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..and the future is certain.. 

...give use to work it out…* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
                                                 
* from the song “Road to Nowhere” by the American rock band “Talking Heads” (1985) 

 



 iv 

ACKNOWLEDGMENTS 

 

 

I would like to express my appreciation to my supervisor Asst. Prof. Dr. Serhan 

ÖZDEMİR for his endless support and trust, encourage, ideas and comments throughout 

the all steps of this study. I would like to acknowledge to my parents for their support 

and patience. Also, I would like to thank to my colleagues in Mechatronics Laboratory 

for their help throughout this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v 

ABSTRACT 

 

ON THE PREDICTABILITY OF TIME SERIES BY METRIC 

ENTROPY 

 

The computation of the metric entropy, a measure of the loss of information along 

the attractor, from experimental time series is the main objective of this study. In this 

study, replacing the current warning systems (simple threshold based, on/off circuits), a 

new and promising prognosis system is tried to be achieved by the metric entropy, i.e. 

Kolmogorov – Sinai entropy, from  chaotic time series. Additional to metric entropy, 

correlation dimension and time series statistical parameters were investigated. 

Condition monitoring of ball bearings and drill bits was achieved in the light of 

practical considerations of time series applications. Two different accelerated bearing 

run-to-failure test rigs were constructed and the prediction tests were performed. 

However, as a reason of shaft failure in both structures during the experiments, none of 

them is completed. Finally, drill bit breakage experiments were carried out. In the 

experiments, 10 small drill bits (1 mmφ ) were tested until they broke down, while 

vibration data were consecutively taken in equal time intervals. After the analysis, a 

consistent decrement in variation of metric entropy just before the breakage was 

observed. As a result of the experiment results, metric entropy variation could be 

proposed as an early warning system. 
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ÖZET 

 

ZAMAN SERİLERİNİN METRİK ENTROPİ YARDIMIYLA TAHMİN 

EDİLEBİLİRLİĞİ 

 

Bu çalışmanın birincil amacı, deneysel zaman serilerinde, çekici boyunca bilgi 

kaybına eşit olan metric entropinin hesaplanmasıdır. Bu çalışmada, varolan basit eşik 

değerine dayanan uyarı sistemleri yerine, kaotik zaman serilerinden metrik entropi ile, 

diğer adıyla Kolmogorov-Sinai entropi ile, yeni ve umut verici bir hata teşhis sistemi 

başarılmaya çalışılmıştır. Zaman serilerinin pratik kullanımı ışığında, rulman ve matkap 

ucu durum izlemeleri gerçekleştirilmiştir. İki farklı hızlandırılmış rulman kırma test 

düzeneği ve testleri yapılmıştır. Fakat, iki düzenekte de deney sırasında şaft kırılmaları 

sonucu, testler tamamlanamamıştır. Son olarak, matkap ucu kırılma deneyleri 

yapılmıştır. Deneylerde, 10 adet küçük matkap ucu (1 mmφ ) kırılana kadar test edilmiş 

ve eşit aralıklı ardışık titreşim verileri alınmıştır. Analizler sonunda, metrik entropi 

değişiminde, kırılmadan az önce, tutarlı bir düşme gözlenmiştir. Deneylerin sonucunda, 

metrik entropi değişimi erken uyarı sistemi olarak önerilebilir. 
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CHAPTER 1 

 

INTRODUCTION 

 

 Time series analysis comprises methods that attempt often either to understand 

the underlying theory of the data points or to make forecasts of time series, which are 

sequence of data points, measured typically at successive times spaced apart at uniform 

time intervals. The last decade has brought dramatic changes in the way that researchers 

analyze time series. Nonlinear time series analysis is becoming more and more reliable 

tool for the study of complicated dynamics from measurements. 

Most real-world systems are nonlinear and can be analyzed by nonlinear 

techniques (Buzug 1994). Caputo et al. manage to analyze dynamic behavior of 

fluidized bed systems from some selected time series data. The most impressive feature 

of the nonlinear dynamics is chaos theory. Chaos is an aperiodic long-term behavior of 

a bounded, deterministic system that has sensitive dependence on initial conditions, 

where this feature is popularly known as “butterfly effect”.  

Due to the fact that nearly all the observable phenomena in daily lives or in 

scientific investigation are nonlinear, the importance of nonlinear dynamics is 

increasing day by day. Chaos and nonlinear dynamics have provided new theoretical 

and conceptual tools which allow comprehending the complex behaviours of systems. 

Being a developing tool, through out the literature, various solutions are achieved by the 

usage of these tools. Mechanical systems with backlash components were quantified by 

the chaotic behaviour of the responses and correlation between the quantification 

parameters and the parameters of the (non-linear) system is obtained (Tjahjowidodo et 

al. 2005). Elshorbagy et al. (2002) analyzed time series in means of nonlinear 

techniques for the estimation of missing stream flow data. After the chaotic behavior in 

the daily flows of the river is investigated, the reconstructing of phase space of a time 

series is utilized to identify the characteristics of the non linear dynamics. 

In the literature on dynamical systems and chaos, the terms phase space and 

state space are often used interchangeably. Phase space is a mathematical space which 

is completely filled with trajectories, since each point can serve as an initial condition. 
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At any instant time the state of system can be completely specified by indicating a point 

in state space. 

Correlation dimension is a characteristic quantity for time series and has been 

continuously gaining popularity by means of quantifying chaotic time series data. 

Determination of the correlation dimension from experimental chaotic time series data 

involves two steps. First, reconstruction of the phase space, then the computation of the 

correlation dimension from the phase space vectors. The condition monitoring of 

bearing systems with the effect of the gap clearance were characterized by the 

application of embedding space and correlation dimension estimation (Craig et al. 

2000). Furthermore, experimental results from a rolling element bearing from 

experiment rig are successfully diagnosed by using correlation dimension. With 

correlation dimension value, healthy and defected bearings were indicated. Also, defect 

type classification was achieved (Logan 1995). 

Chen et al. (1998) used the short term predictability feature of the chaotic 

systems and phase space characterization to make one-hour to one-day predictions of 

ozone levels. A reconstructed phase space model was applied to atmospheric 

environment and used for the ozone levels prediction. The predictability of time series 

can be indicated by metric entropy which is a measure of the rate of loss of 

predictability. Metric entropy (as known as Kolmogorov – Sinai Entropy) obtains that 

how far the future can be predicted with a given initial information. Drongelen et al. 

(2003) demonstrated the feasibility of using analysis of the Metric Entropy of the time 

series to anticipate seizures in pediatric patients with intractable epilepsy. Anticipation 

times varied between 2 and 40 minutes. 

Although most of the observable dynamical systems are nonlinear, before 

applying nonlinear techniques, it is necessary to first ask, if the use of such advanced 

techniques is justified by the data. Nonlinearity test with surrogate data is a process that 

indicates the existence of the nonlinearity in the system (Schreiber 2001). 

Another topic in nonlinear time series analysis is the effect of noise. Hegger et 

al. (1999) proposed a simple nonlinear noise reduction for the analysis of observed 

chaotic data. On the other hand, Elshorbagy et al. (2002) showed that  the used of that 

algotrithm for noise reduction might remove significant  part of the original signal and 

introduce nonexisting chaotic behaviour. 

Condition monitoring of a machine can be thought as a decision support tool 

which is able to indicate the development of probable failure in machinery component 
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or system, and that also predict failure occurrence. Even so, condition monitoring 

allows avoidable actions which performed before a failure happened. The most 

commonly used method for condition monitoring is vibration analysis. Although there 

are different types of condition monitoring techniques currently in use for the diagnosis 

and prediction of machinery faults, little attention has been paid to the detection of 

chaotic behaviour in time series vibration signal. The field of condition monitoring is 

always open to the introduction of new techniques for machine fault diagnosis. 

Therefore comparisons can be drawn between combinations of several different 

diagnosis techniques. Monitoring of a machining process is done by Govekar et al. 

(2000) on the basis of sensor signal analysis. For signal analysis, methods of nonlinear 

time series analysis are used. In recent years time series characterization is started to be 

utilized as a condition monitoring and fault detection tool. Current fault detection 

systems are simple threshold-based on-off circuits. The threshold values are determined 

by experiments and set with an appropriate safety margin. These safety limits govern 

the running of the machines, or human heart, and once set, they are not supposed to 

change in time. In reality, these systems are not even needed. Since, no time or financial 

losses might be spared when it is too late.  For instance, on an assembly line, to predict 

the failure of a failure-prone part within the work hours even before it has failed, and 

replace it might prevent the whole line from squandering precious hours on idle. 

Moreover on a vehicle, monitoring of a critical component real-time and on-line, and 

maintaining a view of the part could save lives, and months-long litigations in court for 

the manufacturers. Furthermore, a classification based method for condition monitoring 

of robot joints using non-linear dynamics characteristics was proposed by Trendafilova 

et al. (2000). 

In the condition monitoring field, on-line tool condition monitoring has a great 

significance in modern manufacturing processes. Sensing techniques, which have high 

reliability, have been developed for providing a rapid response to an unexpected tool 

breakage to prevent possible damages to the workpiece and machine component. Also, 

several techniques on the detection of tool breakage for monitoring the drilling 

processes have been developed over the past years (Xiaoli 1999 and Mori et al. 1999). 

This study attempts to correlate the chaos invariants with the changing 

conditions of a drilling process. Also, prediction of small drill bit breakage was 

examined by using metric entropy. Briefly, the aim of this study is to introduce a 

possible early damage detection method for mechanical systems. 
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This study presents experimental and a detailed analysis of mechanical drilling 

system which shows chaotic behaviour. The computation of the invariants was carried 

out by the TISEAN package (Hegger et al. 1999). In addition to that, various MatLAB 

codes and time series analysing program Culpertus (Appendix C) were created. 
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CHAPTER 2 

 

TIME SERIES ANALYSIS 

 

Time series analysis comprises methods that attempt to understand the data 

generating mechanism(s) of time series which are sequence of data points, measured 

typically at successive times, spaced apart at uniform time intervals. There are two main 

aims of time series analysis: (i) identifying the underlying theory of the phenomenon 

represented by the data points, and (ii) making forecasts (predicting future values of the 

time series variable). Both aims require the analyze of observed data point. Due to the 

fact that the nonlinear dynamics of time series can produce chaotic time series, previous 

data points are analized by nonlinear techniques. 

 

2.1. Nonlinear Dynamics 

 

 The term dynamic refers to phenomena that produce time changing patterns, 

where the characteristics of which at one time is interrelated with those at past times. 

The dynamic of any situation refers to how the situation changes over the course of 

time. A dynamical system is a physical setting together with rules for how the setting 

changes or evolves from one moment of time to the next. Dynamical systems can be 

either stochastic where the system evolve with respect to some random processes such 

as the toss of coin, or deterministic where the future uniquely determined by the past 

times. 

 Nonlinear systems represent systems whose behavior is not expressible as a sum 

of the behaviors of its descriptors. In particular, the behavior of nonlinear systems is not 

subject to the principle of superposition, as linear systems are. In nonlinear systems, a 

small change in a parameter can lead to sudden and dramatic changes in both qualitative 

and quantitative behavior of the system. As a result of this sensitivity, the behavior of 

systems that exhibit chaos appears to be random, even though the system is 

deterministic. The importance of nonlinear dynamics leans on the fact that nearly all the 

observable phenomena in daily lives or in scientific investigation are nonlinear. 
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2.2. Characteristics of Chaotic Behavior 

 

 In mathematics and physics, although there is no universally accepted definition 

of chaos, it is defined as “Stochastic behavior occurring in a deterministic system”. The 

most important feature of chaos is the unpredictability of the future although it is a 

deterministic system. Deterministic chaos refers to irregular or chaotic motion that is 

generated by nonlinear systems evolving according to dynamical laws that uniquely 

determine the state of the system at all times from a knowledge of the system's previous 

history. It is important to point out that the chaotic behavior is due neither to external 

sources of noise nor to an infinite number of degrees-of-freedom nor to quantum-

mechanical-like uncertainty. As a property of chaos, some sudden and dramatic changes 

in systems may give rise to the complex behavior. Briefly, chaos is an aperiodic long-

term behavior of a deterministic system that has sensitive dependence on initial 

conditions. The irregular behavior of chaotic system comes from the system’s 

nonlinearity, although it has no random inputs or parameters as a deterministic system. 

Also, as mentioned above, chaos is a long-term behavior, which means that in a chaotic 

system, the trajectories do not settle down to a limit cycle, a fixed point, a periodic orbit 

etc. A practical implication of chaos is that its presence makes it essentially impossible 

to make any longterm predictions about the behavior of a dynamical system. 

A chaotic dynamical system must satisfy the following requirements; 

 

• The periodic orbits of the system must be dense, 

• The system must be transitive, 

• The system must be sensitive to initial conditions. 

 

The density of periodic orbits in phase space is satisfied that for any point x in 

phase space, any neighborhood of x contains at least a point from periodic orbits. 

Furthermore, the transitivity means that no matter where the initial position on the 

attractor, the dynamics’ trajectory will be arbitrarily close to every other point on the 

attractor. 

The most striking and the most known property of chaotic systems is the 

sensitive dependence to initial conditions. Also it is popularly known as the "butterfly 

effect". This property can be described simply as, exponential separation of the nearby 
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trajectories. even the difference of two initial positions is very small, that two points in a  

chaotic system may move in extensively different trajectories, like flapping of a 

butterfly's wings might create cause a tornado to occur over time. Only if the initial 

conditions of two points are exactly the same, the system gives the same identical 

results. In addition to that, for all chaotic systems, the trajectory of the system never 

repeats. 

 

2.3. Phase Space Representation 

 

 Phase space is a mathematical space spanned by the dependent variables of a 

given dynamical system and in that space; all possible states of that system are 

represented. In other words, phase space is a representor of a dynamical system where 

each point on that phase space represents a particular state of the system at a particular 

time (Figure 2.1). 

 

 

Figure 2.1. Phase Space Representation of Lorenz System 

 

Phase Space representation is versatile tool in time series analysis. Due to the 

fact that, phase space determine all the states of a dynamical system, analysis of that 

system can be achieved in both identifying the system and predicting the future states 

via phase space representation. Because of phase space method is such a powerful 

technique; so many algorithms depend on phase space representation exist. From time 

series point of view, phase space representation is very useful, too. Although the actual 

phase space (state space) is unknown in experimental one dimensional time series, as a 
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substitute, an embedded phase space can be reconstructed by delay reconstruction 

technique. In that embedded phase space, the phase space analysis can be applied 

because embedded phase space own the same geometric properties as the state space. 

This fact arises from the fact that the attractor in reconstructed phase space is one-to-one 

image of the attractor in state space. 

 

2.3.1. Attractor Geometry 

 

 The strange behavior of chaotic systems has geometry of the set in phase space 

formed by the trajectories of the system called the attractor which the trajectories in 

phase space will have some final state on it, as the system evolves in time. Briefly, an 

attractor is a set to which all neighboring trajectories converge. Moreover, the attractor 

of a system determines the long-term behavior of that system. Basin of attraction for an 

attractor is a set of initial positions which are giving rise to trajectories that approach to 

a given attractor. Attractors are generally called as strange attractors, due to the fact 

that they generally have a very complicated geometry, fractal (self similarity) structure, 

in chaotic systems. 

Strange attractors have some characteristic features, i.e. any orbit or trajectory 

that starts on them stays on them for all time. Also, they have usually a noninteger 

dimension which is less than the dimension of phase space, e.g. if the phase space is two 

dimensional, the attractor will have a dimension less than two. 

 

2.3.2. Reconstruction of Phase Space 

 

 Physical phase space is the most important problem in time series analysis due 

to the fact that it is unknown. As a result, the computations are made in some alternative 

space called embedded or reconstructed space. The embedded (reconstructed) space 

enables to draw out a multidimensional description of state space dynamics from the 

time series data of a single dynamical variable, and generalizes the quantitative 

measures of chaotic behavior. 

 Behavior of trajectories has the same geometric and dynamical properties in the 

properly constructed embedding space. Geometric and dynamical properties 

characterize the actual trajectories in the full multidimensional state space for the 
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system. The behavior of the actual trajectories in the full state space is mimicked by the 

trajectories in the embedding space. 

Firstly, in 1980, Packard, Crutchfield, Farmer and Shaw suggested the theory of 

generating a reconstruction space from a single time series to characterize nonlinear 

dynamical systems, and the theory was completed by F.Takens. In 1981, he proved that 

the time-delayed variables constitute an adequate embedding provided the measured 

variable is smooth and couples to all the other variables. 

 

2.3.2.1 Delay Reconstruction 

 

The time-delayed embedding space is reconstructed state space chosen with the 

minimum dimension for which the important dynamical and topological properties are 

maintained. For most purpose this dimension need only be the next integer larger than 

2DA, where DA is the attractor dimension. The reconstructed attractor is a one-to-one 

image of the attractor in the original phase space, and this is the requirement of the 

minimal sufficient embedding dimension “m”. 

 

sn= ),,...,,( )1()2( vmnvmnvnn ssss −−−−−                                    (2.1) 

 

In this study, the time series analyses are processed as discrete time systems. 

Therefore, replacing to the time lag τ  for continuous systems, the sample lag v is used. 

The relation between these two is; τ = v ∆ t, where ∆ t is the sampling interval of the 

data. 

Computationally, finding optimum value m takes few steps to the result. At the 

beginning, although the optimal embedding dimension is unknown, embedding phase 

space can be reconstructed for various values of m with using optimum time lag v, e.g. 

for m=2,3,…7.  

For reconstructing a embedding vector sn, first, the sample sn is taken into the 

vector, and then v lagged sample sn+v, 2v lagged sample sn+2v, 3v lagged sample sn+3v are 

added into the vector. The number of lagged samples which are added into the vector is 

denoted by phase space dimension number m. 

During the formulation of reconstruction of phase space vector, for m values, the 

notation which varies between 0 to (m-1) is used. The reason of these is that every 
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vector sn has its own sample sn first (m=0). This notation of m values doesn’t effect the 

dimension, because from 0 to (m-1) there are m pieces. 

For the computational ease, the v next samples are added to the embedding 

vector. The lag direction of the embedding vectors doesn’t make any difference. The 

formula can be created with adding the v previous samples or v next samples. 

 
sn= ),,...,,( )1()2( vmnvmnvnn ssss −+−++                                    (2.2) 

 

Table 2.1. Illustration of reconstructing of phase space 

Reconstructed Phase Space Dimension Phase Space 
Vector 1 2 … m-1 m 

s1= s1 s1+v … s1+(m-2)v s1+(m-1)v 
s2= s2 s2+v … s2+(m-2)v s2+(m-1)v 
: : : ... : : 

sn= sn sn+v … sn+(m-2)v sn+(m-1)v 
: : : … : : 

sN-(m-1)v= sN-(m-1)v sN-(m-2)v … sN-v sN 

 

 The value of v needs computational process. Basically, this value represent the 

inter relations between data samples. To find the optimum value of sample lag, either 

autocorrelation which is linear correlation of a time series with its own past or mutual 

information which is the probability about the value of sn+v when the value of sn is 

known, is used. 

 

2.3.2.1.1. Autocorrelation 

 

 The time evolution of a system can be analyzed by using the autocorrelation of a 

signal. Autocorrelation measures how strongly on average each data point is correlated 

with one   time step away. It is the ratio of the autocovariance to the variance of the 

data. Autocorrelation is a linear measure, each term of which measures the extent to 

which sn versus sn+v is a straight line. The autocorrelation of a time series is; 

 

     
2

1

)})({(
1

σ

µµ∑
=

+ −−
=

N

n

vnn

v

ss
N

c                 (2.3) 
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where µ  is the mean value and the 2σ  is the variance value of the time series. 

In general the autocorrelation function falls from 1 at v=0 to 0 at large values of 

v. In deterministic chaotic systems, the autocorrelation of the time series exponentially 

decreases with increasing lag values, thus the value v at which it falls exponentially is 

called the optimum correlation time. In implementation, firstly the vc  values are 

computed, with changing values of v in between 0 and∞ . The v value which first makes 

vc ≈  0 or the decay of vc  exponentially is accepted as optimal lag (Figure 2.2). It is 

clear by the equation that the aim is to find the samples that are highly correlated each 

other with lag v. It should be noted that for a zero lag, autocorrelation equals to one. 

 

2.3.2.1.2. Average Mutual Information 

 

 Mutual information is a tool to measures of independence between data samples. 

Unlike the autocorrelation function which is based on linear statistics, the mutual 

information takes into account also nonlinear correlations. 

 

 

Figure 2.2. Autocorrelation of Lorenz System 

 

Mutual information is simply gives probability about the value of sn+v, when the value 

of sn is known. The computation of mutual information is; 
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                                (2.4) 

 

 First of all, from the time series data, a histogram is created including various 

bins. The choice of the length of the bins (ε) is not important, as long as it is fine 

enough. As in the equation, pi denotes the probability of sn being in the i
th bin of the 

histogram. Also pij denotes the probability of sn+v being in j
th bin while sn is in the i

th bin 

of the histogram. From the equation, the first minimum of the mutual information with 

related lag, I(v), indicates the optimum sample lag where  sn+v adds maximum 

information to the knowledge which is gotten from sn (Figure 2.3). 

 

 

Figure 2.3. The average mutual information of Rössler System 

 

2.3.2.2. Poincaré Sections 

 

 Poincaré section is a method for indicating the structure of a flow in a phase 

space more than two dimensions. Poincaré section is created by choosing a plane on the 

trajectory and recording on that plane the points at which the trajectory intersects that 

surface in a specified direction (same side of the plane). The intersection points give 

information about the dynamical system’s behavior. 

The choice of the poincaré section is not dependent on a rule. It need not be 

perpendicular to the trajectory, but it must not be tangent to trajectory. However, for 

better results, the placement of the plane must satisfied that it maximizes the number of 
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intersections with minimizes the time intervals between them. Depending to choice of 

the section and the path in the reconstructed phase space, the intersection points will 

vary. This method reduces the dimension of the attractor by one. 

 

2.4. Chaotic Invariants 

 

 In experimental time series analyses, the chaotic invariants are used to determine 

the system condition, to making estimations and even predictions. In this study, 

invariants such as correlation dimension (a measure of the complexity that quantifies 

the geometry and shape of strange attractors), Lyapunov exponents (a measure of 

sensitivity of the process to initial conditions) and metric entropy (a measure of the loss 

of information along the attractor) are taken to consideration for time series analyses. 

Calculation of these invariants requires that the time series must be reconstructed into a 

embedded phase space. 

 

2.4.1. Correlation Dimension 

 

 Correlation dimension is a measure of the fractal dimension of the time series, 

which measures the complexity that quantifies the geometry and shape of strange 

attractor. The correlation sum is used to estimate the correlation dimension. 

 

2.4.1.1. Correlation Sum 

 

 In chaos theory the correlation sum is the estimator of the correlation dimension. 

The correlation sum for a collection of points sn in some vector space is the fraction of 

all possible pairs of points which are closer than a given distance “epsilon” (ε ) in a 

particular norm. The method of correlation sum consists of centering a hyper sphere on 

a point in hyper-space or phase space, letting the radius of the hyper sphere grow until 

all points are enclosed, and keeping track of the number of data points that are enclosed 

by the hyper sphere (Figure 2.4). 

 Correlation sum C(ε ) is the number of points within all the circles of radius ε  

(Figure 2.5). Similarly, correlation sum can be considered as the fact where the 



 14 

probability of two different randomly chosen points will be closer than the distance ε . 

It is expected that C(0)=0 for a chaotic system due to the fact that the points never 

repeat in a non periodic system embedded without false nearest neighbor.  The 

correlation sum of a time series is computed by; 

 

       C(ε ) = 
)1(

2

−NN
∑ ∑
= +=

N

i

N

ij1 1

H(ε - ||si - sj||)                           (2.5) 

  

where |||| •  represent vector distance (euclid distance of two vectors) and H is 

the heaviside step function. 

 

 

Figure 2.4. Correlation sum demonstration 

 

 However, in a typical time series, the samples have correlation with each other 

when they are close in time, besides of having correlation according to attractor 

geometry. This kind of temporal correlations are excluded from the correlation sum by 

updating the correlation sum formula; 

 

C(ε ) = 
))1()((

2

minmin −−− nNnN
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nij1 min

H(ε - ||si - sj||)                  (2.6) 
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 Here, nmin values can be chosen generously as long as nmin<< N. The nmin value 

is not large enough if it’s taken as the first zero of the autocorrelation or decay of 

autocorrelation, so a bigger value than that must be chosen. 

 

 

Figure 2.5. The correlation sum graph of Rössler system 

 

 The correlation sum just counts the pairs (si sj) whose distance is smaller than ε. 

In the limit of an infinite amount of data (N→ ∞) and for small ε, it is expected that C to 

scale like a power law; 

 

C(ε) α εD                   (2.7) 

 

 According to this power law property a dimension value D, where based on the 

behavior of a correlation sum, can be defined as; 

 

ε
ε

ε
ε log

),(log
limlim)(

0

NC
D

N ∞→→
=                              (2.8) 

 

This dimension is called correlation dimension and it’s a characteristic quantity 

for time series. Correlation dimension simply shows that how C(ε) scales with ε. The 

local slopes of the correlation sum graph constructs correlation dimension graph, and 

the correlation dimension is equal to the average value of plateau region in the graph 

(Figure 2.6). 
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Figure 2.6. Correlation Dimension graph of Lorenz system 

 

Correlation dimension can also be used to determine whether a time series 

derives from a random process or from a deterministic chaotic system. The variation of 

correlation dimension according to embedding dimension is used to characterize the 

time series in this mean. If the time series is a random process, D(m) increases 

continuously. If the time series is a deterministic system, after some point D remains 

constant. A plot of the correlation dimension as a function of the embedding dimension 

indicates this property. 

 

2.4.2. Lyapunov Exponents 

 

The most important feature of chaos theory is the unpredictability of the long 

term future although it is a deterministic time evolution. In chaos theory, “similar causes 

have similar effects” belief is invalid except for short periods. Inherent instability of the 

solutions causes this unpredictability, which is called sensitive dependence on initial 

conditions. 

Instability in time series leads two important concepts. Although they are 

related, they are mentioned as different concepts. These are; loss of information quantity 

as known as Kolmogorov – Sinai (metric) entropy, the other one is the simply 

exponentially separation of the nearby trajectories a.k.a. Lyapunov exponent (λ ). 

Lyapunov exponent, which shows the long term behavior of the time series, is a 
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fundamental property that characterizes the rate of separation of infinitesimally close 

trajectories. Furthermore, the value of Lyapunov exponent represents the 

characterization of the system, e.g. if λ  is positive, the nearby trajectories diverge 

exponential, which means existence of chaos. 

 

Table 2.2. Characterization of the system via Lyapunov Exponents (Sprott 2003) 

1λ  2λ  3λ  4λ  Attractor Dimension 

(-) (-) (-) (-) Equilibrium point 0 

0 (-) (-) (-) Limit Cycle 1 

0 0 (-) (-) 2-torus 2 

0 0 0 (-) 3-torus 3 

(+) 0 (-) (-) Strange (chaotic) >2 

(+) (+) 0 (-) Strange (hyperchaotic) >3 

 

Many different Lyapunov exponents can be defined for a dynamical system. It is 

a result of multi dimension of phase space. However the most important Lyapunov 

exponent is the one which is called maximal Lyapunov exponent. 

Suppose that, in phase space, two points, which are close to each other with 

distance =0ε  ||
1n

s -
2ns ||, will diverge exponentially from each other after some step, and 

the distance between them becomes; =∆nε  || nns ∆+1
- nns ∆+2

||. The relation with these two 

distances can be obtained by; n

n e ∆
∆ ≅ λεε 0  where λ  is the Lyapunov exponent of that 

trajectory. Moreover, for finding maximal Lyapunov exponent from reconstructed time 

series data, firstly average distinction is calculated as: 
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where )(
0nU s  is the neighborhood of 

0ns  with diameter ε  and
0ns  is the first 

element of 
0ns . Then, if S exhibits a linear increase with identical slope, this slope can 

be taken as an estimate of maximal Lyapunov exponent (Figure 2.7). 
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In time series analysis, some modifications are applied to the data, e.g. rescaling, 

shifting, phase space reconstruction. Lyapunov exponents aren’t affected by these 

modifications.  

 

2.4.3. Metric Entropy (Kolmogorov – Sinai Entropy) 

 

 The metric (Kolmogorov – Sinai) entropy is a kind of measure to characterize 

chaotic motion of a system in an arbitrary-dimensional phase space. The metric entropy 

is proportional with the rate of loss of information at the current state of a dynamical 

system in the course of time. Meanwhile, metric entropy is a measure of the rate of lost 

of predictability, which indicates that how far into the future can be predicted with a 

given initial information. Metric entropy originate from information theory. 

In time series analysis, information theory provides an important approach. If 

the observation of a system is considered as a source of information with a stream of 

numbers, then the information theory can supply quantitive answer to how much info 

can be possessed  about the future when entire past have been observed. The metric 

entropy of a time series is; 
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0 ε
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                                (2.10) 

 

In metric entropy graph, estimated metric entropy is equal to the average value 

of plateau region in the graph (Figure 2.8). 

Metric entropy has units of inverse time (for continuous systems) or inverse 

iteration (for discerete systems). The value of the metric entropy describes the type of 

system, e.g. in random systems, the metric entropy is equal to infinity (1/0, zero step 

ahead can be preticted), and in periodic systems, the metric entropy is equal to zero 

(1/∞, all the information can be preticted). Metric entropy can not take negative values 

and can be large for a chaotic system. 
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Figure 2.7. Estimation of maximal Lyapunov Exponent of Henon Map. In the graph (a), 

      average distinction is calculated for various ε  values. (a) Average 

      Distinction (b) Maximum Lyapunov Exponent 

 

      

Figure 2.8. Metric Entropy of Henon Map which is calculated for embedding 

                  dimensions 1 to 10 
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2.4.3.1. Pesin’s Identity 

 

Pesin's identity relates the sum of positive Lyapunov exponents to the entropy of 

the system. Lyapunov exponents, which measure the exponential rate of divergence of 

nearby trajectories, are related to metric entropy in a such way that the metric entropy is 

equal to the sum of the positive Lyapunov exponents only when the natural measure is 

continuous along the unstable directions, as it is usually the case for chaotic flows (Eq. 

2.11). In 1977, Pesin proved that for certain classes of systems such as one dimensional 

maps, the logisitic map, henon map and tent map, the metric entropy is equal to the sum 

of positive Lyapunov exponents due to the fact that the system invariants are absolutely 

continues all expanding dimensions. 
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CHAPTER 3 

 

IMPLEMENTATION OF NONLINEAR DYNAMICS 

IN TIME SERIES 

 

Beyond theoretical aspects, there are few concepts to be considered before the 

analysis of the time series. Computation of invariants should be performed after some 

tests and processes are applied to the experimental data. Also, some calculations of 

invariants need parameters which are optimized to constant values. For a proper usage 

of time series, preliminarily processes should be taken into consideration. 

 

3.1. Stationarity 
 

 Stationarity is a property in which the mean, variance and autocorrelation 

structure remains constant over time, in other words, the distribution of the variables 

does not depend on time.  

A first step in time series analysis requires to achieve stationarity in the data, 

thus the stationarity test has to be made. Stationarity test can be done in few steps, these 

steps are: 

 

• Divide the series into equal length segments.  

• Compute the mean value for each consecutive segment.  

• Compare the segments’ means with the mean of the whole series. Compute the 

standard error: 
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In time series analysis, stationarity is quite important to satisfy that the 

invariants give the reliable results, while the series have no increasing or decreasing 
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trend, constant variance over time and constant autocorrelation structure. For instance, 

wherever the segment is taken from, the dynamics should remain the same. 

 

3.2. Testing Nonlinearity 

 

 The nonlinear analysis of time series use techniques for the underlying 

nonlinearity which exists in time series. Indeed, the stochastic linear systems may have 

very complicated structure. Even so, the application of nonlinear series methods has to 

be guaranteed by determining the nonlinearity in the time series which will be analyzed. 

Hence, before starting to analyze a time series by nonlinear techniques, it is needed to 

apply nonlinearity test to the data. In this study, nonlinearity test is achieved by the 

method of surrogate data. 

 

3.2.1. Method of Surrogate Data 

 

 Surrogate data is way of describing time series, whether it derives from 

nonlinear deterministic system or some linear process. For this purpose the null 

hypothesis which consists of candidate linear process is created. The objective is to 

reject the hypothesis. A typical null hypothesis would be that the data result from 

Gaussian linear stochastic process. 

 

3.2.1.1. Null Hypothesis (ARMA) 

 

 Autoregressive (AR) models include past observations of the dependent variable 

in the forecast of future observations and moving average (MA) models include past 

observations of the innovations noise process in the forecast of future observations of 

the dependent variable of interest. Autoregressive-moving-average (ARMA) models are 

time-series models that include both AR and MA components. Shortly, ARMA 

indicates linear models of the autocorrelation in a time series. ARMA models can be 

described by a series of equations. 
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Here η is independent Gaussian random numbers with zero mean and unit 

variance and ARM  and MAM  are the orders of the ARMA process respectively, e.g. if 

the order of autoregressive part is one 1=ARM , and the order of the moving average part 

is two 2=MAM , then the ARMA process is expressed as ARMA (1, 2). 

After creating surrogates, a statistics must be chosen to make comparison. This 

statistics can be linear or nonlinear prediction error, two or more point correlation, any 

kind of dimension etc. The task is to calculate this statistics for null hypothesis, data and 

its surrogates, then to make comparison between the results. The deviation of results of 

original data and its surrogates from result of null hypothesis, point out that the original 

data doesn’t come from a linear process. Some of the statistics for making comparison 

between null hypothesis and original data with its surrogates are shown below; 

 

• Linear Prediction Error 

 

Linear prediction and linear prediction error calculations are shown below; 
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where ŝ  shows the predicted value. The coefficient 0a  can be omitted by 

subtracting the mean from the data; µ−= nn ss . The coefficients ia  are determined by 

a best fit to whole time series. 
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where iqc  is the autocovariance matrix and q=1 to MAR 
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The illustration of computing coefficient ia  is shown below; 

 

For   1=ARM  ;         

∑

∑

=

−

=
+

=
N

n

n

N

n

nn

s

ss

a

1

2

1

1
1

1                                      (3.6) 

 

For   2=ARM ;         
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the sums are 

from 2=n to N  
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After creating the linear predictions of time series, the prediction error e  is 

computed for data sets. Root mean square (rms) prediction error is; 

 

( )2ˆ
nn sse −=                 (3.9)  

 

• High order correlations 
 

Higher order correlation calculations can be used because they are fast in 

computational time. Although the correlations are based on linear relations, higher-order 

autocorrelation measures the time asymmetry which is a strong signature of 

nonlinearity. One typical qth order quantity is; 
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The goal is making a comparison between null hypothesis and original data with 

its surrogates, according to the results of the statistics chosen. For this purpose, 

surrogates are created (Figure 3.1). Surrogate data sets should satisfy that they contain 

correlated random numbers which have the same power spectrum as the original data. 

The number of surrogates is computed by specified level of significance.  For 

significance of 95%, 19 surrogates must be created for testing (19 surrogates and one 

original data make a total number of 20 time series. 1 in 20, 5%). For the purpose of 

creating surrogate data, first of all, fast (discrete) Fourier transform of data is taken; 
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where k is between zero and N. Then ks&&&  values ate multiplied by random phases, 

ki

kk ess
φ&&&=′~  where kφ  are uniformly distributed in [0,2π). Finally, inverse FFT is 

computed. 
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After creating the surrogates, the statistics all K surrogate data sets are 

computed. If the major statistic results of original and surrogate data sets deviate from 

null hypothesis result, then the null hypothesis can be rejected. That majority is 

determined by significance level (e.g. 19 of 20 data sets in 95% significance level). 

Rejection of null hypothesis indicates nonlinearity of the time series. Otherwise, the 

series are based on a linear process. 
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Figure 3.1. Surrogate data of Henon map. (a) Original time series of Henon map  

                  (b) One of the examples of the surrogates of Henon map (c) Power spectrum 

                  of original series of Henon map (d) Power spectrum of one of the examples 

                  of the surrogates of Henon map 

 

3.2.2. Visual Inspection 

 

 Alternatively, testing nonlinearity process can be performed by using visual 

inspection from embedding dimension- correlation dimension graph. In chaotic time 

series, correlation dimension of a time series levels off at certain point in embedding 

dimension- correlation dimension graph. However, the surrogate data of that series 

continue increasing in correlation dimension monotonically with increasing embedding 

dimension. 

 The major purpose can be achieved by demonstrating embedding dimension- 

correlation dimension plot of original data and its surrogate. The convergence of 
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original data and continues increment of its surrogate are sufficient to indicate that the 

original data might not come from a linear stochastic process (Figure 3.2). 

 

 

 

Figure 3.2. Testing nonlinearity by using visual inspection from embedding dimension- 

                   correlation dimension graph. 

 

3.3. Nonlinear Noise Reduction (State – Space Averaging) 

 

 A time series with noise can be described in two components; one contains the 

signal, and the other one contains random fluctuations. The classical way to identify 

these two components is applying time series to power spectrum to obtaining the 

distinction and then using a filter for separation (e.g. Wiener filter). However, this 

approach fails for deterministic chaotic time series. The reason of failure comes from 

property of that kind of system. Such systems produce a broad band spectrum in which 

power spectrum of the signal resembles the power spectrum of random noise. 

Alternatively, a better approach, which is called nonlinear noise reduction (a.k.a. 

state space averaging), can be used (Figure 3.3). Nonlinear noise reduction is process 

which noisy measurements are replaced by better values. The process simply follows 

few steps shown below; 
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• Reconstructing the embedding phase space, 

• Finding the vectors sn which are in the ε  neighborhood of 
0ns , ε<− nn ss

0
, 

• Taking average of middle values (at [m/2]th column) of these vector, 

• Replacing the original values with the new, averaged values )(s
)
; 
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Figure 3.3. Phase Portrait of ECG data (a) Before noise reduction (b) After noise 

                  reduction 

 

In this algorithm, embedding dimension m should be taken a value that is higher 

than m value needed by embedding theorems. Also, the neighborhood value ε  should 

be taken a value that is large enough to cover the noise size. However, ε  value should 

also be smaller than a typical curvature radius which exists in the time series. In this 

approach, for the first and the last m/2 values of the time series, there is no correction 

available. This algorithm allows applying multiply iterations with decreasing ε  values 

until no further change can be observed. 

 

3.4. Tsonis Criteria 

 

 In time series analysis, the representation of the attractor is bounded with the 

number of data. In order to make a confidential analysis of time series, complete 

representation of the attractor and its geometric behavior should be satisfied. For a finite 
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data set, as the attractor dimension gets bigger, more data points are required to 

determine its dimension. At this point, the term of required number of data points is 

counted to the consideration. In the literature, controversial approximations exist. 

However, the compromise suggestion about the required data points came from Tsonis 

(1992). From his definition, the minimum sufficient data points for time series analysis 

is obtained by; 

 

ADN 4.02
min 10 +α                 (3.14) 

 

where DA is the attractor dimension. Additionally, from this equation, the 

highest embedding dimension can be obtained from given N data point; 

 

      [ ]2)log(5.2 −NDA α                (3.15) 
 

Even though there is no guarantee for sufficiency of calculation the data points 

from this equation, plausible estimations of necessary data can be achieved.  

 

3.5. Finding Optimum Embedding Dimension 

 

 Finding optimum embedding is a significant process while it determines the 

optimum reconstructed dimension which can be satisfactory for complete representation 

of actual phase space. Due  to the fact that deficient embedding dimension has not the 

same geometric properties as the attractor in actual phase, the analyses, the computation 

of the invariants and the conclusion results would be incorrect. Although, in this study, 

constant embedding dimension value is not used for some invariants’ computation, such 

as correlation dimension, calculation of all Lyapunov exponents of the system requires a 

constant optimum embedding dimension. 

 

3.5.1. False Nearest Neighbor 

 

 Suppose that, for a given time series, required minimal embedding dimension is 

m0. This means that the time series should be reconstructed at least in m0, on the 

condition that the reconstructed attractor is a one-to-one image of the attractor in the 
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original phase space. If time series is reconstructed to an smaller embedding dimension 

than minimal embedding dimension, then the state space trajectories projection of the 

points might appear as near neighborhoods of other points which they are not neighbor 

in actual. These points are called false nearest neighbors. 

To pass over this problem, it would be useful to increase the embedding 

dimension step by step beginning from small values while controlling the false nearest 

neighbors in each embedding. As the embedding dimension increases, the false nearest 

neighbors to a particular point in the embedding space should decrease until the 

embedding dimension is sufficiently large to cover the geometry of the attractor in 

phase space. This algorithm is called the false nearest neighbor method which is a 

method to determine the minimal sufficient embedding dimension introduced by Kennel 

et al. in 1992 (Figure 3.4). The idea of this algorithm is the following: 

 

• Find the nearest neighbor of each point in m-dimensional space, 

• Calculate the distance, 

• Iterate both points, calculate the distance and compute the ratio: 
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The criterion for selection of the required minimum embedding dimension is 

that the ratio of different embeddings converges at some point. The designation of the 

false nearest neighbors is essential for the calculation of invariants, like the correlation 

dimension, especially the Lyapunov exponent. 
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Figure 3.4. False nearest neighbor graph of drill vibration data 

 

3.5.2. Embedding Dimension – Correlation Dimension 

 

 Another method for obtaining optimum embedding dimension is the visual 

inspection from embedding dimension – correlation dimension graph. It is a fact that in 

chaotic time series, correlation dimension for increasing embedding dimension become 

constant after a saturation dimension level. In this way, optimum embedding dimension 

can be found as computing correlation dimension for various embedding dimensions 

and plot the results. In that plot, the level of embedding dimension where the correlation 

dimension converges is accepted as the optimum embedding dimension (Figure 3.5). 

 

3.6. Practical Considerations of Processing Time Series 

 

 In time series processing, an important concept, sampling rate, must be 

considered to fulfill  the desired data acquisition. 

 

3.6.1. Nyquist Sampling Rate Theorem 

 

 Sampling is a process which consists of converting a continuous time signal into 

a discrete time sequences. Discrete samples are a complete representation of the signal, 

hence sampling rate, which is the interval of it discrete moments of time, is very 

significant, because it would obtain how much detail the samples have about the signal. 
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According to the Nyquist Sampling Theorem, for the purpose of having no loss 

information about the signal, the sampling rate should be greater than or equal to twice 

the highest frequency present in the signal. When a signal is not sampled at a high 

enough rate, aliasing occurs. 

 

3.6.1.1. Aliasing 

 

 In sampling, the sampling rate should be at least twice value of the highest 

frequency which exists in the signal. If the sampling rate is not high enough to sample 

the signal correctly then a phenomenon called aliasing occurs. Mainly the term aliasing 

refers to incorrect representation of the actual signal by the distortion which has a base 

from lack of sampling rate. Moreover, aliasing indicates that the components of the 

signal at high frequencies are replaced with components at lower frequencies by 

mistaken. 

 

 

Figure 3.5. Embedding Dimension vs Correlation Dimension graph of Henon map 

 

3.6.2. Time Series from Vibration Signal 

 

In recent years, the most commonly used method for condition monitoring of 

rotating machines is the vibration measurement and analysis, because, the parameter 

which can be measured without stopping an equipment and which will give the 

maximum information about its working condition is vibration. The vibration of a 

machine is response of that machine to the forces caused by moving parts. However, it 



 33 

is not the only cause of machine vibration. Suppose that a machine force is producing a 

frequency of f and this force does not contain any other frequency. Because of the 

nonlinearity of mechanical structure of the machine, this f force will extend in 

magnitude, and can cause the vibration will occur at harmonics of f as well as f. 

Moreover, the connected materials, e.g. tool ends, can cause nonlinearity when they are 

misaligned. Besides this, their vibration signature contains a strong second harmonic of 

f. Also consecutive connections which are misaligned can often produce a third 

harmonic of f.  The outcome of forces acting at different frequencies, show itself by the 

generation new frequencies that do not exist in the forcing functions themselves. The 

new frequencies, which are the sum and difference frequencies, cause breakage of tool 

bit, defection of gearboxes, rolling bearings, etc. Moreover, one the reasons of 

generation of new frequencies which are not exist in the forcing functions is the 

modulation. 

Vibration analysis as a condition monitoring system consists of measuring 

sequence of data points at equal time intervals from the machine via sensors and 

performing the computations invariants by means of applied monitoring technique. 

Consecutive data measurements form time series which are commonly measured by 

accelerometers. 

 

3.6.2.1. Accelerometer 

 

An accelerometer is a device for measuring acceleration, shock or vibration. 

Accelerometers are used as in many other scientific and engineering systems such as 

condition monitoring, automotive, medical, etc. One of the most common uses for 

accelerometers is in airbag deployment systems for modern automobiles. When a 

collision or impact has occurred, the accelerometers detect the severity of it by the rapid 

deceleration of the vehicle.  

The most commonly used type of accelerometers is the piezoelectric 

accelerometer in which sensing element is a crystal which has the ability of emitting a 

voltage when subjected to a mechanical stress. This crystal is bonded to a mass such 

that when the accelerometer is subjected to a 'g' force, the mass compresses the crystal. 

In this manner, the crystal emits a signal which is related to the imposed 'g' force. 
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The location of the sensor is another significant feature. The vibration can be 

measured at various locations on the machine to infer the magnitude of the forces from 

these vibrations. However, it is very important that placing the sensor as closer as 

possible to the component which is desired to be monitored. 
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CHAPTER 4 

 

METRIC ENTROPY APPLICATIONS 

FOR CONDITION MONITORING 

  

Condition Monitoring is the process which represents the use of advanced 

technologies to determine equipment condition, and potentially indicate the 

development of probable failure in machinery. Condition Monitoring is a major 

component of the predictive or condition-based maintenance techniques. Even so, with 

condition monitoring, avoidable actions can be performed before the failure occurs, or 

the schedule of the maintenance can be achieved. Condition monitoring is much more 

cost effective while it can prevent the machinery component from failing. Condition 

monitoring is widely used in rotating machineries.   

 

4.1. Experimental Setup 

 

The aim of this study is to check the availability of creating a diagnostic and 

prognostic mechanical condition monitoring system, by the means of nonlinear 

dynamics. That is an introduction to a system which is equipped with intelligent fault 

detection. Time series implementations on bearings and drill bits are performed. For the 

ball bearing failure experiments, two different test rigs were created, but none of them 

was successfully completed. Therefore, a third test rig for the drill bit breakage was 

constructed. 

 

4.1.1. Ball Bearing Failure Test Rig I 

 

Most bearing fault detection application deals with pre-defected ball bearings 

where the bearings exhibit mature faults. Damages were seeded to the bearing typically 

by drilling the surface, or machining with an electrical discharge. Although, run-to-

failure experiments were planned in this study, small dents were created on the ball 

surface of the bearings. 
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The schematic of the bearing test rig is shown in Figure 4.1. The rig contains a 

shaft which was connected to the motor with a coupling arrangement. The shaft was 

supported by two bearings at its ends. The coupling ensures that the shaft is not effected 

from any of the vibrations from the motor, accommodating any misalignments present 

in the assembly. 

 

 

Figure 4.1. Schematic of bearing test rig I 

 

In the test rig, AC motor which has maximum 3000 rpm rotation speed was 

used. The support bearing and the test bearings were selected as UBC UC206 single 

row deep groove ball. The loading of the shaft is done through an UBC UC210 heavy 

duty deep groove ball bearing. This load bearing is mounted in between the test bearing 

and the support bearing, where it was kept near to the test bearing, as a purpose of the 

fact that major of the load was transferred to the test bearing. Therefore, by this 

configuration three-quarters of the load applied was acting on the test bearing. The load 

bearing, which is equipped with the housing, was pulled by a wire rope and pulley 

arrangement.  

The hydraulic jack with a pressure gauge was operated with a manual hydraulic 

pump. A piezoelectric accelerometer was placed on the housing of the test bearing. 
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Detailed information of the accelerometer and data acquisition can be found in section 

4.1.3 and on Table 4.1. 

Before the experiment, dents on the bearing’s ball were created by using EDM 

(electrical discharge machine) in order to keep size and depth of the dent under control 

(Figure 4.2). Dents were seeded in three different sizes, one was about 1 mm in 

diameter and 1 mm in depth, the other one was 2 mm in diameter and 1 mm in depth, 

and the last one was 2 mm in diameter and 2 mm in depth. 

 

 

Figure 4.2. The dents on the surface of the ball of bearing 

 

After allowing the bearing to initial run for while, vibration data was collected at 

a sampling rate of 192 KHz for 0.1 seconds long. The hydraulic jack was adjusted at 42 

bars that equals to acting 5kN force on loading, 3.8kN force on test bearing (Figure 4.3). 
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Figure 4.3. (a) The experiment rig for ball bearing testing (b) Adjusted value of the 

                  hydraulic jack shown in barometer 

 

Although all the force and torque calculations were computed with great margin 

to avoiding failure of a component other than test bearing, after 6 hours run time, the 

shaft of the motor was broken down. According to that failure, experiments on test rig I 

were canceled. Substitute to test rig I, a new, small scaled bearing test rig was designed. 

 

4.1.2. Ball Bearing Failure Test Rig II 

 

A small scale of test rig I was built(Figure 4.4). The bearing test rig II consists 

of one shaft, an ac motor, 2 supporting and as a test bearing one load bearing. After the 

experiences which were gained from the previous test rig, two bearings were selected as 

supporter, and the test bearing became the loading bearing itself. Also, in test rig II, no 

primary fault was created on the test bearings. Because of the lever type loading, a 

weight of 30 kg on the end of the force arm created a 2kN force on the test bearing. 

Similarly in the test rig I, after allowing initial running, vibration data was collected at a 

sampling rate of 192 KHz for 0.1 seconds long via accelerometer. But again, after 1 

day, the shaft of the system failed. 
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Figure 4.4. (a) Schematic of test rig II (b) A view of bearing test rig II 

 

According the failures which happened during the tests, run-to-failure 

experiments on ball bearings were held. Replacing the experiments, machine tool 

breakage test were decided to be performed. For this aim, small drill bit breakage test 

rig was constructed. 

 

4.1.3. Drill Bit Breakage Test Rig 

 

 The experimental setup for prediction of small drill bit breakage is shown in 

Figure 4.5. The test rig comprises PCB (printed circuit board) drill, drill stand, drill bit, 

scale weight, accelerometer, power supply/coupler and a personal computer. 

The 4 Channel Piezoelectric Sensor Power Supply/Coupler (Kistler 5134A1E) 

provides constant current excitation required by accelerometers and decouples the DC 

bias voltage from the output signal. Ceramic Shear triaxial accelerometer (Kistler 

8762A50) measures vibration simultaneously in three axis with high sensitivity. 

Computer based oscilloscope (Virtins Sound Card Oscilloscope) is used for online 

observation of vibration signal. Virtins software allows digitizing and acquiring the 

vibration data into a personal computer for further processing and analysis. 
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Figure 4.5. The schema of the test rig for drill bit breakage 

 

Drill stand with lever-operated drill feed mechanism was used in experiment 

setup. Drill stand has a sturdy column base with springs for smooth plunge action, and 

also it has an adjustable depth stop and depth fixing device for controlled and measured 

cuts, while an ECB drill, which has a 12-18 volt DC motor with maximum output 22000 

rpm, was fixed on it. Small high-speed steel (HSS) twist drill bits (1mm) were used 

during the experiments. As a drilling material, high carbon steel block is used because 

of its great hardness and brittleness which ensure that the drill bit is subjected to more 

torque and thrust force. 
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Table 4.1. Specification of experiment setup components 

Drill  Drill Stand 
12-18 V DC motor Approximate 1A  Total Height 210 mm 

Output Power 16-40 Watt  Base Dimension 100x200 mm 

Total rpm 15-22 000 rpm  Drilling Depth 30 mm max. 

Squeezing capacity 0.5-3 mm  Height Adjustment 0-100 mm 

     

Power Supply/Coupler  Accelerometer 

Frequency Range 
(with 30 kHz Filter) 0.036......30 kHz  

Frequency Response 
(±%5) 0.5....6000 Hz 

Lowpass Filters 
(cut-off frequencies) 

100, 1k, 10k,  
30 kHz  Sensing Element Ceramic/Shear 

Output Voltage ± 10 V  Output Voltage ± 5 V 
Output Current ± 5 mA  Source Constant Current 2.....18 mA 

 

4.2. Data Analysis 

 

 Drill bit breakage tests were performed by drilling the steel block with 1mm drill 

bits. Drill bits were mounted to the drill, while the drill was fixed to the drill stand with 

same height and plunge depth arrangement repetitively. Meanwhile for the feeding 

process, scale weight was hung to the end of the lever arm to provide a constant feed 

rate for the drill. After the adjustment of the experimental setup, drilling started until the 

drill bit breakage was observed. At the same time, vibration signals were taken by the 

accelerometer in constant time intervals while the drilling process was continuously 

running. The signals were firstly passed though coupler which was set with low-pass 

filter (cut-off frequency: 30 kHz), and the signals were sent to a computer. Analog 

signals were converted to digital data by sound card of the computer, and the vibration 

data was stored using Virtins software with 192 KHz sampling rate. The sampling rate 

and cut-off frequencies were set to maximum values which the present experiment 

equipments allow. Furthermore, high sampling rate provides confidence to avoid 

aliasing. 

A successful tool breakage prediction method must be sensitive to tool change in 

tool condition, but insensitive to the variations of drilling conditions. Therefore, drilling 

tests were performed at different conditions to evaluate the reliability of the experiment. 

However, only one orientation of drill speed, drill bit diameter, scale weight, lever 

position and mount length gave results successfully consistent.  
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Generally, drill bit breakage, which is caused by buckling and fluctuations in the 

cutting force, is a major problem with small drill bits of 2 mm or less. Indeed, the 

amount of feed, as well as the torque and thrust force, become too big for its diameter, 

and tend to cause breakage in small drill bits. On the other hand, with drill bit of 

standard size of about 3 mm or more, drill bit breakage is not a major problem, because 

as the diameter increases, the drill bit becomes rigid and tends to wear out instead of 

breaking. Therefore, 1mm diameter drill bits were used for testing. For instance, 1.5 

mm and 2 mm diameter drill bits were also tested but no drill bit breakage was observed 

at all. 

Different drill speeds were also tested. The drill, which was used in experiments, 

has 12-18 volt DC motor. The maximum output power is 40 watt with 22000 rpm. 

However, the drill speed adjustment is restricted with another variable; temperature. 

While 15 and 18 volt drilling attempts, very high temperature rise was observed which 

can damage the drill motor. Hence, the drill speed was set to 15000 rpm with 12 volt. 

Eventually, the different lever height and scale weight adjustments were tested. 

20, 50, 100, 200 and 500 grams of scale weights were located individually to the end of 

the lever arm. In each scale weight, different lever positions were also tested. 

Unfortunately in all that orientations rapid breakage or no breakage was observed. None 

of the adjustments gave a consistent result except one, 500 grams scale weight. With 

500 grams scale weight, from the moment equation, it is calculated that approximately 

20N force is applied to the drill downwards as feeding (Figure 4.6). So that, with this 

experiment adjustment, 1 mm drill bits can have a consistent 5-10 minute drill bit life. 

The small variation of the drill life is based on the drill bits production processes. 

The vibration data of the setup was taken in every minute until the bit was 

broken down. All the measurements were 0.1 seconds long which equals to 19200 

samples in each measurement. This sample number allows correctly representing the 

systems which have attractor dimension equals to 6, according to Nquist Sampling Rate 

Theorem. Although much more drill bits broke down, data acquisition of 10 drill bits 

successfully accomplished (Figure 4.7). 
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Figure 4.6. Schematic of lever force diagram 

 

 

Figure 4.7. The broken drill bits 

 

4.3. Experimental Results 

 

 The time series of the drill bit breakage prediction experiment were firstly tested 

for nonlinearity with surrogate data method (Figure 4.8). The visual inspection of 

distinction in embedding dimension – correlation dimension graph between original 

data and surrogate data was used to determine the nonlinearity. Moreover, nonlinear 

noise reduction process was applied to the series. However, because of the noise 

reduction algorithm’s method as state averaging, some parts of original signals were lost 
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during the process, thus the dynamical behaviors could change as a results of this 

algorithm. Therefore, original noisy data was used for the analysis.  

 

 

Figure 4.8. Nonlinearity test of drill bit 3 with surrogate data 

 

 

Figure 4.9. Noise Reduction Process of drill bit 5 (a) Before Noise Reduction (b) After 

                  Noise Reduction 

 

 Not only the chaotic variants were computed for the series, the time series 

statistical parameters were also taken in to account. RMS, kurtosis, skewness, crest 

factor values of all the series were calculated. Finally, the chaotic variants of series were 

obtained. 
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 After the long computation period, database of drill bit breakage experiment was 

achieved. On a global models, backpropagation ANN, system modeling was attempted, 

but not be accomplished, due to the fact that drill bits with the same remaining life have 

not the same range for the all calculated values. Therefore, the suitable similarities in 

variation of the values were sought. But again, no consistent relation occurred, except 

for the metric entropy. Only the metric entropy variation of the drills during the life 

time seemed consistent (Figure 4.10, and 4.11). In 7 of 10 drill bits’ variation of metric 

entropy, just one time step before the bit breakage, there is an obvious decrement, while 

in other situations metric entropy nearly remains constant. Owing to metric entropy 

extraction which is equal to the average value of the plateau where the all dimensions 

converge in metric entropy graph, a 5% error margin is indicated in variation of metric 

entropy. 

 

 

Figure 4.10.  (a)-(g) Metric Entropy graph of drill bit 7 (h) Metric entropy variation of 

                     drill bit 7 
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Figure 4.11. (a)-(j) The metric entropy variations of all 10 drill bits 1 to 10. 
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CHAPTER 5 

 

CONCLUSION 

 

 In this study, the prediction of small drill bit breakage by metric entropy was 

attempted. The vibration signals of the drill were measured in equal time intervals and 

the nonlinear analysis techniques were applied to the data. Additional to the chaotic 

invariants, statistical variables were also computed to predict the tool breakage. The 

experimental results showed that in only variation of metric entropy during the life time 

of a drill bit, there is a consistent decrement just before the tool breakage. Although the 

life time variation of the drill bits, which is thought to be caused by the production of 

drill bits, and the short lifetime of drill bits, the results are promising for a new 

prognosis technique for mechanical systems. Nonexistence of suitable orientation of the 

experiment setup during the experiments is a restriction for the reliability of the results.  

Finally, with the motivation of promising prediction results, this technique can 

be applied to the other mechanical systems as an early warning system replacing the 

unnecessary simple-threshold based warning systems. 

For future considerations, making the condition monitoring online in the 

operation of the selected system, ongoing faults can be detected earlier and the system 

can be recovered without any failure. Furthermore, this continuous monitoring can be 

implemented to any system where the early warning system is required. 
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APPENDIX A 

 

COMMON CHAOTIC SYSTEMS 

 
 

 
Figure A.1. Phase Portrait of Henon Map 
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Figure A.2. Phase Portrait of Lorenz Attractor 
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Lorenz Attractor 
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Figure A.3. Phase Portrait of Rössler Attractor 
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APPENDIX B 
 

STATISTICAL PARAMETERS 
 
 
 
Root mean square (RMS) 
 

Root mean square indicates the magnitude of variation of a series of discerete 

values or a continuously varying function.  The name comes from the process of  RMS. 

Firstly, the squares the values is taken. Then, mean of the squared values is found. And 

finally, root of mean of the squared values is calculated.    
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Skewness 
 

Asymmetry in the distribution of the sample data values is called skewness. 

There are two different tails of the distribution such as left tail having lower value of the 

distribution and right tail having higher value of the distribution. If the left tail is longer, 

then the function has negative skewness or left-skewed. On the other hand, if the right 

tail is longer, then it has positive skewness or right-skewed. Generally, positive 

skewness is more common than negative skewness.  
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Kurtosis  
 

If the sampled data is skewed, transformation can be applied to the data, for 

example, taking logarithms of right-skewed data. Then, one can characterize the shape 

of a distribution by using Kurtosis. If the tails are heavier then for a normal distribution,  

then  Kurtosis of the distribution is positive. Kurtosis of the distribution is negative 

when the tail are lighter. Kurtosis of zero is possible for the normal distribution.  
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Crest factor           
 

The Crest factor shows the ratio of the peak value of a waveform to its RMS 

value . It is defined by a pure number without units. For example, the crest factor of a 

sine wave is 1.414 when the peak value is 1.414 times the RMS value.  A typical 

vibration signals from an unbalanced machine without any other problems have a nearly 

1.5 crest factor. But when the bearings begin to wear, and impacting begins, the crest 

factor becomes much greater than this. The crest factor is so sensitive to the sharp peaks 

in the waveform. The reason of this is that the peaks happens suddenly, and hence it 

does not contain very much energy.  
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APPENDIX C 

 

CULPERTUS 

 

Culpertus is a time series analyzing program which allows time series invariants 

calculations and graphical representations. Culpertus takes its name from Latin letters 

“culpa compertus” which means fault certain. Autocorrelation, correlation sum, 

correlation dimension and metric entropy can be calculated with Culpertus. To 

download culpertus, please visit http://www.iyte.edu.tr/~erhansevil/ 

 

 

Figure C.1. Culpertus Open file 

 

 

Figure C.2. Culpertus Save Image 
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Figure C.3. Culpertus Autocorrelation 

 

 

Figure C.4. Culpertus Correlation Sum Parameters 
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Figure C.5. Culpertus Chaotic Invariants 

 

 

 

 

 

 

 

 
 

 

 

 
 


