative approach that overcomes the accuracy deficiencies of packet

signature detection is stateful signature detection. This advanced detection mechanism

identifies attack patterns by utilizing both stateful inspection and protocol analysis,

which is performed as part of protocol anomaly detection (OneSecure 2001). As a

result, stateful signature detection systems understand the context of each data byte and

the state of the client and server at the time of transmission. This means that stateful

signatures can be compared to only relevant data bytes, according to the communication

state to which each signature is relevant.

Stateful signatures detection mechanism looks at the context and the placement

of signature to make smarter decisions about whether it represents an attack. The IDS

keeps track of the state of the connection with the outside entity, and considers the

broader context of all the transactions initiated during the connection

(TopLayerNetworks 2002). In other words, stateful signatures only look for an attack in

the state of the communication where that attack can cause damage, thus significantly

improving performance and reducing false positives.

The drawback of this system is the same as the signature based detectors; it

catches only known attacks and only if the signature database is constantly updated.

Unfortunately, the people out there trying to exploit networks are neither lazy nor

stupid; they constantly unleash new variations and new attacks. With each new attack,

 17

new signatures have to be taught to the IDS. Over time, this led to a need for IDS

products to hold literally thousands of attack signatures and constantly scan for them all

(TopLayerNetworks 2002). In addition, while the signature database being constantly

updated, attackers know exactly how the IDS products work, so they continuously make

slight alterations to elude detection. Thus, a more intelligent signature mechanism is

needed to bring about more accurate results.

2.5. Response Options for IDSs

Today, IDS products support a wide range of response options, often categorized

as active responses, passive responses, or some mixture of both.

2.5.1. Active Responses

Active IDS responses are automated actions taken when certain types of

intrusions are detected. There are three categories of active responses:

Collect additional information: The most innocuous, but at times most

productive, active response is to collect additional information about a suspected attack.

This might involve increasing the level of sensitivity of information sources (for

instance turning up the number of events logged by an operating system audit trail, or

increasing the sensitivity of a network monitor to capture all packets, not just those

targeting a particular port or target system). Collecting additional information is helpful

for several reasons. The additional information collected can help resolve the detection

of the attack. This option help also allows the organization to gather information that

can be used to support investigation and apprehension of the attacker and to support

criminal and civil legal remedies (Bace and Mell 2001).

Change the environment: Another active response is to halt an attack in

progress and then block subsequent access by the attacker. Typically, IDSs do not have

the ability to block a specific person’s access, but instead block IP addresses from

which the attacker appears to be coming. It is very difficult to block a determined and

knowledgeable attacker, but IDSs can often deter expert attackers or stop novice

attackers by taking the following actions (Bace and Mell 2001):

 18

• Injecting TCP reset packets into the attacker’s connection to the victim

system, thereby terminating the connection,

• Reconfiguring routers and firewalls to block packets from the attacker’s

apparent location (IP Address or site),

• Reconfiguring routers and firewalls to block the network ports, protocols,

or services being used by an attacker, and

• In extreme situations, reconfiguring routers and firewalls to break all

connections that use certain network interfaces.

Take action against the intruder: The most aggressive form of this response

involves launching attacks against or attempting to actively gain information about the

attacker’s host or site. The primary reason for approaching this option with a great deal

of caution is that it may be illegal. Furthermore, since many attackers use false network

addresses when attacking systems, this action has a risk of causing damage to innocent

Internet sites and users. Finally, strike back can escalate the attack, provoking an

attacker who originally intended only to browse a site to take more aggressive action

(Bace and Mell 2001).

 19

2.5.2. Passive Responses

Passive IDS responses provide information to system users, relying on them to

take necessary action based on that information. Many IDS products rely solely on

passive responses.

Alarms and notifications: Alarms and notifications are generated by IDSs to

inform users when attacks are detected. The most common form of alarm is an onscreen

alert or popup window. This is displayed on the IDS console or on other systems as

specified by the user during the configuration of the IDS. The information provided in

the alarm message varies widely, ranging from a notification that an intrusion has taken

place to extremely detailed messages outlining the IP addresses of the source and target

of the attack, the specific attack tool used to gain access, and the outcome of the attack

(Bace and Mell 2001). Another set of options is to configure the IDSs so that they send

alert messages to cellular phones and pagers carried by incident response teams or

security managers.

SNMP traps and plug-ins: Some commercial IDSs use SNMP traps and

messages to send alarms to central network management consoles. This provides the

ability to adapt the entire network infrastructure to respond to a detected attack, the

ability to shift the processing load, associated with an active response, to a system other

than the one being targeted by the attack, and the ability to use communication channels

(Bace and Mell 2001).

2.6. Snort

Snort is a free network packet analysis tool written by Martin Roesch in 1998 for

his personal use. Snort is now one of the most widely used security tools in the open-

source world. Snort is perfect for detecting DoS, fragmentation, known buffer

overflows, scanning worms and scripts, cross-site, and injection attacks. Snort can be

connected to external databases to ease packet and event logging and analysis, link it to

reporting tools, manage it through centralized consoles, and enable it to participate in

many types of alert systems.

Snort’s packet capturing routine allows to capture all packets headed to and from

a honey pot. In order for Snort to detect malicious packets reliably, it needs to inspect

 20

all packets. Captured packets are passed to the packet-decode engine component. The

packet-decode engine separates packets into their higher and lower layer components.

This is because different attacks occur at different levels, and Snort does not need to

apply all its rules to all layers for all attacks. For example, if a buffer overflow will

never occur at the frame layer, there is no need to examine that layer for buffer overflow

attacks.

Snort works by using the libcap capture API (as does WinPcap, tcpdump, and

Ethereal) to capture packets for examination and logging. A packet-decode engine

examines the packets, hands them to preprocessor plug-ins, and then on the signature-

detection engine, which produces actions (allow, deny, and log) and outputs (alert, log,

and so on). See Figure 2.1. for an illustration of the Snort packet pathway (Grimes

2005).

 21

Figure 2.1. Snort packet pathway.

 22

2.6.1. Snort Modes

Snort is often described as a virus scanner for network packets, but it has three

modes: packet dump, packet logger, and network IDS. Packet dump mode captures

packets and displays them to the screen (the console). Packet logger mode writes

packets to a physical file. Snort can be used in both modes at the same time, mimicking

a command-line network protocol analyzer. In network IDS mode, Snort will analyze

grabbed packets for malicious content. All three modes can be used together in different

combinations (Grimes 2005).

Snort is not an install and execute program. It takes a fairly good understanding

of what it does and how it operates to configure and use properly. Besides making sure

that the Snort host computer is hardened against detection and attack, honey pot

administrators should use the following steps when configuring it for the first time:

1. Decide what Snort to do.

2. Configure the Snort configuration file.

3. Configure rule sets.

4. Test the Snort configuration.

5. Create and use a Snort.bat file.

The first decision is which mode to put Snort in. Snort can be configured to be a

packet sniffer or network IDS.

Snort packet dump mode: To enable Snort to sniff packets to the console,

Snort.exe can be executed with one or more of three command-line switches:

• -v: This puts Snort in packet dump (sniffer) mode. With just the –v

option enabled, only the network and transport layer header information

will be captured and displayed.

• -e: If the –e parameter enabled, the layer 2 frame headers added to the

information collected. To most people, this means that getting ARP

information. This information can be useful to ensure Snort is correctly

emulating the MAC addresses in response to queries to its virtual IP

addresses.

• -d: The –d parameter will display all payload data information from the

transport layer.

 23

 In packet dump mode with all three parameters set, the following fields (in

order) are captured on TCP packets (Grimes 2005):

• Date

• Time

• Source MAC address

• Destination MAC address

• IP protocol ID number (transport protocol type)

• Total packet length (in hex)

• Source IP address

• Source port number

• Destination IP address

• Destination port number

• Transport protocol name

• TTL setting

• Type-of-service setting

• IP packet ID

• IP header length

• Packet length

• TCP flags (represented by their first letter of their name: S for SYN, P for

PSH, A for ACK, and so on)

• Sequence number

• Acknowledgement number

• Window size

• Transport protocol header size

• Payload data

Snort network IDS mode: Although Snort can be used purely as a packet

sniffer, it is not primary reason to have it as a part of the network security system.

Snort’s specialty is detecting malicious content in sniffed packets. To put Snort into its

network IDS mode, the -c command-line parameter is needed to use to point to the

Snort configuration file.

The configuration file contains commands to define the following items during

Snort’s runtime:

• System variables

 24

• Which preprocessor plug-ins to load

• Which rule sets to load

• Which output plug-ins to use

Snort comes with a default configuration file called Snort.conf, in the etc

directory. The different sections are well differentiated in the configuration file. When

Snort is executed with the configuration file, Snort will run with those options during its

execution (Grimes 2005).

2.6.2. Components of Snort

Snort is logically divided into multiple components. These components work

together to detect attacks and to generate output in a required format from the detection

system. Snort consists of the following major components (Rafeeq 2003):

• Packet Decoder

• Preprocessors

• Detection Engine

• Logging and Alerting System

• Output Modules

 Packet is dropped

Figure 2.2. Components of Snort
(Source: Rafeeq 2003).

Internet

Preprocessors

Packet

Decoder

Detection

Engine

Logging and

Alerting

Output

Modules

Output Alert

or Log to file

 25

Packet decoder: The packet decoder takes packets from different types of

network interfaces and prepares the packets to be preprocessed or to be sent to the

detection engine. The interfaces may be Ethernet, SLIP, PPP, WiFi and so on. It parses

the packet and decodes the string of bytes into a packet structure that is formed of

protocol fields and flags. Each subroutine in the decoder imposes order on the packet

data by overlaying data structures on the raw network traffic. These decoding routines

are called in order through the protocol stack, from the data link layer up through the

transport layer, finally ending at the application layer. During this decoding process, it

validates the length and checksum fields. It then forwards the valid packets to the

preprocessors (Rafeeq 2003).

Preprocessors: According to the Snort configuration that introduced by Snort

Users Manual when a packet is received by Snort, it may not be ready for processing by

the main Snort detection engine and application of Snort rules. For example, a packet

may be fragmented. Before searching a string within the packet or determine its exact

size, defragmentation is required by assembling all fragments of the data packet. On

IDS, before applying any rules or try to find a signature, the packets have to be

reassembled (Rafeeq 2003). The job of a preprocessor is to make a packet suitable for

the detection engine to apply different rules to it. In addition, some preprocessors are

used for other tasks such as detection of anomalies and obvious errors in data packets,

decoding of HTTP URI. All enabled preprocessors operate on each packet. There is no

way to bypass some of the preprocessors based upon some criteria.

Detection engine: The detection engine is the most important part of Snort. Its

responsibility is to detect if any intrusion activity exists in a packet. The detection

engine employs Snort rules for this purpose (Snort 2009). The rules are read into

internal data structures or chains where they are matched against all packets. Snort

organizes parts of packets to make the job of matching rules against them faster. It

maintains detection rules in a two dimensional linked list of what are termed Chain

Headers and Chain Options. The commonalities are condensed into a single Chain

Headers and individual detection signatures are kept in Chain Option structures. If a

packet matches any rule, appropriate action is taken; otherwise the packet is dropped.

Appropriate actions may be logging the packet or generating alerts.

Logging and alerting system: This system is responsible from the generation of

alerts and logging of packets and messages. Depending upon what the detection engine

finds inside a packet, the packet may be used to log the activity or generate an alert. All

 26

of the log files are stored under a preconfigured location by default. This location can be

configured using command line options. There are many command line options to

modify the type and detail of information that is logged by the logging and alerting

system (Snort 2009).

Output modules: Basically, these modules control the type of output generated

by the logging and alerting system. Depending on the configuration, output modules can

send output messages to a number of other destinations. Commonly used output

modules are (Snort 2009):

• The database module is used to store Snort output data in databases, such

as MySQL, MSSQL or Oracle,

• The SNMP module can be used to send Snort alert in the form of traps to

a management server,

• The Sending Server Message Block (SMB) alerts module can send alerts

to Microsoft Windows machines in the form of pop-up SMB alert

windows,

• The syslog module logs messages to the syslog utility (using this module

logs messages to a centralized logging server),

• XML or CSV modules can be used to save data in XML or comma

separated files. The CSV files can then be imported into databases or

spreadsheet software for future processing or analysis.

 27

CHAPTER 3

COMPLEX EVENT PROCESSING

Complex event processing (CEP) is primarily an event processing concept that

deals with the task of processing multiple events with the goal of identifying the

meaningful events within the event cloud. CEP employs techniques such as detection of

complex patterns of many events, event correlation and abstraction, event hierarchies,

and relationships between events such as causality, membership, and timing, and event

driven processes. CEP is to discover information contained in the events happening

across all the layers in an organization and then analyze its impact from the macro level

as “complex event” and then take subsequent action plan in real time (Wikipedia 2009).

Examples of events include a car, some sensors and various events and

reactions. In the situation, the car is moving and the pressure of one of the tires from 45

PSI to 41 PSI in 5 seconds. As the pressure in the tire is reducing, a serious of events

containing the tire pressure is generated. In addition, a series of events containing the

speed of the car is generated. The car’s event processor may detect a situation whereby

a loss of tire pressure over relatively long period of time results in the creation of the

“lossOfTirePressure” event.

There are many commercial applications of CEP including stock trading, credit

card fraud detection, business activity monitoring, and security monitoring. New

applications of CEP are emerging as technology vendors find new uses.

Most CEP solutions and concepts can be classified into two main categories. The

first one which is a computation oriented CEP solution is focused on executing on-line

algorithms as a response to event data entering the system is to continuously calculate

an average based in data on the inbound events. The other one is detection oriented CEP

is focused on detecting combinations of events called event patterns or situations

(Wikipedia 2009).

 28

3.1. Event Driven Systems

An event driven system (Berson 1992) is a system of objects which interact with

each other using a message-passing mechanism. This mechanism is controlled by

distinct component that is usually called the event dispatcher, and act as an intermediary

between objects. The data communicated are called events and they can originate from

input devices in an unprocessed form (raw event) or they can be a result of

communication between objects. The objects receive events in the form of event

messages, typically of a fixed length and made up of an event type identifier and the

event parameters. Each object has a designated programming procedure called event

procedure that invokes individual procedures called event handlers for each type of

event message.

To illustrate how an event driven system works, suppose in a GUI the user clicks

the left mouse button in the client area of the window a drawing application. This

generates a raw event that contains the mouse position and which mouse buttons were

pressed at that moment. The event dispatcher receives the raw event and adds

information such as the application it is destined for, creates an event message and

places it in a queue for the recipient application to pick it up. The recipient application

checks for new messages and finds it. Subsequently, the event procedure is executed

and chooses the suitable event handler for the specific mouse event message.

Event driven systems have typically been built around either relational databases

or real-time messaging systems, or a combination of both. While these technologies

have their advantages, neither is particularly well suited for managing and analyzing

events in rapidly changing environments (Coral8 2009):

• Relations database servers can process large amounts of stored data and

can analyze the information with relative ease but are not designed to

operate in real-time environments, and do not provide an effective way

to monitor rapidly changing data.

• Messaging systems permit data to be monitored in real time but are not

generally capable of complex computations, correlations, pattern

matching or references to historical data.

 29

For these reasons, custom application must often be combined with these

technologies to create a viable solution. The use of custom applications to compensate

for the limitations of these technologies creates new complications:

• Custom applications become increasingly complex very quickly as an

organization’s need for progressively more sophisticated analysis grows.

• Custom applications are also costly to modify, and they do not scale well

as organizational needs change.

3.2. Real-Time Computing

Real-time computing is the study of hardware and software systems that are

subject to a real-time constraint such as operational deadlines from event to system

response. By contrast, a non-real-time system is one for which there is no deadline, even

if fast response or high performance is desired or preferred. The needs of real-time

software are often addressed in the context of real-time operating systems, and

synchronous programming languages, which provide frameworks on which to build

real-time application software.

A real-time system may be one where its application can be considered (within

context) to be mission critical. The anti-lock brakes on a car are a simple example of a

real-time computing system; the constraint in this system is the short time in which the

brakes must be released to prevent the wheel from locking. Real-time computations can

be said to have failed if they are not completed before their deadline, where their

deadline is relative to an event. A real-time deadline must be met, regardless of system

load (Wikipedia 2009).

Real-time computing is sometimes misunderstood to be high-performance

computing, but this is not always the case. For example, a massive supercomputer

executing a scientific simulation may offer impressive performance, yet it is not

executing a real-time computing. Furthermore, if a network server is highly loaded with

network traffic, its response time may be slower but will still succeed. Hence, such a

network server would not be considered a real-time system. In a real-time system such

as the FTSE 100 Index, a slow-down beyond limits would often be considered

catastrophic in its application context. Therefore, the most important requirement of a

real-time system is predictability and not performance.

 30

3.3. Coral8 Engine

Coral8 engine is an information processing system designed to run continuous

queries. This means that instead of having to submit a query each time to produce

results, submit the query to Coral8 server, which runs the query continuously until set it

to stop. This gives a power to examine and analyze large volumes of incoming data

virtually instantaneously, even if the data is arriving at very high speeds, without having

to store the information in a database first.

Today, businesses are operating in environments where the need to monitor

events comes at an ever-accelerating pace. These businesses require systems that can

process large quantities of fast moving data, monitor events as they occur, detect

patterns, and generate needed results immediately. Coral8 engine is a leader in a new

generation of tools for processing, analyzing, and managing events in these highly

dynamic environments.

Coral8 engine is a powerful new tool in the field of Complex Event Processing

(CEP) applications. Coral8 engine can be used to build applications for processing and

analyzing large volumes of fast-moving data in highly dynamic environments. Like a

real-time messaging system, Coral8 reacts to each new peace of data immediately. Like

a relational database system, Coral8 supports the use of a query language similar to

SQL to process and analyze incoming data, and to correlate it with historical data.

Coral8 also provides sophisticated-matching capabilities without requiring large

amounts of custom application code (Coral8 2009).

Coral8 engine includes the following distinguishing features (Coral8 2009):

• A relational model for accessing real-time data streams,

• Queries run continuously, not just when a query submitted,

• A rich language, based on SQL, but adapted for processing real-time

event data, and extended to deal with the temporal characteristics of

messages,

• The ability to analyze data and event patterns across a wide variety of

data sources to locate pertinent information,

• Extensive capabilities for integrating data from external relational

databases,

 31

• Adapters that can be used to integrate Coral8 engine with a variety of

external systems

• SDKs for a variety of languages (Java, C, C++, Perl, Python, .NET, etc.)

that permit customized interfaces and adapters to be easily implemented,

• A modern development environment for developing, monitoring and

managing queries,

• Optimized performance that can accommodate hundreds of thousands of

messages per second per server, with a processing latency measured in

milliseconds,

• Guaranteed delivery, high availability, security, and other important

enterprise requirements.

The Coral8 engine consists of the following major components (Morrel and

Vidich 2008):

• Continuous Computing Language (CCL): CCL is an SQL-like

language used for writing continuous queries, which manipulate Coral8

data. CCL is converted into an executable form by the CCL compiler.

• Coral8 Server: Coral8 server processes streams of incoming data against

registered continuous queries written in CCL.

• Coral8 Data Model: The Coral8 data model consists of streams and

windows providing a foundation on which CCL queries can process data.

• Input and Output Adapters: Adapters translate data from a wide

variety of external sources into a format compatible with Coral8‘s data

model, and also translate Coral8 data back into formats that can be sent

to external destinations.

• Coral8 Studio: Coral8 studio is a GUI, which lets users easily edit CCL

queries, view streams and windows, control and monitor Coral8 servers,

and debug Coral8 applications in an interactive development

environment.

Figure 3.1 shows Coral8 architecture and its major components below:

 32

Figure 3.1. Coral8 architecture
(Source: Coral8 2009).

3.4. Using Continuous Computing Language

Data streams are the fundamental way in which data is transmitted throughout

Coral8. CCL queries take data from data streams, process that data and send it into other

streams. While data streams which are similar to database tables do not retain any state.

Therefore, only the most recent row in a data stream is visible to data stream queries.

Time is an essential aspect of Coral8. Data rows arrive continuously and the

CCL queries associated with a data stream execute every time a new row arrives. Every

row in Coral8 has an associated row timestamp.

External data enters Coral8 engine through input adapters, which translates data

from an external format into a format usable by Coral8 engine. A CCL query places its

results in a data stream, which may be connected to an output adapter. The output

adapter translates the data into the required external format and sends it to the external

destination.

 A row in a data stream can be processed by a CCL query only when it arrives in

the Coral8 engine. However, CCL windows are used to maintain the state of previously

 33

arrived rows. The window definition states the policy that determines what rows in a

stream should be retained and for how long. Count-based and time-based windows

retain rows for a specified maximum number and a specified interval of time

respectively. Both count-based and time-based windows may be sliding or jumping.

All data streams and windows must have schemas that specify their structure. A

schema specifies the number and names of the columns in the stream or window and

indicates each column’s datatype. The following datatypes are available in Coral8:

Boolean, Integer, Long, Float, String, Timestamp, Interval, XML, Blob and so on.

Data streams and their schemas, adapters, windows, and query modules have

discussed above. All of the basic steps listed below must be taken before a CCL query

can be successfully executed (Coral8 2009):

1. Create or open a query module,

2. Add uniquely named data streams to the module,

3. Create a schema, or assign an existing schema, for each stream,

4. Add adapters to streams that either subscribe or publish to external

sources,

5. Write CCL queries and run the query module.

A basic understanding of Coral8 components and working with CCL queries

shown in Figure 3.2 (Coral8 2009):

Figure 3.2. Using CCL in Coral8

(Source: Coral8 2009).

 34

3.5. Continuous Computing Language Queries

The Coral8 CCL is a language based on the ANSI SQL Standard. It is used to

manipulate, analyze and process data within the Coral8 engine. Like SQL, CCL syntax

is structured around commands called statements. One or more CCL statements reside

in a query module. When a query module is started, all the CCL statements in it are

executed and run continuously until the module is stopped or the Coral8 engine is shut

down.

SQL is designed to query data from static tables; CCL is adapted to the needs of

processing and analyzing dynamic data. A CCL query statement takes data from one or

more data sources, processes it and then publishes it to a destination. This is the most

common statement in CCL and can take many complex forms (Coral8 2009).

Figure 3.3 is an example of the simplest possible query statement:

Figure 3.3. The simplest CCL query statement.

The INSERT INTO clause, which is always the first clause in a query statement,

indicates the destination of the query output. This query publishes its output to the

StockTradesAll stream. The SELECT clause defines the contents of the query output.

This query uses the “*” syntax which indicates that all columns should be selected from

the source data stream. Columns and rows of the source can be selected by using one or

more filter or selection conditions. The FROM clause follows the SELECT clause and

specifies one or more data sources to which the query subscribes. The semicolon “;” is

used to terminate every CCL query statement.

In figure 3.4, CCL expressions are combinations of literals, column names,

operators, and functions that evaluate to a single value and Figure 3.5 includes the input

and output of execution of the CCL query:

 35

 Figure 3.4. A CCL expression query example

(Source: Coral8 2009).

Figure 3.5. The input and output of the CCL expression query
(Source: Coral8 2009).

In figure 3.6 and 3.7, CCL windows permit to maintain the state of rows that

have been previously processed from a stream. CCL windows are typically defined by

the use of a KEEP clause. Count-based windows have a KEEP clause that defines the

maximum number of rows, the window will keep, and whether or not these rows will

expire from the window one at a time (a sliding count-based window), or all in a group

(a jumping count-based window):

 36

Figure 3.6. The input and output of the sliding count-based window example
(Source: Coral8 2009).

 37

Figure 3.7. The input and output of the jumping count-based window example
(Source: Coral8 2009).

All of the queries seen so far have involved a single data source. However, a

query may use data from multiple data sources. Using multiple data sources in a single

query is handled by an operator called a join.

Figure3.8 is an example of a simple join query that publishes the most recent

trade for a stock whenever an inquiry is made for that stock symbol:

 Figure 3.8. The simple join query example.

 38

Multiple data sources in a join (correlation) are separated by commas in the

FROM clause. Only one of the sources can be a stream, other sources must be windows.

Figure 3.9 shows the simple join multiple data sources query example below:

 Figure 3.9. The input and output of the simple join query example
(Source: Coral8 2009).

The event pattern matching clause MATCHING uses operators “,” (followed

by), “&&” (and), “||” (or), and “!” (not) to express highly complex event patterns that

would otherwise require multiple joins to detect. Figure 3.10 shows the simple event

pattern matching query example below:

 39

 Figure 3.10. The simple event pattern matching query example.

3.6. Building Custom Complex Event Processing Applications

Custom applications start simple, as the initial requirements are typically very

limited. Many begin with simple filtering or aggregation. Problems increase quickly,

however, as windows, complex aggregations, correlation, pattern matching, and levels

of complexity are added. Despite the promise of a “custom solution”, performance

rapidly becomes a problem. Providing enterprise features such as scalability, clustering

and high-availability while developing, extending and maintaining custom CEP

applications is notoriously difficult and time-consuming. Some custom applications are

written on top of a messaging system, or a message bus. Unfortunately, message buses

solve mainly transport-level problems, such as asynchronous message delivery,

publish/subscribe multicast and guaranteed delivery. Other than performing basic

filtering, message buses offer no support for any complex computation, correlation or

pattern matching. All of these tasks must still be implemented in a custom application

(Coral8 2009).

Coral8 provides a new infrastructure for the world of custom CEP applications.

This infrastructure combines the following elements (Coral8 2009):

 40

New programming model for streaming data:

• A relational model for real-time streaming data,

• An execution model for running queries continuously, not only when a

query submitted,

• A rich language based on SQL, but suitable for real-time processing, that

incorporates extensions to deal with the time dimension, events, event

patterns, and so on.

High-performance, scalable, reliable processing platform:

• Performance equaling the very best custom applications (tens of

thousands messages per seconds per server, with processing latency

measured in milliseconds),

• A clustered and federated model for processing streaming data,

• Guaranteed delivery, failover, high availability and other critical

enterprise requirements.

Integration Framework:

• A sophisticated adapter model that supports integration with all kinds of

external systems for event input and output,

• Rich capabilities for interacting with external databases and applications,

supporting the ability to correlate real-time and historical, or reference

data,

• The ability to extend the system by building and registering custom

functions, aggregators, adapters, and so on.

Tools:

• Coral8 studio which lets developers create, debug and monitor their CEP

applications,

• A portal framework for building business user applications that let

business users choose query parameters, presentation options, and

notification options,

• Numerous command-line tools and SDKs that support C/C++, Java, .Net,

Perl, Python, and other environments.

 41

CHAPTER 4

INTRUSION DETECTION ALERT CORRELATION

Intrusion detection has been an active research field for more than 25 years since

Anderson published his seminal work on (Anderson 1980). After Anderson’s report,

many IDSs have been designed, implemented and deployed into networks. They are a

line of defense to protect digital assets. Although many novel designs and

improvements have been proposed, at present, IDSs still suffer from a few drawbacks

(Xu and Ning 2006):

• IDSs may flag thousands of alerts every day, thus overwhelming security

officers. For instance, the experience of the authors shows that 325.968

alerts were reported when a Snort box was deployed for 6 days in a subnet

hosting of a teaching lab on a campus network,

• Among all the alerts reported by IDSs, false positives are mixed with true

alerts. In addition, it is very possible that a large percentage of alerts are false

positives. For example, Julish and other researchers (Julish and Dacier 2002)

pointed out that up to 99% of alerts could be false positives. This may make

the alert investigation very challenging,

• At present, IDSs cannot guarantee the detection of all attacks. In other

words, they may miss some attacks, which could be critical for security

officers to understand the current security threats.

These limitations of IDSs make security investigation not only time-consuming,

but also error-prone. It is very challenging for security officers to fully learn the security

threats in their networks as well as over the Internet. To address these challenges,

various alert correlation techniques have been proposed in recent years.

Alert correlation is a process that takes as input the alerts produced by one or

more intrusion detection sensors and provides a more succinct and high-level view of

occurring or attempted intrusions. The main objective is to produce intrusion reports

that capture a high-level view of the activity on the network without losing security-

relevant information (Kruegel, et al. 2005).

 42

The notion of security-relevant information cannot be completely objective since

it depends on a site’s security policy. A security policy defines the desired properties for

each part of a secure site’s installation. It is a decision that has to take into account the

value of the assets that should be protected, the expected threats and the cost of proper

protection mechanisms. A sufficient security policy for the data of a normal user at

home may not be sufficient for bank applications, as these systems are obviously a more

likely target and have to protect more valuable resources. Therefore, it is important to

accommodate different requirements of different security policies for a correlation

scheme to be adjusted.

The alert correlation process consists of a collection of components that

transform sensor alerts into intrusion reports. Since alerts can refer to different kinds of

attacks at different levels of granularity, the correlation process cannot equally treat all

alerts. Instead, it is necessary to provide a set of components that focus on different

aspects of the overall correlation task (Kruegel, et al. 2005).

Some of the components can operate independently on all alerts, according to

their type. These components are used in the initial and final phase of the correlation

process to implement general functionality that is applicable to all alerts. Other

components can only work with certain classes of alerts. These components are

responsible for performing specific correlation tasks that cannot be generalized for

arbitrary alerts.

Figure 4.1 gives a graphical representation of the alert correlation process

(Kruegel, et al. 2005). The core of this process consists of some components

implementing the specific functions, which operate on different spatial and temporal

properties. For instance, some of the components correlate events occurring at the

closing time and space (e.g., alerts generated on one host within a small time window),

while others operate on events. These events represent an attack scenario evolving over

several hours and including alerts generated on different hosts (e.g., alerts that represent

large-scale scanning activity).

In the process shown in Figure 4.1, alerts correlated by one component are used

as input by the next component. However, it is not necessary for all alerts passing

through the same components sequentially. Some components can operate in parallel,

and it is even possible that the output of the alerts occurred as a sequence of

components can fed back as an input to a previous component of the process. That is,

even though the process is represented as a pipeline for the sake of presentation, some

 43

components of the process may be applied multiple times, may be applied in parallel, or

may be applied in a different order.

Figure 4.1. Correlation process overview
(Source: Kruegel, et al. 2005).

4.1. Alert Correlation Techniques

The alert correlation process should be carried out by implementing alert

correlation techniques. These alert correlation techniques can be classified into three

categories (Zhai, et al. 2006): similarity-based correlation, correlation by matching with

pre-defined attack scenarios, and correlation based on the prerequisite and consequence

of individual attacks. Xu and Ning also add a correlation technique which based on

multiple information sources (Xu and Ning 2006). This provides frameworks to model

different types of information and may further perform reasoning based on IDS alerts

and other information. Each technique has its advantages and disadvantages. However,

the correctness of correlation results is strongly affected by the false positives and false

negatives among IDS alerts.

 44

4.1.1. Similarity-based Correlation

IDSs may flag alerts when suspicious events are observed. Each alert usually has

several attributes associated with it. For example, NIDSs report the suspicious event’s

source IP address, source port number, destination IP address, destination port number,

and timestamps information. Based on these attribute values, some similarity based alert

correlation approaches first compute how similar two or more alerts are, and then group

alerts together based on these computed similarity values. Approaches in this category

can potentially reduce the number of alerts reported to the security officers, because a

group of similar alerts may correspond to the same attack or attack trend (Xu and Ning

2006).

To understand this idea, assume that there are two network based IDSs: Snort

and RealSecure network sensor. Furthermore, there is an FTP attack in the network, and

this attack is detected by both Snort and RealSecure network sensors. For the alerts

reported by Snort and RealSecure, it is very likely that they have the same attribute

values (IP Addresses, port numbers, timestamps, etc.). Through identifying these similar

attribute values, security officers may realize that these alerts correspond to the same

attack.

At this point, how to define similarity measures usually is one of the major

focuses. There are several different similarity measures being purposed.

A probabilistic approach to performing alert correlation specifies expectation of

similarity and minimum similarity for common features of alerts. Each alert reported by

heterogeneous IDSs’ sensors is assumed to have several features, for example, target

hosts and ports, and timestamps. The main purpose of this approach is to compute the

similarity values among the alerts (Valdes and Skinner 2001). For each feature of the

alerts, a similarity function is defined, which will be used to calculate the similarity

value for the same feature among different alerts. Notice that feature similarity

functions may be defined through various criteria. For example, the similarity between

IP addresses may consider if they are identical or from the same subnet; if a feature has

a list of values (e.g., all open ports reported by a scanning attack), the overlapping

values among multiple lists can be considered when calculating similarity. The

similarity value is between 0 and 1.

 45

For each feature, if their similarity value is less than the corresponding

predefined minimum similarity, then the overall similarity is 0; if the minimum

similarity is satisfied, then the overall similarity is the weighted average of similarity

values for those common features, where the weights are the expected similarity values

for the corresponding features. The formula for overall similarity computation is

defined as following:

Figure 4.2. The formula for overall similarity computation.

Where A and B are two alerts have n features in common, Ai and Bi are values

for the common feature i in A and B, respectively, SIM(Ai, Bi) is the similarity between

Ai and Bi, and Ei is the expected similarity value for feature i.

Second approach focuses on port scanning detection to define the similarity of

the measure; it can be extended to correlate other security events (Saniford, Hoagland

and McAlerney 2002). In this approach, network packets are the primary information to

be dealt with. To detect port scanning, feature data such as source IP addresses,

destination IP addresses, and destination ports are extracted from network packets. The

combinations of these features are also called events. The detection of port scanning can

be performed into two steps. In the first step, an anomaly score A(x) is computed as

A(x) = −log(P(x)), where x is an event, and P(x) is x’s probability value based on

network traffic distribution. When the anomaly scores of events (network packets) are

greater than certain thresholds, these events are passed to the second step. The general

idea of the second step is to correlate events together, and the groups of events may be

identified as portscans. The evaluation function computes the strength of connections

between events. Given two events e1 and e2, the evaluation function is defined as f (e1,

e2) = c1h1(e1, e2)+c2h2(e1, e2)+· · ·+cjhj(e1, e2), after computing the strengths of

connections, a set of events may be grouped if the strengths of connections between the

events greater than a certain threshold. In addition, the anomaly score of each group is

the summation of the anomaly scores of all events in the group. If the anomaly score of

a group is greater than a threshold, a port scanning alert is reported to a security officer.

 46

The other proposed one is an alert clustering approach for performing root cause

analysis, where the root cause is the reason why the alerts are triggered (Julisch 2003).

The root cause is an HTTP server with a broken TCP/IP stack which may trigger many

fragmented IP alerts. The rationale of this approach is based on the observation.

Although IDSs flag thousand of alerts every day, it is not uncommon that a few

dominant root causes may trigger 90% of all alerts. Thus if security officers can identify

these root causes (with the corresponding alerts), and remove these root causes, they can

dramatically reduce the number of potential alerts in the future.

In 2003, Qin and Lee proposed an alert correlation approach to performing

statistical causality analysis. The focus of this approach is to conduct time series and

statistical analysis to get attack scenarios, though Qin and Lee also propose clustering

techniques to aggregate certain lower level alerts to a hyper alert (i.e., a group of alerts

ordered by timestamps) thus potentially reduce the alert volume, and perform alert

prioritization to identify important alerts (Qin and Lee 2003).

Finally, there is one more approach to manage alerts in an environment with

multiple IDSs. It is very possible to flag different alerts by using different IDSs, even

for the same attack. Alert processing, which is related to MIRADOR project funded by

the French DGA/CASSI, is divided into three steps in this approach: alert (base)

management, alert clustering, and alert merging. In first step, alerts reported by different

IDSs are transformed into records and then saved into relational databases. The second

step is alert clustering. In this step, alerts reported by different IDSs are grouped into

clusters so that the alerts in one cluster correspond to one attack. The critical part in this

step is to identify similarity between alerts. The similarity is specified by an expert

system which performs expert rules and these rules include classification, source, target,

and time similarity actions. The third step of alert processing is alert merging, where the

alerts in each cluster are merged, and a global alert is created with merged data. One of

the critical points here is how to merge different attributes such as classification, source,

target, and time information (Cuppens 2001).

 4.1.2. Correlation Based on Predefined Attack Scenarios

An attack scenario usually is a sequence of individual attack steps linked

together to show an aggregated or global view of security threats. To build these attack

 47

sequences, a straightforward way is to first predefine some attack scenario templates.

For example, an attack sequence template may be specified where IP_Scan is followed

by TCP_Port_Scan and then by FTP_Buffer_Overflow. Next, individual alerts reported

by IDSs are matched to these scenario templates to construct attack scenarios. These

approaches can help security officers to discover all scenarios where their

corresponding patterns are aware of and predefined. However, sometimes it is not easy

to exhaustively list all attack sequence templates. Another limitation of these methods is

that once some novel attack patterns are created by attackers, the corresponding attack

scenarios may not be recognized (Xu and Ning 2006).

In a dynamic system, chronicles provide a mechanism to model event temporal

patterns and monitor the system’s evolution. To specify a chronicle model, event

patterns, related timestamp information, time constraints among events, as well as other

patterns and actions will be used for modeling. Figure 4.2 shows an example of

chronicles.

Figure 4.3. An example of chronicles

(Source: Xu and Ning 2006).

In this chronicle, there events are considered port_scan, ftp_overflow, and

remote_access, where their corresponding timestamps should be in increasing order

(i.e., t1 <t2 <t3), and their corresponding domain attributes (i.e., source and target)

should be equal. If all these patterns as well as constraints are satisfied, then this

chronicle is recognized and a synthetic alert is generated. Notice that usually only

 48

synthetic alerts will be reported to security officers. So this may significantly reduce the

workload for security officers (Morin and Debar 2003).

4.1.3. Correlation Based on Prerequisites and Consequence of Attacks

This method correlates intrusion alerts using the prerequisites and consequences

of attacks. Intuitively, the prerequisite of an attack is the necessary condition for the

attack to be successful. For example, the existence of a vulnerable service is the

prerequisite of a remote buffer overflow attack against the service. The consequence of

an attack is the possible outcome of the attack, for instance, gaining certain privilege on

a remote machine. In a series of attacks, there are usually connections between the

consequences of the earlier attacks and the prerequisites of the later ones. Accordingly,

the prerequisites and the consequences of attacks are identified and correlated the

detected attacks (i.e., alerts) by matching the consequences of previous alerts to the

prerequisites of later ones (Zhai, et al 2006).

The correlation method uses logical formulas, which are logical combinations of

predicates, to represent the prerequisites and consequences of attacks. The correlation

model represents the attributes, prerequisites, and consequences of known attacks as

alert types. The correlation process is to identify the preparation for relations between

alerts, which is done with the help of prerequisite sets and expanded consequence sets

of alerts. Given an alert, its prerequisite set is the set of all predicates in its own

prerequisite, and its expanded consequence set is the set of all predicates in or implied

by its consequence. An earlier alert t1 prepares for a later alert t2 if the expanded

consequence set of t1 and the prerequisite set of t2 share some common predicates. An

alert correlation graph is used to represent a set of correlated alerts. An alert correlation

graph CG = (N, E) is a connected directed acyclic graph, where N is a set of alerts, and

for each pair n1, n2 € N, there is a directed edge from n1 to n2 in E if and only if n1

prepares for n2.

The advantage of this method is that the correlation result is easy to understand

and directly reflects the possible attack scenarios. However, as the correlation is solely

based on IDS alerts, the result highly depends on the quality of the IDS alerts. For

example, the result may contain false correlations when there are false alerts.

 49

4.2. Integrating Alert Correlation and OS-Level Dependency Tracking

A different aspect of alert correlation which based on multiple information

sources to identify the relevancy between the relationships among IDS alerts and the

dependencies among OS-level objects, and then use the OS-level objects, and then the

OS-level dependencies to verify or discover the relationships among IDS alerts. To

identify such relationships, first the attacks’ OS-level behaviors are looked into.

From the operating system’s point of view, an attack is a set of OS-level events

that access or modify a set of system objects. The OS-level objects and operations

corresponding to an attack can be derived from the semantics of the attack. For

example, such semantics consist of two parts: one is the prerequisites and consequences

of attacks, and the other is the correspondence between the predicates in attacks

prerequisites or consequences and the OS-level objects on the host. With such

information, the OS-level objects can be identified the corresponding to the attacks on

the host. In other words, given an attack that exploits a vulnerable service as its

prerequisite and yields a shell as its consequence, the corresponding service process and

shell process can be identified.

Accordingly, the OS-level objects corresponding to an attack can be divided into

two sets: the prerequisite object set, which are the objects derived from the attack’s

prerequisite, and the consequence object set, which are the objects derived from the

attack’s consequence. These two sets may overlap, because some attacks’ consequences

may affect their prerequisite objects. By monitoring among the OS-level objects, the

dependencies among those objects at the OS-level can also be found. Though different

from the preparation for relation used in alert correlation, such OS-level dependencies

can be utilized to verify or discover the preparation for relations among the alerts (Zhai,

et al. 2006).

In essence, first necessary information from the alerts is extracted to identify the

corresponding OS-level objects. Then the dependencies among alerts are verified by

using the OS-level dependencies among their corresponding objects, and thus the alert

correlation based on the causal relationship is improved. Moreover, by identifying the

OS-level objects corresponding to the evidence of possibly are missed attacks, and

tracking back from those objects, the performance of existing methods can be improved

for hypothesizing about possibly missed attacks.

 50

An attack has to have impacts on the local system in order to be observable in

the OS-level log. Thus, OS-level dependency tracking guarantees improvement of alert

correlation for the alerts of successful attacks, though it may provide positive results

from some failed attack attempts.

How to find the OS-level objects accessed by the attacks which trigger IDS

alerts is discussed now. This process is called the mapping of IDS alerts to OS-level

objects. The semantics carried by an alert that can be used to identify the corresponding

OS-level objects are summarized below. Firstly, an IDS alert comes with a timestamp,

which indicates when the attack happens. Secondly, given alert has the knowledge

about how the attack works and how the system should behave in response to it. For

example, given a Snort alert “FTP EXPLOIT wu-ftpd 2.6.0” and the corresponding

attack exploits a vulnerable wu-ftpd server and forks a root shell. Finally, given local

system’s configuration can be identified that the OS-level objects correspond to each

predicate in attacks’ prerequisites and consequences (Zhai, et al. 2006). For example, a

predicate “Samba server” may correspond to “/usr/sbin/smbd” process on a given

computer. How each type of knowledge used to map the alerts is discussed below.

Though the number of logged events and objects is large in system logs, the

timestamp of each alert can be used to easily narrow down the potentially relevant

system objects. Given the timestamp of an alert, an approximate time window can be

estimated during which all the relevant OS-level activities occur, and then narrow down

the scope of OS-level objects that need to be examined.

Given the name of an alert, the prerequisite of the corresponding attack and the

knowledge of the consequence predicates from experts is known. Each of those

predicates is associated with some OS-level objects such as services, processes, and

files. Thus, for each predicate in attacks’ prerequisites and consequences, the

corresponding file or process can be identified on the host computer, and represent them

as (predicate, OS-level object) pairs in the knowledge base. For example, given a pair

(Samba_service(host_IP),”/usr/sbin/smbd”) in the knowledge base, whenever there is

predicate of Samba_service(host_IP), its corresponding process of ”/usr/sbin/smbd”can

be located. Thus, after identifying the predicates in an attack’s prerequisite and

consequence, the OS-level objects can be identified from the corresponding to those

predicates on the host computer.

 51

4.3. Alert Correlation Graphs

Alert correlation and analysis is a critical task in security management. Several

techniques and approaches have been proposed to correlate and analyze security alerts,

most of them focus on the aggregation and analysis of raw security alerts, and build

attack scenarios (Al-Mamory and Zhang 2007).

The correlation between alerts can be represented as a directed acyclic graph

ACG (Alert Correlation Graph) = (N, E) where N is a set of nodes representing alerts.

For each pair of nodes n1 and n2 € N, there is an edge from n1 to n2 if n1 prepares for

n2. In other words, the ACG provides an intuitive representation of correlated alerts,

reveals the intrusion strategies behind the attacks, and leads to better understanding of

the attacker’s intention (Al-Mamory and Zhang 2007).

An interesting method is the work of Ning et al. An alert correlation model

proposed which based on the observation that most intrusions consist of many stages,

with the early stages preparing for the later ones. Alerts collected from NIDS, correlated

off-line, and tried to draw big picture (through ACGs) of what happens in the network.

The resulted ACGs show that the proposed system can correlate related alerts, uncover

the attack strategies, and can effectively simplify the analysis of large amounts of alerts

(Ning, et al. 2004).

The above method generates ACGs depending on pre and post conditions of

individual alerts. The correlation model is build upon two aspects of intrusions that are,

Prerequisites (the necessary conditions for an intrusion to be successful) and

Consequences (the possible outcome of an intrusion). With knowledge of prerequisites

and consequences, the correlation model can correlate related alerts by finding causal

relationships between them. They used hyper alert correlation graphs to visually

represent the alerts, where each node represents a hyper alert and the edges represents

preparation for relation (Al-Mamory and Zhang 2007).

A hyper alert type T is a triple (fact, prerequisite, consequence), where fact

denotes the kind of information reported with the alert, prerequisite specifies what must

be true for the attack to be successful, consequence describes what is true if the attack

indeed succeeds. An hyper alert instantiates its prerequisite and consequence by

replacing the free variables with their specific values and adds an interval based

timestamp: [begin_time, end_time]. Given a hyper alert type, a hyper alert instance

 52

(hyper alert) can be generated if the corresponding attack is detected and reported by an

IDS. For example, we can generate a hyper alert instance of type SadminBufferOverflow

from a corresponding alert. The notion of hyper alert instance is formally defined as

follows. An hyper alert h1 prepares for hyper alert h2, if the end time of all the

prerequisite events of h2 found in the consequences of h1 occurred earlier

(h1.end_time < h2.begin_time) (Ning, et al. 2002):

Hyper-alert Type SadmindBufferOverflow =({VictimIP, VictimPort},

ExistHost(VictimIP)^VulnerableSadmind(VictimIP), GainRootAccess(VictimIP))

Hyper-alert hSadmindBOF ={(VictimIP = 152.1.19.5, VictimPort = 1235),

 (VictimIP = 152.1.19.7, VictimPort = 1235)}

The preparation for relation between hyper alerts provides a natural way to

represent the causal relationship between correlated hyper alerts. A hyper alert

correlation graph represents attack scenarios on the basis of the preparation for relation.

For example, if an IDS detects a DDOS daemon running on a host, it would be helpful

to inform the administrator how this happened, that is, report all the alerts that directly

or indirectly preparation for the DDOS daemon (Ning, et al. 2002).

The pseudo code of the proposed algorithm that builds ACG is shown in Figure

4.3:

Figure 4.4. Pseudo-code of graph generation algorithm
(Source: Ning, et al. 2002).

 53

In Figure 4.4, an intrusion alert correlator using the preparation for correlation

model. The implementation of the correlator assumes the alerts reported by IDSs are

stored in the database. Using the information in the knowledge base, the alert

preprocessor generates hyper alerts as well as auxiliary data from the original alerts.

The correlation engine then performs the actual correlation task using the hyper alerts

and the auxiliary data. After alert correlation, the hyper alert correlation graph generator

extracts the correlated alerts from database, and generates the graph files in the format

accepted by GraphViz. As the final step of alert correlation, GraphViz is used to

visualize the hyper alert correlation graphs.

Figure 4.5. The architecture of the intrusion alert correlator
(Source: Ning, et al. 2002).

Figure 4.5 shows one of the hyper alert correlation graphs discovered from the

2000 DARPA intrusion detection evaluation datasets (Ning and Cui 2002). Each node

in Figure 4.5 represents a hyper alert. The numbers inside the nodes are the alert IDs

generated by the IDS. This hyper alert correlation graph clearly shows the strategy

behind the sequence of attacks.

Figure 4.6. A hyper alert correlation graph discovered in the 2000 DARPA

intrusion detection evaluation datasets (Source: Ning and Cui 2002).

 54

CHAPTER 5

PROPOSED ARCHITECTURE AND EXPERIMENTAL

ENVIRONMENT

5.1. The Architecture of the Intrusion Alert Correlation

As discussed earlier, our goal is to improve alert analysis by integrating OS-level

event logging and object dependency tracking into IDS alert correlation. In this chapter,

a brief introduction is given to the alert correlation and OS-level dependency tracking

techniques to be used in our method. For alert correlation, the method used is based on

the prerequisite of the attack and consequence, due to the ease to make connections

between alert correlation and OS-level objects in this method.

In this section, an explanation of the proposed architecture is given. The

proposed architecture (Figure 5.1) contains an Ubuntu 9.04 server with an IP number

10.1.1.164 which hosts a Snort 2.8.4 IDS and Coral8 5.6.0 Correlation Engine and acts

as an IDS Alert Correlation Server in TurkDex network. Ubuntu 9.04 monitors specific

types of OS-level objects, i.e., processes and files. The objects are kept in a log with

their properties of the objects. It also monitors specific dependency-causing system calls

like process forking, file reading, and memory sharing, which together are called “high-

control events”. One vulnerable service running on the server: Samba 3.0 as files and

printers sharing service. Snort 2.8.4 was installed on the server to monitor the network

traffic as an IDS sensor. To detect attacks, the rules set used with Snort. Both Ubuntu

9.04 OS-level objects and Snort alerts are integrated to Coral8 Correlation Engine via

“/var/log/snort/syslogFormatted.csv” and “/var/log/snort/csv_alert.csv” respectively to

correlate the alerts and OS-level objects.

The background traffic is injected during the experiments to mimic an

operational network. The background traffic was collected on the target machine when

it was connected to the TurkDex network, and was manually verified to contain no

attacks toward the target machine. Some attack attempts are also injected by using

Nessus 4.0 vulnerability scanning server.

 55

Figure 5.1. TurkDex network structure

(Source: TurkDex 2009).

55

 56

The operating system of IDS alert correlation server is Ubuntu 9.04. Snort 2.8.4

IDS, Coral8 5.6.0 complex event processing engine server and studio, Samba 3.0 files

and printers sharing service, and Nessus 4.0 vulnerability scanning server need to be

installed.

First, the Ubuntu 9.04 Desktop ISO image that corresponds to our hardware

architecture i386 is needed and which can be downloaded from www.ubuntu.com.

When the download is over, burn the ISO image with a CD/DVD burning application

on a blank CD at 8x speed. Leave and reinsert the CD in your CD/DVD-ROM device

and reboot the server in order to boot from the CD. Follow the default installation steps

and then the Ubuntu 9.04 operating system will be installed.

The second step is to set up Snort 2.8.4 IDS on Ubuntu 9.04 OS.

sudo –s

Type “1234” root password to install service or programs on the Ubuntu.

apt-get install snort 2.8.4

At the end of Snort’s installation routine, you will be prompted if you wish to set

up a database for use with Snort. Choose no. The Snort manually configured. The Snort

output logs located into “/var/log/snort/csv_alert.csv” so that to integrate the output logs

with Coral8 CEP engine. To set the output log file edit the snort.conf file.

vi /etc/snort/snort.conf

At the line number 791 within Snort.conf file, write the output type and fields

of the snort output logs like the following line comment:

output alert_csv: csv_alert.csv timestamp, src, srcport, dst, dstport, msg

/etc/init.d/snort start

When you start the Snort IDS by the above command and which starts logging

the alerts into “/var/log/snort/csv_alert.csv” file.

Installation instructions are listed below for Coral8 CEP engine server and

studio.

Download and unpack the installation tar-files using the tar command:

tar xvfz coral8-server-5.6.0.tar.gz

tar xvfz coral8-studio.5.6.0.tar.gz

1. Configure the Coral8 server by install-server.sh script file:

sh ./coral8/install-server.sh

2. Start the Coral8 server using the following command:

./coral8/server/coral8-server.rc start

 57

3. Start the Coral8 studio using the following script command:

./coral8/studio/coral8-studio.sh

The next step is to setup a script file which writes the Ubuntu 9.04 system logs

into “/var/log/snort/syslogFormatted.csv” simultaneously. The script file “startSnort.sh”

located in “/usr/local/bin” and which includes the following linux commands:

#/bin/bash

SNORT_PATH=/var/log/snort

touch $SNORT_PATH/syslogFormatted.csv

echo "syslogFormatted.csv created."

echo "month, day, time, hostname, message" >

$SNORT_PATH/syslogFormatted.csv

echo "waiting for syslog..."

tail -f /var/log/syslog | sed 's/\([a-z]*\) \([0-9]*\) \([0-9]*:[0-9]*:[0-9]*\) \([a-

zA-Z]*\) /\1,\2,\3,\4,/' >> $SNORT_PATH/syslogFormatted.csv

Samba 3.0 files and printers sharing service should be installed on the server to

provide a vulnerable service to log system calls into syslogFormatted.csv and to detect

attacks by the Snort IDS.

sudo -s

apt-get install samba

/etc/init.d/samba start

At the last step of the server installation, the Nessus 4.0 installed which is one of

the best vulnerability scanners provided by www.nesus.org. The Nessus 4.0 can be

installed on Ubuntu 9.04 by following linux commands:

sudo –s

apt-get install nessusd nessus nessus-plugins

/etc/init.d/nessusd start

 58

Figure 5.2. Security monitoring by using IDS alert correlation server.

5.2. Details of Alert Correlation Scenario

The attack scenario exploits a vulnerable Samba server. It includes the following

attack steps: First, two remote buffer overflow attack attempts are exploited the

vulnerable Samba server. Second, a server daemon of a DDoS is uploaded and started

by Nessus vulnerability scanner on the target host. Lastly, Nessus client program is used

to direct the Nessus server daemon on the victim server to start SYN flood and UDP

flood attacks against another computer (Zhai, et al. 2006).

The above attacks took about 5 minutes. During the period, Ubuntu 9.04 logged

81.613 events. Moreover, the Snort sensor raised 9 “NETBIOS SMB trans2open buffer

overflow attempt” (“smb-bof”) alerts, 15 “DDOS tfn2k icmp possible communication”

(“tfn2k-icmp”) alerts, and 2 “ATTACK-RESPONSES id check returned root” (“id-

root”) alerts. The background traffic triggered 32 alerts related to the target server,

which include 8 “SCAN nmap TCP” (“nmap-tcp”) alerts, 23 “SNMP public access udp”

(“snmp-udp”) alerts, and 1 “FTP EXPLOIT wu-ftpd 2.6.0 site exec format string

overflow Linux” (“wuftp-fs”) alert. Among the 3 types of alerts, the third one is

triggered by the failed attempt of wu-ftpd buffer overflow attack injected into the

background traffic.

 59

5.3. Experimental Results

Using the alert correlation method proposed in (Ning, Cui and Reeves 2002), the

correlation graph generated shown in Figure 5.3.

Figure 5.3. The correlation graph.

In this alert correlation method, the encoded prerequisite and expanded

consequence sets in two Coral8 input adapters are stored, PrereqSet and

ExpandedConseqSet, along with the corresponding hyper-alert ID and timestamp,

assuming that each hyper-alert is uniquely identified by its ID. Both input adapters have

attributes HyperAlertID, EncodedPredicate, begin_time, and end_time, with meanings

as indicated by their names. As a result, alert correlation can be performed using the

following SQL statement on the Coral8 studio which is executed by the Coral8 engine.

SELECT DISTINCT c.HyperAlertID, p.HyperAlertID

FROM PrereqSet p, ExpandedConseqSet c

WHERE p.EncodedPredicate = c.EncodedPredicate

AND c.end_time < p.begin_time

The correctness of our implementation method is guaranteed by the following

theorem:

 60

Theorem 1. Under assumptions 1 and 2, the implementation method discovers

all and only hyper-alert pairs such that the first one of the pair preparation for the

second one (Ning, et al. 2002).

Obviously, the result of the correlation contains many false correlations due to

the false positives within the alerts. Using the operating system’s log and the semantics

of these alerts, mapped these alerts to a number of OS-level objects, as listed in Figure

5.4.

 Figure 5.4. OS-level objects corresponding to the alerts in the alert correlation scenario
(Source: Ning, et al. 2002).

For each alert prepared by other alerts, the generated Ubuntu 9.04 dependency

graphs by tracking back from their prerequisite objects are shown in Figure 5.3. In these

graphs, it is looked for paths from the earlier alerts’ consequence objects to a later

alert’s prerequisite objects if the former prepares for the alert. For example, when such a

path exists, the two alerts are strongly connected and thus the correlations between them

are verified at the OS-level. Otherwise, the correlation would be considered false. In

this way, each of the correlations can be verified in the original graph, remove those that

are verified to be false and finally come up with a new correlation graph. The new

correlation graph for the scenario is shown in Figure 5.5, it can be seen it is the correct

correlation graph of the reported Snort alerts based on the actual attack scenario.

 61

Figure 5.5. The alert correlation graphs (Source: Ning, et al. 2002).

 62

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, a series of techniques defined to integrate the alert correlation

method and examined the technique which based on prerequisites and consequences of

attacks and OS-level dependency tracking. A critical step in this integration is to

establish input adapters to Coral8 complex event processing engine with IDS alerts and

OS-level objects and to perform the SQL statement of the alert correlation method into

Coral8 engine via Coral8 studio. A number of constraints identified that the OS-level

objects should satisfy if they are relevant to the IDS alerts (or attacks) that are

correlated. By using these constraints, the IDS alerts verified as well as the correlation

between IDS alerts and reduced false correlations. Moreover, the dependency between

OS-level objects can also facilitate the hypotheses of attacks possibly missed by the

IDSs. The experimental evaluation gave favorable results, showing that OS-level

dependency tracking can significantly reduce false correlations when integrated with the

alert correlation method.

Several issues are worth for future research. In particular, self-learning alert

correlation systems would be the most applicable products for the information security

industry. The alert correlation will certainly help the system analyst in identifying the

intrusion by concentrating on the groups of alerts that are relevant with each other. By

using artificial intelligence techniques for clustering the alerts automatically by giving

inputs of such features which are extracted from generated alerts.

 63

REFERENCES

Al-Mamory, S.O. and H. L. Zhang. 2007. Scenario discovery using abstracted

correlation graph. Computational Intelligence and Security, 2007 International

Conference on 702-706.

Ammann, P., D. Wijesekera, and S. Kaushik. 2002. Scalable, graph-based network

vulnerability analysis. In Proceedings of the 9th ACM Conference on Computer

and Communications Security.

Axelsson, S. 1999. The base-rate fallacy and its implications for the difficulty of

intrusion detection. In Proceedings of the 6th ACM Conference on Computer and

Communications Security 1-7.

Bace, R. 2000. Intrusion detection. Macmillan Technical Publishing.

Bace, R. and P. Mell. 2001. Intrusion detection systems. NIST Special Publication.

Carter, E. 2002. Intrusion detection systems. http://www.informit.com (accessed

September 17, 2009).

Coral8 Inc. Coral8 getting started. http://www.coral8.com.

Coral8 Inc. Coral8 programmer’s guide. http://www.coral8.com

Coral8 Inc. Coral8 technology overview. http://www.coral8.com.

Cuppens, F. 2001. Managing alerts in a multi-intrusion detection environment. In

Proceedings of the 17th Annual Computer Security Applications Conference.

Debar, H. and A. Wespi. 2001. Aggregation and correlation of intrusion detection alerts.

In Recent Advances in Intrusion Detection 85-103.

 64

Debar, H., M. Dacier, and A. Wespi. 1999. Towards a taxanomy of intrusion detection

systems. Computer Networks. 31 1999 805-822.

Erdogan, Y. 2008. Development of a distributed firewall administration tool. Izmir

Institute of Technology thesis of Master.

Julisch, K. 2003. Clustering intrusion detection alarms to support root cause analysis.

ACM Transactions on Information and System Security 443-471.

Kruegel, C., F. Valeur, and G. Vigna. 2005. Intrusion detection and correlation

challenges and solutions. Advances In Information Security, Springer US 29-33.

Morin, B. and H. Debar. 2003. Correlation of intrusion symptoms: an application of

chronicles. In Proceedings of the 6th International Conference on Recent Advances

in Intrusion Detection.

Morrel, J. and S. D. Vidich. 2008. Complex event processing with Coral8.

http://www.coral8.com/developers/documentation.html.

Ning, P., D. Xu, C. Healey, and R. St. Amant. 2004. Building attack scenarios through

integration of complementary alert correlation methods. In Proceedings of the 11th

Annual Network and Distributed System Security Symposium 97-111.

Ning, P., Y. Cui, and D. S. Reeves. Constructing attack scenarios through correlation of

intrusion alerts. Proceedings of the 9th ACM Conference on Computer and

Communications Security Session: Intrusion Detection, 245-254.

OneSecure 2001. Intrusion detection and prevention protecting your network from

attacks allowed by the firewall.

Qin, X. and W. Lee. 2003. Statistical causality analysis of infosec alert data. In

Proceedings of the 6th International Symposium on Recent Advances in Inrusion

Detection. Pittsburg, PA.

 65

Rafeeq, R. U. 2003. Intrusion detection systems with Snort. Prentice Hall Ptr. ISBN 0-

13-140733-3.

Sans Institute. 2001. Sans: Intrusion detection FAQ. http://www.sans.org.

Snort. 2009. http://www.snort.org (accessed October 9, 2009).

TopLayerNetworks. 2002. Beyond IDS: Essentials of network intrusion prevention. Top

Layer Networks.

Valdes, A. and K. Skinner. 2001. Probabilistic alert correlation. In Proceedings of the

4th International Symposium on Recent Advances in Intrusion Detection 54-68.

Valeur, F., G. Vigna, C. Kruegel, and R. A. Kemmerer. 2004. A comprehensive

approach to intrusion detection alert correlation. IEEE Transactions on

Dependable and Secure Computing 146-169.

Vigna, G. and R. A. Kemmerer. 1999. NetSTAT: A network-based intrusion detection

system. Journal of Computer Security 37-71.

Webopedia. 2009. Intrusion detection system. http://www.webopedia.com.

Wikipedia. 2009. Complex event processing. http://en.wikipedia.org.

Wikipedia. 2009. Real-time computing. http://en.wikipedia.org.

Xu, D. and P. Ning. 2006. Correlation analysis of intrusion alerts. North Carolina State

University.

Zhai, Y., P. Ning, and J. Xu. 2006. Integrating IDS alert correlation and OS-level

dependency tracking. Lecture Notes in Computer Science, Springer Berlin /

Heidelberg 272-284.

 66

Zhai, Y., P. Ning, P. Iyer, and D. Reeves. 2004. Reasoning about complementary

intrusion evidence. In Proceedings of the 20th Annual Computer Security

Applications Conference.

 67

APPENDIX A

CSV ALERT LOGS

Table A.1. Alert Logs

10/06-
14:13:16.813679

SMB Server
daemon access TCP 10.1.1.100 1600 10.1.1.49 1633

10/06-
14:13:18.180317

SMB Server
daemon access TCP 10.1.1.100 1600 10.1.1.127 1093

10/06-
14:13:18.685073

SMB Server
daemon access TCP 10.1.1.4 52324 10.1.1.18 445

10/06-
14:13:18.685585

SMB Server
daemon access TCP 10.1.1.4 52324 10.1.1.18 445

10/06-
14:13:18.747273

SMB Server
daemon access TCP 10.1.1.100 1600 10.1.1.125 1699

10/06-
14:13:20.317846

SNMP public access
udp UDP 10.1.1.67 64186 10.1.1.13 161

10/06-
14:13:20.317846 SNMP request udp UDP 10.1.1.67 64186 10.1.1.13 161
10/06-
14:13:20.323481

SNMP public access
udp UDP 10.1.1.67 64186 10.1.1.13 161

10/06-
14:13:20.323481 SNMP request udp UDP 10.1.1.67 64186 10.1.1.13 161
10/06-
14:13:20.340528

SNMP public access
udp UDP 10.1.1.67 64186 10.1.1.13 161

10/06-
14:13:20.340528 SNMP request udp UDP 10.1.1.67 64186 10.1.1.13 161
10/06-
14:13:20.354223

SNMP public access
udp UDP 10.1.1.67 64186 10.1.1.13 161

10/06-
14:13:20.354223 SNMP request udp UDP 10.1.1.67 64186 10.1.1.13 161
10/06-
14:13:21.565185

SMB Server
daemon access TCP 213.139.216.130 443 10.1.1.27 3050

10/06-
14:13:28.893088

SMB Server
daemon access TCP 192.168.240.19 80 10.1.1.191 52770

10/06-
14:13:28.893092

SMB Server
daemon access TCP 192.168.240.19 80 10.1.1.191 52770

10/06-
14:13:28.893806

SMB Server
daemon access TCP 192.168.240.19 80 10.1.1.191 52771

10/06-
14:13:28.894589

SMB Server
daemon access TCP 192.168.240.19 80 10.1.1.191 52771

