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Point contact tunneling data are reported in a multilayered high-Tc cuprate
(Cu,C)Ba2Ca3Cu4O12+δ with Tc = 117 K. The tunneling spectra in the supercon-
ducting state (T � Tc) display spectral features such as well-defined superconducting
gap peak at ±∆ as well as dip-hump structures beyond the peaks. In some cases, the
spectra with two-gaps have been observed, indicating the coexistence of two inequiva-
lent superconducting layers. The statistical distribution of superconducting gap magni-
tude suggests two distinct kinds of superconducting gaps that may originate from two
inequivalent CuO2 planes, a characteristics of multilayered cuprates with n ≥ 3.
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Extensive efforts to understand the mechanism of high-Tc superconductivity have

been focussed on the doping dependence of superconducting (SC) and normal state

properties. As a result an unusual phase diagram has been established in which SC

critical temperature Tc varies as a bell-shaped curve with Tc maximum at hole con-

centration p ∼ 0.16 for most of hole-doped cuprates,1 and the SC gap magnitude,

∆(p), monotonically increases with decreasing hole concentration well into the un-

derdoped region where Tc decreases.2 The ∆(p) scales with the low-energy pseudo-

gap temperature, T ∗(p),3,4 indicating that the low energy pseudogap phenomenon
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is some type of precursor of superconductivity.4–8 Furthermore recent tunneling

studies on Bi2Sr2CaCu2O8+δ (Bi2212) revealed that the dip structures have strong

correlation with magnetic resonance mode observed by inelastic neutron studies.9

However, these studies have been done mainly on a double CuO2 layer cuprate,

Bi2212, and it is not clear whether these characteristic features are generic or not.

We demonstrate here that dip-hump features are observed in a multilayered

cuprate, (Cu,C)Ba2Ca3Cu4O12+δ (Cu1234) which bear a close resemblance to those

found in Bi2212. However, unique to multilayered cuprates is the possibility of

having up to two inequivalent Cu-O layers. The statistical distribution of ∆ in

Cu1234 suggests two distinct kinds of gaps, each of which can be linked to spectra

found on Bi2212 at different doping. This linkage provides a more microscopic

understanding of multilayered cuprates, showing most directly that the inequivalent

Cu-O layers each have their own doping level and SC properties. Furthermore,

these results provide additional evidence that the dip-hump features are generic to

hole-doped high-Tc cuprates.

This SC family was discovered using a high-temperature and high-pressure

technique.10–12 Multilayered high-Tc cuprates that include three or more CuO2

planes necessarily have two crystallographically-inequivalent kinds of supercon-

ducting CuO2 planes. These are called as inner planes (IP) and as outer planes

(OP) where the IP have Cu with fourfold-oxygen coordination and the OP have

Cu with fivefold-oxygen coordination. It has been suggested that in the multilay-

ered high-Tc cuprates, the hole concentration for each inequivalent Cu-O layer is

different.13–16 Here our interests are to investigate how these inequivalent CuO2

planes are reflected in the quasiparticle density of states (DOS) as measured in

tunneling.

Cu1234 polycrystalline samples were prepared by the high-temperature and

high-pressure synthesis technique.17 Our sample is (Cu0.8C0.1)Ba2Ca3Cu4O12+δ

as nominal composition. X-ray diffraction analysis shows the Cu1234 to be an

almost single phase and lattice constant was 3.86 Å and 17.94 Å for a- and c-

axis, respectively. The SC transition temperature Tc was determined as 117 K from

zero resistance temperature, where transition width ∆Tc ∼ 1 K. Superconductor-

insulator-normal metal (SIN) junctions were prepared by a point contact technique

using a Au-tip.2,5 Tunneling conductances were measured by standard ac lock-in

technique.

Tunneling studies on multilayered high-Tc cuprate Cu1234 which has two IP

and two OP, have only been done by Kane et al. to our knowledge.18 They re-

ported the overall quality of tunneling conductance varied from junction to junc-

tion, but the measured gap values remained almost constant, in the range of 27 to

30 meV. However, our tunneling results at 4.2 K showed a variety of gap magni-

tudes, which ranged from 5 mV to 72 mV in the peak position. Most of spectra

(∼ 70%) showed the larger gap whose magnitude ∆ is about 40–70 meV and repre-

sentative superconducting tunneling conductances are shown in Fig. 1(a). Most of

the characteristic features including sharp coherence peaks and dip-hump structures
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Fig. 1. (a) Typical dI/dV-V curves on (Cu0.8C0.1)1234. Each peak position is described as ∆
in the figure. (b) Representative tunneling conductance showing multigap features together with
the spectra showing smaller and larger gaps. Each gap position of #CM corresponds to smaller
gap and larger gap position. (c) Histogram showing the statistical distribution of superconducting
gap, ∆ of (Cu0.8C0.1)1234 in our tunneling studies. The histogram indicates the coexistence of
two kinds of gaps in the paring states, one is 10 ∼ 20 meV (denoted as I) and the another is
40 ∼ 70 meV (denoted as II) in the magnitude of ∆.

beyond the peaks are consistent with those observed on Bi2212,5,6 Tl2Ba2CuO6+δ

(Tl2201)19 and Bi2Sr2−xLaxCuO6+δ (Bi2201).20,21 Furthermore, the spectra show-

ing the larger gap exhibit features which are consistent with doping dependent

trends in Bi2212.5 For example, note the developing asymmetry in peak height as

the gap increases, which is exactly as found in Bi2212 in the underdoped region.5

However, we sometimes (∼ 30%) observed the tunneling conductance with

smaller ∆ which are ranged from 7 to 27 meV as shown in #CS (∆ ∼ 13 meV)

of Fig. 1(b), and the shape of tunneling spectra showing the small-gap magnitude

varies from junction to junction. In addition, we also observed the two-gaps as

shown in #CM of Fig. 1(b) and #CL2 in Fig. 1(a) as indicated by arrows. The

junction #CM showed clearly two distinct features at ∼ 10 mV and ∼ 70 mV. In

Fig. 1(b), the spectra showing larger gap (#CL3) and smaller gap (#CS) are shown

together with #CM due to compare the spectrum. As clearly seen in Fig. 1(b), the

position of notable features at ∼10mV and ∼ 70 mV correspond to smaller gap

and larger gap position, respectively. These two gap features have not been ob-

served on single CuO2 layer cuprates Bi2201,20,21 Tl2201,22 or double CuO2 layer

cuprate, Bi2212.2,5,6 However the similar features have been observed on a triple
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CuO2 layer cuprate, TlBa2Ca2Cu3O10−δ (Tl1223) whose results will be published

on separate paper.23 Thus the coexistence of two gaps may be a generic feature for

multilayered cuprates with the number of CuO2 planes n ≥ 3. In order to clearly

see the coexistence of two kinds of gaps, we summarized our tunneling results us-

ing (Cu0.8C0.1)1234-Au point contact junctions in Fig. 1(c), which is a histogram

showing the statistical distribution of ∆. From Fig. 1(c), one can notice that the

gap distribution consists of two regions, that is, one region (I) is about 10–25 meV

and the another region (II) is about 40 ∼ 70 meV. This result strongly suggests

that Cu1234 has two distinct energy gaps originating from distinct Cu-O planes.

We now discuss why the multilayered cuprates might display two distinct

kinds of gaps in the quasiparticle DOS. The major difference between multilay-

ered cuprates (n ≥ 3) and single- or double-CuO2 layer cuprates (n = 1, 2) is

the crystallographical structure of the CuO2 planes. The cuprates with n = 1, 2

have only equivalent CuO2 planes, but the cuprates with n ≥ 3 must have two

inequivalent CuO2 planes. That is, the IP and OP of multilayered cuprates most

probably have different electronic properties due to differences in bonding, doping

etc. There are some reports to support this assertion. For example, 63Cu-NMR

studies of (Cu0.6C0.4)1234 by Tokunaga et al. showed that OP and IP have differ-

ent electronic states, that is, the results on 1/T1T and Knight shift of OP showed

the characteristic features of heavily overdoped and those of IP showed those of

underdoped, and they suggested that the bulk SC transition at Tc = 117 K is

triggered by the underdoped IP in Cu1234.24 Previous our tunneling studies on

cuprates with n = 1, 2 showed that ∆(p) monotonically increases with decreasing

p on Bi22125,6 and La-doped Bi2201.20,21 Furthermore tunneling study on LSCO

also showed the similar ∆(p).25 Thus this unusual ∆(p) is most probably generic

feature for all hole-doped cuprates. If we assume this unusual ∆(p) is realized for

multilayered cuprates, our tunneling results suggest that the spectra with larger gap

corresponds to the electronic state of IP but those with smaller gap corresponds

to those of OP, by linking with the results observed by NMR studies.24 In addi-

tion, if we assume that the ratio of superconducting gap and Tc in Cu1234 with

Tc = 117 K is roughly same as that of optimally-doped Bi2212 with Tc = 95 K

and ∆ ∼ 38 meV,5 the superconducting gap ∆ will be 46.8 meV whose position is

indicated by arrow in Fig. 1(c). Thus this result suggests that the electronic state

showing larger gaps (IP) has a role producing a Tc as high as 117 K. On the other

hand, OP has a role to absorb the carrier supplying from charge reservoir layers

because bulk Tc of Cu1234 does not change even hole concentration is changed.17

Furthermore, concerning to the gap distribution within the each region (I & II)

in Fig. 1(c), it may originate intrinsic inhomogeneity of IP and OP as suggested

by Pan et al.26 Based on these discussion, we suggest that the IP corresponds to

optimally-doped or underdoped states and the OP to heavily overdoped states. The

∆ of IP is roughly 40–70 meV, that of OP is roughly 10–20 meV.

In summary, we have measured tunneling conductance on multilayered cuprates,

Cu1234 and reported the quasiparticle DOS at IP and OP. We found that multilayer
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cuprates have intrinsic electronic inhomogeneity between chemically distinct CuO2

layers as well as intrinsic inhomogeneity within each CuO2 plane. The IP correspond

to optimal/underdoped regime and produces a Tc as high as 117 K and the OP is

heavily overdoped by absorbing the majority of carriers supplied from the charge

reservoir layers. Furthermore, we find that peak-dip-hump structure is qualitatively

similar to Bi2212 and is therefore a generic feature of hole-doped high-Tc cuprates.
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