
Signal Processing 153 (2018) 396–410 

Contents lists available at ScienceDirect 

Signal Processing 

journal homepage: www.elsevier.com/locate/sigpro 

Beyond trans-dimensional RJMCMC with a case study in impulsive 

data modeling 

O. Karaku ̧s a , 1 , ∗, E.E. Kuruo ̆glu 

b , M.A. Altınkaya 

a 
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a b s t r a c t 

Reversible jump Markov chain Monte Carlo (RJMCMC) is a Bayesian model estimation method, which has 

been generally used for trans-dimensional sampling and model order selection studies in the literature. 

In this study, we draw attention to unexplored potentials of RJMCMC beyond trans-dimensional sampling. 

the proposed usage, which we call trans-space RJMCMC exploits the original formulation to explore spaces 

of different classes or structures. This provides flexibility in using different types of candidate classes in 

the combined model space such as spaces of linear and nonlinear models or of various distribution fam- 

ilies. As an application, we looked into a special case of trans-space sampling, namely trans-distributional 

RJMCMC in impulsive data modeling. In many areas such as seismology, radar, image, using Gaussian 

models is a common practice due to analytical ease. However, many noise processes do not follow a 

Gaussian character and generally exhibit events too impulsive to be successfully described by the Gaus- 

sian model. We test the proposed usage of RJMCMC to choose between various impulsive distribution 

families to model both synthetically generated noise processes and real-life measurements on power line 

communications impulsive noises and 2-D discrete wavelet transform coefficients. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Reversible jump Markov chain Monte Carlo (RJMCMC) is a

Bayesian model determination method which has had success in

vast areas of applications since its introduction by Green [1] . Un-

like the widespread MCMC algorithm, Metropolis-Hastings (MH),

RJMCMC allows one to search in solution spaces of different di-

mensions which has been the main motivation for its use up to

date. Classical applications of RJMCMC are model selection in re-

gression and mixture processes [2–7] . Unlike the classical appli-

cations in the literature, the original formulation of RJMCMC in

[1] permits a wider interpretation than just exploring the mod-

els with different dimensions. As an example of the applicability

of RJMCMC beyond model dimension selection: it was utilized to

learn nonlinear time series and identification of Volterra system
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odels by exploring linear and nonlinear model spaces in prelim-

nary works by the authors. 

Apart from the classical MCMC methods, over the years, vari-

us methods have been developed to solve Bayesian problems. In

8] , independence sampler (IS) which is a special case for MH al-

orithm has been proposed. IS works successfully if the proposal

istribution can be defined as a good approximation to the target

istribution. In [9] a Gibbs sampling based method has been pro-

osed by Carlin and Chib (denoted as CC for the rest of the pa-

er). CC searches a product space of models and parameters and

uggests generating a pseudoprior at each realization of the Gibbs

ampling. Thus, it may be computationally less efficient compared

o reversible jump mechanism, which does not require defining

roposals for each parameter especially for the problems including

igher number of model parameters. Another disadvantage of CC

ethod is not dealing with the interrelationships among parame-

ers. This makes reversible jump approach advantageous in propos-

ng efficient proposals, especially between non-nested models. 

An alternative to Carlin and Chib’s method is using an ac-

ept/reject procedure instead of sampling from a full conditional

istribution in Gibbs sampling. This method can be named as

etropolized Carlin and Chib (MCC) as in [10] . A modification

as been applied to Carlin and Chib’s method for variable selec-

ion applications and in [10] named as Gibbs variable selection

https://doi.org/10.1016/j.sigpro.2018.07.028
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GVS). Methods such as Dellaportas et al. [10] and Carlin and Chib’s

9] have been generally seen as rival methods to RJMCMC. However

he application areas of these methods, to the best of our knowl-

dge, are generally limited to regression problems, mixture pro-

esses, etc., RJMCMC offers a wider interpretation and has wider

pplications. On the other hand, RJMCMC being as an extended

ersion of MH algorithm, is much more general and flexible than

hese methods as Gibbs sampling has been a special case of MH

lgorithm. 

In [11] , Godsill provided an important work on the generality

f RJMCMC and similarities between the Carlin and Chib’s method.

n that study, a composite product space was created for reversible

ump mechanism. The general perspective is to make the model di-

ension invisible in the operations, and at each iteration, problem

urns into a fixed dimension case which can be solved via MCMC

ethods. Applications on variable and model order selection show

he superiority of the method. However, as the authors stated, ap-

lying this procedure may be somehow problematic especially in

on-nested problems. 

Apart from all the other studies discussed above, this paper

ontributes to the literature demonstrating the generality of RJM-

MC beyond trans-dimensional sampling, which we call trans-

pace RJMCMC . The proposed method follows the general formu-

ation of Green [1] and emphasizes its potential to be a general

stimation method by performing the reversible jump mechanism

etween spaces of different model classes rather than just being a

rans-dimensional approach and a model order selection method.

erforming transition between non-nested or different classes of

odels needs much more attention on generating proposal distri-

utions which may be easier to perform in RJMCMC rather than

C, etc. 

Another important contribution of this study, in order to in-

rease the convergence speed and avoiding local traps in the algo-

ithm, is to propose common feature-based proposals, specifically

orm based transitions between different classes of models. Deal-

ng with common parameters makes RJMCMC perform successfully

n non-nested problems, and thus the proposed usage and com-

on parameter based proposal approach easily exhibit the gener-

lity and the potential of the original formulation of RJMCMC. 

The most important contribution of this paper is emphasiz-

ng the generality of the Green’s reversible jump mechanism.

his mechanism has always been thought to be more flexible

han CC, GVS and other Gibbs sampling based methods due to

ts applicability to non-nested problems and enables to perform

pplications with a reduced number of proposal distributions

10,11] . Trans-space approach demonstrates the generality of the

eversible jump mechanism by carrying its application areas be-

ond nested models, regression, order estimation and variable se-

ections. Trans-space approach combines convergence strength of

he reversible jump mechanism to Gibbs sampling based methods

ith a common-feature based proposal approach and the result-

ng usage of RJMCMC appears as much more general and appli-

able with a great convergence performance to the model estima-

ion problems of different classes even when they are non-nested

r not related . For this point of view, trans-space approach differs

rom the methods of Carlin and Chib’s, Godsill’s and Dellaportas’.

lease note that the main purpose of this paper is to demonstrate

he generality of Green’s reversible jump on more complex prob-

ems than the general practice in the literature. This usage, we be-

ieve, sheds light on the possible applications of RJMCMC being a

eneral model estimation method rather than just being a trans-

imensional model order selection method. 

A special case of Trans-space RJMCMC has been used to decide

etween linear and nonlinear processes by exploring the parame-

er spaces of nonlinear time series models such as polynomial au-

oregressive (PAR) [12] , polynomial moving average (PMA) [13] and
olynomial autoregressive moving average (PARMA) [14] models.

n these studies, we have demonstrated that RJMCMC has been an

ppropriate model estimation tool performing transitions between

inear and nonlinear model spaces apart from the usage of it in the

iterature in exploring the same classes of models. Estimating the

olynomial order, namely the nonlinearity degree, has been one of

he important contributions of these studies providing users to ex-

lore the linear and the nonlinear models at the same time. More-

ver, in [15] , we have utilized trans-space RJMCMC in the iden-

ification of Volterra systems. In this study, trans-space usage of

JMCMC has successfully identified the unknown systems in terms

f Volterra models by estimating model coefficients as well as the

onlinearity degree of the model. All these studies proved us the

apability of the RJMCMC algorithm to be used in more challeng-

ng applications rather than the usage in only trans-dimensional

anner. The object of interest of all our previous studies and this

aper is to show that RJMCMC provides a powerful model estima-

ion methodology beyond its general use as a trans-dimensional

stimation method. 

In contrast to [12–15] , the current paper addresses the funda-

ental problem of probability density estimation among available

amilies of densities, while [12–15] focus on parametric stochastic

odel estimation. The problem is a frequently encountered prob-

em in signal processing and statistics, and their application fields

uch as in image processing and telecommunications. In various

eal-life modeling problems, we have limited prior information re-

arding which model family is more suitable for the problem. In

uch cases, a method that would allow one to choose between dif-

erent model families on the fly would be useful, eliminating the

eed for modeling with each candidate model class separately and

omparing. This provides computational gains especially when the

umber of parameters and candidate model classes are high. An

xample is a choice between different probability density function

pdf) models for noise or signals. 

The pdf estimation problem is a frequently encountered prob-

em in signal processing and statistics, and their application fields

uch as in image processing and telecommunications. In commu-

ication systems, channel modeling has been an important issue

o as to characterize the whole system. However, for most of the

ases, performing a deterministic channel modeling might be im-

ossible and to represent real-life systems, statistical channel mod-

ls are very important. In addition, in applications of noise re-

uction operations in image processing, power-line communication

ystems, etc. dealing with a suitable statistical model beforehand is

lso important for the methods to be developed. Despite this im-

ortance, estimating the correct (or suitable) probability distribu-

ion along with its parameters within a number of generic distri-

ution models may necessitate testing each candidate in order to

hoose the best possible model for the observed data/noise. 

General practice is to model noise/data with a Gaussian pro-

ess especially in communications, network modeling, digital im-

ges, due to its analytical ease. In the case of non-Gaussian im-

ulsive noise/data, various model families exist, for example, Mid-

leton Class A, Bernoulli-Gaussian, α-Stable, Generalized Gaussian

GG), Student’s t , etc. It has been reported in the literature that

oise exhibits non-Gaussian and impulsive characteristics in appli-

ation areas such as wireless communications [16,17] , power line

ommunications (PLC) [18,19] , digital subscriber lines (xDSL) [20,21] ,

mage processing [22,23] and seismology [24] . 

In this paper, we propose a Bayesian statistical modeling study

f impulsive noise/data by estimating the probability distribution

mong three conventional impulsive distributions families: sym-

etric α-Stable (S αS), GG and Student’s t . Other than identifying

he distribution family, the proposed method estimates the shape

nd scale parameters of the distribution. These distributions are

he most popular statistical models in applications covering diverse
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areas such as wireless channel modeling, financial time series anal-

ysis, seismology, radar imaging. 

We study the algorithm extensively on synthetic data provid-

ing statistical significance tests. In addition, as case studies, we

look into two statistical modeling problems of actual interest im-

pulsive noise on PLC channels and 2-D discrete wavelet transform

(2-D DWT) coefficients. Particularly, PLC impulsive noise measure-

ments in [25,26] have been utilized in the simulations. Apart from

this, statistical modeling for 2-D DWT coefficients has been per-

formed on different kinds of images such as Lena, synthetic aper-

ture radar (SAR) [27] , magnetic resonance imaging (MRI) [28] and

mammogram [29] . 

Rest of the paper is organized as follows: general definitions

for trans-dimensional RJMCMC and the proposed method are dis-

cussed in Section 2 . Section 3 reviews three distribution families

and describes the impulsive data modeling scheme of the pro-

posed method. Experimental studies for synthetically generated

noise processes and for real applications are explained in Section 4 .

Section 5 draws conclusions on the results. 

2. Reversible jump MCMC 

RJMCMC has been first introduced by Green in [1] as an exten-

sion of MCMC to a model selection method. Green, firstly derives

the condition for the satisfaction of detailed balance requirements

in terms of the Borel sets which the candidate models belong to.

In the continuation of the derivation, he specializes his discussion

to moves between spaces which differ only in dimensions and the

general discussion is abandoned. In the follow up, to the best of

our knowledge, almost all publications utilized RJMCMC for model

dimension selection. Popular use of RJMCMC is in linear paramet-

ric models such as autoregressive (AR) [2] , autoregressive integrated

moving average (ARIMA) [3] and fractional ARIMA (ARFIMA) [4] and

mixture models such as Gaussian mixtures [5] , Poisson mixtures

[6] and α-stable mixtures [7] . 

Apart from the popular applications above, RJMCMC has been

used in other various applications such as detection of clusters in

disease maps [30] , graphical models based variable selection and

automatic curve fitting [31] , log-linear model selection [32] , non-

parametric drift estimation [33] , delimiting species using multilo-

cus sequence data [34] , random effect models [35] , generation of

lane-accurate road network maps from vehicle trajectory data [36] .

In this study, our motivation is to draw attention to the gen-

erality of the classical RJMCMC beyond trans-dimensionality. The

classical RJMCMC algorithm of [1] and the proposed usage, trans-

space RJMCMC are discussed in the sequel. 

The standard MH algorithm [37] accepts a transition from a

Markov chain state x ∈ X to y ∈ X with a probability of: 

A (x → y ) = min 

{
1 , 

π(y ) q (x, y ) 

π(x ) q (y, x ) 

}
(1)

where π ( · ) represents the target distribution and q ( y, x ) refers to

the proposal distribution from state x to y . 

RJMCMC, in the sense of trans-dimensional MCMC, generalizes

MH algorithm by defining multiple parameter subspaces ζ k of dif-

ferent dimensionality [1] . This is only achieved by defining differ-

ent types of moves between subspaces providing that the detailed

balance is attained. For this condition to hold, a reverse move from

state y to x should be defined and dimension matching should be

satisfied between parameter subspaces. 

Assume that we propose a move m with probability p m 

from

a Markov chain state κ to κ ′ each of which has parameter vec-

tors θ ∈ ζ1 and θ′ ∈ ζ2 , respectively, with different dimensions. The

move m is reversible and its reverse move m 

R is proposed with

a probability p R . The general detailed balance condition can be
m 
tated as 

(κ) q (κ ′ , κ) A (κ → κ ′ ) = π(κ ′ ) q (κ, κ ′ ) A (κ ′ → κ) , (2)

here proposal distribution q ( · ) is directional and includes the

robabilities of both the move itself and the proposed parameters.

hen, the general expression for the acceptance ratio in (1) turns

nto [1] : 

 (κ → κ ′ ) = min 

{
1 , 

π(κ ′ ) p m 

R χ2 ( u 

′ ) 
π(κ) p m 

χ1 (u ) 

∣∣∣∣∂(θ′ , u 

′ ) 
∂(θ, u ) 

∣∣∣∣
}

, (3)

here χ1 ( · ) and χ2 ( · ) are the distributions for the auxiliary vari-

ble vectors u and u 

′ , respectively, which are required to provide

imension matching for the moves m and m 

R . The term 

∣∣∣ ∂(θ′ u ′ ) 
∂(θ, u ) 

∣∣∣ is

he magnitude of the Jacobian. 

In each RJMCMC run, the standard Metropolis–Hastings algo-

ithm is applied in moves within the same dimensional models,

hich is called as life move. Sampling is performed in a single

arameter space and there is no dimension change in life move.

or trans-dimensional transitions between models, moves such as

irth, death, split and merge are performed which require the cre-

tion or the deletion of new variables corresponding to the in-

reased or decreased dimension. Green handles the dimension

hanging moves as variable transformations and defines a dummy

ariable to match dimensions which provides a square Jacobian

atrix that can be used to update the acceptance ratio easily. 

.1. Trans-space RJMCMC 

In spite of RJMCMC’s use in trans-dimensional cases, the origi-

al formulation in [1] holds a wider interpretation than just sam-

ling between spaces of different dimensions. In the beyond trans-

imensional RJMCMC point of view, we focus on the definition of

he parameter spaces in the original formulation. Green firstly, de-

ives the condition for satisfying detailed balance requirements in

erms of the Borel sets which the candidate models belong to. In

he continuation of the derivation, he specializes his discussion to

oves between spaces which differ only in dimensions and the gen-

ral discussion is abandoned. However, the parameter vectors in

2) may belong to Borel sets which differ not only in their dimen-

ions but also in the generic models they belong to. Thus, the RJM-

MC algorithm can be used for much more generic implementa-

ions. 

Notwithstanding, this general interpretation should be taken

ith caution to have a useful method. Particularly, the Borel sets

hould be related somehow, which can be conveniently set by

atching a common property (e.g., norm) in defining the spaces.

efining proposals in this way will provide sampling more efficient

andidates and help algorithm to converge faster. As an example,

odel transitions can be designed to provide fixed first ordered

oments between spaces. Thus, this moment based approach pro-

ides a more efficient way to explore all the candidate models

ithin the combined space. Carrying the trained information to a

ew generic model space is very crucial in this framework. Oth-

rwise, the algorithm would start to train from scratch repeatedly

ach time it changes states and sampling across unrelated spaces

ould not give us a computational advantage. In that case, one

ould solve for different spaces separately and compare the final

esults to choose the best model. 

As in the case of all reversible jump applications, providing such

roposals may be somehow hard, however, using a common fea-

ure provides users various application areas and an opportunity

o utilize RJMCMC on model estimation studies of different classes

f models. The proposed method is applicable to the nested cases

he model space of which consists of related models. However, the

dvantage of this approach becomes prominent for the non-nested
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ases where the feature-based approach offers flexibility for RJM-

MC moves between different classes models. Two examples one

an think of firstly, are: 

1) κ might correspond to a linear parametric model such as

AR while κ ′ might correspond to a nonlinear model such as

Volterra AR (a nested case). 

2) κ might correspond to a pdf p A with certain distribution pa-

rameters while κ ′ might correspond to another pdf p B with

some other distribution parameters (a non-nested case). 

To this end, we define a combined parameter space ϕ = 

⋃ 

k ϕ k 

or k > 1. Assume that a move M from Markov chain state x ∈ ϕ1 to

 

′ ∈ ϕ2 is defined and Borel sets A ⊂ϕ1 and B ⊂ϕ2 are related with

 set of functions each of which are invertible. Particularly, for any

orel sets in both of the spaces, ϕ1 and ϕ2 , functions h 12 : A �→ B and

 21 : B �→ A can be defined by matching a common property of the

paces. For generality, if the proposed move requires matching the

imensions, auxiliary variables u 1 and/or u 2 can be drawn from

roper densities Q 1 ( · ) and Q 2 ( · ), respectively. Otherwise, one can

et u 1 and u 2 to ∅ . Please note that the dimensions of the param-

ter spaces at both sides of the transitions can be different or the

ame and reversible jump mechanism of Green is still applicable. 

Consequently, although the candidate spaces are of different

lasses, since the Borel sets are defined as to be related, the as-

umption of Green still holds for a symmetric measure ξm 

and

ensities for joint proposal distributions, π ( · ) q ( · , · ), can be de-

ned with respect to this symmetric measure by satisfying the

quilibrium in (2) . Thus, the acceptance ratio can be written as:

 (x → x ′ ) = min 

{
1 , 

π(x ′ ) p M 

R Q 2 (u 2 ) 

π(x ) p M 

Q 1 (u 1 ) 

∣∣∣∣∂h 12 (θ1 , u 1 ) 

∂(θ1 , u 1 ) 

∣∣∣∣
}

. (4)

here M 

R is the reverse move of M and p M 

and p M 

R represent

he probabilities of the moves. The Jacobian term appears in the

quation as a result of the change of variables operation between

paces. 

Here we recall that in our previous works [12–15] , we have per-

ormed model estimation studies with RJMCMC for Volterra based

onlinear models PAR, PMA and PARMA as well as an identifica-

ion study of Volterra system models. In these studies, RJMCMC

as been utilized to explore the model spaces of linear and non-

inear models in polynomial sense instead of performing a model

rder selection study in a single linear model space. Hence, we add

 few concluding remarks. 

emark 1. We are going to name this general utilization on RJM-

MC as trans-space . Trans-space RJMCMC reveals a general frame-

ork for exploring the spaces of different generic models whether

r not their parameter spaces are of different dimensionality. Con-

equently, trans-dimensional cases are subsets of trans-space tran-

itions. 

emark 2. Trans-space RJMCMC requires to define new types of

oves due to the need for more detailed operations than, e.g., just

eing birth, death, split and merge of the parameters. These moves

ill be named as between-space moves and may include both birth

nd death of the parameters at the same time or a norm based

apping between the parameter spaces. Switch move (firstly pro-

osed for Volterra system identification study [15] ) will be pro-

osed as a between-space move, which performs a switching be-

ween the candidate spaces of the generic model classes. 

emark 3. As a special case of trans-space sampling, the proposed

ethod can be used to explore the spaces of different distribu-

ion families. Therefore, this special case will be named as trans-
istributional . 
. Trans-distributional RJMCMC for impulsive distributions 

In this study, we have applied RJMCMC to problems in which

 stochastic process, x , is given whose impulsive distribution is to

e found. For this purpose, we define a reversible jump mechanism

hich estimates the distribution family among three impulsive dis-

ribution families, namely, S αS, GG and Student’s t . 

These three families cover many different noise modeling stud-

es as stated in the above sections. All of them include Gaussian

istribution as a special member, and many real-life noise mea-

urements can be modeled with these distribution families. For

xample, S αS family has various demonstrated application areas

uch as PLC [38] , SAR imaging [23] , near optimal receiver design

39] , modeling of counterlet transform subbands [40] , seismic am-

litude data modeling [24] , as noise model for molecular commu-

ication [41] , reconstruction of non-negative signals [42] (please

ee [43] and references therein for detailed applications). 

GG distributions have found applications in wavelet based tex-

ure retrieval [44] , image modeling in terms of Markov random

elds [45] , multicomponent texture discrimination in color images

46] , wheezing sound detection [47] , modeling sea-clutter data

48] . 

Student’s t distribution is an alternative to Gaussian distribution

specially for small populations, where the validity of central limit

heorem is questionable. Student’s t distribution has been used in

pplications of finance [49,50] , full-waveform inversion of seismic

ata [51] , independent vector analysis for speech separation [52] ,

edical image segmentation [53] , growth curve modeling [54] . 

One might argue that training separate MCMC samplers for

ach of the seemingly irrelevant distribution families and compar-

ng their modeling performances afterward would be computation-

lly more advantageous. However, in cases when the number of

andidate models is not known or dramatically large, implement-

ng a single Markov chain via RJMCMC could be simpler. In addi-

ion, when the number of models is small, one cannot conclude

hat parallel MCMC approach would be a better choice than RJM-

MC. By efficiently choosing the proposal distributions, the advan-

age of incorporating reversible jump mechanism can be extended

o searching several distribution families which will be described

n the sequel. 

In the literature, RJMCMC usage in this problem has been lim-

ted and it has been used to be examples of trans-dimensional ap-

roach deciding between two specific distributions [55,56] . Partic-

larly, when modeling count data, reversible jump mechanism has

een applied to choose between Poisson and negative binomial

istributions in [55] . This study deals with the question whether

he count data is over-dispersed relative to Poisson distribution.

n [56] an approach which is a combination of Gibbs sampler and

JMCMC has been used to decide between Poisson and geometric

istributions by using a universal parameter space called “palette”.

Both of the studies above have utilized RJMCMC in distribution

stimation; however, in both of the studies, Poisson distribution is

 special member of the distribution families in question (or, there

s a direct relation between Poisson and negative binomial or ge-

metric distributions), hence, the methods in these studies can be

andled with a single family search (i.e., intra-class sampling in

his paper which will be discussed below sections). The proposed

sage for RJMCMC, namely trans-distributional RJMCMC, is much

ore general than the examples above and aims to fit a distri-

ution to a given process x among various distributions by iden-

ifying the distribution’s family and estimating its shape and scale

arameters. Two types of between-class moves have been defined,

amely intra-class-switch and inter-class-switch . These moves pro-

ose model class changes within and between probability distribu-

ion families, respectively. 
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3.1. Impulsive distribution families 

3.1.1. Symmetric α-stable distribution family 

There is no closed form expression for probability density func-

tion (pdf) of S αS distributions except for the special cases of

Cauchy and Gaussian. However, its characteristic function, ϕ( x ), can

be expressed explicitly as: 

ϕ(x ) = exp ( jδx − γ | x | α) (5)

where 0 < α ≤ 2 is the characteristic exponent, a.k.a. shape param-

eter , which controls the impulsiveness of the distribution. Special

cases Cauchy and Gaussian distributions occur when α = 1 and

α = 2 , respectively. −∞ < δ < ∞ represents the location parameter .

The γ > 0 provides a measure of the dispersion which is the scale

parameter expressing the spread of the distribution around δ. 

3.1.2. Generalized Gaussian distribution family 

The univariate GG pdf can be defined as: 

f (x ) = 

α

2 γ�(1 /α) 
exp 

(
−
( | x − δ| 

γ

)α)
(6)

where �( · ) refers to the gamma function, α > 0 is the shape pa-

rameter, −∞ < δ < ∞ represents the location parameter and the

γ > 0 is the scale parameter. GG family has well-known members

such as Laplace, Gauss and uniform distributions for α values of 1,

2 and ∞ , respectively. 

3.1.3. Student’s t distribution family 

The univariate symmetric Student’s t distribution family is an

impulsive distribution family with parameters, α > 0 which is the

number of degrees of freedom, a.k.a shape parameter , the location

parameter −∞ < δ < ∞ and the scale parameter γ > 0. Its pdf can

be defined as: 

f (x ) = 

�
(
α + 1 

2 

)
�(α/ 2) γ

√ 

πα

( 

1 + 

1 

α

(
x − δ

γ

)2 
) −((α+1) / 2) 

. (7)

Special members of the symmetric Student’s t distribution fam-

ily are Cauchy and Gauss which are obtained for shape parameter

values of α = 1 and α = ∞ , respectively. 

3.2. Parameter space 

RJMCMC construction for impulsive data modeling begins by

firstly defining the parameter space. Parameter space has been de-

fined on the common parameters for all three distribution families.

These are: shape, scale and location parameters ( α, γ and δ, respec-

tively). In addition to them, the family identifier, k , which defines

the estimated distribution family, has been added to the parame-

ter space. The k values of the distributions S αS, GG and Student’s t

are 1, 2 and 3, respectively. Therefore, the parameter vector θ can

be formed as: θ = { k, α, δ, γ } . 
In this study, the observed data from all three families are as-

sumed to be symmetric around the origin for simplicity. Therefore,

δ, is set to 0 and its effect will be invisible in the simulations. Con-

sequently, parameter vector θ is reduced to: θ = { k, α, γ } . 

3.3. Hierarchical Bayesian model 

The target distribution, f ( θ| x ), can be decomposed to likelihood

times priors due to Bayes Theorem as: 

f (θ| x ) ∝ f (x | k, α, γ ) f (α| k ) f (k ) f (γ ) . (8)

where f ( x | k, α, γ ) represents the likelihood and f ( α| k ), f ( k ), and

f ( γ ) are the priors. 
.4. Likelihood 

We assume that the stochastic process x with a length of n

omes from one of the distributions in candidate families (S αS, GG

nd Student’s t ). Then, the likelihood corresponds to a pdf from

ne of these distributions is 

f (x | k, α, γ ) = 

{ ∏ n 
i =1 S αS (γ ) , k = 1 ∏ n 
i =1 GG α(γ ) , k = 2 ∏ n 
i =1 t α(γ ) , k = 3 

(9)

.5. Priors 

Priors have been selected as the following: 

f (γ ) = IG (a, b) , (10)

f (k ) = I { 1 / 3 , 1 / 3 , 1 / 3 } for k = 1 , 2 , 3 , (11)

f (α| k ) = 

{ 

U(0 , 2) k = 1 , 

U(0 , αmax,GG ) k = 2 , 

U(0 , αmax ,t ) k = 3 , 

(12)

here a and b represent the hyperparameters for scale parameter

nd they are generally selected as to take small values such as 1,

.1 in the literature. The upper bounds for the shape parameters of

G and Student’s t distributions have been defined as αmax, GG and

max, t , respectively. 

Choosing an inverse gamma prior for scale parameter is a gen-

ral practice especially for Gaussian problems. Due to the lack of

nformation about conjugate priors for distributions other than the

aussian case and since Gaussian distribution is common for all

hree families, an inverse gamma conjugate prior for scale param-

ters has been chosen for simplicity. Furthermore, all families are

quiprobable a priori and the shape parameter is uniformly dis-

ributed between lower and upper bounds. 

.6. Model moves 

Two RJMCMC model moves have been defined in order to per-

orm trans-distributional transitions discussed in the previous sec-

ions. These are: life and switch moves. Life move performs clas-

ical MH algorithm to update γ . Switch move performs explor-

ng the other distribution spaces. For this purpose, two types of

witch moves have been defined: intra-class-switch and inter-class-

witch . Intra-class-switch performs exploring the distributions in

he same family, while inter-class-switch explores spaces of dif-

erent families. At each RJMCMC iteration, one of these moves is

hosen with probabilities P life , P intra-cl-sw 

and P inter-cl-sw 

, respectively.

ifferent types of moves can, of course, be created to solve this

roblem. Since the main purpose of this study is to draw atten-

ion to the generality of RJMCMC algorithm and to provide its ap-

lications on the real data measurements, we only focus on the

etween-space move switch and its different usages intra and in-

er class transitions. 

In Fig. 1 , the flow diagram of the proposed method is depicted

here the parameter N refers to the maximum number of itera-

ions. The details about the steps of the selected moves are dis-

ussed in the sequel. 

.6.1. Life move 

Life move defines a transition from parameter space ( k, α, γ ) to

 k ′ , α′ , γ ′ ) and only proposes candidates for the scale parameter, γ
where α′ = α and k ′ = k ). The proposal distribution for the scale

arameter γ ′ has been chosen as: 

 (γ ′ | γ ) = T N (γ , ξscale ) for interval (0 , γ + 1] (13)
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Fig. 1. Flow diagram for the proposed method. 
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Table 1 

Intra-class-switch details [( k, α, γ ) → ( k ′ , α′ , γ ′ )]. 

Family Degree, p γ ′ = g(α, α′ , p, γ ) Jacobian, | J | 

S αS α′ /10 

(
C α (p, α) 

C α (p, α′ ) 

)α′ /p 

γ α′ /α
(

C α (p, α) 

C α (p, α′ ) 

)α′ /p 
α′ 
α

γ (α′ −α) /α

GG α′ /10 

(
C GG (p, α) 

C GG (p, α′ ) 

)1 /p 

γ

(
C GG (p, α) 

C GG (p, α′ ) 

)1 /p 

t α′ /10 

(
C t (p, α) 

C t (p, α′ ) 

)1 /p 

γ

(
C t (p, α) 

C t (p, α′ ) 

)1 /p 
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here T N (γ , ξscale ) refers to a Gaussian distribution where its

ean γ is the last value of the scale parameter, and its variance

s ξ scale and is truncated to lie within the interval of (0 , γ + 1] af-

erwards by rejecting samples outside this interval. This truncation

rocedure aims to satisfy the condition γ > 0 and forces candidate

roposals not to lie far from the last value of γ . Hence, the result-

ng acceptance ratio for life move is: 

 life = min 

{
1 , 

f (x | k ′ , α′ , γ ′ ) 
f (x | k, α, γ ) 

f (γ ′ ) 
f (γ ) 

q (γ | γ ′ ) 
q (γ ′ | γ ) 

}
(14) 

.6.2. FLOM based proposals for γ transitions 

As mentioned earlier in this paper, using a common feature

mong the candidate model spaces for the transition to be made

ill provide efficient proposals and is important in order to link

he subspaces of different classes. Assume we have two candidate

amilies parameter vectors of which belong to Borel sets, A and

, respectively. Providing fixed order norm for both of the Borel

ets, the transition (e.g., h : A �→ B) from one set to another car-

ies the information in the same direction which has been already

earned at the most recent Borel set. Considering the convergence

nd mixing of the algorithm, such an approach is very important

o determine the transition process between generic distribution

odels, whether within a single family or between families. 

When dealing with distribution estimation problems, moments

ith various orders, p have been defined for all distribution fam-

lies. Moments of Student’s t and GG families have been defined

t any orders for p > 0 and there are no restrictions on values of

 . However, moments of the S αS family have been defined sub-

ect to the constraint of p < α. This constraint makes it possible

o use the absolute fractional lower order moments (FLOMs) which

as been also used in the parameter estimation methods of the

 αS family. By taking into consideration of these facts that abso-

ute FLOM expressions are defined for all impulsive families, and

heir success in parameters estimation studies of the S αS distribu-

ions, using an absolute FLOM based approach helps to construct

 reversible jump sampler between different impulsive families, by

inking the candidate distributions through absolute FLOM. 
In impulsive data modeling study in this study, absolute FLOM-

ased approach will be used for the proposals of the γ parame-

er. In particular, to perform sampling between related subspaces

nd generate efficient proposals on scale parameter γ , an absolute

LOM-based method has been used. The newly proposed scale pa-

ameter, γ ′ , is calculated via a reversible function, g ( · ) (or w ( · )),

hich provides equal absolute FLOMs with order p for both the

ost recent and candidate distribution spaces. Thus, proposals on

carry the learned information to the candidate space via abso-

ute FLOMs. 

Absolute FLOMs are defined only for p values lower than alpha

or the case of S αS distributions. Moreover, there are several stud-

es which suggest near-optimum values for FLOM order p in order

o estimate the scale parameter of S αS distributions . [57] suggests

p = α/ 4 and [58] suggests p = 0 . 2 . However, in [59] it has been

tated that decreasing p for a fixed value of α (i.e., increasing α/ p ),

ncreases the estimation performance of γ and [59] suggests the

hoice p = α/ 10 . We use the value p = α/ 10 in our simulations for

ll the distribution families. 

For a given data, x , in order to perform a transition from pa-

ameter space { k, α, γ } to { k ′ , α′ , γ ′ } we assume that the absolute

LOM will be the same for both the most recent and candidate

istribution spaces. In particular, 

 k (| x | p ) = E k ′ (| x | p ) (15) 

here absolute FLOMs for all three candidate families can be de-

ned as: 

 k (| x | p ) = 

{ 

C α(p, α) γ p/α k = 1 , 

C GG (p, α) γ p k = 2 , 

C t (p, α) γ p k = 3 , 

(16) 

here 

 α(p, α) = 

�
(

p + 1 

2 

)
�
(−p 

α

)
α

√ 

π�
(−p 

2 

) 2 

p+1 , (17) 

 GG (p, α) = 

�
(

p + 1 

α

)
�(1 /α) 

, (18) 

 t (p, α) = 

�
(

p + 1 

2 

)
�
(
α − p 

2 

)
√ 

π�
(
α

2 

) αp/ 2 . (19) 

The candidate proposal, γ ′ , has been calculated via reversible

unctions which are derived by using the relations in (15) –(19) for

ach transition. These functions have been derived for both of the

witch moves and are shown in Tables 1 and 2 . 

.6.3. Intra-class-switch move 

RJMCMC performs a transition on shape and scale parameters

n the same distribution family ( k ′ = k ) when an intra-class-switch

ove is proposed. The proposed shape parameter α′ is sampled
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Table 2 

Inter-class-switch details [( k, α, γ ) → ( k ′ , α′ , γ ′ )]. 

( k → k ′ ) Degree, p α′ = ψ(α, k, k ′ ) γ ′ = w (α, α′ , p, γ ) 

1 → 2 α′ /10 f 1 (α) = 

α2 

2 

(
C α (p, α) 

C GG (p, α′ ) 

)1 /p 

γ 1 /α

1 → 3 α′ /10 f 2 (α) = logit 

(
α + 2 

4 

) (
C α(p, α) 

C t (p, α′ ) 

)1 /p 

γ 1 /α

2 → 1 α′ /10 f −1 
1 

(α) 

(
C GG (p, α) 

C α (p, α′ ) 

)α′ /p 

γ α′ 

2 → 3 α′ /10 f 2 ( f −1 
1 

(α)) 

(
C GG (p, α) 

C t (p, α′ ) 

)1 /p 

γ

3 → 1 α′ /10 f −1 
2 

(α) 

(
C t (p, α) 

C α(p, α′ ) 

)α′ /p 

γ α′ 

3 → 2 α′ /10 f 1 ( f −1 
2 

(α)) 

(
C t (p, α) 

C GG (p, α′ ) 

)1 /p 

γ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) Proposal distribution, q ( α′ | α) for intra-class-switch move (γ = 1 , � = 

0 . 4) . (b) Mapping functions on shape parameter for inter-class-switch move. 
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from a proposal distribution q ( α′ | α). In addition, the candidate

scale parameter γ ′ is defined as a function g ( α, α′ , p, γ ). 

The γ transition in this move is dependent on the newly pro-

posed α′ parameter and firstly, one step is performed on shape pa-

rameter α to propose α′ . The resulting shape parameter values are

used to calculate the candidate scale parameter γ ′ . For the shape

parameter α transition, a proposal distribution such as q ( α′ | α) has

been used. For this distribution, we first have assumed a sym-

metric distribution around the most recent α value. In addition, it

has been preferred that the proposal distribution has heavier tails

than Gaussian in order to make it possible to sample candidates

much farther than the most recent α relative to the samples from

the Gaussian distribution. Since the Laplace distribution is a dis-

tribution that satisfies all these conditions, the proposal distribu-

tion is chosen as a Laplace distribution. Due to the numerical cal-

culation problems caused when α and α′ are close to each other

(i.e., | α − α′ | ≤ 0 . 03 ), we have decided to utilize a finite number of

candidate distributions (i.e., a finite number of α values) and the

space on α is discretized with increments of 0.05. That’s why a

discretized Laplace ( DL (α, �) ) distribution where the location pa-

rameter of which is equal to the most recent shape parameter α
and scale parameter is �, has been utilized. An example figure of

the proposal distribution q ( α′ | α) is shown in Fig. 2 (a). 

Importantly, our choice on the proposal distribution q ( α′ | α)

is not restrictive; any distribution other than Laplace can be se-

lected as the proposal distribution (e.g., Gaussian like). However,

this might affect the convergence speed of the algorithm. 

Candidate scale parameter γ ′ has been calculated via reversible

functions, g ( · ), which are derived for intra-class-switch move by

using the method in Section 3.6.2 . Functions for each family are

shown in Table 1 . 

Consequently, proposals for intra-class-switch move are; 

q (α′ | α) = DL (α, �) , (20)

γ ′ = g(α, α′ , p, γ ) . (21)

As a result of the details explained above, the acceptance ratio

for RJMCMC intra-class-switch move can be expressed as 

A intra-cl-sw 

= min 

{
1 , 

f (x | k ′ , α′ , γ ′ ) 
f (x | k, α, γ ) 

f (γ ′ ) 
f (γ ) 

| J| 
}

, (22)

where | J | is the magnitude of the Jacobian (see Table 1 ). 

3.6.4. Inter-class-switch move 

Different from the intra-class-switch move, distribution family

has also been changed in inter-class-switch move ( k ′ 
 = k ) as well as

the scale and shape parameters. Candidate distribution families are
quiprobable for the candidate set {1, 2, 3} \ { k }, and we use func-

ions below to propose candidate parameters of α′ and γ ′ . 
′ = ψ(α, k, k ′ ) (23)

′ = w (α, α′ , p, γ ) (24)

For intra-class transitions mentioned in the section above, the

nowledge (about scale γ ) learned in the previous algorithm steps

as carried to the next step via FLOM based functions. The same

pproach is also utilized for γ transitions in inter-class-switch

ove and functions w ( · ) are derived; however, this time, the sides

f the transition are in different families. Details are shown in

able 2 . 

In order to perform efficient proposals for α in inter-class-

witch move, instead of using a random move, we perform a map-

ing, ψ( · ) from one family to another by taking into considera-

ion the special members which are common for both of the fam-

lies. For example, to derive an invertible mapping function on α
or a transition from S αS to Student’s t , we utilize the information

hat Cauchy and Gauss distributions are common for both of the

amilies. Cauchy refers to α = 1 for both of the families and Gauss

efers to α = 2 for S αS and α = ∞ for Student’s t . Hence, the in-

ertible function f 2 ( α) performs the mapping for a transition from

 αS to Student’s t . 

Similarly, Gauss distribution is common for both S αS and GG

or α value of 2. Thus, we derive another invertible function f 1 ( α)

o move from S αS to GG. Both of these mapping functions have

een depicted in Fig. 2 (b). 

GG and Student’s t distributions have only Gauss distribution

n common for α values of 2 and ∞ , respectively. Due to hav-

ng only one common distribution and infinite range of α, in-

tead of deriving an invertible mapping for transitions between

hese distributions, we perform a 2-stage mapping mechanism by
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rstly mapping α to S αS from the most recent family, then map-

ing this value to the candidate family by using functions f 1 ( · )

r f 2 ( · ). Then the mapping from GG to Student’s t is derived as:
′ = f 2 ( f −1 

1 
(α)) . It is straightforward to show that the reverse

ransition between shape parameters from Student’s t to GG re-

ults as α′ = f 1 ( f −1 
2 

(α)) . For all the transitions, mapping functions

ave been shown in Table 2 . 

So, the acceptance ratio for inter-class-switch move can be ex-

ressed as: 

 inter-cl-sw 

= min 

{
1 , 

f (x | k ′ , α′ , γ ′ ) 
f (x | k, α, γ ) 

f (γ ′ ) 
f (γ ) 

f (α| k ) 
f (α′ | k ′ ) | J| 

}
(25) 

here | J| = 

∂γ ′ 
∂γ

∂α′ 
∂α

. 

. Experimental study 

We study experimentally three cases: synthetically generated

oise, impulsive noise on PLC channels and 2-D DWT coefficients.

ithout loss of generality, distribution of data x is assumed to be

ymmetric around zero ( δ = 0 ). The algorithm starts with a Gaus-

ian distribution model with initial values k (0) = 2 and α(0) = 2 .

nitial value for scale parameter γ is selected as half of the in-

erquartile range of the given data x and upper bounds αmax, S αS ,

max, GG and αmax, t are selected as 2, 2 and 5, respectively. Some

ntuitive selections have been performed for the rest of the pa-

ameters. Move probabilities for intra-class-switch and inter-class-

witch moves are assumed to be equally likely during the simu-

ations. Additionally, in order to speed up the convergence of the

istribution parameter estimations during the life move, which is

he coefficient update move, it is chosen a bit more likely than

ntra-class-switch and inter-class-switch moves. Thus, the model

ove probabilities are selected as P life = 0 . 4 , P intra-cl-sw 

= 0 . 3 and

 inter-cl-sw 

= 0 . 3 . Hyperparameters for prior distribution of γ are

et to a = b = 1 and variance of proposal distribution for γ in life

ove is set to ξscale = 0 . 01 . Scale parameter � of the discretized

aplace distribution for intra-class-switch move is selected as 0.4. 

RJMCMC performs 50 0 0 iterations in a single RJMCMC run and

alf of the iterations are discarded as burn-in period when esti-

ating the distribution parameters. Random numbers from all the

amilies have been generated by using Matlab’s Statistics and Ma-

hine Learning Toolbox (for details please see 2 ). 

Performance comparison has been performed under two statis-

ical significance tests, namely Kullback–Leibler (KL) divergence and

olmogorov–Smirnov (KS) statistics. KL divergence has been utilized

o measure fitting performance of the proposed method between

stimated pdf and data histogram (for details of KL divergence

lease see [60] ). Two-sample KS test compares empirical CDF of

he data and the estimated CDF. It quantifies the distance between

DFs and performs a hypothesis test under a null hypothesis that

wo samples are drawn from the same distribution. (For details of

S test, please see [61] ) 

.1. Case study 1: synthetically generated noise modeling 

In order to test the proposed method on modeling synthetically

enerated impulsive noise processes, six different distributions are

hosen (2 distributions from each family). In a single RJMCMC run,

ata with a length of 10 0 0 samples have been generated from

ne of the example distributions. The example distributions are

1S(0.75), S1.5S(2), GG 0.5 (0.5), GG 1.7 (1.4), t 3 (1) and t 0.6 (3). 

40 RJMCMC runs have been performed for each distribution and

stimated families with shape and scale parameters for each exam-

le distribution are shown in Table 3 . In Fig. 3 , the instantaneous
2 https://www.mathworks.com/help/stats/continuous-distributions.html 

a  

t  

a  
stimate of shape parameter α and estimated posterior distribution

f scale parameter γ are shown for three example distributions.

esults represent the estimates obtained by a randomly selected

JMCMC run out of 40 runs. Burn-in period is not removed in the

ubfigures (a), (c) and (e) in order to show the transient charac-

eristics of the algorithm. These plots show that the proposed use

f RJMCMC with FLOM based proposal distributions converges to

he correct shape parameters. In subfigures (b), (d) and (f), vertical

ashed-lines with ∇ markers refer to ±σ confidence interval (CI).

xamining these subfigures shows that correct scale parameters lie

ithin the ±σ CI of the posteriors. 

One might think that constructing parallel MCMCs rather than

 RJMCMC would be easier and advantageous. However, as stated

n the above sections, this is not true in every case. RJMCMC al-

orithm avoids searching all possible models by exploring a small

mount of models in the model space. It is clear that for prob-

ems including large number of models, RJMCMC would be advan-

ageous since it allows learning across the model classes and car-

ies the information it has learned to the neighbor classes hence

voiding visiting all or most of the model space. On the other hand,

or the problems like in this paper which have smaller amount

f candidate models (e.g., three distribution families for impul-

ive data modeling application), RJMCMC could be still efficient

han performing parallel MCMCs and choosing the best model. In

able 4 , in order to examine the efficiency of the trans-space RJM-

MC usage, a comparison study with parallel MCMCs have been

erformed by using a single realization of RJMCMC out of 40 for

he same distributions given in Table 3 . To be fair in comparison to

orm-based trans-space RJMCMC, each parallel MCMC performing

stimation process in this example is an intra-class-switch MCMC.

ntra-class-switch MCMC is a sub-routine in trans-space RJMCMC

xample in this paper and for all given data sets, during which

CMCs perform intra-class-switch moves only in a single family

ithout performing inter-class transitions. In the end, estimated

istributions from all the families have been compared in terms

f KL divergence and KS statistics values and the best distributions

or each given data set have been selected. 

Examining Table 4 , it can be stated that both parallel-MCMCs

nd trans-space RJMCMC perform nearly the same in estimation

ccuracy in terms of KL and KS scores. However, when compar-

ng both of the methods according to the simulation time, it is

emarkably seen that the trans-space RJMCMC has been up to 8

imes faster than parallel MCMCs even though there are three dif-

erent families in the model space. The gain in the simulation time

ffered by trans-space RJMCMC is lower for S αS distribution ex-

mples since visiting S αS family is computationally expensive due

o requiring to compute numerical integrations for its pdf. When

he distribution family in question is GG or Student’s t , trans-space

JMCMC avoids these time costly visits to S αS family most of the

ime and rarely visits these states after burn-in period. Thus, the

imulation time gain for trans-space RJMCMC usage becomes more

isible and the proposed method reaches the same performance

ith up to 8 times faster than parallel MCMCs. 

As another simulation step, we have created a scenario where

he algorithm has been forced to remain at a wrong distribution

amily for the first 10 0 0 iterations. After that, all the limitations

re released and the algorithm tries to find the correct distri-

ution for a given data set. This simulation has been named as

he wrong model initialized simulation and results are shown in

ig. 4 for two different synthetically generated data sets. Exam-

ning the results in Fig. 4 (a) and (c), we can easily see that after

he wrong model initialization finishes at iteration 10 0 0, the pro-

osed method tries to find the correct distribution family as soon

s possible and achieves this transition within the first 50 itera-

ions (between 10 0 0 and 1050). Even if it has been initialized at

 completely wrong model, thanks to the norm based proposals,

https://www.mathworks.com/help/stats/continuous-distributions.html
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Table 3 

Model choices, parameter estimates and estimation errors for synthetically generated 

processes. 

Distribution Est. Est. Est. KL Div. KS KS 

Distribution Family Shape ( ̂ α) Scale ( ̂ γ ) Score p -value 

S1.5S(2) S αS 1.4769 1.9162 0.0169 0.0125 1.0 0 0 0 

S1S(0.75) t 0.9970 0.7300 0.0454 0.0489 > 0.9999 

GG 0.5 (0.5) GG 0.4990 0.5199 0.0229 0.0152 1.0 0 0 0 

GG 1.7 (1.4) GG 1.6456 1.3374 0.0221 0.0202 1.0 0 0 0 

t 3 (1) t 2.9303 1.0039 0.0251 0.0203 1.0 0 0 0 

t 0.6 (3) t 0.6197 2.9869 0.0465 0.0452 > 0.9999 

Fig. 3. Synthetically generated noise modeling - parameter estimation results in a single RJMCMC run. (a),(c), and (e) instantaneous α estimates. (b),(d), and (f) estimated 

posterior distributions for γ after burn-in period. 

Table 4 

Time cost and accuracy performance of trans-space RJMCMC and Parallel MCMCs. 

Parallel MCMCs Trans-space RJMCMC Simulation 

Distribution Total time Est. Est. Est. KL Div. KS KS Total time Est. Est. Est. KL Div. KS KS time gain 

Family( α, γ ) T 1 (sec) Family Shape ( ̂ α) Scale ( ̂ γ ) Score p -value T 2 (sec) Family Shape ( ̂ α) Scale ( ̂ γ ) Score p -value ( T 1 / T 2 ) 

S1.5S(2) 980.16 S αS 1.5780 2.1652 0.0206 0.0144 > 0.9999 677.83 S αS 1.5900 2.1669 0.0201 0.0149 1.0 0 0 0 1.45 

S1S(0.75) 1109.49 S αS 1.0555 0.7555 0.0346 0.0472 > 0.9999 437.95 t 1.0611 0.7678 0.0366 0.0478 > 0.9999 2.53 

GG 0.5 (0.5) 943.55 GG 0.4960 0.4992 0.0384 0.0233 > 0.9999 135.89 GG 0.4896 0.4816 0.0406 0.0249 1.0 0 0 0 6.94 

GG 1.7 (1.4) 605.73 S αS 1.9567 0.7815 0.0293 0.0265 1.0 0 0 0 95.81 GG 1.7918 1.4935 0.0306 0.0284 1.0 0 0 0 6.32 

t 3 (1) 817.97 t 2.9941 1.0095 0.0192 0.0349 > 0.9999 113.76 t 2.9287 1.0061 0.0199 0.0351 > 0.9999 7.19 

t 0.6 (3) 915.28 t 0.5980 3.0717 0.0542 0.0341 1.0 0 0 0 113.18 t 0.6081 3.0660 0.0536 0.0344 1.0 0 0 0 8.09 
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Fig. 4. Wrong distribution initialized simulation for Case 1. (a) and (c) refer to the instantaneous shape parameter estimation plots for 2500 iterations. (b) and (d) refer to 

the instantaneous KS (or KL) statistics plots for 2500 iterations. The correct distributions are Cauchy and Generalized Gaussian for the first and second rows, respectively. 

Fig. 5. Synthetically generated noise modeling results. (a)–(c) estimated pdfs, (d)–(f) estimated CDFs. 
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t  
he algorithm can find its way toward the correct model very fast.

n Fig. 4 (b) and (d) statistical error measures are shown in order

o visualize that the algorithm remains in a wrong model at first

0 0 0 iterations. As soon as the transition to the correct family has

een performed, error measures exhibit a rapid decrease and re-

ain around these values until the end of the simulation. 
Estimated pdfs and CDFs for three example distributions are de-

icted in Fig. 5 . In addition to the statistical significance values in

able 3 , fitting performance of the algorithm has been presented

isually. As can be seen in Fig. 5 , estimated pdfs are very similar

o the data histogram and fitting performances for all example dis-

ributions lie within KL distance of at most 0.0465. Moreover, the
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Fig. 6. PLC impulsive noise modeling results. (a)–(c): Time plots, (d)–(f) estimated pdfs, (g)-(i) estimated CDFs. 
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3 http://sips.inesc-id.pt/ ∼pacl/PLCNoise/index.html 
4 http://www.plc.uma.es/channels.htm 
estimated CDFs under KS statistic score are also very low and p -

values are close to 1.0 0 0 0. Please note that the estimation result

in the second line of Table 3 is meaningful for an example Cauchy

distribution since the Cauchy distribution is a special member in

both S αS and Student’s t families. 

4.2. Case study 2: modeling impulsive noise on PLC systems 

PLC is an emerging technology which utilizes power-lines to

carry telecommunication data. Telecommunication speeds up to

200 Mb/s with a good quality of service can be achieved on PLC

systems. Apart from this, PLC offers a physical medium for indoor

multimedia data traffic without additional cables [38] . 

A PLC system has various types of noise arising from electrical

devices connected to power line and external effects via electro-

magnetic radiation, etc. These noise sequences are generally non-

Gaussian and they are classified into three groups, namely: (i) Im-

pulsive noise, (ii) Narrowband noise, (iii) Background Noise [25] .

Among these, impulsive noise is the most common cause of de-

coding (or communications) error in PLC systems due to its high

amplitudes up to 40 dBs [62] . 

In this case study, we are going to use 3 different PLC noise

measurements. First PLC data utilized in this paper (named as PLC-
 ) is an amplified impulsive noise measurement from a PLC sys-

em with a sampling rate of 200Msamples/s. Measurements last

or 5 ms and there are 100 K samples in the data set (for details

f the measurement scheme and other measurements please see

26] and the project with number PTDC/EEA-TEL/67979/2006). In

rder to reduce the computational load, the data is downsampled

ith a factor of 50 and the resulting 2001 samples have been used

n this study. In Fig. 6 (a) a time plot of the utilized downsampled

ata is depicted (for detailed description of the data please see 3 ). 

Remaining two data sets are periodic synchronous and asyn-

hronous (named as PLC-2 and PLC-3 , respectively) impulsive noise

easurements (for details please see [25] and the project wıth

umber TIC2003-06842). Periodic synchronous measurements last

or 4 μs and contain 226 noise samples. Periodic asynchronous

easurements contain 1901 noise samples and last for 35 μs. In

igs. 6 (b) and (c) time plots are depicted for synchronous and

synchronous noise sequences, respectively (for detailed descrip-

ion of the data please see 4 ). 

RJMCMC has been run 40 times for all three data sets. In

able 5 , estimated distribution families and the resulting scale and

http://sips.inesc-id.pt/~pacl/PLCNoise/index.html
http://www.plc.uma.es/channels.htm
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Fig. 7. 2D-DWT coefficients modeling results for Lena and SAR images. (a) and (d) images, (b)–(e) estimated pdfs, (c)–(f) estimated CDFs. 

Fig. 8. 2D-DWT coefficients modeling results for MRI and Mammogram. (a) and (d) images, (b)–(e) estimated pdfs, (c)–(f) estimated CDFs. 
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Fig. 9. (a) and (c) refer to the instantaneous shape parameter estimation plots. (b) and (d) refer to the instantaneous KS (or KL) statistics plots. Results are for PLC-3 and 

Lena-H in the first and second rows, respectively. 

Table 5 

Model choices, parameter estimates and estimation errors for PLC impulsive 

noise. 

Data Est. Est. Est. KL Div. KS KS 

Family Shape ( ̂ α) Scale ( ̂ γ ) Score p -value 

PLC-1 S αS 1.2948 5.6969 0.0086 0.0112 1.0 0 0 0 

PLC-2 S αS 0.7042 0.1799 0.0441 0.0486 > 0.9999 

PLC-3 S αS 1.3140 1.3488 0.0046 0.0132 1.0 0 0 0 
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shape parameters are depicted with significance test results. Es-

timated scale and shape parameters correspond to the average

values after 40 repetitions. Examining the results in Table 5 , we

can state that all three considered PLC noise processes follow

S αS distribution characteristics. In the literature, there are studies

[38,63] which model the impulsive noise in PLC systems by us-

ing stable distributions. Particularly, these studies provide a direct

modeling scheme via stable distribution, whereas the proposed

method has estimated the distribution among three impulsive dis-

tribution families. Thus, our estimation results for impulsive noise

in PLC systems provide experimental verification to these studies.

According to the results of KL and KS statistics shown in Table 5 on

estimated pdfs and CDFs and figures between Fig. 6 (d) and (i),

RJMCMC fits to real data with a remarkable performance. KS p -

values are all approximately 1 ( > 0.9999) and this provides strong

evidence that the estimated and the correct distributions are of the

same kind. 

4.3. Case study 3: statistical modeling for discrete wavelet transform 

(DWT) coefficients 

DWT which provides a multiscale representation of an image is

a very important tool for recovering local and non-stationary fea-

tures in an image. The resulting representation is closely related

with the processing of the human visual system. DWT obtains this
ultiscale representation by performing a decomposition of the

mage into a low resolution approximation and three detail im-

ges capturing horizontal, vertical and diagonal details. It has been

bserved by several researchers that they have heavier tails and

harper peaks than Gaussian distribution [22,23] . 

In this study, the proposed method has been utilized to model

he coefficients (e.g., subbands) of 2D-DWT, namely vertical (V),

orizontal (H) and diagonal (D). Four different images have been

sed to test the performance of the algorithm under statistical

ignificance tests: Lena, synthetic aperture radar (SAR) [27] , mag-

etic resonance imaging (MRI) [28] and mammogram [29] which

re shown in the first columns of Figs. 7 and 8 . 

The proposed method has been performed for 40 RJMCMC runs.

stimated results for distribution families and their parameters ( α
nd γ ) are depicted in Table 6 as averages of 40 runs. 

Estimated distributions for wavelet coefficients of images in

able 6 show different characteristics. SAR and MRI images fol-

ow generally S αS characteristics while results for Lena and mam-

ogram images are generally GG or Student’s t . Moreover, despite

odeling with different distribution families, all the coefficients for

ll the images have been modeled successfully according to the KL

nd KS test scores and p -values. The estimated pdfs and CDFs in

igs. 7 and 8 show remarkably good fitting and provide support to

he results which are obtained numerically in Table 6 . 

.4. Model switching analysis for real data sets 

As discussed in detail in the previous sections, the proposed

sage of RJMCMC in impulsive modeling applications, has 3 dif-

erent moves. Intra and inter class switch moves perform switch-

ng between different distributions and families as well. In order

o analyze the model switching capabilities of the proposed model

ransition approach which is based on a common feature, specif-

cally the FLOMs, instantaneous shape parameter plots are shown
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Table 6 

Model choices, parameter estimates and estimation errors for 2D-DWT coefficients. 

Image Est. Est. Est. KL Div. KS KS 

Family Shape ( ̂ α) Scale ( ̂ γ ) Score p -value 

Lena (V) GG 0.5002 1.7415 0.0271 0.0465 > 0.9999 

Lena (H) t 1.0958 2.2422 0.0094 0.0349 > 0.9999 

Lena (D) t 1.1628 1.7735 0.0145 0.0271 1.0 0 0 0 

SAR(V) S αS 1.5381 7.7395 0.0025 0.0123 1.0 0 0 0 

SAR(H) S αS 1.4500 8.6249 0.0043 0.0221 1.0 0 0 0 

SAR(D) S αS 1.7500 6.3710 0.0062 0.0125 1.0 0 0 0 

MRI(V) GG 0.3913 0.2693 0.0365 0.1152 0.8744 

MRI(H) GG 0.3527 0.1039 0.0305 0.0548 > 0.9999 

MRI(D) S αS 0.8504 0.5184 0.0245 0.0659 0.9998 

Mammog.(V) t 1.6325 1.6411 0.0363 0.0907 0.9816 

Mammog.(H) GG 0.7501 1.5154 0.0121 0.0555 > 0.9999 

Mammog.(D) t 1.6430 0.4851 0.0073 0.0117 1.0 0 0 0 
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n Fig. 9 . In this figure, only one example data set from each real

ata case are investigated. 

FLOM based proposals demonstrate successful, efficient and fast

odel transitions leading to the correct (the most suitable of the

est matching family) distributions. Except for the cases for com-

on distributions in two families such as Cauchy, after reaching

he most suitable distribution family, the algorithm is more likely

o accept sampling in the same family (intra-class switch move)

ather than perform sampling between families (inter-class switch

ove). The most important reason for this is that the norm based

ransitions highly penalize the transitions from the correct distri-

ution family to another in the acceptance ratio terms. Although

hese kinds of transitions were somehow performed in some of the

imulation cases, the algorithm came back to the correct family af-

er a low number of iterations and performed updates in the cor-

ect family. These results can be easily seen in Figs. 3 (a)–(c), 4 (a)

nd (c) and 9 (a) and (c). 

. Conclusion 

In this study, we have demonstrated a new usage named as

rans-space RJMCMC and drawn attention to the generality of RJM-

MC algorithm beyond the framework of trans-dimensional sam-

ling. By defining a new combined parameter space of current and

arget parameter subspaces of possibly different classes or struc-

ures, we have shown that the original formulation of RJMCMC

ffers more general applications than just estimating the model

rder. This provides users to do model selection between differ-

nt classes or structures. In particular, exploring solution spaces

f linear and nonlinear models or of various distribution fami-

ies is possible using RJMCMC. One can expect higher benefits

rom the trans-space RJMCMC compared to considering different

odel classes separately in the cases when the different model

lass spaces have intersections to exploit. The intersections for the

rans-distributional RJMCMC considered in this paper have been

he common distributions in the impulsive noise families. They

ade it possible to use the mapping functions benefiting from the

LOMs of the observed data. These functions, in turn, have enabled

o transfer the information learned while searching in one family

o the subsequent search after an inter-class-switch move. 

Candidate distribution space covers various impulsive densities

rom three popular families, namely S αS, GG and Student’s t . In

oth synthetically generated noise processes and real PLC noise

easurements and wavelet transforms of images, the proposed us-

ge of RJMCMC shows remarkable performance in modeling. Sim-

lation studies verify the remarkable performance in modeling the

istributions in terms of both visual and numerical tests. KL and

S tests show the numerical results are statistically significant in

erms of p -values which are generally close to 1.0 0 0 0 (at least
.85) for all the example data sets. Moreover, the algorithm indi-

ated S αS distributions for 2D-DWT coefficients of SAR images and

oise on PLC channels which is in accordance with the other stud-

es in the literature and confirms the success of the algorithm. 

The proposed approach for proposal distributions, FLOM-based

roposals, also makes it possible to perform transitions easily be-

ween distributions in different families which have similar statis-

ical characteristics, even if they have very different values for scale

nd shape parameters. In other words, matching the FLOMs to cal-

ulate the parameters, offers to switch distributions the parameters

f which are strictly different. For further studies, this approach

as possibility to open research directions to perform simulation

tudies about the mimicking capabilities of a distribution to an-

ther. 

We would like to underline that the ideas presented in this pa-

er are not limited only to sampling across distribution families

ut can be extended to any class of models. 
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