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Abstract In this paper, nonlinear system identification
of the activated sludge process in an industrial waste-
water treatment plant was completed using adaptive
neuro-fuzzy inference system (ANFIS) and generalized
linear model (GLM) regression. Predictive models of
the effluent chemical and 5-day biochemical oxygen
demands were developed from measured past inputs
and outputs. From a set of candidates, least absolute
shrinkage and selection operator (LASSO), and a fuzzy
brute-force search were utilized in selecting the best
combination of regressors for the GLMs and ANFIS
models respectively. Root mean square error (RMSE)
and Pearson’s correlation coefficient (R-value) served as
metrics in assessing the predicting performance of the
models. Contrasted with the GLM predictions, the ob-
tained modeling results show that the ANFIS models
provide better predictions of the studied effluent vari-
ables. The results of the empirical search for the domi-
nant regressors indicate the models have an enormous
potential in the estimation of the time lag before a

desired effluent quality can be realized, and preempting
process disturbances. Hence, the models can be used in
developing a software tool that will facilitate the effec-
tive management of the treatment operation.
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Introduction

Tightening environmental constraints have made it in-
creasingly important for chemical process plants to be
operated efficiently and in an environmentally friendly
manner. Although several strategies have been put in
place to combat the menace of water pollution; waste-
water treatment still remains a major global challenge
for process industries, as the performance of any waste-
water treatment plant (WWTP) is affected by a distinct
combination of some physical, chemical, and biological
factors (Belanche et al. 2000; Mjalli et al. 2007; Singh
et al. 2010).

Important water quality parameters frequently used
to assess the performance of WWTPs include 5-day
biochemical oxygen demand (BOD), chemical oxygen
demand (COD), and total suspended solids (TSS). Fre-
quent monitoring of these parameters helps plant oper-
ators preempt process disturbances and, hence, maintain
environmental balance. This task often involves labori-
ous and expensive laboratory analyses (Dupuit et al.
2007). Therefore, the determination of wastewater
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treatment indices using predictive models could help in
a safe and cost-effective management of the treatment
process (Belanche et al. 1999; Mjalli et al. 2007; Singh
et al. 2010; Nadiri et al. 2018).

Wastewater treatment processes are highly nonlinear:
involving strongly coupled physical, chemical, and bi-
ological activities. Hence, predictive models developed
from mechanistic approaches are usually dimensionally
complex, and the solutions are intractable, computation-
ally intensive, and time-consuming (Mjalli et al. 2007;
Araromi et al. 2014; Nadiri et al. 2018). Also, several
assumptions often applied to simplify the resulting mod-
el introduce some degree of uncertainty which signifi-
cantly affects the precision (Gontarski et al. 2000;
Gernaey et al. 2004).

Contrariwise, soft computing techniques such as
artificial neural network (ANN) and adaptive neuro-
fuzzy inference system (ANFIS) have been found to
be efficient in the formulation of high-performing
models of complex nonlinear processes from histor-
ical data (El-Din and Smith 2002; Hamed et al. 2004;
Mjalli et al. 2007). Singh et al. (2010) applied linear
and nonlinear techniques to model a biological
WWTP based on the effluent BOD and COD. The
techniques are: partial least squares regression
(PLSR), multivariate polynomial regression (MPR),
and ANN. The authors concluded the nonlinear
modeling techniques (MPR and ANN) provided bet-
ter predictions.

Nasr et al. (2012) also developed an ANN model
to predict the performance of a biological WWTP in
Egypt using BOD, COD, and TSS as the character-
istic parameters. The authors indicated the model
sufficiently describes the nonlinear behavior of the
WWTP and can be used as a valuable assessment tool
by plant operators and management. In Mjalli et al.
(2007), ANN models for the prediction of the effluent
BOD, COD, and TSS of a local WWTP were
formulated. The model was incorporated into a
computer program to help operators monitor the
WWTP performance and ensure compliance with
discharge regulations. Pai et al. (2009) compared
the performance of ANN and ANFIS in the predic-
tion of the effluent suspended solids and COD of a
hospital WWTP. It was reported that ANFIS outper-
forms ANN in the prediction exercises.

Though ANN is a robust tool in modeling highly
nonlinear processes, it has some undesirable de-
merits. They are (1) the choice of network structure

and the problem of poor generalizations associated
with its incorrectness; (2) the knowledge of the
model is stored in synaptic weights and cannot be
easily interpreted; and (3) large amount of data is
needed to generate an adequate model. However,
recent studies have proved that ANFIS overcomes
these limitations, but the choice of model inputs
still poses a challenge in ANFIS modeling
(Passino and Yurkovich 1998; Hamed et al. 2004;
Pai et al. 2009; Suh et al. 2009; Pai et al. 2011;
Nasr et al. 2012).

Generalized linear model (GLM) regression is
another peculiar class of nonlinear modeling tech-
niques which has found applications in wastewater
process modeling (Dürrenmatt and Gujer 2012). It
uses random components to specify the distribution
of the response variable and a smooth invertible
linearizing link function to transform its expectation
to a function of the regressors (Hardin and Hilbe
2007). GLM is an extension of the familiar regres-
sion models that make use of normal distribution as
conditional distribution for response variables. Non-
normal distributions used to extend the usual regres-
sion framework include Poisson, gamma, inverse-
Gaussian, and binomial (McCullagh and Nelder
1989).

In previously published works, the model inputs
were mostly selected arbitrarily. However, to obtain
optimum results, it might help to make the choice via
appropriate empirical methods (Tomić et al. 2018).
For instance, Ahmadi et al. (2018) investigated the
influence of model inputs selected using different
combinations of methods which include principal
component analysis, gamma test, and correlation
model on the performance of a BOD model. The
authors reported the choice of inputs have significant
effects on the model prediction.

In this study, a procedure for the nonlinear dynamical
system identification of a biological wastewater treat-
ment process using ANFIS and GLM regression is
described and exemplified. Models for the prediction
of the effluent BOD and COD were both developed
from past inputs and output variables. For each model,
a brute-force search also known as exhaustive search
was employed in selecting the most adequate combina-
tion of the variables for the ANFIS models while a
penalized regression method termed least absolute
shrinkage and selection operator (LASSO) was used
for the GLMs.
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Materials and methods

The case study

The data used in this study was collected from the
WWTP of Seven-Up Bottling Company in Lagos,
Nigeria. This company is one of the largest beverage
manufacturing industries in the country. The compa-
ny produces different brands of soft drinks which
are widely consumed in the country. The plant de-
pends on a large volume of water in its daily oper-
ations which include, but not limited to, the prepa-
ration of feedstock and purification of packaging
bottles.

The process wastewater contains oil, solid objects,
suspended particles, dissolved chemicals, and organic
substances. The wastewater is disposed of in the treat-
ment operation cycle before discharged into the main
water body in the environment. The treatment objective
is to remove or reduce objectionable materials to a level
that conforms to environmental regulations and stan-
dards which limits the COD and 5-day BOD of effluent
discharges into surface waters and drainages to 30 and
6 mg/l, respectively.

The treatment process consists of three main stages,
viz. physical, chemical, and biological treatment pro-
cesses. The biological treatment step is an activated
sludge system where dissolved biodegradable organic
matter is degraded by micro-organisms to an acceptable
and ecologically safe limit. This is a typical example of a
process whose dynamics is difficult to fully comprehend
and manage due to perturbations in flow, organic load,
and concentration of micro-organisms per unit time
(Pons et al. 1999; Gernaey et al. 2004; Moral et al.
2008; Cristea et al. 2009).

Five-day BOD and COD are the organic content
indicators of the wastewater in this case study. These
parameters are monitored through sampling and labora-
tory analyses before and after treatment. Some of the
analyses involve the use of hazardous reagents such as
mercury sulfate, chromium trioxide, sulfuric acid, and
potassium dichromate. They are exacting and requiring
sophisticated laboratory equipment and gadgets. Also,
the determination of COD can take few hours while
BOD 5 days. For these reasons, accurate predictive
models developed from the historical data can facilitate
real-time monitoring and effective management of the
WWTP. Hence, it will be of important use in maintain-
ing environmental balance and ensuring the safeness of

water bodies (Dürrenmatt and Gujer 2012; Heddam
et al. 2016).

This study is primarily concerned with the activated
sludge system. Three hundred fifty-nine datasets were
collected over the period of a year, as seasonal changes
were considered important in capturing possible varia-
tions in the studied variables (Mjalli et al. 2007; Nasr
et al. 2012; Heddam et al. 2016). The collected data
include the influent and effluent BOD and COD record-
ed on a daily basis, and cover the peak (dry season) and
the lowest period (rainy season) of the company’s prod-
ucts demand.

Data preprocessing

To produce models that satisfactorily map-out the pro-
cess behavior, the data was preprocessed to eliminate
some likely unusable information which are probably
introduced into the WWTP database as a result of mea-
surement errors (Oliveira-Esquerre et al. 2002; Hamed
et al. 2004; Rustum and Adeloye 2007; Yel and Yalpir
2011; Tangirala 2015). Firstly, the dataset was subjected
to a statistical tool to sort out and remove outliers which
were classified as data-points lying outside ± 2σ, stan-
dard deviation of the group mean (Mjalli et al. 2007).
This procedure reduced the dataset to 324 data-points.

Also, for adequate process representation, the pres-
ence of noise in the data is undesirable as it causes non-
smoothing in the data trend which is counterproductive.
Thus, a data smoothing technique was applied to reduce
noise and normalize gaps caused by the removal of the
outliers (Rustum and Adeloye 2007). In the smoothing
process, each data-point was replaced with the average
of the neighboring data-points defined within a span
using moving average filter which is mathematically
expressed as:

ys ið Þ ¼
1

2N þ 1
y iþ Nð Þ þ y iþ N−1ð Þ þ…þ y i−Nð Þð Þ ð1Þ

In Eq. (1), ys(i) is the smoothed value of the i-th data-
point, N is the number of neighboring data-points on
either side of ys(i), and 2N + 1 is the span. Most re-
searchers use three-, four-, or five-point moving aver-
ages (span) (Mjalli et al. 2007). In this study, five-point
moving averages (span = 5) was used because it gave
satisfactory result when compared to others. The statis-
tical information of the preprocessed dataset is presented
in Fig. 1.

Environ Monit Assess (2018) 190: 495 Page 3 of 17 495



Brief description of system identification

This is the process of building models of dynamic
systems from observed input–output data. It involves
the use of the past inputs and outputs, known as regres-
sors, as model inputs (Passino and Yurkovich 1998;
Tangirala 2015). A linear mapping of this form is de-
fined as:

y kð Þ ¼ ∑q
i¼1θaiy k−ið Þ þ ∑p

i¼0θbiu k−i−1ð Þ ð2Þ
In Eq. (2), y(k) and u(k) are the system output and

input variables at time interval k ≥ 0 respectively. The
number of the past output and input variables used are
represented by q and p, respectively. The parameters
associated with the past output and input variables are
θa and θb, respectively. When Eq. (2) is expressed in a
matrix notation, it becomes:

y kð Þ ¼ f xjθð Þ ¼ θTx ð3Þ
Where,

x ¼ y k−1ð Þ;…; y k−qð Þ; u kð Þ;…; u k−p−1ð Þ½ �T
θ ¼ θa1;…; θaq;θb0;…θbq

� �T
)

ð4Þ

In Eqs. (3) and (4), x is the regression vector, and θ is
the vector of unknown parameters to be estimated. Each
vector is of dimensionNx1 where N = q + p + 1. System
identification involves adjusting θ making use of the
information contained in the observed data until the
error between the predicted and observed values is
reduced to an acceptable tolerance. Fuzzy identification
follows the same procedure by utilizing the predefined
regression vector x, but with functional capabilities
which enable it to achieve more accurate identification
of nonlinear systems than the linear map defined in Eq.
(2) (Passino and Yurkovich 1998; Araromi et al. 2014).

ANFIS architecture

Basically, neuro-fuzzy system, which only supports
Takagi–Sugeno–Kang (TSK) model, is a fuzzy infer-
ence system (FIS) constructed in the framework of a
neural network. It employs the easy interpretability and
expansiveness of fuzzy logic and the robust learning
ability of artificial neural networks as it extracts fuzzy
rules from observed data into a rule-base (Passino and
Yurkovich 1998; Guillaume 2001; Karray and De Silva
2004; Mingzhi et al. 2009; Nadiri et al. 2018). A rule in

a first-order TSK (with consequent linear function) is as
expressed in Eq. (5).

pth : IF X 1is A
p
1AND X 2 is A

p
2…AND X n is Ap

n THEN Op

¼ αp
0 þ αp

1X 1 þ…αp
nX n

ð5Þ

In Eq. (5), Xi is the i-th input linguistic variable of the
p-th rule. The corresponding linguistic value is Ap

i and n
is the number of input linguistic variables. Ap

i is linked
to a membership function (MF) μAp

i
X ið Þ. In each rule

consequent, Op denotes the output of the inference
process, and αp

0;…;αp
n are Sugeno parameters. For a

zero-order TSK, each rule consequent is a constant (αp
0)

as other Sugeno parameters are set to zero. Moreover,
each rule in ANFIS has unity weight and one output.

Fig. 2 shows the structure of a first-order TSK model
formulated as a five-layer feed-forward network. The
model in the figure has two inputs, four rules, and an
output which is determined by weighted average
defuzzification method. Each layer is a step in a fuzzy
identification process and their functionality is described
as follows (Guillaume 2001; Karray and De Silva
2004):

Layer 1: Fuzzification
Each node i, characterized by a MF, converts the

crisp inputs into membership values.

O1
i ¼ μAp

i
Xð Þ ð6Þ

Layer 2: Rule nodes
To evaluate the degree of fulfillmentWp of each rule,

T-norm, and T-conorm operators are used to express the
AND and OR connectives respectively. An example of a
T-norm operation is:

Wp ¼ μAp
i
X 1ð Þ⨂μAp

j
X 2ð Þ; i ¼ 1; 2; j ¼ 1; 2; p

¼ 1;…; 4 ð7Þ

Layer 3: Normalization
The normalized firing strength of the p-th rule is

calculated as the ratio of its firing strength to the sum
of all rules firing strengths.

Wp ¼ Wp

∑4
p¼1Wp

ð8Þ

Layer 4: Rule consequent
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These nodes evaluate the consequent of each fuzzy
rule. The values of the consequents are multiplied by
normalized firing strengths.

O4
p ¼ WpOp ¼ Wp αp

0 þ αp
1X 1 þ αp

2X 2

� � ð9Þ

Layer 5: Summation
The final output is calculated as the sum of all in-

coming signals.

O5 ¼ ∑4
p¼1Wp αp

0 þ αp
1X 1 þ αp

2X 2

� � ð10Þ

Regressors formulation and selection

In this work, two multi-input single-output models were
identified from the collected process data. One is for the
prediction of the effluent COD (model 1) while the other
is for the effluent BOD (model 2). In each case, four past
outputs and six past inputs, organized into three groups,
were considered as model input candidates as expressed
in Eq. (11) where u1(k) and u2(k) depicts the influent
BOD and COD respectively. And the effluent BOD or
COD is represented by y(k).

x ¼
y k−ið Þ; 1≤ i≤4
u1 k− jð Þ; 1≤ j≤6
u2 k− jð Þ

8<
: ð11Þ

It is quite difficult to determine how to select exog-
enous variables for adequate model approximation and
the search for the combination of the input candidates
which influences the output the most is a major chal-
lenge (Passino and Yurkovich 1998; Ahmadi et al. 2018;

Tomić et al. 2018). A fuzzy brute-force search was used
to select the ANFIS models inputs while LASSO was
used for the GLM regressors. The search space is expo-
nential in size and the task is to find x ∈Xwhich satisfies
a condition ψ. This exhaustive search method iterates
through all the elements in the search space, testing
every possible candidate solution. It builds an ANFIS
model for each combination, trains it for one epoch, and
reports its performance.

Since it is logical that the regressors should not
exclusively be from any of the process inputs or outputs,
one regressor each was selected from the three sets
highlighted in Eq. (11) (Passino and Yurkovich 1998;
Tangirala 2015). This step was separately performed for
the two models and 144 combinations were generated in
each case as shown in Eq. (12):

4
1C*

6
1C*61C ¼ 144 ð12Þ

Fuzzy exhaustive search algorithm identifies the
combination with the least training RMSE. But in order
to obtain models with minimal error and no over-fitting,
two other criteria were considered simultaneously. They
are low validation RMSE and relatively low positive
difference between the training and validation RMSE.
Figs. 3 and 4 show the exhaustive search results for
ANFIS models 1 and 2 respectively. Incidentally, the
combination of regressors y(k − 1), u1(k − 6), and u2(k
− 5) satisfied these conditions for both models and thus
stands out as the required regression vector. A rule in a
first-order Sugeno model considered in this study is:

10

15

20

25

30

35

40

45

Influent COD Influent BOD Effluent COD Effluent BOD

V
al

ue
s 

(m
g/

L)

Fig. 1 Statistical features of the
modeled data
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pth : IF y k−1ð Þ is Ap
1 AND u1 k−6ð Þ is Ap

2 AND u2 k−5ð Þ is Ap
3 THEN Op

¼ αp
0 þ αp

1y k−1ð Þ þ αp
2u1 k−6ð Þ þ αp

3u2 k−5ð Þ ð13Þ

Fig. 2 Five-layer ANFIS architecture: (a) schematic representation of weighted average defuzzification method; (b) overview of ANFIS
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For clear observation, only the combinations having
comparatively low RMSE values are reported in the
plots. In Fig. 3, it is observed that the aforesaid combi-
nation has the least validation error and a relatively low
training error. The difference between the error values,
which is illustrated as the distance between both points
on the plot, is comparatively low. This scenario is also
observed in the regressor selection process for ANFIS
model 2 (Fig. 4).

Notably, the identified regressors reveal the time
interval between a change in the process inputs and the
first significant change in the response. In case of a
process disturbance and tightening environmental con-
straints, this information can aid theWWTP operators in
approximating the time needed to realize a set treatment
quality before the treated wastewater is discharged into
the environment. Eq. (13) shows that at any instant in
time (day, k) the value of the effluent five-day BOD or
COD, y(k), can be obtained from y(k − 1), u1(k − 6),
and u2(k − 5) before new measurements are obtained.
Since the measurement process takes time, this implies
that by employing the described model inputs selection
method, it is possible to approximate future effluent
conditions based on measured past variables. The plant
managers can also detect potential process disturbances,
at least, a day earlier. In such cases, a number of acti-
vated sludge process variables, such as the hydraulic or
sludge retention time and mixing rate, can be adjusted to
control the situation and avoid a likely shutdown.

Fuzzy identification

Neuro-fuzzy systems are developed in two successive
stages: structure and parameter learning. In the structure
learning stage, a set of input–output numerical data is
partitioned to define the rules structure. Each partition
represents a rule and their boundaries overlap. Common
partitioning techniques include grid-type and clustering.
In grid partitioning, with n inputs and k input MFs, the
number of rules is kn. Though the number of rules
increases exponentially, grid portioning is effective in
extracting all the rules for a small number of inputs
(Guillaume 2001; Karray and De Silva 2004).

Grid partitioning was used in this study and two input
MFs were affixed to each regressor. The number of MFs
to be associated with each model input was determined
by trial-and-error (Mjalli et al. 2007; Jang 1993). It was
observed that any value higher than two increased the
models’ complexity and returned a very high training

and validation error. Thus, the number of rules generat-
ed is kn = 23 = 8. Figure 5 shows the adopted FIS
structure.

In the second stage, the values of the connection
weights and MFs parameters are adjusted and
optimized using learning algorithms. The hybrid
learning algorithm proposed by Jang (1993) was
adopted in this work: back-propagation method which
is based on gradient-descent optimization technique was
employed to tune the antecedent parameters while least
squares method was used for the consequent part.

The preprocessed data was divided into two: one-half
was used for model training and the other for validation.
Because correct ANFIS model specifications are deter-
mined empirically, the effects of five different input MF
types on the predicting performance of zero- and first-
order Sugeno model structures was examined (Jang and
Sun 1995; Guillaume 2001; Pai et al. 2011). The essence
was to identify the model specifications required to
realize a satisfactory performance. The considered input
MFs are presented in Table 1.

Generalized linear model (GLM) regression
with LASSO regularization

GLM regressions extend linear model regressions by
relaxing the assumption of linearity in the parameters
with the introduction of a link function and the use of
error distributions other than normal distribution. As
shown in Eq. (14), the model is a function of mean μ
with a linear combination xβ formed from regressors x
and coefficient vector β. The mean μi of the response
variable yi is modeled as a monotonic nonlinear trans-
formation of a linear function (ηi) of the regressors. For
each set of observation, the linearizing invertible link
function g(·) transforms the expected value of the re-
sponse μi = E(yi) to the linear predictor such that μi =
g−1(ηi) = E(yi) (McCullagh and Nelder 1989; Hardin and
Hilbe 2007).

g μið Þ ¼ ηi ¼ β0 þ β1xi1 þ β2xi2 þ β3xi3 þ…

þ βkxik ð14Þ
The choice of the linearizing transformation which is

partially separated from the distribution of the response
is an advantage in GLM regression. CommonGLM link
functions include: identity, natural logarithm, inverse-
square, inverse, square root, logit (sigmoid), and probit.
The identity link function, as the name implies, returns
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its argument unchanged such that μi = g−1(ηi) = ηi =
E(yi).

Least absolute shrinkage and selection operator
(LASSO) is a regularization method used with GLM
regression to identify and select dominant regressors
amongst redundant ones, and produce shrinkage esti-
mates with potentially low prediction errors than the
regular least squares. LASSO approach minimizes the
prediction error subject to a non-differentiable constraint
presented in terms of the L1-norm of the coefficients
(Tibshirani 1996). A nonnegative regularization param-
eter λ, known as penalty, is introduced to constrain the
size of the estimated coefficients and solve the objective
function in Eq. (15) where N represents the number of
data-points, β0 the intercept and β the p-vector of the
coefficients. D is the estimated expected deviance of the
model applied to new data as evaluated by cross-valida-
tion. As λ increases, the number of nonzero elements in
β decreases.

min
β0; β

1

N
D β0;βð Þ þ λ∑p

j¼1 β j

�� ��� �
ð15Þ

Tibshirani (1996) proposed a k-fold cross-validation
algorithm for the estimation of the prediction error in
order to compute the best λ. In this method, LASSO is
indexed in terms of λ and the prediction error is calcu-
lated over a range of values of λ from 0 to 1 inclusive.
The value of λ which gives the least prediction error is
selected. This method is often used for small parameters
vector space. Tenfold cross-validation was used in this
work. Figure 6 shows the cross-validated deviance of
the LASSO fit. It is a plot of the absolute deviance
against log λ. The broken vertical line with the blue
circle indicates the λ with the minimum deviance while
the longest continuous vertical line with the green circle
locates the minimum deviance plus one standard
deviation.
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ANFIS model 1
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Figure 7 displays the nonzero model coefficients
plotted as a function of log λ. Each curve on the plot
represents each of the 16 model input candidates
(regressors) highlighted in Eq. (11). As observed, LAS-
SO sets more coefficients to zero while few nonzero
ones remain as λ increases. The regressors having non-
zero model coefficients at the minimum deviance plus
one standard deviation point are y(k − 1), u1(k − 6), u2(k
− 5), and u2(k − 6). The LASSO regularization was also
separately performed for both models and the same
regressors suggested by the fuzzy search, with the ex-
ception of u2(k − 6), were obtained.

In the estimation of the GLMs, the responses were
considered to have inverse-Gaussian distribution. The
link functions used are identity, logarithmic, square root,
inverse, and square. The inverse-Gaussian distribution,

otherwise known as Wald distribution, can be used to
model nonnegative positively skewed data. Though this
distribution emanated from the theory of Brownian mo-
tion, it has been utilized in modeling different phenom-
ena (Jablonski et al. 2013). The density function is
presented in Eq. (16) where μ is the expected value of
the response and λ is the inverse of the dispersion
parameter.

p yð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
λ

2πy3

s
exp −

λ
2μ2y

y−μð Þ2

 �

for y > 0 ð16Þ

Models predicting performance metrics

RMSE and Pearson’s correlation coefficient (R-value)
were used to statistically assess the predicting perfor-
mance of the models: how well the predicted data ap-
proximates the modeled raw data. These metrics are
mathematically expressed as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 X obsv;i−X pred; i
� �2

n

s
ð17Þ

R−value¼
∑n

i¼1 X obsv;i−X obsv

� 

∙ X pred; i−X pred

� 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 X obsv;i−X obsv

� 
2
∙∑n

i¼1 X pred; i−X pred

� 
2
r ð18Þ

Where Xobsv is the measured or observed value, Xpred is
the predicted value, and n is the number of observations.
X obsv and X pred are the means of the observed and
predicted values respectively. The reliability of the mod-
el depends on the closeness of the RMSE to zero and R-
value to + 1 (Gontarski et al. 2000;Mjalli et al. 2007; Pai
et al. 2011; Dürrenmatt and Gujer 2012; Heddam et al.
2016; Oke et al. 2017).

Fig. 5 Adopted ANFIS model
structure

Table 1 Mathematical expressions of the considered MFs

Input MF Notation
Membership value μAp

i
Xð Þ

h i

Triangular trimf
max min X−ai

bi−ai ;
X−ai
bi−ai

� 

; 0

� 

Trapezoidal trapmf

max min X−ai
bi−ai ; 1;

X−ai
bi−ai

� 

; 0

� 

Generalized bell gbellmf

1

1þ X−ci
ai

��� ���2bi
Gauss (one-sided) gaussmf

exp
− X−ci

2σi

� 
2

Gauss (two-sided) gauss2mf

exp
− X−ci

σi

� 
2

ai, bi, ci, di, and σi are the MFs parameters
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Results and discussion

ANFIS modeling

As earlier stated, model 1 is the predictive model of the
effluent COD while model 2 denotes that of the effluent
BOD. Table 2 presents the predicting performance of
ANFIS model 1 for different combinations of input and
output MFs. Although the least difference between the
training and validation errors was achieved when trimf
and linear were used as the MFs and the corresponding
RMSE values are also relatively low; it is observed that
the R-value (0.947) is a bit lower than that obtained
when gbellmf and constant were used as the input and
output MFs respectively. Also, the gbellmf and constant
MF combination produced the highest R-value (0.948).
Figure 8 shows how the errors change as the training
proceeds. It illustrates that convergence was achieved
for both the training and validation errors before the
200th epoch. The resulting training (1.130) and valida-
tion RMSE (1.302) are also comparatively low and the
positive difference between both does not suggest

model over-fitting. Therefore, the combination of
gbellmf and constant MF types suitably identify the
relationship that exists between the modeled variables
for ANFIS model 1.

The predicting performances of ANFIS model 2 for
different combinations of input and output MFs are
presented in Table 3. From the table, the highest R-value
(0.947) was realized in four different modeling scenar-
ios. Two of these cases are significant because they gave
lower validation errors. They are trimf and linear, and
gbellmf and constantMFs combination, but the positive
difference between the training (0.899) and validation
RMSE (1.041) for the gbellmf and constant MFs com-
bination is lower when compared to that obtained in the
trimf and linear MFs combination. This implies less
over-fitting in the resulting model, thus, making it the
model configuration with the best predicting perfor-
mance for ANFIS model 2. The training progress for
this case is presented in Fig. 9. It shows the errors also
converged before the 200th epoch. This informs that the
data was not over-fitted and, hence, the produced model
generalizations are reliable.
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GLM regression

The influence of different transformations (link func-
tions) on the predicting performance of the two GLMs
was studied. The result of the performance evaluation is
presented in Table 4. Themaximum R-value (0.637) and

the least errors were realized when no transformation
(identity link) was applied to the responses. This is
consistent with that obtained in ANFISmodeling, where
the same model specifications yielded the best
predicting performance for both models. The GLM
regression is expressed as:

y kð Þ ¼ β0 þ β1∙y k−1ð Þ þ β2∙u1 k−6ð Þ þ β3∙u2 k−5ð Þ þ β4∙u2 k−6ð Þ þ β5∙y k−1ð Þ2 þ β6∙u1 k−6ð Þ2

þ β7∙u2 k−5ð Þ2 þ β8∙u2 k−6ð Þ2 þ β9∙y k−1ð Þ∙u1 k−6ð Þ þ β10∙y k−1ð Þ∙u2 k−5ð Þ þ β11∙y k−1ð Þ∙u2 k−6ð Þ
þ β12∙u1 k−6ð Þ∙u2 k−5ð Þ þ β13∙u1 k−6ð Þ∙u2 k−6ð Þ þ β14∙u2 k−5ð Þ∙u2 k−6ð Þ ð19Þ

Table 2 Predicting performance using different MFs for ANFIS model 1

Input MF RMSE R-value

Output function Output function

Constant Linear Constant Linear

Training Validation Training Validation

trimf 1.164 1.310 1.129 1.309 0.946 0.947

trapmf 1.152 1.336 1.097 1.359 0.945 0.946

gbellmf 1.130 1.302 1.094 1.361 0.948 0.946

gaussmf 1.178 1.329 1.092 1.355 0.944 0.946

gauss2mf 1.173 1.341 1.112 1.372 0.944 0.945
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Training (green) and Validation (red) error curveFig. 8 Training progress for
ANFIS model 1
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For both models, the estimated coefficients and
their statistics are presented in Table 5. At 5% signif-
icance level, the intercept (β0) and all the LASSO
selected regressors, except u2(k − 6), are significant,
as the p-values ≪ 0.05. This observation is also in
agreement with the fuzzy brute-force search result
where y(k − 1), u1(k − 6), and u2(k − 5) were selected
as the most influential regressors. However, the R-
values and RMSE values reported in Table 4 are
undesirable. When these values are compared to
those obtained in ANFIS modeling, it can be provi-
sionally said that the ANFIS models perform better
than the GLMs.

Significance of the results

The results obtained in this work are consistent. The
same regressors were identified in the fuzzy exhaustive
search and LASSO regularization processes and identi-
cal specifications produced the desired predicting per-
formance in both models and modeling approaches.
This is largely due to the modeled data structure, and
affirms that the reliability of a black-box model hinges
on the correctness of the data. It is noteworthy that
appropriate model specifications are determined empir-
ically which is a time-consuming process for higher
number of inputs as it necessitates testing different com-
binations of the variables before arriving at one that

Table 3 Predicting performance using different MFs for ANFIS model 2

Input MF RMSE R-value

Output function Output function

Constant Linear Constant Linear

Training Validation Training Validation

trimf 0.918 1.046 0.893 1.043 0.946 0.947

trapmf 0.934 1.074 0.864 1.086 0.944 0.946

gbellmf 0.899 1.041 0.860 1.081 0.947 0.947

gaussmf 0.930 1.060 0.861 1.078 0.945 0.947

gauss2mf 0.950 1.101 0.903 1.101 0.941 0.944
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Training (green) and Validation (red) error curveFig. 9 Training progress for
ANFIS model 2
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gives the desired model performance. In this study, three
input variables were used to adequately model a highly
nonlinear behavior and the adopted model structure
achieved this within a reasonably short simulation time,
circumventing the curse of dimensionality peculiar to
grid-partitioning techniques in ANFIS modeling
(Guillaume 2001; Karray and De Silva 2004; Jang
1993).

How good is a fit? One obvious metric is how close it
is to the measured data-points. For visual inspection, fits
of the measured data and model predictions of the
effluent COD and BOD are presented in Figs. 10 and
11 respectively. For both model training and validation

datasets, the figures show the ANFIS predictions are
closer to the corresponding measured values than the
GLM predictions. Figure 12a, b, c, d illustrates the
degree of linear relationship between the measured data
and the corresponding predictions of GLM 1, GLM 2,
ANFIS model 1, and ANFIS model 2 respectively. The
linear fits reveal that the measured data and ANFIS
predictions are in satisfactory agreement. These show
the ANFIS models outperform the GLMs. The results
also illustrate that wastewater treatment processes, such
as this case study, are highly nonlinear and cannot be
effectively modeled using mechanistic approaches or
linear model structures (Oliveira-Esquerre et al. 2002;

Table 4 GLM regression results

Transformation Model 1 R-value Model 2 R-value

RMSE RMSE

Training Checking Training Checking

Identity 2.895 3.042 0.637 2.307 2.415 0.637

Natural logarithm 2.915 3.083 0.631 2.319 2.441 0.632

Inverse 2.984 3.193 0.615 2.369 2.517 0.619

Square 2.929 3.090 0.629 2.338 2.466 0.626

Square root 2.899 3.055 0.635 2.309 2.422 0.635

Table 5 GLMs estimated coefficients and their statistics

Coefficient Model 1 Model 2

Estimate Standard error t-statistics p-value Estimate Standard error t-statistics p-value

β0 −2.936 0.509 −5.766 8.089e−09 −1.326 0.567 −4.786 1.080e−07
β1 0.249 0.607 4.099 4.150e−05 0.257 0.676 5.299 2.102e−06
β2 0.355 0.633 4.028 5.616e−05 0.138 0.656 4.018 1.696e−08
β3 0.529 0.542 4.231 2.320e−05 0.543 0.533 5.431 1.019e−05
β4 0.488 0.503 0.969 0.332 0.128 0.603 0.899 0.602

β5 0.013 0.621 0.990 0.322 0.213 0.672 0.879 0.702

β6 −1.776 0.551 −5.036 4.740e−07 −2.656 0.551 −6.236 1.740e−06
β7 −1.379 0.582 −4.083 4.436e−05 −1.324 0.575 −4.183 4.136e−06
β8 0.778 0.577 1.347 0.178 0.718 0.582 3.247 0.778

β9 0.615 0.621 0.990 0.322 0.934 0.571 0.800 0.923

β10 −0.070 0.505 −0.140 0.888 −0.168 0.602 −0.210 0.801

β11 0.021 0.576 3.506 4.537e−04 0.121 0.726 4.006 1.530e−04
β12 0.795 0.559 1.423 0.155 0.495 0.537 1.523 0.113

β13 1.268 0.554 2.287 0.022 0.668 0.532 2.587 0.122

β14 1.780 0.543 3.278 0.104 2.780 0.556 4.008 0.234
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Gernaey et al. 2004;Moral et al. 2008; Singh et al. 2010;
Heddam et al. 2016; Oke et al. 2017).

Conclusions

The application of mechanistic approaches in identify-
ing the behavior of nonlinear processes is tasking. But
ANFIS has yet proved its capability as an efficient

model approximating tool by adequately mapping-out
a highly nonlinear biological wastewater treatment pro-
cess based on previously measured inputs and output
values of the studied variables. ANFIS predicted the
process outputs with greater accuracy when compared
with the GLM regression models. The data used in the
study were pretreated to remove outliers and reduce
noise as the predictive performance of black-boxmodels
depends on the exactness of data. Also, the influential
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Fig. 10 Comparison of the
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effluent COD values: (a) training
data; (b) validation/checking data
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regressors identified indicate there are time lags in the
treatment process. This is understandable as wastewater

undergo both chemical and biological changes before
new process conditions are established. Therefore, the

8 10 12 14 16 18 20 22 24 26

10

12

14

16

18

20

22

24

10 15 20 25 30

12

14

16

18

20

22

24

26

28

30

10 15 20 25 30

10

15

20

25

30

8 10 12 14 16 18 20 22 24 26

8

10

12

14

16

18

20

22

24

P
re

d
ic

ti
o
n
s

Measured data

Data-points

 Best Linear Fit

R = 0.637

Data-points

 Best Linear Fit

R = 0.637

P
re

d
ic

ti
o
n
s

Measured data

Data-points

 Best Linear Fit

R = 0.948

Data-points

 Best Linear Fit

R = 0.947

P
re

d
ic

ti
o
n
s

Measured data

(d)(c)

(b)(a)

P
re

d
ic

ti
o
n
s

Measured data

Fig. 12 Linear fit between the measured and predicted values: (a) GLM 1; (b) GLM 2; (c) ANFIS model 1; (d) ANFIS model 2

Environ Monit Assess (2018) 190: 495 Page 15 of 17 495



ANFIS models can also serve as a reliable tool to
estimate the time required to achieve a set treatment
performance and also preempt process disturbances.
The described modeling approach can be extended to
other WWTPs as it would help the decision makers in
effectively managing the plant operations in order to
ensure the effluent quality consistently complies with
the discharge regulations.
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