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ABSTRACT

MINING XML DOCUMENTS WITH ASSOCIATION RULE 
ALGORITHMS

Following the increasing use of XML technology for data storage and data 

exchange between applications, the subject of mining XML documents has become 

more researchable and important topic. In this study, we considered the problem of 

Mining Association Rules between items in XML document. The principal purpose of 

this study is applying association rule algorithms directly to the XML documents with 

using XQuery which is a functional expression language that can be used to query or 

process XML data. We used three different algorithms; Apriori, AprioriTid and High 

Efficient AprioriTid. We give comparisons of mining times of these three apriori-like 

algorithms on XML documents using different support levels, different datasets and 

different dataset sizes. 
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ÖZET

EŞLEŞTİRME KURALI ALGORİTMALARI İLE XML 

DOKÜMANLARI MADENCİLİĞİ

XML teknolojisinin veri saklama ve uygulamalar arası veri aktarımında 

kullanımının artmasının ardından XML dokümanları madenciliği alanı çok daha önemli 

ve araştırılabilir bir konu olmuştur. Bu çalışmada XML dokümanındaki nesneler 

arasındaki eşleştirme kurallarının madenciliği problemini göz önünde bulundurduk. Bu 

çalışmanın ana amacı; XML dokümanları üzerine eşleştirme kuralı algoritmalarını, 

XML verilerini sorgulayıp işleyebilen, işlevsel bir tanımlama dili olan  XQuery 

kullanarak doğrudan uygulamaktır. Bu çalışmada üç farklı algoritma kullanılmıştır, 

bunlar Apriori, AprioriTid ve HEA algoritmalarıdır. Çalışmanın sonunda farklı veri 

kümeleri, veri küme boyutları  ve destek düzeyleri kullanarak bu üç apriori benzeri 

algoritmanın XML dokümanları üzerindeki madencilik sürelerinin karşılaştırmaları 

sunulmuştur.   
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       CHAPTER 1

INTRODUCTION

1.1. Motivation

EXtensible Markup Language (XML) has emerged as the dominant standard for 

describing data and exchanging data on the web. It’s nested; self-describing structure 

provides a simple yet flexible means for applications to exchange data (Hassan, et al.

2003). Most recently, XML is passing into virtually all areas of internet application 

programming, producing huge amount of data encoded in XML. The ability to extract 

knowledge from XML data sources turned into a very important and necessary 

characteristic with the continuous growth in XML data.

Data mining, appearing during the late 1980s, has improved during the 1990s

especially in transforming vast amounts of data into useful knowledge, and is expected 

to continue to grow rapidly in the future. (Han and Kamber 2001). Nevertheless, 

compared to the successful performances in mining well-structured data such as 

relational databases and object-oriented databases, mining in the semi-structured XML 

world still remains at a preliminary stage and is confronted with more challenges due to 

the intrinsic characteristics of XML in both structure and semantics (Feng, et al. 2005).

XML data have a more complex hierarchical structure than a database record. Different 

from a database record, elements in XML data have contextual positions, which thus 

carry the order notion XML data appear to be much bigger than traditional data.

According to these needs, the traditional data mining technology have to be regenerated

and reformed for extracting knowledge from XML structure. The aim of XML mining 

is to integrate the emerging XML technology into data mining technology. 

Data mining may have simply three major components: Clustering, 

Classification, Link Analysis (Association Rule Mining or Sequence Analysis). Mining 

frequent patterns or itemsets is an essential problem in many data mining applications 

including association rules, correlations, sequential rules, episodes, multi-dimensional 

patterns and many other important discovery tasks (Han, et al. 2001). Actually, the 

results of the investigation presented by “www.kdnuggets.com” shows us that the usage 
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of “Association Rule Mining Techniques” possesses the 21% of the data mining studies 

in 2007. 

The association rule mining algorithms’ general structure is making multiple 

passes over the data. Each pass, starts with a seed set for generating new potentially 

large sets, called candidate sets. Then the supports of candidate sets during the pass over 

the data are found (scan step). At the end of the pass, actually large candidate sets are 

determined (prune step). These candidates become the seed for the next pass (for the 

join step). 

The aim of this thesis is mining XML documents with using association rule 

algorthims such as Apriori, AprioriTid and HEA (High Efficient AprioriTid). 

Algorithms implemented in XQuery which is a query language for XML documents 

defined by W3C. Without preprocessing, documents directly mined by algorithms and 

results turns as an XML file.

1.2. Objective

In this study, we considered the problem of Mining Association Rules between 

items in XML document. (Agrawal, et al. 1993) had first introduced the problem of

mining association rules. Since then, numerous works have been done in various 

directions. The task of mining association rules over XML data was first introduced by 

(Braga, et al. 2001). The idea of mining XML documents with XQuery was first 

published by (Wan, et al. 2003). They used apriori algorithm with XQuery but they 

didn’t published the test results or XQuery expressions of the functions and noticed that 

they haven’t applied the algorithm to large item sets. Our objectives for this topic was 

applying this algorithm for large item sets and apply other association rule algorithms 

with XQuery and compare the results of these algorithms in XML documents.

In this study, three algorithms for mining associaiton rules have been discussed, 

implemented in XQuery and their performances are compared using both different data 

sets and different treshold (known as support) levels with different size synthetic 

datasets.
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1.3. Structure of the Study

As is mentioned in Section 1.1, there are many data mining techniques. In Chapter 

2, we introduced the scope and the mission of Data Mining and Knowledge Discovery 

in Databases (KDD) including the descriptive and the predictive methods.Chapter 3 

discusses the XML document structure, points out advantages of XML, introduces 

XML query languages in detail. In Chapter 4, scope of xml mining , xml mining 

taxonomy, techniques and related work about xml mining are explained. Chapter 5 

expresses association rule mining and algorithms we used (Apriori, Apriori-TID, HEA) 

briefly and XQuery representations of the algorithm functions with examples. In 

Chapter 6,  the synthetic data sets are visualized, the generation of synthetic data sets 

and their statistical analysis are described.Chapter 7 is concerned with the presentation 

and discussion of all the experimental results. The comparison of the algorithms is also 

under the scope of  this chapter. Chapter 8 summarizes our main findings and the 

benefits of the Apriori, AprioriTID and HEA algorithms with implementing XQuery. It 

also points out some future research issues on XML mining.
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CHAPTER 2

DATA MINING AND KNOWLEDGE DISCOVERY

2.1 Overview 

In the last decade we have witnessed a dramatic increase in the amount of data 

that is publicly available. With the stupendous amount of data stored in files, databases, 

and other repositories, it is getting important to develop powerful means for analysis 

and interpretation of such data and for the extraction of interesting knowledge that could 

help in decision making.

Data Mining is the discovery of hidden information found in large quantities of 

data and can be viewed as a step in the knowledge discovery process (Fayyad 1996).

Data mining defined as a set of computer-assisted techniques designed to automatically 

mine large volumes of integrated data for new, hidden or unexpected information, or 

interesting patterns. With small set of data, traditional statistical analysis can be 

efficiently used. The first and simplest analytical step in data mining is to describe the 

data summarize its statistical attributes such as means and standard deviations, visually 

review it using charts and graphs, and look for potentially meaningful links among 

variables such as values that often occur together (Edelstein 1998).

Data mining involves the use of sophisticated data analysis tools to discover 

previously unknown, valid patterns and relationships in large data sets. These tools can 

include statistical models, mathematical algorithms, and machine learning methods 

(algorithms that improve their performance automatically through experience, such as 

neural networks or decision trees). (Cooney 2006)

Data mining processes have required an integration of techniques from multiple 

disciplines such as, statistics, machine learning, database technology, pattern 

recognition, neural networks, information retrieval and spatial data analysis.

Consequently, data mining consists of more than collecting and managing data, it also 

includes analysis and prediction.

Data mining differs from other research method in that it is intended to work on 

data without starting from a particular hypothesis, assumption or even a particular 
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question. Essentially, it reverses the scientific method, starting from data and moving 

towards hypotheses instead of following the traditional order (Berry, et al. 2000).

Data mining can be used in different kinds of databases (e.g. relational database, 

transactional database, object-oriented database and data warehouse) or other kinds of 

information repositories (e.g. spatial database, time-series database, text or multimedia 

database, legacy database and the World Wide Web) (Han 2001)  Therefore, data to be 

mined can be numerical data, textual data or even graphics and audio.

While data mining and knowledge discovery in databases (KDD) are frequently 

treated as synonyms, data mining is actually part of the knowledge discovery process 

(Zaiane 1999). The following figure (Figure 2.1) shows data mining as a step in 

knowledge discovery process.

  Figure 2.1. An overview of steps that compose KDD process 
(Source: Fayyad, et al. 1996)

Data extraction process extracts useful subsets of data for mining. Goals of the 

extraction process are, identifying concerned information in the database and processing 

the database into some suitable form to analysis by the data mining algorithms.

Data preparation is one of the most important steps in the data mining process. 

Large database systems generally contain errors in the stored data. Examine the data for 

errors, outlines and missing values to the quality of the data. This is the most time 

consuming and most important step in the data preparation process. Robustness is an 

important property for the data mining systems. So, some techniques are used to 
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managing to data in this process. Data cleaning can be applied to remove noise and 

inconsistency in the data. There are many reasons for noisy and incomplete data. Some 

of methods are used to filling in the missing values. The most famous one is the 

regression methods for data cleaning. Data integration merges data from multiple 

sources. These sources may include multiple databases, data cubes, or flat files. The 

main problem of the integration is data confliction. Data transformation operations used 

for normalizations and aggregation. Data are transformed or integrated into form 

suitable for mining. Data transformation process includes smoothing, generalization, 

normalization and aggregation techniques. Data reduction operation used for reduce the 

data size by using one of the data aggregation, dimension reduction or data comparison 

methods. Data reduction methods can be used to minimizing representation of the data, 

while reducing the loss of information content.

All of the raw data are created and cleaned in the previous steps. Thus, data are 

prepared for the data mining stage. Prepared data might contain many attributes and we 

have to select a subset of the attributes for using in data mining process.

A Data mining algorithm takes data as input and produces output in the form of 

models or patterns. In this step an intelligent methods are applied in order to extract data 

patterns. Visualization, classification, clustering, regression or association algorithms 

are used for different problem. There are many algorithmic approaches to extracting 

useful information from data. 

Data mining system generate lots of patterns, or rules. Only small fractions of the 

patterns which are generated from the data mining system are interested to any given 

problem. Patterns have to be easily understood, useful, and interesting. An interesting 

pattern represents knowledge. After determination of the knowledge function, some 

measured functions which are used to separate uninteresting patterns from knowledge, 

are used for the data mining process. For example, association rules use support and 

confidence measure functions to determine the rules.

An important goal of data mining is to apply what has been learned. In the 

knowledge presentation step some possible actions formed from the successful 

application. Creation of a report or technical article, relocation of retail items for 

purchase or placement of selected items on sale together, funding of a new scientific 

study motivated by what has been learned from a knowledge discovery process are 

some possible example.
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2.2 Aims of Data Mining

The data mining goals are defined by the intended use of the system. We can

distinguish two types of goals: 

- Verification and 

- Discovery. 

With verification, the system is limited to verifying the user’s hypothesis. With 

discovery, the system autonomously finds new patterns. We further subdivide the

discovery goal into prediction, where the system finds patterns for predicting the future

behavior of some entities, and description, where the system finds patterns for 

presentation to a user in a human-understandable form (Fayyad 1999).

2.3 Methods of Data Mining

The two high-level primary goals of data mining in practice tend to be prediction 

and description. Prediction involves using some variables or fields in the database to 

predict unknown or future values of other variables of interest. Description focuses on 

finding human-interpretable patterns describing the data (Shapiro, et al. 1996). 

Clustering and association rules are descriptive methods of data mining. Some of the 

predictive methods described in this chapter are classification, neural networks, and 

decision trees, nearest neighbor, regression and genetic algorithms. 

2.3.1 Classification 

Classification is learning a function that maps (classifies) a data item into one of 

several predefined classes (Weiss and Kulikowski 1991). Examples of classification 

methods used as part of knowledge discovery applications include the classifying of 

trends in financial markets (Apte and Hong 1996) and the automated identification of 

objects of interest in large image databases (Djorgovski and Weir 1996).

Classification is an operation that enables to discover patterns in large or complex 

data sets in order to solve specific problems. Classification is classifies a data item into 

one or several predetermined categories. For example, banks want to evaluate the credit 

risks of card applicants in order to decide whom to issue their credit card. You first 

examine the existing customer data for which the group each customer belongs to is 

already known. Then variables or attributes of each group are identified. You can 
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classify new customers by examining their attributes. Classification models are widely 

used to other marketing tasks such as target marketing and direct mailing decision. The 

popular mining tools to conduct classification tasks include logistic regressions, neural 

networks, and tree-based models. 

A raw method can classify customers by whether their income is above or below a 

certain amount. A little more subtle approach tries to find a linear relationship between

two different factors like income and age to divide a data set into two groups. Real 

world classification problems usually involve many more dimensions and therefore 

require a much more complex delimitation between different classes. 

2.3.2 Clustering

Another kind of data mining technique is a clustering model, also called a 

segmentation model. Clustering is the process of grouping the data into class. The goal 

of the clustering is to take a set of objects which are records in a database or data 

warehouses and to partition them into number of groups or clusters. (Berkhin 2002).

Similar to classification, clustering segments customers into several groups. 

However, clustering differs from classification in that there are no predefined groups. 

That is, you do not know how many groups you have or which groups each customer 

belongs to. The algorithm will find some number of clusters such that customers within 

the same cluster are very similar while customers from different clusters are very 

different.

Clustering techniques have been studied overall in statistics, machine learning and 

data mining. Clustering can be used on the principle of maximizing the intra-class 

similarity and minimizing the interclass similarity (Dunham 2003). Cluster analyzes is 

used in different area. In marketing, characterize customer groups based on purchasing 

pattern. In Earthquake studies, observed earthquake epicenters should be clustered.

2.3.3 Association

Associations are the tasks to determine which items or events occur together. An

interesting example of mining algorithm to perform association task is market basket 

analysis. It tells us which products tend to be purchased together by customers and/or in 

particular sequence. For example, it analyzes customer’s transaction data in a 

supermarket and provides some “interesting” patterns in the form of association rule 
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like: “If a customer purchases a coffee, then she tends to buy sugar.” These kinds of 

information are useful for retailers to make decisions on shelf-space allocation, 

bundling products, store layout, a promotional design, and so on (Berry and Linoff 

1997). Market basket analysis is especially useful for exploratory data analysis when 

managers do not know what the “interesting” patterns are. Association rule technique 

has mainly been applied to the point-of-purchase data so far, but has lots of potentially 

interesting applications to any industries with large number of customers and products.

Association is a rule, which implies certain association relationships among set of 

objects such as occur together or one implies the other. (Kumar, et al. 2000) Goal of 

association rule is finding associations among items from a set of transactions which 

contain a set of items. A formal statement of the association rule problem is (Agrawal,

et al. 1993) (Cheung, et al.1996): Let I = {I1, I2, …, Im} be a set of m distinct attributes, 

also called literals. Let D be a database, where each record (tuple) T has a unique 

identifier, and contains a set of items such that TI  An association rule is an 

implication of the form XY, where X, YI, are sets of items called itemsets, and 

XY=. Here, X is called antecedent, and Y consequent. 

The support (s) of an association rule is the ratio (in percent) of the records that 

contain XY to the total number of records in the database. Therefore, if we say that 

the support of a rule is 5% then it means that 5% of the total records contain XY. 

Support is the statistical significance of an association rule. For a given number of 

records, confidence () is the ratio (in percent) of the number of records that contain 

XY to the number of records that contain X. Thus, if we say that a rule has a 

confidence of 75%, it means that 75% of the records containing X also contain Y. The 

aim of the algorithm is to discover all association rules with

Support minimum_Sup and
Confidence minimum_Conf.

2.3.4 Neural Networks

Based on the model similar to human brain, artificial neural networks learn and 

generalize from external inputs. When exposed to training examples, neural networks 

discover patterns and relationships. Their approach is fundamentally different from the 

way that traditional digital computer solves problems.
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Figure 2.2. Neural Network 
          

A neural network is an information processing unit that transforms a set of inputs 

into a set of output values. Inputs are interconnected to produce outputs by several 

weights or parameters. The layer located between the output and the input layer is the 

hidden layer. The units in hidden layer produce their output values which are functions 

of the weighted sum of the input values feeding into them. A neural network can 

theoretically have any number of hidden layers. The wider the hidden layer, the network 

can capture more sophisticated patterns or relationships.

2.3.5 Decision trees

Decision trees are mainly used for classification task. The tree-based models 

produce a series of rules as outputs.

Figure 2.3. A Decision tree

In order to generate a decision tree from the training set of data we need to split 

the data into progressively smaller subsets. Each iteration considers the data in only one 

node. The first iteration considers the root node that contains all the data. Subsequent 
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iterations work on derivative nodes that will contain subsets of the data. Decision trees 

make few passes through the data (no more than one pass for each level of the tree) and 

they work well with many predictor variables. As a consequence, models can be built 

very quickly, making them suitable for large data sets (Breiman, et al. 1984).

2.3.6 Nearest Neighbor (NN)

In this technique unlike other predictive algorithms, the training data is not 

scanned or processed to create the model. Instead, the training data is the model. When 

a new case or instance is presented to the model, the algorithm looks at all the data to 

find a subset of cases that are most similar to it and uses them to predict the outcome.

There are two principal drivers in the k-NN algorithm: the number of nearest cases to be 

used (k) and a metric to measure what is meant by nearest. To classify a new case, the 

algorithm computes the distance from the new case to each case (row) in the training 

data. The new case is predicted to have the same outcome as the predominant outcome 

in the k closest cases in the training data (Rinsa-Runtala 2001).

K-NN requires large computational efforts because the calculation time increases 

as the factorial of the total number of points. It’s a rapid process to apply a decision tree 

or neural network but this technique requires making a new calculation on each new 

case (Jovanovic, et al. 2002).

2.3.7 Genetic Algorithms

Genetic algorithms are not used to find patterns, but rather to guide the learning 

process of data mining algorithms such as neural nets. Essentially, genetic algorithms 

act as a method for performing a guided search for good models in the solution space 

(Werbos 1976).

They are called genetic algorithms because they follow the pattern of biological 

evolution in which the members of one generation (of models) compete to pass on their 

characteristics to the next generation (of models), until the best (model) is found. The 

information to be passed on is contained in “chromosomes,” which contain the 

parameters for building the right model (Jovanovic, et al. 2002).
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2.3.8 Regression

Regression is the oldest statistical data mining technique which used to fit an 

equation to a dataset. Regression uses existing values to forecast what other values will 

be. In the simplest case, regression uses standard statistical techniques such as linear 

regression. Unfortunately, many real-world problems are not simply linear projections 

of previous values (Breiman, et al. 1984). For instance, sales volumes, stock prices, and 

product failure rates are all very difficult to predict because they may depend on 

complex interactions of multiple predictor variables. Regression works well with 

continuous quantitative data such as age, speed etc but not significant categorical data 

like name, gender or color. Therefore, more complex techniques like decision trees or 

neural nets may be necessary to forecast future values.

2.4 Data Mining Applications

Currently, data mining is being used in wide variety of business areas for many

purposes. Most organizations use data mining in order to manage their customer life 

cycle such as acquiring new customers, increasing revenue of existing ones and 

retaining good customers (Edelstein 2001). When a company defines the characteristics

of its customers by using historical data, it can predict the future behaviors of existing 

and candidate ones, so that it can develop required strategies. And also, a lot of 

organizations, such as telecommunication, credit card and insurance companies, use 

data mining in order to detect and reduce fraudulent use of their services.

Some organizations use data mining techniques to marketing. For example for this 

purpose is to analyze customer buying habits. To obtain of such information can help 

retailers to improve marketing strategies. Banks use data mining to predict credit risks. 

Insurance companies use data mining to analyze claims patterns for fraud and to predict 

high risk situations. Other applications include stock market analysis, predicting foreign 

exchange rates based on current financial indicators, determining commonalities or 

anomalies among classes of medical patients, modeling proteins, and finding genes in 

DNA sequences. Another data mining application area is within the operations and 

communications of the organization itself. Security offices and law enforcement 

agencies have been applying data mining technologies to their data sets. They have 

analyzed all sorts of data sets including telephone tool calls, narcotics operations, 
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financial crime enterprises, criminal organizations, border crossing, terrorist activities 

and a wide range of other activities. (Westphal, et al. 1998).
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CHAPTER 3

XML DOCUMENTS

3.1 Introduction 

With the advent of the World Wide Web an abundance of information is stored

and disseminated from different application domains. The Hyper Text Markup

Language HTML currently used to describe information for web publishing allows the 

specification of the documents display properties e.g. font, size, color.  However, it did 

not take long for the World Wide Web consortium to realize that a more expressive 

language is needed to support computation on web documents.

3.2 Emergence of XML

In response to the need for a more powerful language for modeling web 

information the eXtensible Markup Language XML was proposed by the World Wide 

Web Consortium in 1997. XML is a subset of Standard Generation Markup Language 

SGML which is the meta-language of HTML simplified upon the requirements of web 

applications. XML, Extensible Markup Language, is a widely accepted standard for 

exchanging information between systems (W3C). While other markup languages, such 

as HTML, uses only predefined elements, XML is a meta-markup language because it 

allows defining other markup languages. Converting data to XML document can reduce 

the complexity of creating data that can be read by different types of applications 

(Besprozvannykh 2003). Most recently, XML is passing into virtually all areas of 

internet application programming, producing huge amount of data encoded in XML.
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3.3 XML Document Structure

Figure 3.1. Example of an XML Document
(Source: Braga, et al. 2003)

<? xml version=”1.0” ?>
<DEPARTMENT>
<PhDCourses>
<Course teacher="fp1" title="Advanced Data Mining">
      <TimeTable>...</TimeTable>
     <Student ref="ps1" />
      <Student ref="ps2" />
</Course>
<Course teacher="fp3" title="Intricacies of XML parsers">
      <TimeTable>...</TimeTable>
<Student ref="ps2" />
<Student ref="ps3" />
</Course>
</PhDCourses>

<People>

<PhDStudent id="ps2" advisor="fp3">
<PersonalInfo email="fp3@cs.atlantis.edu">
<Name>...</Name>
</PersonalInfo>
<Subscription year="2001" />
<Publications> ... </Publications>
</PhDStudent>

<FullProfessor id="fp3">
<PersonalInfo email="fp3@cs.atlantis.edu">
<Name> ... </Name>
</PersonalInfo>
<Publications>
<Article title="Golden Data Mines in Atlantis">
<Author>Wilson</Author>
<Author>Holmes</Author>
<Conference name="VLDB" year="2001" />
</Article>
<Article title="P is just like NP - The Final Proof">
<Author>...</Author>
<Journal year="2000" month="4" volume="4" name="DMKD" publisher= 

"Kluwer" />
</Article>
<Book year="2001" title="XML Query Languages">
<Author>...</Author>
<Publisher>...</Publisher>
<Keyword>XML</Keyword>...<Keyword>Xquery</Keyword>
</Book>
</Publications>
<Award year="2001" society="IEEE">This award..</Award>
</FullProfessor>
</People>
</DEPARTMENT>
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The XML document consists of items, which are either nodes or atomic values. 

The nodes are of six kinds: elements, attributes, text, comment, processing instruction, 

and namespace. The XML document is composed of: 

 Elements: An XML element contains a name, a list of attributes, a list of in-

scope namespaces, and a list of children. The children of an element are 

serialized between the open and close tags of their parent. When an element has 

no children, the element is said to be empty. Every XML document has exactly 

one top-element known as the document element. (Skonnard and Gudgin 2001)  

E.g.: <Article title="Golden Data Mines in Atlantis">

 Attributes gives the information about the elements. Attributes appear as 

name/value pairs separated by an equal sign. 

E.g.: title="Golden Data Mines in Atlantis"

 Comments are enclosed in <!—comment -- > and are used to provide 

information to humans about the XML content.

 Processing: Instruction allows documents to contain instructions for 

applications. These instructions contains information about how to process and 

how to display the XML document.

 Namespaces provide a way to distinguish deterministically between XML 

elements that have same local name. Namespace declarations appear in elements 

start tag.

3.3.1 Document Type Definition (DTD)

W3C introduced a model to describe the structure of an XML document: the 

Document Type Definition (DTD).A document Type Declaration defines the constraints 

on the sequence and nesting of element tag and attributes. Figure 3.2 shows an example 

of DTD.
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<! ELEMENT DEPARTMENT (PhDCourses, People)>

<! ELEMENT PhDCourses (Course+)>

<! ELEMENT Course (TimeTable?, Student*)>

<! ATTLIST Course teacher IDREF #REQUIRED title CDATA #REQUIRED>

<! ELEMENT TimeTable (#PCDATA)>

<! ELEMENT Student EMPTY>

<! ATTLIST Student ref IDREF #REQUIRED>

<! ELEMENT People (PhDStudent*, FullProfessor+)>

<! ELEMENT PhDStudent (PersonalInfo, Subscription, Publications, Award*)>

<! ATTLIST PhDStudent id ID #REQUIRED advisor IDREF #REQUIRED>

<! ELEMENT PersonalInfo (Name)>

<! ATTLIST PersonalInfo email CDATA #REQUIRED>

<! ELEMENT Name (#PCDATA)>

<! ELEMENT Subscription EMPTY>

<! ATTLIST Subscription year CDATA #REQUIRED>

<! ELEMENT FullProfessor (PersonalInfo, Publications, Award*)>

<! ATTLIST FullProfessor id ID #REQUIRED>

<! ELEMENT Publications (Article*, Book*)>

<! ELEMENT Article (Author+, (Conference|Journal), Keyword*)>

<! ATTLIST Article title CDATA #REQUIRED>

<! ELEMENT Conference EMPTY>

<! ATTLIST Conference name CDATA #REQUIRED year CDATA #REQUIRED>

<! ELEMENT Journal EMPTY>

<! ATTLIST Journal year CDATA #REQUIRED month CDATA #IMPLIED volume 

CDATA #IMPLIED name CDATA #REQUIRED publisher CDATA #REQUIRED>

<! ELEMENT Book (Author+, Publisher, Keyword*)>

<! ATTLIST Book title CDATA #REQUIRED year CDATA #REQUIRED>

<! ELEMENT Author (#PCDATA)>

<! ELEMENT Publisher (#PCDATA)>

<! ELEMENT Keyword (#PCDATA)>

<! ELEMENT Award (#PCDATA)>

<! ATTLIST Award year CDATA #REQUIRED society CDATA #REQUIRED>

            Figure 3.2. The DTD of the document showed in Figure 3.1.
(Source: Braga, et al. 2003)

There are four kinds of declarations in DTD; elements, attribute lists, entities and 

notations.

3.3.1.1 Element Declarations 

To define an element the definition should begin with “<! ELEMENT” followed 

by the name of the element, and then the content of element. The definition ends with 

“>”.
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3.3.1.2 Attribute Declarations

In the DTD, XML element attributes are declared with an ATTLIST declaration.

There are ten types that can be assigned to attributes: 

 CDATA - text 

 enumerated - an exact list of options

 ID - a unique name for the element 

 IDREF - the value of an ID type attribute 

 IDREFS - multiple IDs, separated by whitespace 

 ENTITY - the name of an entity declared in the DTD 

 ENTITIES - multiple entities, separated by whitespace 

 NMTOKEN - an XML name 

 NMTOKENS - multiple XML names, separated by whitespace 

 NOTATION - the name of a notation declared in the DTD

3.3.1.3 Entity Declarations

 Entity Declarations can be either internal, external or parameter entities. An 

internal entity contains a block of text. External entities are references to files that may 

contain textual or binary data. Parameter entities allow reusable text throughout the 

DTD code.

3.3.1.4 Notation Declarations

Notation Declarations can be used to identify specific types of external binary 

data. Notations allow including that data in the documents by describing the format it 

and allowing applications to recognize and handle it. The format for a notation is:  <!

NOTATION name system "external_ID"> 

3.3.2 XML Schema

   The purpose of the XML schema language is to provide an inventory of XML

markup constructs with which to write schemas. The purpose of a schema is to define 

and describe a class of XML documents by constraining and documenting the meaning

usage and relationships of their document parts the schema specifies data types, 
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elements and their content attributes and their values entities and their contents and 

notations. Schema constructs may also provide for the specification of implicit 

information such as default values Schemas document their own meaning usage and 

function. The XML schema language can be used to define, describe and catalogue 

XML vocabularies for classes of XML documents (World Wide Web Consortium

1999).

XML Schema used to define the allowable structure of elements for a given 

application or application domain in a valid XML document uses XML document 

syntax. Declarations in XML Schema can have richer and more complex internal 

structures than declarations in DTDs. Schema designers can take advantage of XML’s 

containment hierarchies to add extra information where appropriate (Laurent 1999). 

<product effDate="2001-04-02"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:noNamespaceSchemaLocation="chapter01.xsd">
  <number>557</number>
  <size>10</size>
</product>

Figure 3.3. A part of an XML Document

Figure 3.3 shows an example XML document. This documents XML Schema 

shown in Figure 3.4.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
  <xs:element name="product" type="ProductType"/>
  <xs:complexType name="ProductType">
    <xs:sequence>
      <xs:element name="number" type="xs:integer"/>
      <xs:element name="size" type="SizeType"/>
    </xs:sequence>
    <xs:attribute name="effDate" type="xs:date"/>
  </xs:complexType>
  <xs:simpleType name="SizeType">
    <xs:restriction base="xs:integer">
      <xs:minInclusive value="2"/>
      <xs:maxInclusive value="18"/>
    </xs:restriction>
  </xs:simpleType>
</xs:schema>

                Figure 3.4. An XML Schema
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XML Schemas provide an improved data typing system which has data-oriented 

data types in addition to the more document-oriented data types compared to DTDs, 

making XML more suitable for data interchange applications. Built-in data types 

include strings, booleans, and time values. The XML Schema provides a mechanism for 

generating additional data types. Besides, XML Schema supports namespaces and the 

notion of keys to uniquely identify elements in an XML document (Mulchandani 2003).

3.4 Advantages of XML

XML is a simple and flexible text-based language that markup tags like <name> 

and <author> can be specified what kind of information is contained in a tag. Tags and 

contents are concatenated together; information can be understood without the 

application that created them. XML documents are not only easy to read for humans but 

also can be easily processed by machines.

XML is very different from HTML. HTML contains both data and presentation 

information in a single document, but XML separates presentation from data. Extensible

Stylesheet Language provides a mechanism to transform one XML document structure 

into another new XML document, or format XML document into desired HTML 

display or devices.

The structure of XML represents the semantics of the data, which provides a great 

opportunity for information retrieval. XML documents can be categorized by their 

schemas; results can be more exactly by limiting the searching to specific schemas

(Egnor and Lord 2000). If we want to search a keyword “Aydın”, without any

information, the search engines cannot identify if it is a search for a person's name, or a 

state name. If “Aydın" is specified like \<city>Aydın</city>", then search results will be

much better. With the structure information, a specific relevant part of an XML 

document can also be retrieved.

XML is an extensible meta-language. With XML, we can define whatever

information representation we need. One of the goals of the XML standard is its 

extensibility. XML is preferred as a standardization mechanism to define platform-

independent grammar for specific purposes and schemas for all kinds of data models.

DTD can be used to define the syntax and structure of XML documents. XML Schema 

is a much more comprehensive schema language for XML, expressed with the syntax of 

XML. XML documents can be composed from relational tables (Wang, 2004).
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XML can represent most languages in the world because it is based on Unicode.

XML tools can be written once and used for most languages. This makes the data and 

document exchange easy in a multilingual world.

XML standard is supported by most major software vendors. They heavily invest 

on XML, and actively contribute to the standardization of XML (Wang, 2004). With 

XML as the base standard, there are many XML related application standards, such as 

GML and ebXML. Already, an impressive number of commercial document tool 

vendors have announced planned product versions supporting XML-based documents 

(Swen 1997). This support coincides with the growing number of available commercial 

XML parsers that provide a consistent interface for manipulating XML documents 

(Goldfarb 1998).

3.5 XML Query Languages

Ease of use and performance are the advantages of the XML query languages to 

programming languages. Most general-purpose programming languages treat XML as 

any other API, instead of as a first-class part of the language. Instead of providing 

operators for constructing and navigating XML directly, you have to access it through 

an API layer. Just as text manipulation is easier in Perl than in, say, Fortran, so a single 

line of an XML query language like XSLT or XQuery can accomplish the equivalent of 

hundreds of lines of C, C#, Java, or some other general-purpose language (Brundage

2004).

3.5.1 XSLT

The Extensible Stylesheet Language for transformation is an official 

recommendation of the World Wide Web Consortium which published in 1999. It 

provides a flexible, powerful language for transforming XML files and uses XML 

syntax to define transformation rules that are applied to an input XML document to 

result in a text document that has not to be an XML document. This result can be an 

HTML document, another XML file, PDF, SVG, java code or a text file. 

An XSLT transformation is provided as an XML document called a stylesheet, or 

XSLT stylesheet. A stylesheet is applied to an input XML document, which means that 

the input XML document is transformed according to the stylesheet into an output 
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document. A stylesheet can be looked at as a set of rewriting rules. These rules are 

called as a template rule. Each rewriting rule is equipped with a pattern and a body 

expression. When a stylesheet is applied to an input XML document, a rewriting rule is 

found, whose pattern matches the root document node of the input XML document. 

This rule’s body expression defines a transformation for the root node, so the rule’s 

body expression is evaluated to compute the output.

Subset of XPath can be used to define patterns in template rules that are matched 

against nodes in an input XML document and full XPath 2.0 expressions can be used 

inside template’s bodies (Hlousek 2005).

3.5.2 XPath

XPath is a language for addressing parts of an XML document which is a standard 

recommended by W3C. XPath defines a library of standard functions but is not itself 

written in XML because it defines how to locate parts of an XML document, forms the 

basis for a query language on XML, such as XSLT or Xquery. XPath models an XML 

document as a tree of nodes of which there are different types, including element nodes, 

attribute nodes and text nodes (World Wide Web Consortium 1999).

XPath 1.0 has been designed to easily identify or match nodes in an XML 

document with the intention to be used either standalone or in XSLT 1.0 and XPointer. 

The result of evaluating an XPath 1.0 expression is either an atomic value or a set of 

nodes from the source XML document usually referred to as nodeset. As the most 

complicated structure of a result is a set, there is no ordering information about the 

items in the result set. The absence of order information in a result has been understood 

as a particular disadvantage. Specifically, information about document order of nodes is 

lost in a result.

The main purpose of the XPath 2.0 is to address nodes in an XML document,

which is the same as for the 1.0 version. The main difference between XPath 1.0 and 

XPath 2.0 is that an XPath 2.0 expression returns a sequence of items instead of a 

nodeset. Thus, the items in the returned sequence have now their order defined.
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3.5.3 XQuery

XQuery is currently still under development by the W3C (XQuery 1.0), and is also 

known as W3C XML Query. The purpose of XQuery is extracting data from entire 

XML documents, collections of XML documents, or only document fragments.

XQuery is derived from an XML query language called Quilt, which in turn 

borrowed features from several other languages, including XPath 1.0, XQL, XML-QL, 

SQL, and OQL. XQuery 1.0 is the superset of XPath 2.0 both in syntax and semantics.

XQuery is a functional expression language that can be used to query or process 

XML data or any data that can be represented within the same model as XML. Being 

purely an expression language, XQuery programs are easier to understand and maintain 

than XSLT, because they do not include the complexities or management of templates 

(rule-based system) (Funderburg, et al. 2002). This is especially true for highly 

structured data, and for longer programs. XQuery will still be able to effectively process 

semi-structured data. The query language is small and powerful. Moreover, XQuery is a 

full-fledged programming language. It provides if/then statements, loops, variables, 

quantified expressions and a set with the most important functions (Hollenstein 2005). 

Applications are made simpler by performing a single XQuery request over these views 

and receiving satisfactory results in one step also it has both an easy, human readable 

form and an XML representation (IBM Journal 2002). 

There are several operators provided to filter the documents for conditions which 

match either content or structure (Hollenstein 2005). The core of queries is a FLWOR 

expression. FLWOR is coming from ’for, let, where, order by, return’. With for and let 

XML fragments can be bound to a variable which then can be further processed in the 

where-clause and finally outputted in the return-clause. An example query can be seen 

in Figure 3.5.

for $book in fn:docs("Books.xml")//Book
for $review in fn:docs("Reviews.xml")//Review
where $book/ISBN = $review/ISBN
order by $book/Title
return
<Desc>{$book/Title, $review/Description}</Desc>

Figure 3.5. An example to XQuery
(Source: Hollenstein 2005)
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 For clauses: Associate one or more variables to expressions, creating a 

tuple stream in which each tuple binds a given variable to one of the items 

to which its associated expression evaluates.

 Let clauses: Bind variables to the entire result of an expression, adding 

these bindings to the tuples generated by a “for clause” or creating a single 

tuple to contain these bindings if there is no for clause.

 Where clauses: Filter tuples, retaining only those tuples that satisfy a 

condition.

 Order by clauses: Sort the tuples in a tuple stream.

 Return clauses: Build the result of the FLWOR expression for a given 

tuple.

3.5.4 Advantages of XQuery to other XML query languages

XQuery can be used to query XML data which has no schema at all or XML 

Schema or by a Document Type Definition (DTD). The data model used by XQuery has 

some differences from the classical relational model. Unlikely to relational model, it has 

no hierarchy, treats order as insignificant, and does not support identity. XQuery is a 

functional language, instead of executing commands as procedural languages do, every 

query is an expression to be evaluated, and expressions can be combined quite flexibly 

with other expressions to create new expressions (Robie 2004).

When we compare XPath and XQuery, we see that XPath only designed for select 

a node out of an existing XML document or database. XPath can't create new XML, it

can't select only part of an XML node, and it can be hard to read and understand. XPath 

also can't define variables or namespace bindings and it has a very simple type system, 

essentially just string, boolean, double, and nodeset. If we need to work with date 

values, calculate the maximum of a set of numbers, or sort a list of strings, then XPath 

is not suitable for our application.

XQuery takes a different approach from XSLT 1.0. They both produce same 

results but XQuery is more functional. XQuery is very good at expressing joins and 

sorts and can operate sequences of values and nodes in arbitrary order and document 

order. XQuery takes a procedural approach to query processing, making it easy to write 

user defined functions, including recursive ones, but more difficult to perform pattern 
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matching. Support for XML Schema 1.0 is built into XQuery, and XQuery was 

designed with optimization in mind (Brundage 2004).

Funderburg (Funderburg, et al. 2002) points that number of special features can be 

added to the database XQuery processor which makes it different than other query 

languages. A default view can be generated across the entire database. If this is 

supported, seamless queries against meta-data and data will be possible. For example, 

one can ask for all the tables that have a column named salary and have a value larger 

than 10000. XML query languages naturally query across meta-data (tags) and data 

(node values). Exposing any XML view affords this ability. As more data are placed in 

the view, the queries can become more powerful and abstract. For example, a view 

could also expose type, ownership, and data cataloging information as well as data 

values (Reinwald 2002).
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CHAPTER 4

XML MINING

4.1 Introduction

Following the increasing use of XML technology for data storage and data 

exchange between applications, the subject of mining XML documents has become 

more researchable topic. Understandably, the users wanted to be able to store, query and 

mine the growing amount of data represented in XML format (Rusu, et.al 2006).

XML mining, first named in IEEE International Conference on Data Mining in 

2001 (J. Lee, et al. 2001), is a unique application of data mining to XML contents. Since 

its introduction, XML has reached more attention such in business applications 

collaborations such as ebXML and Web Services and recently web personalization such 

as Web 2.0. In spite of its frequent use, we have accomplished very little to reason about 

XML (Jeong, et al. 2006).

(Jeong, et al. 2006) defines XML mining as a special type of web content mining, 

but also unique in that contents in an XML document are modular and well-structured, 

while a web content is more likely a plain text document. That is, XML mining must be 

capable of manipulating the structure of contents as well as the contents themselves. 

Jeong points that XML mining is certainly distinguished from text and web 

mining, in that it deals with modularly structured contents while text and web mining 

handle un-semistructured ones, such as HTML documents. 

Recently, there has growing research interest to mine XML data. (Zhao, et al. 

2005) defines existing work on mining XML data as frequent substructure mining, 

classification and association rule mining. 
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Figure 4.1. Role of XML Mining 
(Source: Nayak 2003)

Mining of XML documents significantly differs from structured data mining and

text mining. XML allows the representation of semi-structured and hierarchal data 

containing the values of individual items and the relationships between data items. 

Element tags and their nesting there in dictate the structure of an XML document. Due 

to the inherent flexibility of XML, in both structure and semantics, discovering 

knowledge from XML data is faced with new challenges as well as benefits. Mining of 

structure along with content provides new insights and means into the process of 

knowledge discovery (Nayak, et al. 2006).

4.2 Taxonomy of XML Mining

Since XML provides a mechanism for tagging names with data, knowledge 

discovery on the semantics of the documents becomes easier for improving document 

retrieval on the Web. 

Mining of XML structure is essentially mining of schema including intra-structure 

mining, and inter-structure mining. (Nayak, et al. 2002)

(Nayak, et al. 2002) defines the Intra-structure mining is concerned with the 

structure within an XML document. Knowledge is discovered about the internal 

structure of XML documents in this type of mining. 

Inter-structure mining is concerned with the structure between XML documents. 

Knowledge is discovered about the relationship between subjects, organizations, and 

nodes on the Web in this type of mining. 
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Figure 4.2. A Taxonomy of XML Mining
(Source: Nayak 2002)

Content is the text between each start and end tag in XML documents. Mining for 

XML content is essentially mining for values (an instance of a relation) including 

content analysis and structural clarification. Content analysis is concerned with 

analyzing texts within XML documents. 

 4.3 XML Mining Techniques

One of the simple methods to mine XML documents is probably to transform the 

data from XML to relations. However, the drawbacks of this method are: (Zhang, Yao

1999)

1) The transformation itself is usually complex and time-consuming; 

2) The transformation may lose some important information for generating rules 

of interests, for example, some explicit hierarchical relationship between XML elements 

may become inexplicit when transformed into relations.

Before knowledge discovery in XML documents occurs, it is necessary to 

querying XML tags and content to prepare the XML material for mining. A SQL based 

query can extract data from XML documents. As mentioned before in chapter 2 XQuery 

and XPath could be used for querying xml documents.
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4.3.1 Tree Mining over XML

The method proposed in (Zaki, et.al 2003) finds frequent structures within XML 

documents in order to classify them, i.e., a set of preclassified XML documents 

(training dataset) is used to develop a model to classify XML documents (test dataset) 

that still do not belong to a class. The model is created using the underlying structure of 

the preclassified documents.

Zaki models an XML document as an ordered, labeled, rooted tree. There is no 

distinction between attributes and elements of an XML document; both are mapped to 

the label set. More precisely an XML document is denoted as 

T = (V, B), where V is the set of labeled nodes, and B the set of branches. The 

label of each node is taken from a set of items

 L = {1, 2, 3, . . . ,m}; different nodes can have the same label. 

Each branch, b = (x, y), is an ordered pair of nodes, where x is the parent of y. 

Consider a node x in a tree T with root r, then any node y on the unique path from r to x 

is called an ancestor of x, and is denoted as y ·l x, where l is the length of the path from 

y to x. If y ·1 x (i.e., y is an immediate ancestor of x), then y is called the parent of x, 

and x the child of y. A tree S = (Vs,Bs) is an embedded subtree of T = (V,B), denoted as 

S ¹ T, if and only if Vs µ V , b = (x, y) 2 Bs, and x is an ancestor of y in T. Note that in 

the traditional definition of an induced subtree, for each branch b = (x, y) 2 Bs, x must 

be a parent of y in T.

4.3.2 Mining association rules using XQuery

Wan and Dobbie presented a new native XML data mining approach in (Wan and 

Dobbie 2003).The authors show that extracting association rules from XML documents 

without any preprocessing or post-processing using XQuery is possible. They propose 

the XQuery implementation of the well-known Apriori algorithm.

The XML document structure proposed by the authors to mine association rules 

over XML reflects simply the relational model of the Association Rule Mining problem. 

The set of transactions is identified by the tag <transactions> and each transaction in the 

transactions set is identified by the tag <transaction>. The set of items in each 

transaction is identified by the tag <items> and an item is identified by the tag <item>. 

The Apriori algorithm is implemented in a classical way: first an XQuery expression is 
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used to create the set of frequent items then another XQuery expression is used to obtain 

the association rules from the frequent item sets.

Scientio XML Miner

XML Miner classifies XML fragments within one or more XML documents. The 

training set and test set are selected by using XPath expressions. The classifier model is 

created using Fuzzy Logic, i.e., an extension to conventional logic that allows 

representing the truth of an assertion by any real number between 1 and 0. Conventional 

logic allows only the value 1 that states the truthful of an assertion, and 0 that states is 

falsehood. Using Fuzzy Rules, XML Miner generates a rule set that explains and 

predicts selected values in a test dataset. The resulting rule set is expressed in Metarule, 

a dialect of XML. As an example the Fuzzy Logic uses the numeric values of the 

characteristic of the Iris species to define Fuzzy concepts of small, medium and large 

for each characteristic of the flower. Then the model is applied to the rest of the data to 

predict the species.

4.4 Related work

The topic of mining XML data has received little attention, as the data mining 

community has focused on the development of techniques for extracting common 

structure from heterogeneous XML data. For instance, (Termier, et al. 2002) has 

proposed an algorithm to construct a frequent tree by finding common subtrees 

embedded in the heterogeneous XML data. On the other hand, some researchers focus 

on developing a standard model to represent the knowledge extracted from the data 

using XML.

First studies in the area used techniques derived from Text Mining. Text Mining is 

an area of data mining that focused on finding repeating patterns inside text databases, 

i.e. Text Mining find frequent pattern of words inside a collection of phrases. In this 

framework an XML document is considered as a bag of words, and patterns are 

extracted from such bag. A second approach, native XML data mining is quite new to 

the area of data mining. Some studies in this area focus on mining frequent trees inside 

XML files. Tree mining over XML was first proposed in (Facca, et al. 2004); a similar 

approach is also proposed in (Fraternali, et al. 2004). This task is exploited to find 
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similarities between XML documents. In (Wan and Dobbie 2003) an approach to mine 

association rules from XML documents using an XQuery implementation of the Apriori 

algorithm is proposed. Besides these research efforts, XML Miner, a commercial 

product, has been developed by Scientio. 

Some of the initial work for XML data mining is based on the use of the XPath 

language as the main component to query XML documents (Braga, et al 2002; Braga, et 

al 2003). Braga presented the XMINE operator, which is a tool developed to extract 

XML association rules for XML documents. The operator is based on XPath and 

inspired by the syntax of XQuery. It allows us to express complex mining tasks, 

compactly and intuitively. XMINE can be used to specify indifferently and 

simultaneously mining tasks both on the content and on the structure of the data, since 

the distinction in XML is slight.  (Braga et al, 2003)

Other works for XML data mining focus on extracting the frequent tree patterns  

from the structure of XML data such as TreeFinder (Termier, et al. 2002) and 

TreeMiner  (Zaki 2002). TreeFinder uses an Inductive Logic Programming approach. 

Notice that TreeFinder cannot produce complete results. It may miss many frequent 

subtrees, especially when the support threshold is small or trees in the database have 

common node labels. TreeMiner can produce the complete results by using a novel 

vertical representation for fast subtree support counting.
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CHAPTER 5

ASSOCIATION RULE MINING AND ALGORITHMS

5.1. Overview

Association rule mining, one of the most important and well researched techniques 

of data mining, was first introduced in (Agrawal, et al. 1993). It aims to extract 

interesting correlations, frequent patterns, associations or casual structures among sets 

of items in the transaction databases or other data repositories. (Zhao, et al. 2005)

Association is a rule, which implies certain association relationships among set of 

objects such as occur together or one implies the other (Kumar 2001). Goal of 

association rule is finding associations among items from a set of transactions which 

contain a set of items.

Association rule mining is to find out association rules that satisfy the predefined

minimum support and confidence from a given database. The problem is usually

decomposed into two sub problems. One is to find those itemsets whose occurrences

exceed a predefined threshold in the database; those itemsets are called frequent or large 

itemsets. The second problem is to generate association rules from those large itemsets 

with the constraints of minimal confidence (Kotsiantis, et al. 2006).

In this chapter, we consider the problem of “mining” a large collection of basket 

data type transactions on XML documents for finding association rules between sets of 

items. We present three different association rule mining algorithms: Apriori, 

AprioriTid and HEA (High Efficient AprioriTid) and their XQuery implementations.

5.2 Association Rule Mining Problem

5.2.1 Problem Definition and Decomposition

Association rule mining problem was first introduced in 1993 by R. Agrawal, T. 

Imielinski and A. Swami (Agrawal, et al. 1993). The following is a formal statement of 

the problem: (Agrawal, et al. 1993)
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 Let I = i1, i2, . . ., im be a set of literals, called items. Let D be a set of 

transactions, where each transaction T is a set of items such that T  I. Associated with, 

each transaction is a unique identifier, called its transaction identifier (TID or tid ). It is 

said that a transaction T contains X, a set of some items in I, if X  T. An association 

rule is an implication of the form X  Y , where X  I, Y  I, and X  Y = . The 

rule X  Y holds in the transaction set D with confidence c if c% of transactions in D 

that contain X also contain Y . The rule X  Y has support s in the transaction set D if 

s% of transactions in D contain X  Y. 

In a more simpler form the problem may be defined as follows: Given a set of 

transactions D, the problem of mining association rules is to generate all association 

rules that have support and confidence greater than the user-specified minimum support 

(called minsup) and minimum confidence (called minconf) respectively. D could be a 

data file, a relational table, or the result of a relational expression.

The problem of discovering all association rules can be decomposed into two sub-

problems (Agrawal, et al. 1993):

1. Find all sets of items (itemsets) that have transaction support above minimum 

support. The support for an itemset is the number of transactions that contain the 

itemset. Itemsets with minimum support are called large itemsets, and all others small 

itemsets.

2. Use the large itemsets to generate the desired rules. The general idea is that if, 

say, ABCD and AB are large itemsets, then one can determine if the rule AB  CD 

holds by computing the ratio conf = support(ABCD) / support(AB). If conf  minconf, 

then the rule holds (the rule will surely have minimum support because ABCD is large).

5.2.2 Discovering Large Itemsets and the Notation Used

Algorithms for discovering large itemsets make multiple passes over the data. In 

the first pass, we count the support of individual items and determine which of them are 

large, i.e. have minimum support. In each subsequent pass, we start with a seed set of 

itemsets found to be large in the previous pass. We use this seed set for generating new 

potentially large itemsets, called candidate itemsets, and count the actual support for 

these candidate itemsets during the pass over the data. At the end of the pass, we 

determine which of the candidate itemsets are actually large, and they become the seed 
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for the next pass. This process continues until no new large itemsets are found.(Grabusts

2004)

The Apriori algorithm and Apriori-like algorithms generate the candidate itemsets 

to be counted in a pass by using only the itemsets found large in the previous pass 

without considering the transactions in the database. The basic intuition is that any 

subset of a large itemset must be large. Therefore, the candidate itemsets having k items 

can be generated by joining large itemsets having k-1 items, and deleting those that 

contain any subset that is not large. This procedure results in generation of a much 

smaller number of candidate itemsets.(Agrawal, et al. 1994)

It is assumed that items in each transaction are kept sorted in their lexicographic

order. It is straightforward to adapt these algorithms to the case where the database D is 

kept normalized and each database record is a <TID, item> pair, where TID is the 

identifier of the corresponding transaction.

The number of items in an itemset is called its size, and can itemset of size k is 

called a k-itemset. Items within an itemset are kept in lexicographic order. The notation 

c[1]  ...  c[2]  . . .  c[k] is used to represent a k-itemset c consisting of items c[1], c[2], 

. . .c[k], where c[1]<c[2]< . . . <c[k]. If c = XY and Y is an m-itemset, Y is also called 

an m-extension of X. Associated with each itemset is a count field to store the “support” 

for this itemset. The count field is initialized to zero when the itemset is first created. In 

Figure 5.1 the notation used in the Apriori and Apriori-like algorithms is summarized.

Figure 5.1. Notation used in Apriori and Apriori-like algorithms.

5.3 Apriori Algorithm 

An association rule mining algorithm, Apriori, was developed in 1993 by IBM’s 

Quest Project Team (Agrawal, et al. 1993) for mining large transactional databases. 
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Figure 5.2 gives the Apriori algorithm. The algorithm makes multiple passes over the 

database, and each pass has three steps:

 1) Scan Step,

2) Prune Step,

3) Join Step.

In the first pass the algorithm simply counts item occurences to determine the 

frequent 1-itemsets (itemsets with 1 item). A subsequent pass, say pass k, consists of 

two phases. First, the frequent itemsets Lk-1 (the set of all frequent (k-1)-itemsets) found 

in the (k-1)th pass are used to generate the candidate itemsets Ck, using the apriori-gen() 

function. This function first joins Lk-1 with Lk-1, the joining condition being that the 

lexicographically ordered first k-2 items are the same. Next, it deletes all those itemsets 

from the results of the join step that have some (k-1) subset that is not in Lk-1 yielding 

Ck. The algorithm now scans the database. For each transaction, it determines which of 

the candidates in Ck are contained in the transaction using the hash-tree data structure 

and increments the count of those candidates. At the end of each pass, Ck is examined to 

determine which of the candidates are frequent, yielding Lk. The algorithm terminates 

when Lk (the set of all frequent itemsets) becomes empty.

Figure 5.2. The Apriori Algorithm.
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Apriori Candidate Generation 

The apriori-gen function takes as argument Lk-1, the set of all large (k1)-itemsets. 

It returns a superset of the set of all large k-itemsets. First, in the join step, Lk-1 is joined 

with Lk-1. Next, in the prune step, all itemsets c  Ck are deleted such that some (k-1)-

subset of c is not in Lk-1:

As an example, let L3 be 1 2 3, 1 2 4, 1 3 4, 1 3 5, 2 3 4. After the 

join step, C4 will be 1 2 3 4, 1 3 4 5. The prune step will delete the itemset 1 3 4

5 because the itemset 1 4 5 is not in L3. We will then be left with only 1 2 3 4 in 

C4.

5.4 Implementing Apriori Algorithm with XQuery

The query language XQuery was proposed by the W3C. The purpose of 

XQuery is to provide a flexible way to extract XML data and provide the necessary 

interaction between the web world and database world. More information about XQuery 

explained in Chapter 3.
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Figure 5.3. Transaction document (transactions.xml) 
(Source: Wan and Dobbie 2003)

The XML document on Figure 5.3 contains set of transactions which are identified 

by the tag <transactions> and each transaction in the transactions set is identified by the 

tag <transaction>. The set of items in each transaction are identified by the tag <items> 

and an item is identified by the tag <item>.

let $src := doc("dataset.xml")//items
let $minsupp := 0.4
let $total := count($src) * 1.00
let $C := distinct-values($src/*)
let $L := (for $itemset in $C let $items :=(for $item in $src/* 
where $itemset = $item  return $item)
let $sup := (count($items) * 1.00) div $total where $sup >= $minsupp
return <largeitemset>
<item> {$itemset} </item>
<support> {$sup} </support>
</largeitemset>)
 return    
 <largeItemsets>{ local:apriori($l, $L,$minsup, $total, $src,$i) }</largeItemsets>

Figure 5.4. An XQuery expression which computes the association rules
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The computation of the above expressions begins with several let clauses where 

we specify the data source $src, the support threshold $minsup and total number of 

transaction $total in the data source. After that, it starts to generate the candidate 1-

itemsets $C. Once the candidate 1-itemsets are available, the algorithm is ready to 

generate the large 1-itemset $l by scanning through the transactions document to obtain 

the support value of each candidate 1-itemset and remove the one which is less than 

minsup. The variable $L is used to collect all the large itemsets in the transaction 

document. Finally, it will pass the information (e.g. $l, $L, $minsup, $total) to the 

recursive function Apriori in the return clause to generate the other large itemsets.

The function Apriori is called once in every level. Function generates the 

candidate set C in the current level by combining the large itemsets in the previous 

level. It then removes the unnecessary itemsets from C and obtains the large itemsets by 

reading the database to calculate the support. Figure 5.5 shows the Apriori function.

Figure 5.5. Apriori function

Apriori function calls several necessary functions. These are  

 CandidateGen( ), 

 getLargeItemsets( ) ,

 removeDuplicate( ).

CandidateGen function generates candidate sets using previous levels’ large itemset 

($l). CandidateGen function returns current level candidate set. Figure 5.6 shows 

XQuery expression of AprioriGen function. Function uses join( ) and prune( ) functions 

to generate candidate itemsets.

declare function local:apriori($l, $L, $minsup, $total ,$src) 
 {
 let $C := local:removeDuplicate(local:candidateGen($l, ,$i))
 let $l := local:getLargeItemsets($C, $minsup, $total, $src)
 let $L := $l union $L
 return
 if (empty($l)) then $L
 else
 local:apriori($l, $L, $minsup, $total, $src)
}



39

Figure 5.6. CandidateGen Function

. The function showed in Figure 5.7 joins two sequences and eliminates 

duplicates. It works like set join operation.

Figure 5.7. Join function

GetLargeItemsets function takes $C, $minsup, $total, $src as parameters and 

returns large itemset and its support value. $C represents the candidate itemset of the 

current level, $minsup represents the minimum support, $total symbolizes count of 

candidate itemset members and finally $src is the dataset for scanning. Function selects 

the itemsets which are supported above $minsup. 

Figure 5.8. getLargeItemsets Function

declare function local:candidateGen($l,$j)
 {
 for $freqSet1 in $l
 let $items1 := $freqSet1//items/*
for $freqSet2 in $l

 let $items2 := $freqSet2//items/*
 where $freqSet2 >> $freqSet1 and count($items1)+$j=count($items1 union $items2) and
local:prune(local:join($items1,$items2), $l)
return
<items>

 {local:join($items1,$items2)}
 </items>
 };

declare function local: join($X, $Y) 
 {
 let $items := ( for $item in $Y where every $i in $X satisfies $i != $item return $item )
 return $X union $items
 };

declare function local:getLargeItemsets($C,$minsup, $total, $src) 
 {
 for $items in $C
 let $trans := (for $tran in $src where every $item1 in $items/* satisfies
 (some $item2 in $tran/* satisfies $item1 = $item2)
 return $tran )
 let $sup := (count($trans) * 1.00) div $total where $sup >= $minsup
 return
 <largeItemset>
 {$items} <support> {$sup} </support>
 </largeItemset>
 };
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RemoveDuplicate function called in apriori function because the candidates 

generated by candidateGen function may contain duplicate itemset. This function 

removes duplicates by comparing equality of the itemsets. The helper function named 

commonIts( ) works like a set intersect operation.

Figure 5.9. Function removeDuplicate

Figure 5.10 illustrates the process of generating large itemsets. Minimum support 

value is defined as 0.4. Figure 5.10 shows all the large itemsets generated by our 

XQuery expression with the input file in Figure5.3.

declare function local:removeDuplicate( $C ) 
 {
 for $itemset1 in $C
 let $items1 := $itemset1/*
 let $items :=(for $itemset2 in $C
 let $items2 := $itemset2/* where $itemset2>>$itemset1 and 
count($items1)=count(local:commonIts($items1, $items2))
 return $items2 )
 where count($items) = 0
 return $itemset1
 };
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Figure 5.10. Output of the Apriori Algorithm 

5.5 AprioriTid Algorithm

An association rule mining algorithm, AprioriTid, also was developed in 1993 by 

IBM’s Quest Project Team (Agrawal, et al. 1993) for mining large transactional 

databases. Figure 5.11 shows the AprioriTid algorithm.

Contrasted to Apriori algorithm, the AprioriTid algorithm has the additional 

property that the database is not used at all for counting the support of candidate 

itemsets after the first pass. Rather, an encoding of the candidate itemsets used in the 
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previous pass is employed for this purpose. In later passes, the size of this encoding can 

become much smaller than the database, thus saving much reading effort. The 

AprioriTid algorithm also uses the Apriori-gen function to determine the candidate 

itemsets before the pass begins. The interesting feature of this algorithm is that the 

database D is not used for counting support after the first pass. 

Figure 5.11. AprioriTid Algorithm
(Source: Agrawal, et al. 1993)

The AprioriTid algorithm also uses the Apriori candidate generation function to 

determine the candidate itemsets before the pass begins. The interesting feature of this 

algorithm is that the database D is not used for counting support after the first pass 

rather the set Ck is used for this purpose. Each member of the set kC  is of the form 

<TID, {Xk}> where each Xk is a potentially frequent k-itemset present in the transaction 

with identifier TID.  For k=1, kC  corresponds to the database D, although conceptually 

each item i is replaced by the itemset {i}. For k > 1 kC  is generated by the algorithm. 

The member of kC  corresponding to transaction T is 

< t.TID, {c   Ck | c contained in t}>. 

If a transaction does not contain any candidate k-itemset, then kC  will not have an 

entry for this transaction. Thus, the number of entries in kC  may be smaller than the 

number of transactions in the database, especially for large values of k. In addition, for 

large values of k, each entry may be smaller than the corresponding transaction because 
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very few candidates may be contained in the transaction.  However, for  small  values  

for  k,  each  entry  may  be  larger  than  the corresponding transaction because an 

entry in 
kC includes all candidate k-itemsets contained in the transaction.

The XQuery expression of AprioriTid algorithm differs from Apriori in large 

itemset generation function and a new function needed to compute kC .  This new 

function is named as generatenewCk. The function that finds the large itemset has some 

changes in the parameter values. kC is used at all for counting the support of candidate 

itemsets in the large itemset generator function.

Figure 5.12. generatenewCk function

5.6 High Efficient AprioriTid Algorithm (HEA)

HEA algorithm  is  improved  AprioriTid  algorithm (Chao Li et al. 2005), 

whose idea: on the basis of theorem, only use itemsets of 1kC , which supports are

equal to or greater than minsup, to build 1kC ; so we renew the relationship of transaction

t with entry, defined as   

kC  t.TID,{cCk | ct and c.sup port minsup}  ;

This will  excessively decrease  size  of  stored  data  in kC ; moreover, because

searching data scale is reduced when we compute support of itemsets in Ck. At the same

time, it will reduce much time of I/O and running.

declare function local:generatenewCk($L,$src)
{

let $cx:=local:removeDuplicate(local:candidateGen($L))
let $ck:= (for $k in 1 to count($L//items)
let $L:=(for $i in 1 to count($src[$k]//item)
return <largeitemset>
<items><items> {distinct-values($src[$k]//item[$i])} </items></items>
<support> {$sup} </support>
</largeitemset>)
return local:candidateGen($L) ) 
let $item1:=count($ck)
let $item2:=$cx
for $items in $ck
 let $trans := ( for $tran in $cx  where every $item1 in $items/* satisfies
 (some $item2 in $tran/* satisfies $item1 = $item2)
 return $tran)
return $trans};
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Figure 5.13. HEA Algorithm
(Source: Chao Li, et al. 2005)

In AprioriTid algorithm, from step 6 to step 11, it is to compute new kC and

support of itemset in Ck. So it can be added to the sentence, which will delete itemset

that support is smaller than minsup in kC , to optimize the algorithm after step 11. 

However, in application of data mining, frequent itemset also can be build from SQL 

sentence on the basis of structure of table. So through analysis, we also use circle of in 

kC HEA to instead of circle of kC  in AprioriTid step 6

Firstly,  Confirming itemset c in Ck, then transaction set Tc, presented with TID, 

including the item of c, is computed; Secondly, the number of entry is computed in 

Tc, defined as  |Tc| , which is support of itemset c; Thirdly, if  |Tc|  min sup , c 

is included into Lk and kC otherwise deleting c. Through above process, with the 

computed support in Ck, void itemset can be directly deleted from kC or added to 

kC and Lk.

The XQuery expression of this algorithm uses Apriori helper functions like 

AprioriTid algorithm. The difference of this expression is in function which generates 

the kC . 
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Figure 5.14. HEAnewCk function

declare function local:HEAnewCk($L,$src,$total)
{
let $cx:=local:removeDuplicate(local:candidateGen($L))
let $ck:= (for $k in 1 to count($L//items)
let $L:=(for $i in 1 to count($src[$k]//item)
return <largeitemset>
<items><items> {distinct-values($src[$k]//item[$i])} </items></items>
<support> {$sup} </support>
</largeitemset>)
return local:candidateGen($L) ) 
let $item1:=count($ck)
let $item2:=$cx
for $items in $ck
 let $trans := ( for $tran in $cx  where every $item1 in $items/* satisfies
 (some $item2 in $tran/* satisfies $item1 = $item2 and )
 return $tran)
 let $sup := (count($trans) * 1.00) div $total
where $sup >= $minsup

return $trans
};
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CHAPTER 6

SAMPLE DATA SETS

In order to compare the algorithms, experimental studies using different data sets 

(three synthetic data sets) and different support levels have been conducted. In this 

chapter we present our creating process of the datasets and statistical analysis. 

All the data sets  were performed on a 1.86 GHz Intel Pentium PC machine with  1 

gigabyte main memory, running on Microsoft Windows/XP. All the dataset creation 

programs were source coded in JAVA due to its Collections Framework (java.util 

package). As a Java Virtual Machine we utilized the one running on Java Standart 

Development Kit - Version  1.5.

6.1 Synthetic Data Generation and Analysis of the Data Sets

The algorithms were tested on different data sets: three synthetic data sets. We 

produced three different data sets which have 100,1000 and 5000 transactions. These 

synthetic data sets were simulated using a pre-defined probability mass tables, that is, 

the probability of occurences of the items and the number of transactions that the data 

set contain were pre-designated.  The synthetic data generation routines that we used in 

our study and the statistical features of the synthetic data sets with 100,1000 and 5000 

transactions are described .

For generating synthetic data sets firstly we determine the borders of the data sets. 

Such as;

 maximum transaction size: 20

 number of items: 50

 number of transactions: 100 ,1000 and 5000

To hold the “Transaction Size Distributions” and the “Item Distributions” define 

two matrices, Transaction_Size_Matrix (1 x 20) and Item_Matrix (1 x 50). These 

matrices pre-desined before the synthetic dataset generation.Then we sort the 

probabilitiy of occurences that Transaction_Size_Matrix contain in a descending order. 

We extend the probability of occurences of items that Item_Matrix hold. Briefly we 
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create a 1 x 1000 matrix that will contain the items according to their probability of 

occurences. For example, in this new matrix, the item “1” will occupy the first 

1000*0.077 place (because in Item_Matrix “1” refers 0,077) and item 2 will occupy the 

following 1000*0.069 place (because in Item_Matrix “2” refers 0,069),...,etc. As a 

result, the new matrix (new_matrix) will contain 1000 items from 1 to 50 in a sequential

order.

dataGeneration()

for (i=0;i<transnumber;i++)//trnasnumber could be 100, 1000 or 5000

transsize=gettranssize();//define the transaction size using 

transaction_size_matrix

for(j=0;j<transize;j++)

takenitem=getItem();//define the item using new_matrix

addtotrans(takenitem);// add item to the dataset.

Figure 6.1. Synthetic data generation algorithm.

After generating this new matrix data generation starts. The data generation 

algorithm structure can be seen in Figure 6.1. The function getTransSize() generates a 

random number using uniform distribution between 0 and 1 and returns the index which 

corresponds to the random number in Transaction_Size_Matrix. The function getItem() 

generates a random number using uniform distribution between 1 and 1000 (the size of 

the new_matrix) and returns the value that corresponds to the random number in 

new_matrix .

6.2.1 Analysis of “Synthetic Data Set with 100 Transactions”

The features and the analysis of the “Synthetic Data Set with 100 Transactions”

are given in Figure 6.2 and Figure 6.3 respectively. This dataset contains 1048 items. 

Maximum transaction size is 20. Average transaction size is 10.57.
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Figure 6.2. Frequency of transaction size on dataset with 100 transactions
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Figure 6.3. Frequency of items on dataset with 100 transactions

6.2.2 Analysis of “Synthetic Data Set with 1000 Transactions”

The features and the analysis of the “Synthetic Data Set with 1000 Transactions”

are given in Figure 6.4. and Figure 6.5. respectively. This dataset contains 11530 items. 

Maximum transaction size is 20. Average transaction size is 9.54.
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             Figure 6.4. Frequency of transaction size on dataset with 1000 transactions
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Figure 6.5. Frequency of items on dataset with 1000 transactions

6.2.3 Analysis of “Synthetic Data Set with 5000 Transactions”

The features and the analysis of the “Synthetic Data Set with 5000 Transactions”

are given in Figure 6.6 and Figure 6.7 respectively. This dataset contains 35716 items. 

Maximum transaction size is 20. Average transaction size is 9.37
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                 Figure 6.6. Frequency of transaction size on dataset with 5000 transactions
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               Figure 6.7. Frequency of items on dataset with 5000 transactions
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CHAPTER 7

       RESULTS AND DISCUSSION

As the result of the experimental study, we revealed the performance statistics of 

the algorithms. In this chapter, we visualize, evaluate and compare the results obtained 

from our experimental study as regards the “performance statistics” of the algorithms.

The Apriori algorithm makes as many passes in order to find the most frequent 

itemsets as the user specified support permits. Each pass includes the scanning, the 

pruning and the joining (candidate generation) steps. At the end of each pass the 

algorithm prepares a new data set (called the candidate set) for the next pass. For this 

reason, it is expected that Apriori may not show a good performance on dense data sets 

where many itemsets cannot be pruned and form the candidate sets for the next pass. 

Contrasted to Apriori algorithm, the AprioriTid algorithm has the additional 

property that the database is not used at all in defining large itemsets for counting the 

support of candidate itemsets after the first pass. Instead of this an encoding of the 

candidate itemsets used in the previous pass is employed for this purpose called as kC . 

In later passes, the size of this encoding can become much smaller than the database, 

thus saving much reading effort. The AprioriTid algorithm also uses the AprioriGen 

function to determine the candidate itemsets before the pass begins.

The High Efficient AprioriTid algorithm is improvement of AprioriTid 

algorithm. This algorithm only uses encoding of candidate itemsets, which supports are 

equal to or greater than minsup. This approach will decrease   size   of   stored   data   in 

encoding of candidate itemsets.



52

Mining Times of the Algorithms
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Figure 7.1. The “Mining Times” of the algorithms for different data sets and at different 
                   support levels are given in (a), (b) and (c)
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4 different datasets have been used and their average mining times are taken in 

order to compare their performances. These results can be seen in Figure 7.2, 7.3 and 

7.4.
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         Figure 7.2. Performance of the algorithms in dataset with 100 transactions

Figure 7.2 shows the performance of algorithms in dataset with 100 transactions. 

AprioriTid has the longest time in mining process with 100 transactions.
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             Figure 7.3. Performance of the algorithms in dataset with 1000 transactions

When algorithms compared in dataset which has 1000 transactions , similar 

results can be seen in Figure 7.3 as in Figure 7.2. However, the perfromances are 

slightly different then Figure 7.2  for support values 0.25 and 0.20.  
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              Figure 7.4. Performance of the algorithms in dataset with 5000 transactions

For all algorithms as the minimum support decreases, the execution times of all 

the algorithms increase because of increases in the total number of candidate itemsets 

and large itemsets. 

In order to compare the effects of factors of mining times a univariate analysis 

of variance was conducted. For this purpose SPSS tool was used. We examined four 

parameters to see how they affect on mining times. “Datasetno” represents for 4 

different datasets. “Support” is representing for support values like 0.3, 0.25, 0.2, 0.15 

and 0.1. “Dsize” symbolizes the size of the databases which are 100, 1000 and 5000. 

“Algorithm” represents different types of algorithms like Apriori, AprioriTid and HEA.

Tests of Between-Subjects Effects can be seen in Table 7.1.
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Table 7.1. Tests of Between-Subjects Effects

Tests of Between-Subjects Effects
Dependent Variable: time

Source

Type III Sum of 

Squares df Mean Square F Sig.

Datasetno 1519494,124 3 506498,041 34,250 ,000

Support 1479691,485 4 369922,871 25,015 ,000

Dsize 729660,106 2 364830,053 24,670 ,000

Algorithm 34794,915 2 17397,458 1,176 ,312

dsize * algorithm 9702,168 4 2425,542 ,164 ,956

support * algorithm 18173,853 8 2271,732 ,154 ,996

support * dsize 153210,837 8 19151,355 1,295 ,251

support * dsize * algorithm 7160,782 16 447,549 ,030 1,000

Error 1952040,953 132 14788,189

Corrected Total 5903929,223 179

Univariate analysis of variance is significant when α is smaller than 0.05 for 

95% confidence interval. Results of univariate analysis of variance shows that 

significance values for “Datasetno”, “Support” and “Dsize” are smaller than 0.05. 

Therefore it’s concluded that these factors affect the mining time significantly. These 

differences can be seen in Table 7.3, 7.4 and 7.5 However as indicated in the Table 7.1 

“Algorithm” factor is not smaller than 0.05. Although there are differences between 

three algorithms in Table 7.2, these differences are not statistically significant. 

Table 7.2. Means of Time for Algorithms

Estimates

Dependent Variable:time

Algorithm Mean

1 (Apriori) 110,101

2 (AprioriTid) 143,564

3 (HEA) 132,317
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Table 7.3. Means of Time for Datasets

Estimates

Dependent Variable:time

Datasetno Mean

1 287,468

2 71,196

3 85,384

4 70,595

Table 7.4. Means of Time for Support values

Estimates

Dependent Variable:time

support Mean

0.30 32,019

0.25 41,423

0.20 114,643

0.15 180,843

0.10 274,376

Means of time decreases as support values increases. The Figure 7.5 represents 

this inverse proportion.
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Figure 7.5. Means of Time for Support values
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Table 7.5. Means of Time for Dataset size

Estimates

Dependent Variable:time

Dataset size Mean

100 65,228

1000 105,036

5000 215,719

In order to see the difference of estimated marginal means for database size the 

database size values were transformed to log scale. The aim of this transformation was 

because of large range of the database sizes. The Figure 7.6 is created in SPSS Chart 

Builder module by using transformed values of database sizes. Figure 7.6 shows that 

means of mining times increase parallel with database size. 

Figure 7.6. Means of Time for Dataset size



58

CHAPTER 8

CONCLUSION

The principal purpose of this study is applying association rule algorithms 

directly to the XML documents with using XQuery. Although there have been several 

studies about algorithms for association rules implementing on XQuery which are used 

in XML mining such as Apriori , the authors do not discuss the issue of large datasets 

and we have not found any study about applying AprioriTid and HEA with XQuery. 

Also there is no study about comparison of these three apriori-like algorithms on XML 

documents using different support levels and different database sizes. The algorithms 

evaluated in this study are:

 Apriori Algorithm
 AprioriTid Algorithm
 HEA Algorithm

The above algorithms were chosen for the implementation and comparison due 

to the fact that they serve to the same purpose and to see their effect in mining XML 

documents. The source codes of dataset creation process were written in JAVA.. 

Association rule algorithms are implemented in XQuery. The environment we worked 

as an editor is Eclipse with XQuery ide. The source codes of the algorithms and datasets 

were processed on 1.86 GHz Intel Pentium PC machine with  1 gigabyte main memory, 

running on Microsoft Windows XP.

In this study we see that AprioriTid and HEA algorithms can be applied on 

XQuery and can be used in XML mining. According to our observations, the 

performances of the algorithms are depending on the support levels and the size of the 

data sets. 

Future Work

There is an increasing research efforts going on in XML data mining which is 

based on XML documents. Investigating the behaviors of the XQuery implementations 

of algorithms on larger XML datasets and their relations with memory size could be 

defined as a future research area.
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