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Abstract Of recent increasing interest in the area of fractional calculus and nonlinear dynamics are fractional
differential-difference equations. This study is devoted to a local fractional differential-difference equation which is
related to a nonlinear electrical transmission line. Explicit traveling wave solutions (kink/antikink solitons, singular,
periodic, rational) are obtained via the discrete tanh method coupled with the fractional complex transform.

PACS numbers: 05.45.Yv, 04.20.Jb
Key words: differential-difference equation, local fractional derivative, nonlinear transmission line, discrete

tanh method, fractional complex transform

1 Introduction

Fractional calculus[1−2] has played a very important

role in various fields (such as quantum mechanics, elas-

ticity, signal analysis, and many other branches of pure

and applied mathematics as well as nonlinear analysis and

nonlinear dynamics) because the standard mathematical

models of integer-order derivatives, including nonlinear

models, do not work adequately in most cases. In fact,

fractional calculus[3] begun with the seminal work of Leib-

niz. It is about a generalization of the ordinary differenti-

ation and integration to non-integer order. In a letter to

L’Hospital, Leibniz asked the question: “Can the meaning

of derivatives with integer order be generalized to deriva-

tives with non-integer orders?” In recent years, several

equations in science and engineering have thus been gen-

eralized to non-integer orders so as to provide new mod-

els. It can be observed that many applications of frac-

tional calculus amount to replacing the time derivative

in a nonlinear evolution equation with a fractional order

derivative. Though solving a fractional differential equa-

tion (FDE) is a quite difficult task, the theory of FDEs

is furnished with some solution methods, theoretical and

numerical. Among them are the differential transform

method,[4] the Adomian decomposition method,[5] the fi-

nite element method,[6] the finite difference method,[7]

the homotopy perturbation method,[8] the fractional sub-

equation method,[9] the first integral method,[10] and so

on. A good survey on numerical methods for FDEs can

be found in Ref. [11].

On the other hand, the significance of differential-

difference equations (DDEs), or lattice equations, has also

been demonstrated in various contexts from engineering to

biophysics, chemistry, biology, and some other branches of

pure and applied mathematics like nonlinear analysis and

nonlinear dynamics. Due to the growing number of ap-
plications of DDEs (atomic chains, currents in electrical
networks, molecular crystals, chemical reactions, pulses in
biological chains, particle vibrations in lattices, and wave
phenomena in fluids), some powerful methods are being
developed to provide a tool for solving such problems.
Among those, the well-known ones are Hirota’s bilin-
ear method,[12] Tau method,[13] Casoratian technique,[14]

ADM-Padé technique,[15] Exp-function method,[16−21]

homotopy perturbation method,[22] (G′/G)-expansion
method,[23−26] discrete tanh method,[27] etc. Indeed,
pioneering ideas of Fermi, Pasta and Ulam[28] have
led to many fascinating DDE models such as dis-
crete modified KdV equation,[29] Ablowitz–Ladik lattice
equation,[30] Volterra lattice equation,[31] discrete sine-
Gordon equation,[32] discrete KdV equation,[33] and Toda
lattice equation.[34] Most of the models has the form
dun/dt = P (un−1, un, un+1) where P is a polynomial of
its arguments and un(t) = u(n, t), n ∈ Z, is the displace-
ment of the n-th particle from the equilibrium position.

The present study is devoted to a local time-fractional
DDE model associated with a previous nonlinear electrical
transmission line which reads

d2αsn
dt2α

=
1

LC0V0

(
V0 +

dαsn
dtα

)
(sn−1 − 2sn + sn+1) ,

0 < α ≤ 1 , (1)

where dαsn/dt
α denotes the local fractional derivative[3]

of order α with respect to t, sn(t) = s(n, t), n ∈ Z, L is a
linear inductor, C0 and V0 are constants. The fractional
model (1) is a variant of the classical nonlinear DDE as-
sociated with a nonlinear electrical transmission line.[35]

In recent years, starting from pioneering ideas going back
to Hirota and Suzuki,[36−37] the use of nonlinear trans-
mission lines for studying nonlinear waves and nonlinear
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modulated waves (pulse solitons, envelope pulse (bright),

hole (dark) solitons and kink and anti-kink solitons, in-

trinsic localized modes (discrete breathers), modulational

instability) has drawn much attention by researchers both

from the mathematical and physical point of view. Nonlin-

ear electrical transmission lines are discrete systems but

approximate the continuum systems quite well. By ap-

plying the Kirchhoff’s laws and the continuum approx-

imation to a nonlinear electrical line, Hubert et al.[38]

derived an equation of wave propagation and solved it

via the Kudryashov method and the (G′/G)-expansion

method which provided kink, antikink, and breather soli-

ton solutions. Sardar et al.[39] found multiple traveling

wave solutions using three integration schemes (extended

tanh method, (G′/G)-expansion method and sine-cosine

method) to integrate the model of electrical transmission

line. They obtained different kinds of solutions: soli-

tary, shock, singular, periodic, rational and kink-shaped.

Malwe et al.[40] solved a continuous nonlinear model asso-

ciated with the previous nonlinear transmission line us-

ing the generalized Riccati equation mapping method.

Via the Riccati equation mapping scheme, Zhou[41] con-

structed soliton and soliton-like solutions to the modified

Zakharov–Kuznetsov equation in nonlinear transmission

line. By applying the variable-coefficient discrete (G′/G)-

expansion method, Abdoulkary et al.[35] investigated ex-

act solutions of the nonlinear DDEs associated with the

network. In order to complement the existing literature,

in this study, our strategy is to construct exact solutions

for the local time-fractional DDE model (1) using the dis-

crete tanh method[27] coupled with the fractional com-

plex transform which was first proposed in 2010 by Li and

He[42] to convert FDEs into ODEs.

Here is a brief outlook of the paper. In the next section

we focus on the derivatives from a fractional order point of

view. In Sec. 3 we introduce the fractional complex trans-

form by giving a special example of a local fractional differ-

ential equation. Section 4 describes the solution method.

In Sec. 5 we present our main results. Finally in Sec. 6,

some concluding remarks are given.

2 Local Fractional Derivative

Some functions (such as Weierstrass’ functions) are

continuous everywhere, but nowhere differentiable. So,

one cannot write down differential equations (to repre-

sent some physical dynamical system) to which they can

be solutions. To overcome this difficulty, fractional calcu-

lus offers several different approaches and definitions for

derivatives and integrals of arbitrary order[43] such as the

Riemann–Liouville, the Grünwald–Letnikov, and the Ca-

puto derivatives and the Riesz potential. At this stage, it

is very crucial to point out that fractional order derivative

definitions have their advantages and disadvantages. For

instance,[3] the Caputo fractional derivative is defined as

Dα
x (f(x)) =

1

Γ(n− α)

∫ x

0

(x− t)n−α−1 d
nf(t)

dtn
dt , (2)

while the Riemann–Liouville fractional derivative is de-

fined as

Dα
x (f(x)) =

1

Γ(n− α)

dn

dxn

∫ x

0

(x− t)n−α−1f(t)dt . (3)

Here dn/dtn stands for the ordinary derivative of integer

order n and Γ denotes the Gamma function. In fact, the

Caputo derivatives are defined only for differentiable func-

tions, while f can be a continuous (but not necessarily dif-

ferentiable) function. The Riemann–Liouville definition is

suitable for any functions that are continuous but not dif-

ferentiable anywhere, however, Dα
x (f(x)) ̸= 0 when f(x)

is a constant. Hence, Jumarie[44] suggested a modification

of the Riemann–Liouville fractional derivative, where f is

a continuous (but not necessarily differentiable) function,

which reads

Dα
x (f(x))=

1

Γ(n−α)
dn

dxn

∫ x

0

(x−t)n−α−1[f(t)−f(0)]dt.(4)

The Jumaire’s fractional derivative (4) has the following

properties

Dα
x c = 0 , Dα

x [cf ] = cDα
xf ,

Dα
xx

β =
Γ(1 + β)

Γ(1 + β − α)
xβ−α ,

β > α > 0 . (5)

Because of its simple chain rule, recently, the local frac-

tional derivative[3] has attracted much attention, which is

defined as

f (α)(x0) =
dαf(x)

dxα

∣∣∣
x=x0

= lim
x→x0

∆α(f(x)− f(x0))

(x− x0)α
, (6)

where

∆α(f(x)− f(x0)) ∼= Γ(1 + α)(f(x)− f(x0)) .

The local fractional derivative (6) obeys the rules

dkαf(x)

dxkα
=

k times︷ ︸︸ ︷
dα

dxα
· · · dα

dxα
f(x) ,

dαf(g(x))

dxα
= f (1)(g(x))g(α)(x) = f (α)(g(x))g(1)(x) , (7)

as well as the properties (5) and the product rule

dα(f(x)g(x))

dxα
= g(x)

dαf(x)

dxα
+ f(x)

dαg(x)

dxα
,

see Ref. [45] for further properties. Similarly, the local

fractional partial derivative is defined as

∂αf(x0, t)

∂xα
= lim

x→x0

∆α(f(x, t)− f(x0, t))

(x− x0)α
,

where

∆α(f(x, t)− f(x0, t)) ∼= Γ(1 + α)(f(x, t)− f(x0, t)) .
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The local fractional derivatives introduced in physical

models can describe sound attenuation in complex me-

dia. Fractal media, being complex, appears in different

fields of physics.

3 Fractional Complex Transform

As is well known, transforms are useful tools in solv-

ing problems of applied sciences. To make mention a few;

the Laplace transform, the Fourier transform, the wave

transformation, the Backlund transformation, the inte-

gral transform, etc. The fractional complex transform[3,42]

was introduced to convert FDEs in the sense of the Ju-

maire’s modified Riemann–Liouville derivative to inte-

ger order partners. Though many applications of the

fractional complex transform appeared in the literature,

a counter-example making the approach much skeptical

was found.[46] It is observed that the previous demerit

can be completely eliminated when the local fractional

derivative[3] is used. For example, consider a local frac-

tional partial differential equation[3] in the form

∂αU1(x, y)

∂xα
+
∂αU2(x, y)

∂yα
= 0 , 0 < α 6 1 . (8)

By means of the fractional complex transform

X =
xα

Γ(1 + α)
, Y =

yα

Γ(1 + α)
, (9)

one can easily convert Eq. (9) to its differential partner

∂U1(X,Y )

∂X
+
∂U2(X,Y )

∂Y
= 0 . (10)

4 Solution Method

The discrete tanh method[27] can be summarized as

follows. For a given nonlinear DDE, we construct a sys-

tem consisting of a differential equation and recurrence

relations which read

dψn

dξn
= ε− δψ2

n , (11)

ψn+1 =
ψn + εA

1 + δAψn
, (12)

ψn−1 =
ψn − εA

1− δAψn
, (13)

where ξn = kn + λt, and ε, δ, A, k, and λ are constants.

Then, we make the following observations:

(i) If ε = 1, δ = 1, A = tanh(k), then the system (11)–

(13) has the solutions ψn = tanh(ξn) and ψn = coth(ξn).

(ii) If ε = 1, δ = −1, A = tan(k), then the system (11)–

(13) has the solutions ψn = tan(ξn) and ψn = − cot(ξn).

(iii) If ε = 0, δ = 1, A = k, then the system (11)–(13)

has the solution ψn = 1/ξn.

Now, we consider a system of fractional DDEs in the

form

∆(un+p1
(x), . . . ,un+pk

(x), . . . ,uα
n+p1

(x), . . . ,uα
n+pk

(x), . . . ,u
(rα)
n+p1

(x), . . . ,u
(rα)
n+pk

(x)) = 0 , 0 < α 6 1 , (14)

where the dependent variable un have M components ui,n and so do its shifts; the continuous variable x has N

components xi; the discrete variable n has Q components nj ; the k shift vectors pi ∈ ZQ; and u(rα)(x) denotes the

collection of local fractional derivative terms of order rα. To search for exact solutions of Eq. (14), we first take the

fractional complex transformation

un+ps
(x) = Un+ps

(ξn) , ξn =

Q∑
i=1

dini +

N∑
j=1

cj
Γ(1 + α)

xαj + ζ (s = 1, 2, . . . , k) , (15)

into consideration where the coefficients c1, c2, . . . , cN , d1, d2, . . . , dQ and the phase ζ are all constants, while the symbol

Γ denotes the gamma function. Then, Eq.(14) changes into a system of integer order in the form

∆(Un+p1
(ξn), . . . ,Un+pk

(ξn), . . . ,U
′
n+p1

(ξn), . . . ,U
′
n+pk

(ξn), . . . ,U
(r)
n+p1

(ξn), . . . ,U
(r)
n+pk

(ξn) = 0 . (16)

To obtain an exact solution for Eq. (16), a finite expansion

Un(ξn) =
m∑
l=0

al(ψn(ξn))
l , am ̸= 0 , (17)

is proposed, wherem is a positive integer, which is usually

determined by a homogeneous balance principle, ai’s are

constants to be determined, ψn(ξn) is a solution of the

system (11)–(13).

5 Exact Solutions for Eq. (1)

Solitary solutions of DDEs have caught much attention

because discrete spacetime may be the most radical and

logical viewpoint of reality.[47] Indeed, soliton was first dis-

covered in 1834 by Russell,[48] who observed that a canal

boat stopping suddenly gave rise to a solitary wave which
traveled down the canal for several miles, without break-
ing up or losing strength. Russell called this phenomenon
the “‘soliton”. A soliton is a special traveling wave that
after a collision with another soliton eventually emerges
unscathed. Today, the study of solitons has been general-
ized to many areas (such as optics, electrical transmission
and various other media) other than water waves. Solitons
that occur in electrical transmission lines are commonly
refered to as electrical solitons.

In order to integrate Eq. (1), we first introduce the
fractional complex transform

sn = Sn(ξn) , ξn = kn+
λ

Γ(1 + α)
tα + χ , (18)
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where k and λ are real parameters to be specified, while χ

denotes the phase shift. Substituting Eq. (18) into Eq. (1)

gives

λ2Sn
′′− 1

LC0V0
(V0+Sn

′)(Sn−1−2Sn+Sn+1) = 0 , (19)

where prime denotes ordinary derivative with respect to

the new independent variable ξn. Our solution method

then suggests looking for exact solutions of Eq. (19) in

the form

Sn = a0 + a1ψn , a1 ̸= 0 , (20)

where ψn = ψn(ξn) satisfies the auxiliary equation (11),

while a0 and a1 are arbitrary constants to be determined

at the stage of solving the problem. By means of Eqs. (11)

and (20), we get the derivatives

Sn
′ = a1(ε− δψ2

n) , Sn
′′ = −2δa1ψn(ε− δψ2

n) . (21)

Substituting Eqs. (20) and (21), along with the recurrence

relations (12) and (13), into Eq. (19), we obtain a polyno-

mial in ψn. Collecting all like terms ψi
n (i = 0, 1, . . .) and

setting the coefficients to zero yields a nonlinear algebraic

system for λ, a0, and a1, which reads

ψ1
n : −A2δε2λa21 −A2δεa1V0 + Lδελ2a1C0V0 = 0 , (22)

ψ3
n : 2A2δ2ελa21 +A4δ3ε2λa21 +A2δ2a1V0 +A4δ3εa1V0

− Lδ2λ2a1C0V0 − 2A2Lδ3ελ2a1C0V0 = 0 , (23)

ψ5
n : −A2δ3λa21 − 2A4δ4ελa21 −A4δ4a1V0

+ 2A2Lδ4λ2a1C0V0 +A4Lδ5ελ2a1C0V0 = 0 , (24)

ψ7
n : A4δ5λa21 −A4Lδ6λ2a1C0V0 = 0 . (25)

Solving the above system (22)–(25) with the aid of Math-

ematica, we could get a constrained relation among the

parameters as follows

a0 = a0 , a1 = ±
√
LC0δV0A√
1− δεA2

,

λ = ± A
√
LC0

√
1− δεA2

, (26)

where a0, δ, ε, and A remain arbitrary. Here and after

the signs are ordered in a vertical manner. Then the local

time-fractional DDE (1) has the following exact solution

sn(t) = a0 ±
√
LC0δV0A√
1− δεA2

ψn(ξn) ,

ξn = kn± A
√
LC0

√
1− δεA2Γ(1 + α)

tα + χ , (27)

where 0 < α 6 1, a0, k, and χ are arbitrary constants, ψn

is the solution of the system (11)–(13). Now, we can con-

struct three types of exact solutions for Eq. (1) as follows:

(i) When ε = 1, δ = 1, A = tanh(k), then Eq. (27) leads to the exact solitary wave solutions

sn(t) = a0 ±
√
LC0V0 sinh(k) tanh

(
kn± sinh(k)√

LC0Γ(1 + α)
tα + χ

)
, (28)

sn(t) = a0 ±
√
LC0V0 sinh(k) coth

(
kn± sinh(k)√

LC0Γ(1 + α)
tα + χ

)
. (29)

We observe that Eq. (28) is a kink/antikink-type solitary wave solution while Eq. (29) is a singular traveling wave

solution (see Figs. 1 and 2.).

(ii) When ε = 1, δ = −1, A = tan(k), then (27) gives singular periodic wave solutions

sn(t) = a0 ∓
√
LC0V0 sin(k) tan

(
kn± sin(k)√

LC0Γ(1 + α)
tα + χ

)
, (30)

sn(t) = a0 ∓
√
LC0V0 sin(k) cot

(
kn± sin(k)√

LC0Γ(1 + α)
tα + χ

)
. (31)

Fig. 1 A profile of the kink-type solitary wave solution (28) with a0 = χ = 0, k = α = 1, V0 = 3.9 V,
C0 = 470 pF, L = 680 µH: (a) −104 6 t 6 104, n = 0,±1,±2, . . . ,±10; (b) −104 6 t 6 104, n = 0; (c) t = 0,
n = 0,±1,±2, . . . ,±10.
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Fig. 2 A profile of the singular traveling wave solution (29) with a0 = χ = 0, k = α = 1, V0 = 3.9 V,
C0 = 470 pF, L = 680 µH, (a) −104 6 t 6 104, n = 0,±1,±2, . . . ,±10; (b) −104 6 t 6 104, n = 0; (c) t = 0,
n = 0,±1,±2, . . . ,±10.

(iii) When ε = 0, δ = 1, A = k, then Eq. (27) provides
a rational solution in the form

sn(t) = a0 ±
√
LC0V0k

kn(±k/
√
LC0Γ(1 + α))tα + χ

. (32)

6 Conclusions

From a dynamical view point, the literature exhibits a
growing interest in the generalizations of fractional calcu-
lus to DDEs. The model which has been considered in this
article is a fractional variant of a previous nonlinear DDE
associated with a nonlinear electrical transmission line.
Local fractional derivative is used due to its simple chain
rule. Complexity of fractional calculus, caused partially
by non-local properties of fractional derivatives, makes it
quite difficult to develop efficient analytic methods. How-

ever, it is observed that the discrete tanh method cou-

pled with the fractional complex transform can be used

for nonlinear DDEs with localized fractional derivative.

Fractional complex transform, which is valid only for gen-

eral “wave” solutions for FDEs, makes the solution pro-

cedure extremely practical. We obtained three types of

exact solutions for our model; hyperbolic, trigonometric

and rational including antikink/kink-type solitary waves

and singular periodic solutions. The local fractional cal-

culus theory is very important for modelling problems on

Cantorian space in fractal media. The local fractional

derivatives are also useful for solving non-differentiable

problems in fractal time-space. We believe that there are

still enough freedom degrees in our model for allowing us

to analyze it using some other approches.[49]
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