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ABSTRACT

IMPLEMENTATION OF SYNCHRONIZED CHAOTIC SYSTEMS BY

FIELD PROGRAMMABLE GATE ARRAY

In this thesis, the geometric properties of chaotic systems are used to determine their

synchronization. First, each system is constructed with MATLAB Simulink blocks. Af-

terwards, feedback control system for synchronization of chaotic systems is proposed by

using complete synchronization approach. In the next stage, Simulink designs are trans-

lated into System Generator design so that bitstream file which is used to program FPGA

is obtained. Finally, the design is implemented into FPGA by dowloading bitstream file

into FPGA. As an application of FPGAs the synchronization of chaotic systems have been

achieved.
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ÖZET

SENKRONİZE EDİLMİŞ KAOTİK SİSTEMLERİN ALAN

PROGRAMLANABİLİR KAPI DİZİLERİ UYGULAMALARI

Bu tezde, kaotik sistemlerin senkronizasyonunu sağlamak amacıyla bu sistemlerin ge-

ometrik özellikleri kullanılmıştır.İlk olarak, her sistem MATLAB Simulink blokları

kullanılarak oluşturulmuştur. Daha sonra, tam senkronizasyon yaklaşımı kullanılarak,

kaotik sistemlerin senkronizasyonunu sağlamak amacıyla geri beslemeli kontrol sistemi

önerilmiştir. Bir sonraki aşamada, yapmış olduğumuz Simulink tasarımları, FPGA’ i

programlamada kullanacağımız bitstream dosyasını elde etmek için, System Generator

tasarımına çevirilmiştir. Son olarak, tasarım, bitstream dosyasının FPGA’ e yüklenmesi

ile FPGA uygulaması tamamlanmıştır. FPGA uygulaması olarak kaotik sistemlerin

senkronizasyonu başarı ile gerçekleştirilmiştir.
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CHAPTER 1

INTRODUCTION

In this thesis an implementation of a geometric nonlinear controller for chaos syn-

chronization in a Field Programmable Gate Array (FPGA) is presented. Chaotic systems

are used to show the implementation of chaos synchronization via nonlinear controller

implemented in a Xilinx FPGA Virtex - IV XC4VSX35-10ff668. The main idea is to

design a nonlinear geometric controller which synchronizes a slave chaotic system to a

master chaotic system and then embeded them the FPGA. The aim is to show that a recon-

figurable device can perform a complicated operation such as the chaos synchronization.

The verification of each chaotic system was simulated with MATLAB Simulink and Xil-

inx System Generator. After verification process is completed, FPGA is configured to

perform designed systems so that the results can be obtained by experimentally.

In chapter 2, basic process technology types will be presented. After giving in-

formation basic process technology types, programmable devices are introduced. They

are programmable logic devices, application-specific integrated circuits and field pro-

grammable gate arrays, respectively. Because synchronization of chaotic generators are

chosen as an application of FPGAs which are more attracted than other programmable de-

vices. FPGAs offer wide variety of applications such as : Digital signal processor (DSP)

(Lund, et al. 2004), software-defined radio (Cummings and Haruyama 1999), aerospace

and defense systems (Li, et al. 2000), medical imaging (Leeser, et al. 2005), com-

puter vision (Sen, et al. 2005), speech recognition (Marcus and Nolazco-FIores 2005),

cryptography (Mentens, et al. 2006), bioinformatics (Luethy and Hoover 2004) can be

counted as recent studies.

Lorenz, Rössler, Linz and Sprott and Chua generators as an application of syn-

chronization problem will be presented and simulated by Matlab Simulink program, in

chapter 3.

Synchronization of chaotic generators will be examined in chapter 4. Synchro-

nization problem in chaotic system can be achieved by geometric approach (Solis-Perales,

et al. 2003).

Implementation of synchronized chaotic systems can be seen in chapter 5. By

1



using Xilinx System Generator program, VHDL code can be generated. After VHDL

code is obtained by using ISE program, FPGA can be configured to perform properly.In

this chapter simulation and experimental results can be seen.

2



CHAPTER 2

THE ORIGIN OF FIELD PROGRAMMABLE GATE

ARRAY

Field Programmable gate arrays (FPGAs) are digital integrated circuits (ICs). FP-

GAs contain configurable (programmable) logic blocks and configurable interconnects

between these blocks.The logic blocks also include memory elements which may be sim-

ple flip-flops or more complete blocks of memories. FPGAs are programmed to perform

a variety of tasks.

There are two types of FPGAs. One of them is programmed one time. A device

which can be programmed one time is referred to as one-time programmable (OTP). The

other one is reprogrammed several times.

2.1. Basic Process Technology Types

In this section, some basic technology types will be mentioned. They are fusible

link technologies, antifuse technologies, mask-programmed devices, programmable read-

only memories, erasable programmable read-only memories, electrically erasable pro-

grammable read-only memories and SRAM-based technologies, respectively.

2.1.1. A Simple Programmable Function

As a basis for basic process technology, it is better to start with a simple pro-

grammable function so that we can understand the basis of programmable devices. A

simple programmable function can be constructed by using two NAND gates and a AND

gate as in the Figure 2.1.

NOT gates are used for having inverting form of inputs so there are both unmod-

ified inputs and inverting inputs. As can be seen in the Figure 2.1 there is no connection

between inputs and output so the output is always a logic 1 for this case since all of the

inputs to the AND gate are connected by pull-up resistors to a logic 1 value. In order to

obtain different outputs depending on inputs , The potential links can be established via

3



Figure 2.1. A simple programmable function.

some mechanism. These mechanisms will be seen next sections.

2.1.2. Fusible Link Technologies

The fusible-link technology is one of the first methods to program the devices by

users and is still used for programming devices. In this case, the device is fabricated with

fuses as can be seen in Figure 2.2.

Figure 2.2. The device with unprogrammed fusible links.

These fuses work principle is the same as household products. For example, when

something that consumes too much power from the television then its fuse will burn out.

This cause an open circuit which protects the rest of unit from harm. Of course, the fuses

which are used in programmble devices are microscopically small.

At first, all of the fuses of the programmable device are initially intact. This means

that, the output of programmable function is always logic 0 since there are all combination
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of inputs. For example, if input a is 0, then the output will be 0 because of the AND gate.

Alternatively, if input a is 1 then copmlementary of a is 0 then again the output is 0.

The thing is that undesired fuses are removed by applying relatively high voltage

or current to the device’s inputs in order to achive desired function. For instance, what

happens if we remove fuses Faf and Fbt as in Figure 2.3.

Figure 2.3. Programmed fusible links.

The complementary of input a and the input b are removed from the circuit so we

obtain new function which is y = a&!b. (AND operation is represented by & character

and NOT operation is represented by ! character. The process of removing fuses is called

programming the device or burning the device. Fusible-link based devices are said to be

one-time programmable (OTP), since after blowing fuse there is no way to replace blown

fuse.

2.1.3. Antifuse Technologies

As an alternative to fusible-link technologies, there are antifuse technologies. In

this time each configurable path is called antifuse. At first, in unprogrammed state of

antifuses, an antifuse has such a high resistance that it acts as a insulator so there is no

current flow through unprogrammed antifuse. This time the output is always logic 1

because of pull-up resistors as in Figure 2.4.

In order to achive desired function by applying relatively high voltage or current

to the device’s inputs so that antifuses can be programmed or grown. For example, the

complementary version of input a and input b are grown by applying proper voltage or

current then the device will perform the function y =!a&b as in Figure 2.5.
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Figure 2.4. Unprogrammed antifuse links.

Figure 2.5. Programmed antifuse links.
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In unprogrammed state there is amorphous silicon (Figure 2.6.a) link between

nodes. it act as an insulator so there is no current flow. By converting the insulating

amorphous silicon to conducting polysilicon (Figure 2.6.b) by applying relatively high

voltage or current, the programmed link between nodes will be constructed.

Figure 2.6. Growing an antifuse.

Like fusible-link technologies, antifuse technologies are also said to be one time

programmable because after growing an antifuse there is no way to replace grown anti-

fuse.

2.1.4. Mask-Programmed Devices

There are two types of memory in electronicsystems. One of them is read-only

memory (ROM) and the other one is rendom-access memory (RAM).

ROMs can be programmed one time after that the data is read from ROMs but

new data cannot be written after they are pogrammed once. The written data remains

even power is removed from the system. This kind of system is called nonvolatile system.

On the contrary, data can be both written into and read from RAM devices. The written

data does not remain when power removed from the system. This kind of system is called

volatile system.

Basic ROMs are mask-programmed devices since process of constructing ROMs

are done by means of photo-mask which are used to create the transistors and the metal

tracks. For instance, a transistor-based ROM cell can be seen in Figure 2.7.

In order to understand how to program mask-programmed ROM cell two options

wil be examined. One of them is that there is a mask-programmed connection and the

other one is that there is no mask-pogrammed connections. Now consider a row line is

active state. In the first case, there is a connection between transistor and the column line

so transistor acts as a resistor then the output will be logic 0. The second case because
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Figure 2.7. A transistor-based mask programmed ROM cell.

there is no connection because of pull-up resistor the output will be logic 1.

2.1.5. Programmable Read-Only Memories

The programmable read-only memory devices were developed since mask-

programmed devices have problem with their cost and producing time. PROM devices

were created usnig a nichrome-based fusible-link technology (Maxfield 2004). As an ex-

ample, simplified representation of a transistor-and-fusible-link based PROM cell as can

be seen in Figure 2.8.

Figure 2.8. A transistor-and-fusible-link-based PROM cell.

At first, all of the fusible links in the device exist.Now consider a row line is

active state so transistors act as a resistor then the output will be logic 0. In order to

obtain desired function some of fusible links are burnt by applying relatively high voltage
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and current. Because of burning some of the fusible links the output will be logic 1. As

can be undestood these devices are also OTP because they use fusible link technolgies as

well.

2.1.6. EPROM Technologies

As was previously seen previous section PROM devices are one time pro-

grammable devices. For this reason,new devices which could be programmed, erased

and reprogrammed were developed. This was erasble programmable read-only memory

(EPROM).

An EPROM transistor has the same basic structure as a standart MOS transistor.

The difference is that there is extra polysilicon floating gate isolated by layers of oxide

(Maxfield 2004) as can be seen in Figure 2.9.

Figure 2.9. Standart MOS versus EPROM transistors.

Before programmed the device, EPROM transistors work as standart MOS tran-

sistors. When the relatively high voltage is applied between the control gate and drain

terminals EPROM transistors are programmed. Afer programming process even though

programming signal is removed from the system, negative charge remains on the floating

gate.

EPROM transistor-based devices are established as all of the floating gates tran-

sistors are uncharged as in Figure 2.10. Consider, a row line in its active state so EPROM

transistors act as a resistor then output will be pulled down to logic 0. In order to program

device, the floating gates are charged by relatively high voltage so there is no current flow

throuogh transistors then the output will be logic 1.

The main difference between PROM and EPROM is that an EPROM cell can

be erased by discharging the electrons on Floating gate. The discharge operation needs
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Figure 2.10. An EPROM transistor-based memory cell.

energy which is provided by ultraviolet (UV) radiation. In order to erase the device, the

device is removed from its host circuit board and then it is placed in an enclosed enclosed

container with an intense UV source.

2.1.7. EEPROM Technologies

Electrically erasable programmable read-only memories were developed so that

erasing process could be done by electrically. EEPROM cell is approximately 2.5 times

larger than EPROM cell since EEPROMcell include two transistor (as can bee seen in

Figure 2.11), on the other hand EPROM cell include only one.

Figure 2.11. An EEPROM - cell.

The EEPROM transistor has similar form of EPROM transistor. EEPROM tran-
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sistor has also contain floating gate but it is thinner than the one in EPROM cell. The

normal MOS transistor in EEPROM cell is used for erasing the cell electrically.

2.1.8. Static Random-Access Memory Based Technologies

There are two types of RAM devices. One of them is dynamic RAM (DRAM) and

the other one is static RAM (SRAM). In the case of DRAMs, each cell is fromed from

transistor-capacitor pair. In order to keep the data unchanged, that has been loaded into

a DRAM cell each cell must be periodically recharged. In order for that there must be a

control circurity. It makes design complex and cost effective.

SRAM-based programmable cell do not need to be refreshed. When the data has

been loaded into an SRAM cell it will remain unchanged until power is removed from the

system. SRAM-base programmablle cell can be seen in Figure 2.12.

Figure 2.12. An SRAM-based programmable cell.

The SRAM-baed programmable cell is composed of transistors. One of them is

used for driving the output whether it is logic 0 or logic 1 depending on the contents of

the storage element. The number of transistors are used for a latch is either 4 or 6 so

SRAM cells consume a significant amount of silicon area estate. Another disadvantage

is with respest to fuse and antifuse technologies that when power is removed from the

system the data will be lost. On the other hand, SRAM based programmable devices can

be reprogrammed quickly and repedeately.

Figure 2.13 shows which technologies are used to program SPLDs, CPLDs and

FPGAs.
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Figure 2.13. Summary of programming technologies.

2.2. Programmable Devices and FPGAs

In order to understand the development process of FPGAs we will examine related

programmable technologies. As can be seen in Figure 2.14 which technologies appeared

on the scene in order.

Figure 2.14. Technology timeline.

The white part of the bars indicate that although those technologies existed, they

were not paid attention effectively by system designers because of some reasons. For

example, the first FPGA was introduced in 1984 by Xilinx but design engineers did not

realized how important FPGA is untill 1990s.

In Figure 2.14, there are eight technologies but we will examine four of them

which are more closer to FPGAs.
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2.2.1. SPLDs and CPLDs

The programmable logis devices (PLDs) are the first programmable integrated

circuits (ICs). PROMs can be counted as the first example of PLDs. They were on the

scene in 1970 but they were rather simple so more complex versions became available at

the end of the 1970s. So as to seperate comlex ones and simple ones they were called

as complex PLDs (CPLDs) and simple PLDs (SPLDs). SPLDs can be divided into four

main classes as PROMs, PLAs, PALs and GALs as cen be seen in Figure 2.15. CPLDs

will be examined as one class.

Figure 2.15. Classes of PLDs.

2.2.1.1. PROMs

PROMs were the first simple PLDs. They were on the scene in 1970. In order to

see how PROM performs, simple example of PROM will be examined. PROM consists of

a fixed array of AND gates driving a programmable array of OR gates. 3-input, 3 output

PROM (as in Figure 2.16) can be considered as an example of basic PROM cell.

Fusible links, EPROM transistors or EEPROM cells can be used to constructe

programmable links in the OR array. In fact Figure 2.16 is an illustration. It does not

represent an actual circuit diagram since in reality, each AND gate in the AND array has

3 inputs and similarly each OR gate in the OR array has 8 inputs provided by the outputs

from the AND array.

The PROM can be used to implement any block of combinational logic provided

that it does not have too many inputs or outputs. In Figure 2.16, the simple 3-input, 3-

output PROM can be seen. It can be used to implement any combinational logic function
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Figure 2.16. Unprogrammed PROMs.

with up to 3 inputs and 3 outputs. Example of 3-input and 3-output combinational logic

function can be seen in Figure 2.17.

Figure 2.17. A small block of combinational logic.

In order to construct above combinational function the PROM can be programmed

such a way that the same resutls can be obtained. It can be done by programming the

appropriate links in the OR array. By using that truth table the outputs can be obtained as

in Equation 2.1 below:
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w = (a&b)

x = (!a&!b&!c)|(!a&!b&c)|(!a&b&!c)|(!a&b&c)|(a&!b&!c)|(a&!b&c)

y = (!a&!b&c)|(!a&b&c)|(a&!b&c)|(a&b&!c)|(a&b&c) (2.1)

Figure 2.18 shows programmed PROM. As can be seen in Figure 2.18, unneces-

sary links were removed so that desired ouputs w, x, and y are obtained.

Figure 2.18. Programmed PROM.

The example in Figure 2.17 is very simple. It is just for illustraiton of real PROMs.

Indeed, real PROMs have more inputs and outputs so they are capable of implementing

larger blocks of combinational logic. Before PROMs, combinational logic was usually

implemented by means of integrated circuits such as the TI 74xx series devices (Maxfield

2004).

2.2.1.2. Programmable Logic Arrays

Programmable logic arrays (PLAs) became first available circa 1975. Because

both the AND array and OR array were programmable, PLAs were the most user config-

urable of the SPLDs. For example, 3-input, 3-output unprogrammed PLA can be seen in

Figure 2.19 .
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Figure 2.19. Unprogrammed PLA.

The number of AND gates in the AND array is independent of inputs to the device.

Similarly, the number of OR gates in the OR array is independent of inputs to device and

the number of AND gates in the AND array.

Assume that three equations (Equation 2.2) are implemented by PLA. After PLA

is programmed, the programmed PLA diagram can be seen in Figure 2.20.

w = (a&c)|(!b&!c)

x = (a&b&c)|(!b&!c) (2.2)

y = (a&b&c)

Figure 2.20. Programmed PLA.
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PLAs were useful for large designs whose logical equations has a lot of common

product terms. Common product terms can be used multiple outputs, for example, the

term (!b&!c) is used in both the w output and x output in Figure 2.20. This feature might

be called as product-term sharing.

On the other hand, because both their AND and OR arrays were programmable,

signals take long time to pass through programmable links compared to their predefined

counterparts. Therefore, PLAs were significantly slower than PROM.

2.2.1.3. PALs and GALs

A next class of device called programmable array logic (PAL) was introduced in

the late 1970s. PAL is almost the excat opposite of a PROM since it has a programmable

AND array and predefined OR array. As an example, 3-input, 3-output PAL can be seen

in Figure 2.21.

Figure 2.21. Unprogrammed PAL.

The advantage of PALs is that thay are faster than PLAs since the only one of

PALs arrays is programmable. On the other hand, they are more limeted as compered to

PLAs because they are not capable of being programmed by OR gates in OR array.

The Generic Array Logic (GAL) device was an innovation of the PAL and was

invented by Lattice Semiconductor. The GAL was an improvement on the PAL because

one device was able to take the place of many PAL devices or could even have function-

ality not covered by the original range. In addition, it was eraseable and reprogramable

making prototyping and design changes easier for engineers (Wikipedia 2007a).
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2.2.2. Complex Programmable Logic Devices

Because bigger (in terms of functional capability), smaller (in terms of physical

size), faster, more powerful and cheaper devices were needed, complex programmable

devices (CPLDs) were devoloped at the end of the 1970s.

Altera introduced CMOS-based EPROM technologies which make CPLDs popu-

lar in 1984. Because CMOS-based transistors allowed CPLD to achieve functional den-

sity and complexity while consuming little power. Because of EPROM technologies,

CPLDs were used to develop prototyping enviroments.

A generic CPLD consists of a number of SPLD blocks (usually PALs). There is a

programmable interconnection matrix which make SPLD-like blocks connect each other

as can be seen in Figure 2.22.

Figure 2.22. A generic CPLD structure.

The programmable interconnectiom matrix is used to program links between

SPLD-like blocks. SPLD-like blocks are also programmable so in order to achive de-

sired function, both the SPLD-like blocks and programmable interconnection matrix are

programmed properly.
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2.2.3. Application-Specific Integtrated Circuits

There are four types of aplication-specific integrated circuits (ASICs) which are

full custom, gate arrays, standart cell devices, sructured ASICs in the order of time. ASIC

types can be seen in Figure 2.23 in the order of the complexcity. ASIC types will be

described in the order of time in next subsections.

Figure 2.23. Different types of ASIC.

2.2.3.1. Full Custom

The full custom ASICs are like microprocessors. They were designed in order to

be used by a specific company. In the case of full custom devices, every mask layer used

to fabricate the silicon chip is controlled completely by design engineers. No components

are prefabricated in full custom ASICs and they do not have any libraries of predefined

logic gates and functions.

The design of full custom devices is highly complex and time-consuming, but the

resulting chips contain the maximum amount of logic with minimal waste of silicon real

estate (Maxfield 2004).

2.2.3.2. Gate Arrays

CMOS-based gate array technology became available in the mid-1970s. The idea

of gate arrays is that a collection of unconnected transistors and resistors were imple-

mented on basic cell. Each ASIC vendor decides the optimum mix of components pro-

vided in its particular basic cell. As an example of basic cell can be seen in Figure 2.24.
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The basic cells are typically presented as either single-column or dual-column arrays. The

free areas between the arrays are called as the channels (Figure 2.25).

Figure 2.24. Examples of simple gate array basic cells.

Figure 2.25. Channeled gate array architectures.

A gate level netlist is used to describe the logic gates and connections between

them. Special mapping, placement, and routing software tools are used to assign the logic

gates to specific basic cells and define how the cells will be connected together (Maxfield

2004). The component inside the basic cells and the basic cells itself are linked together

by the metalization layer which is created by the photo-mask.

An advantage of gate arrays is that they have considerable cost advantages be-

cause the components in basic cell are prefabricated like transistors so the only thing

whcih needs to be customized is the metalization layers. On the other hand, the power

consumption and performance of design are not effective since the most designs leave

significant amounts of internal resources unutilized.
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2.2.3.3. Standart Cell Devices

Standart cell devices became available in the early of 1980s.In the case of stan-

dart cell devices, cell library is defined by ASIC vendor so as to be used by design engi-

neers.The vendor also offers hard-macro and soft-macro libraries, which include elements

such as processors, communication functions, RAM and ROM functions.

As compored to gate arrays, no components are prefabricated on the chip. Unlike

gate arrays, the concept of a basic cell are not used in standart cell devices. Special

tools are used to place each logic gate in the netlist. They are also used to determine the

optimum way which the gates are to be linked.

The standart cell devices provide each logic function to be constructed by using the

minimum number of transistors. Standart cell device, hence, offer more optimal solution

for the silicon real estate than gate arrays do.

2.2.3.4. Structured ASICs

Structured aplication-specific integrated circuits were seen at first at the begining

of the 1990s but they were not used effectively at all. ASIC manufacturers started to inves-

tigate reducing ASIC design cost and development times circa 2001. In 2003, structured

ASIC became available.

Structured ASIC devices have fundemental element called a module by some and

a tile by others. Module or tile element might contain prefabricated generic logic (either

as gates, mutiplexers, or a lookup table), registers and possibly a little local RAM as can

be seen in Figure 2.26 (Maxfield 2004).

An array (sea) of tiles is prefabricated. If the tile contains only generic logic in the

form of prefabricated gates, multiplexers etc. then it can be called base tile. By combaning

base tiles and adding registers, small memory elements and other logic to base tile, the

master tile can be obtained. Master tiles are also prefabriceted on the chip. RAM blocks,

clock generators, boundary scan logic are also prefabricated on chip as can be seen in

Figure 2.27.

Structured ASIC can be configured usnig only the metalization layers like a stan-

dart gate array. The difference is that, the tile of structured ASIC is more sophisticated

rather than the standart gate array so most of the metalization layers are predefined as
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Figure 2.26. Example of structured ASIC tiles.

Figure 2.27. Generic structured ASIC.

22



well.

On the other hand, structured ASICs require three times the real estate and con-

sume two to three times the power of a standart cell device to perform the same function

because predefined functions which structured ASIC use is more sophisticeted than the

standart cell device so these functions consume much power and much real estate.

2.2.4. Field Programmable Gate Arrays

A field programmable gate array (FPGA) is a general-purpose integrated circuit

that is programmed by the designer rather than the device manufacturer (Xilinx 2007a).

FPGAs were available at the beginning of the 1980s. There was a gap between PLDs and

ASICs(Figure 2.28). PLDs were highly configurable and had fast design and modification

times, but they could not support large or complex funcitons. On the other hand, ASICs

could support large and complex functions, but they were time-consuming to design and,

once a design was implemented, it can not be changed. FPGAs filled the gap by being

placed between PLDs and ASICs since FPGAs were programmable like PLDs and they

could support large and complex functions to be performed like ASICs.

Figure 2.28. The gap between PLD and ASICs.

The first FPGAs were based on CMOS and used SRAM cells for configuration

purposes (Maxfield 2004). Early FPGAs were simple and contained few gates as com-

pered to recent FPGAs. The early devices were based on a programmable logic block

(PLB). PLBs contain a 3-input lookup table (LUT), a register that could act as a flip-flop

or a latch and a multiplexer. Recent FPGAs contain a 4-input LUT which can be used as

16× 1 RAM or a 16-bit shift register, a multiplexer and flip-flop as can be seen in Figure

2.29. The new form of PLB is called Logic Cell (LC) which will be used next sections.
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The board we used to implement synchronized chaotic systems has 34560 LCs.

Figure 2.29. A simplified view of a LC.

Every logic block in the device could be configured to perform a different function

by means of appropriate SRAM programming cells. A flip-flop can be configured to keep

the data in it until being trigged by a positive or negative-going-clock. The multiplexer

can be configured to select the output from the LUT or an independent input from LC

input.

The example is given to understand how LC works. In order to perform y =

(a&b)|!c function the LUT cell has to be loaded appropriate output values as can be seen

in Figure 2.30. By means of the multiplexer in the LUT, the output of function can be

selected among the inputs in the SRAM cell.

Figure 2.30. Configuring a LUT.

The next step up the hierarchy is called as slice. Each slice contains two LCs

as can be seen in Figure 2.31. The board we used to implement synchronized chaotic
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systems has 15360 slices. There are internal wires between LCs they are not drawn for

simplicity.

Figure 2.31. A slice containing two LCs.

The next step up the hierarchy is called as configurable logic block (CLB). Each

CLB contains usually four slices as can be seen in Figure 2.32. The CLB of the board we

used has four slices as well. There is fast programmable interconnect within the CLB as

well. This interconnect is used to connect slices which are placed at the same CLB.

Figure 2.32. A CLB containing four slices.

As can be understood previous paragraphs, the hierarchy of FPGA is like this LC

−→ Slice (with two LCs) −→ CLB (with four slices). The hierarchy is complemented by
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an equivalent herarchy in the interconnect. Therefore, there is the fastest interconnect be-

tween the LCs in a slice, then slightly slower interconnect between slice in a CLB, there is

the slowest interconnect between CLBs. These interconnects hierarchy were constructed

to avoid interconnect-related delays.

The complete FPGA contains a large number of programmable CLBs surrounded

by programmable interconnects as can be seen in Figure 2.33. Besides programmable

CLBs and interconnects, FPGA include primary input/output (I/O) pins. By means of its

own SRAM cells, the interconnect can be programmed such that the primary inputs to

the device are connected to the inputs of one or more CLBs, and the outputs from any

CLB can be used to drive the inputs to any other logic block, the primary outputs from

the device, or both (Maxfield 2004).

Figure 2.33. Top-down view of simple FPGA architecture.

At the end, FPGAs successfully fill the gap between PLDs and ASICs. They are

highly configurable like PLDs and capable of implementing large and complex functions

like ASICs. In addition, they have fast design and modification times as compered to

PLDs and they are able to be reprogrammed unlike ASICs.
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CHAPTER 3

CHAOTIC GENERATORS

3.1. Chaotic Systems

In the next subsections, Lorenz sytem, Rössler system, Linz and Sprott system

and Chua system will be studied. The differential nonlinear equations of these systems

will be presented and the chaotic behaviour will be studied. Simulink model will be

constructed for each chaotic system, so the results of mathematical simulations of these

chaotic differential equations can be seen.

3.1.1. Lorenz System

dx1

dt
= α(x2 − x1)

dx2

dt
= βx1 − x2 − x1x3 (3.1)

dx3

dt
= x1x2 − γx3

where the parameters α = 10, β = 28 and γ = 8/3. Lorenz’s equations (Lorenz 1963)

have two nonlinearities responsible for the chaotic behaviour: the products x1x3 and x1x2

that are performed by two multipliers. The equations are simulated using the Simulink

block diagram presented by Figure 3.1. At least, one of the integrators presented in this

diagram must have a non-zero initial condition in order to produce non-zero outputs. In

this diagram the block Integrator has internal initial condition set to 0.001. Integrator1

and Integrator2 blocks have zero initial condition.

Figures 3.2 shows the outputs X1outs, X2outs, X3outs produced by the Simulink

block diagram of Figure 3.1. The Lorenz’s attractor (Figure 3.3) is also produced by the

Simulink block diagram of Figure 3.1. The Figure 3.3 is obtained by plotting the output

variabe X1outs versus X2outs.
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Figure 3.1. Simulink structure of Lorenz’s equations.
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Figure 3.2. X1outs, X2outs and X3outs outputs of Lorenz’s equations.
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Figure 3.3. The attractor of Lorenz’s Simulink block diagram.

3.1.2. Rössler System

Rössler equations were created by Otto Rössler (Rössler 1976). Rössler system

was described with three non-linear differential Equations 3.2. Rössler’s system is simpler

than Lorenz’s, in which there is only one nonlinear term x1x3 in the third equation.

dx1

dt
= −(x2 + x3)

dx2

dt
= x1 + αx2 (3.2)

dx3

dt
= β + x3(x1 − γ)

Figure 3.4 below presents Simulink block diagram of the Rössler system de-

scribed with three non-linear differential equations as can be seen in Equations 3.2. In

this Simulink design, the parameters are set to: α = 0.2, β = 0.2 and γ = 5.7. Integrators

initial conditions are set to zero, except the integrator1 block which is set to 3.0474. The

simulation parameters use a Fixed - Step solver type with fixed step size equal to 0.1 in

Simulink configuration box.

By setting the parameters α and β equal to 2 and varying the parameter γ, the

chaotic behaviour of Rösser system can be seen. Period one (γ = 2.5), period two (γ =

3.5) and period four trajectories (γ = 4.0) can be easily seen in Figure 3.5. These period

doubling lead eventually a chaotic state as shown by the last attarctor plotted for γ = 5.7.

The behaviour of the x3 state variable in the chaotic state (γ = 5.7) is understood

by looking at time series in Figure 3.6. From Figure 3.6, x3 state variable is small most of
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Figure 3.4. Simulink structure of Rössler equations.
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Figure 3.5. Four different Rössler’s attractors.
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Figure 3.6. X1outs, X2outs and X3outs outputs of Rössler equations.
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Figure 3.7. Three dimensional Rössler’s attractor for γ = 5.7
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the time which means that trajectories mostly are close to the x− y plane. But sometimes

there are spikes in the x3 time series. For reference, the time series for the x1 and x2

variables can be also seen in Figure 3.6.

The full three - dimensional phase portrait of Rössler system is shown in Figure

3.7. This is the attractor for the system. Note that the attractor lies in a bounded region.

However, it does not show random behaviour at all so it is clear that deterministic chaos

is different from noise or randomness.

3.1.3. Linz and Sprott System

Linz and Sprott propose the chaotic system presented in Equation 3.3 below, that

exhibits chaos for α = 0.6 and β = 1 . The constant β = 1 affects only the size of the

attractor. Chaos also occurs in Equation 3.3 with the nonlinear term |x1| replaced by |x|n,

for nonzero value of the exponent n (Linz and Sprott 1999).

dx1

dt
= x2

dx2

dt
= x3 (3.3)

dx3

dt
= −αx3 − βx2 ± (|x1| − 1)

This system also exhibits a period-doubling for α = 0.675, β = 1. Linz has

recently proved that chaos can not exist in this system if any of the terms of the equation

above are set to zero (Linz and Sprott 1999).

Simulink block diagram of Linz and Sprott’s chaotic system is presented in Figure

3.8. All integrator blocks are set to a zero initial condition, except block integrator2,

which has initial condition equals to 0.000001. In the third part of Equation 3.3 above

there is a ± sign; only the negative sign is used in this Simulink realization, as can be

seen in block Add.

Figure 3.9 presents the attractors of Linz and Sprott’s chaotic system for β = 1

and for 4 different values of α equal to 0.8, 0.675, 0.644 and 0.6. The system oscillates

but does not present chaotic behaviour for α = 0.8, α = 0.675 and α = 0.644. When α

equals to 0.6 then the chaotic behaviour can be seen (the values of both outputs X1outs

and X2outs never cross in the phase portrait of the system). X1outs, X2outs and X3outs of

Rössler equations can be seen in Figure 3.10 for α = 0.6.
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Figure 3.8. Simulink structure of Linz and Sprott equations.
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Figure 3.9. The attractor of the Linz and Sprott’s Simulink block.
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Figure 3.10. X1outs, X2outs and X3outs outputs of Linz and Sprott Equation.
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Figure 3.11. Three dimensional Linz and Sprott’s attractor for α = 0.6
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3.1.4. Chua System

Chua’s system is the third order circuit. It is simple since it can be constructed by

4 linear circuit elements (1 resistor, 1 inductor and 2 capacitor) and 1 nonlinear element.

The circuit can be seen in Figure 3.12 (Chua, et al. 1986). The dynamic of Chua’s

system is described by Equation 3.4, where g(VR) is the non-linear function described by

Equation 3.5. Three diffrential Chua’s equations can be easily obtained by analysing the

circuit in Figure 3.12 by Kirchhoff’s law then Equations 3.4 can be obtained.

Figure 3.12. Chua’s circuit.

Figure 3.13. Chua’s circuit non-linear characteristic.

C1
dvc1

dt
= G(vc2 − vc1)− g(vR)

C2
dvc2

dt
= G(vc1 − vc2) + iL (3.4)

L
diL
dt

= −vc2 −RLiL

g(vR) = m0vR +
1

2
(m1 −m0)(|vR + BP | − |VR −BP |) (3.5)
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Figure 3.14. Simulink structure of Chua equations.

Figure 3.15. Non-linear function g(x1).
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By using a change of variables as in Equation 3.6, the differential equation pre-

sented in Equation 3.4 and the nonlinear function in Equation 3.5. can be turned into the

state Equations 3.7 and 3.8 respectively.

G = 1

k =
1

C2

α =
C2

C1

β =
C2

L
(3.6)

γ =
RLC2

L

vc1 = x1

vc2 = x2

iL = x3

dx1

dτ
= kα(x2 − x1 − g(x1))

dx2

dτ
= k(x1 − x2 + x3) (3.7)

dx3

dτ
= k(−βx2 − γx3)

g(x1) = m0x1 +
1

2
(m1 −m0)(|x1 + BP | − |x1 −BP |) (3.8)

Equations 3.7 and Equations 3.8 are simulated by means of Simulink block dia-

gram presented in Figure 3.14 below. Note that the non-linear Equation 3.7 is indicated

by the one-input / one-output block g(x1) in Figure 3.15. The block g(x1) is detailed in

Figure 3.15 below.

FPGA implementation of Equations 3.7 and 3.8 have an advantage over the analog

implementation of Equations 3.4 and 3.5. In FPGA implementation, it is easier to deal

with negative resistances, capacitances or inductances than analog domain because it is

easier to adjust the system parameters by means of System Generator blocks. 3-different

parameters set were used in Figures 3.17 below that it can be seen how easy paremeters
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Table 3.1. Parameters used to plot the Chua’s attractors

A Parameters B Parameters C Parameters

α 6.579229467 -1.458906000 -1.301814000

β 10.897662619 -0.093071920 -0.013607300

γ -0.044744029 -0.321434600 -0.02969968

m0 -0.652335418 -0.512843600 -0.476782200

m1 -1.811973075 1.218416000 0.169081700

k 1 -1 1

can be adjusted. Using Simulink structure of Figure 3.14, different chaotic behaviours

can be simulated. Figures 3.17, shows respectively 3 different chaotic attractors of the

Chua’s system. These attractors have the parameters given above in Table 3.1.

X1outs, X2outs and X3outs present respectively, x1, x2 and x3 outputs of Chua’s

circuit in time domain.
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Figure 3.16. X1outs, X2outs and X3outs outputs of Chua Equation for parameter set A.
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Figure 3.17. Chua’s attractor with A, B and C parameters.
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CHAPTER 4

SYNCHRONIZATION OF CHAOTIC SYSTEMS

Synchronization of chaos is a phenomenon that might occur when two, or more,

chaotic oscillators are coupled. Due to the butterfly effect, which causes the exponential

divergence of the trajectories of two identical chaotic system started with nearly the same

initial conditions, having two chaotic system evolving in synchrony might appear quite

surprising. However, synchronization of coupled chaotic oscillators is a phenomenon well

established experimentally and reasonably understood theoretically (Wikipedia 2007b).

There are various notions of chaos synchronizations such as generalized synchronization

(Afraimovich, et al. 1987), complete synchronization(Pecora and Carrol 1990) and

(Solis-Perales, et al. 2003), partial synchronization (Maistrenko and Popovych 2000) and

phase synchronization (Rosenblum, et al. 1997) have been devoloped. The pioneering

work (Pecora and Carrol 1990), has increased the interest in synchronization after having

recently found many applications particularly in telecommunications (Abel and Schwarz

2002), in mechanical systems (Blekhman, et al. 1995) and in control theory (Nijmeijer

2001). Some different forms of synchronization between third-order chaotic systems has

been studied by Femat and Solis Perales (Femat and Solis-Perales 1999). In this study,

chaotic generators will be synchronized by using complete synchronizability of chaotic

systems: a geometric approach (Solis-Perales, et al. 2003).

4.1. Chaos Synchronization

In this study, the chaos synchronization problem will considered as the tracking

of the master system trajectories by the slave system. The difference between master

and slave system is called as error system which can be constructed as in the following

definition.

Definition 4.1 ẋ = FM(x) and ẏ = FS(y) + g(y)u be two chaotic systems in a manifold

M ⊂ Rn. FM , FS smooth vector fields with output functions sM = h(x), sS = h(y) and

x, y ∈ Rn and g(y) ∈ Rn is a smooth input vector. The dynamical error system can be
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found as ė = FM(x)−FS(y)−g(y)u. Because e = x−y then y = x−e so the dynamical

error system can be written as ė = FM(x)− FS(x− e)− g(x− e)u, where u ∈ R is the

control command (Solis-Perales, et al. 2003).

From Definition 4.1, synchronization error system can be written in the form as

ė = FS(e) − g(e)u + Ψ(x, e). Because Ψ(x, e) depends on the solution of master sys-

tem, the synchronization error system is extended so that ẋ = FM(x) can be considered.

Extended synchronization error system can be written in the form as follows:

ẋ = FM(x), (4.1)

ė = FM(x)− FS(x− e)− g(x− e)u, (4.2)

Ye = h(x, e),

Ye is the output of the synchronization error system. Extended synchronization

error system can be written in affine form as:

Ẋ = F(X) + G(X)u, (4.3)

where X = [x, e]T , F(X) = [FM , FM−FS]T and G(X) = [0,−g]. In this study, complete

synchronization is considered (Solis-Perales, et al. 2003), which means that the slave and

the master system display the same pattern at the same time. In order to achieve complete

synchronization, synchronization error system in Equation 4.2 should be stabilized around

the point e∗ = 0.

Synchronization error system in Equation 4.2 can be stabilized at the origin by

means of the control command u. If such control command is found, complete synchro-

nization of chaotic system can be achieved. The proper control command can be found by

using the geometrical tools. These tools are the properties of controllability and observ-

ability of non-linear affine systems (Nijmeijer, van der Schaft 1990). The controllability

and observability of chaotic systems will be explained in sections 4.2 and 4.3 respectively.

4.2. Synchronizability from Control of Chaotic Systems

A definition for synchronizability can be considered for complete synchronization

between chaotic systems.
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Definition 4.2 ∃u = u(xM − xS) ∈ R such that |x(t) − y(t)| ≈ 0, with x, y ∈ Rn for

all t > t∗ < ∞ and any initial conditions x0 = x(t = 0) and y= = y(t = 0) belonging to

that manifold M ⊂ R2n (Solis-Perales, et al. 2003).

The controllability and observability conditions can be used in order to find a

tangent space at stabilization point e = 0. The vector G can be calculated such that

it generates a tangent space with constant dimension at (x, 0)T . As previously defined

Ye = h(x, e) which is an output function of sychronization error system. The computation

of Ye involves conditions for synchronizability of chaotic systems which will be shown in

following sections.

4.2.1. Local Controllability for Complete Synchronizability

We start this section by giving Lemma 4.1 as following below:

Lemma 4.1 C(x,e) be the accessibility distribution with constant dimension d at e = 0

then system (Equation 4.3) is locally accessible (locally controllable) and the contrallable

space has dimension d (Nijmeijer, van der Schaft 1990).

The local coordinate transformation can be found such that system in Equation 4.3

can be partially or completely transformed into a linear controllable system around (x, 0)

by taking into account 4.1. In order for local coordinate transformation, accessibility

distribution needs to be found. In order to find accessibility distribution function, Lie

brackets and Lie derivative are needed to be known. Definition 4.3 given below explains

Lie brackets and Lie derivative respectively.

Definition 4.3 Let F and G be two vector fields in a manifold M, the vector field

[F, G](X) =
∂G
∂X

·F− ∂F
∂X

·G is called the Lie bracket of F and G. The Lie derivative of a

real-valued function h(x, e) along the vector field F is defined as LF h(x, e) =< ∂h, F >

(Vidyasagar 1993).

The accessibility distribution C(x, e) can be expressed as Cd = span{add−1
F G}

where adF = [F, G] and add−1
F = [F, [F, [..., [F, G], ..., ]]] for d = 1, ..., n.

Remark 4.2 Equation 4.3 is composed of two subsystems (Equations 4.1 and Equations

4.2) the tangent space locally generated at (x, 0)T has dimension d ≤ n. Cd is generated
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by d linearly independent vector fields that span of dimension d ≤ n because Equations

4.1 are unidirectionally coupled with Equations 4.2.

There are two restrictions concerning the controllability for synchronizability of

master/slave systems:

(i) The constant dimension Dim(Cd(x, 0)) = d

(ii) The distribution Cd−1 should be involutive.

At the end there is a Proposition 4.1 given by (Solis-Perales, et al. 2003) as

follows

Proposition 4.1 Suppose that the internal dynamics is stable and assume that accessi-

bility distribution C has constant dimension d (i.e., C is involutive) in a neighborhood U0

of (x, 0), then system is locally controllable.

4.2.2. Local Observability for Complete Synchronizability

The output function Ye = h(x, e), where h is real-valued function of the system

in Equation 4.3. It is related to the observability of the synhronization system. Let us

consider the following Definition 4.4 (Nijmeijer, van der Schaft 1990).

Definition 4.4 Consider an affine system Ẋ = F(X) + G(X)u, with an output function

Ye = h(x). It is said that the system has relative degree ρ at x0 if

(i) LGLk
F h(x) = 0 for all x in a neighborhood of x0 and k ≤ ρ− 1,

(ii) LGLρ−1
F h(x0) 6= 0.

If the system in Equation 4.3 has relative degree ρ at (x, 0)T , the Lie derivatives

of the output function are given by h(x), LF h(x), L2
F h(x), ..., Lρ−1

F h(x), and the covec-

tor fields ∂h(x), ∂LF h(x), ∂L2
F h(x), ..., ∂Lρ−1

F h(x), which are independent in the neigh-

borhood U of (x, 0)T (Nijmeijer, van der Schaft 1990). In this way, by using the Lie

derivatives of h(x, e), a local coordinate transformation can be defined at (x, 0)T .

Such a transformation z = Φ(x, e) is defined as Φ1 = h(x), Φ2 =

LF h(x), ..., Φρ = Lρ−1
F h(x) and the 2n − ρ complementary functions are obtained by

finding the Jacobian matrix of z = [Φ1, Φ2, ..., Φn, ..., Φ2n]T be nonsingular at (x, 0) and

LGΦi(x, e) = 0, with i = ρ + 1, ..., 2n and (x, e) in a neighborhood of (x, 0) (Solis-

Perales, et al. 2003).
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Proposition 4.2 Suppose that the system in Equation 4.3 has relative degree ρ at (x, 0)

and the codistribution ker(span{∂h(x, 0), ∂LF h(x, 0), ∂L2
F h(x, 0), ..., ∂Lρ−1

F h(x, 0)})
has dimension ρ, then the system in Equation 4.3 is locally observable at (x, 0) (Solis-

Perales, et al. 2003).

4.3. Complete Synchronizability

If Propositions 4.1 and 4.2 hold for complete synchronizability for Equation 4.3

then that system is linearizable by feedback. By using this property, an invertible coordi-

nates transformation and a control command can be calculated. The Theorem 4.3 which

was proposed by (Solis-Perales, et al. 2003) comprises stabilizing conditions mentioned

before.

Theorem 4.3 Consider the system in Equation 4.3. Suppose that there exist 2n − ρ

functions Φi(x, e) such that LGΦi(x, e) = 0, i = ρ + 1, ..., 2n. This system is feedback

linearizable at (x, 0) if and only if if there exists a function h(x, e) such that

(i) < ∂h, adk−1
F G > (x, e) = 0 for k = 1, ..., ρ− 1; ρ > 1 and (x, e) in a neighborhood U

of (x, 0),

(ii) < ∂h, adi
F G > (x, 0) 6= 0 for i = ρ, ..., n at (x, 0),

where ρ = d stands for the dimension of the tangent space.

Theorem 4.3 satisfies sufficient and necessary conditions for complete synchro-

nizability of the same order systems. In addition to that, conditions (i) and (ii) in The-

orem 4.3 can be used to calculate proper output function in order to make the system in

Equation 4.3 locally observable at (x,0). Then there is a Corollary 4.4 as given below by

(Solis-Perales, et al. 2003).

Corollary 4.4 Two chaotic systems with the same order are completely synchronizable

if and only if the dynamical error system is feedback linearizable at (x, 0).

The system Equation 4.3 is called feedback linearizable if there exist a smooth

reversible change of coordinates z = Φ(x, e) and smooth transformation of the feedback

(Andrievskii and Fradkov 2003)

u = λ(x, e) + µ(x, e)v, (4.4)
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where v ∈ Rm is the new control if the closed-loop is linear. If the linearizability

criterion is satisfied, then by means of transformations

z = Φ(x, e) = col(h(x, e), LF h(x, e), ..., Lρ−1
F h(x, e))

u =
1

LGLρ−1
F h(x, e)

(−Lρ
F h(x, e) + v) (4.5)

λ(x, e) =
−Lρ

F h(x, e)

LGLρ−1
F h(x, e)

(4.6)

µ(x, e) =
1

LGLρ−1
F h(x, e)

(4.7)

ν = Ki(zi − z∗i ) (4.8)

where Ki with i = 1, ..., ρ are the control gains and chosen in such a way that the

closed-loop subsystem ż converges to origin and z∗i ’s are the coordinates of the stabiliza-

tion point. In order to achieve complete synchronization z∗i ’s are set to zero.

Complete synchronization approach will be applied to chaotic generators and then

by using Syimulink in MATLAB, results will be seen in following sections.

4.4. Synchronization of Lorenz System

Firstly, Lorenz system will be examined in order to see whether complete synchro-

nization approach is valid for this system. For simplicity, the master and slave systems

are considered as they have the same parameter values,

ẋ = FM(x)

ẋ1 = α(x2 − x1)

ẋ2 = βx1 − x2 − x1x3 (4.9)

ẋ3 = x1x2 − γx3

and ẏ = FS(y) + g(y)u

ẏ1 = α(y2 − y1) + g1(y)u

ẏ2 = βy1 − y2 − y1y3 + g2(y)u (4.10)

ẏ3 = y1y2 − γy3 + g3(y)u
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where the parameters α = 10, β = 28 and γ = 8/3. g1(y), g2(y) and g3(y) are the

corresponding elements in the input vector of the slave sytem. The difference between

master and slave system are found by calculating e = x − y then it is easily seen that

ė = ẋ− ẏ.

ė1 = α[(x2 − y2)− (x1 − y1)]− g1(x− e)u

ė2 = β(x1 − y1)− (x2 − y2) + [x1x3 − (x1 − e1)(x3 − e3)]− g2(x− e)u

ė3 = x1x2 − [(x1 − e1)(x2 − e2)]− γ(x3 − y3)− g3(x− e)u (4.11)

From Definition 4.1 extended synchronization error system can be calculated as

follows:

ẋ1 = α(x2 − x1)

ẋ2 = βx1 − x2 − x1x3

ẋ3 = x1x2 − γx3 (4.12)

ė1 = α(e2 − e1)− g1(x− e)u

ė2 = βe1 − e2 + e1e3 − e1x3 − x1e3 − g2(x− e)u

ė3 = −e1e2 − γe3 + e1x2 + x1e2 − g3(x− e)u

This is ė = FM(x) − FS(y) − g(x − e)u. Equation 4.12 can be written in affine form

as: Ẋ = F(X) + G(X)u, where X = [x, e]T , F(X) = [FM , FM − FS]T and G(X) =

[0,−g(x− e)]T .

F =




α(x2 − x1)

βx1 − x2 − x1x3

x1x2 − γx3

α(e2 − e1)

βe1 − e2 + e1e3 − e1x3 − x1e3

−e1e2 − γe3 + e1x2 + x1e2




(4.13)
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G =




0

0

0

−g1(x− e)

−g2(x− e)

−g3(x− e)




(4.14)

In order to achieve complete synchronization, conditions of Theorem 4.3 will be

considered. Because subsystem Equations 4.11 has three state variable so k = 1, .., 3 then,

C1(x, e), C2(x, e) and C3(x, 0) has to be calculated. The distributions are C1(x, e) =

span{G}, C2(x, e) = span{G, adF G} and C3(x, e) = span{G, adF G, ad2
F G}. By

choosing G = [0 0 0 − g1 − g2 − g3]
T with g1, g2 and g3 as constants. In order to

obtain C2(x, e) and C3(x, e), at first C1(x, e) has to be written down as follows:

C1(x, e) = span








0

0

0

−g1

−g2

−g3








(4.15)

In order to find C2(x, e), adF G = [F, G] shuold be calculated. From Definition 4.3, adF G

can be written as follows:

adF G=[F,G] =
∂G
∂X

· F− ∂F
∂X

·G (4.16)

The term
∂G
∂X

· F = 0 because G is constant vector. So Equation 4.16 turns into simpler

form such that

adF G=[F,G] = − ∂F
∂X

·G (4.17)

So as to find adF G,
∂F
∂X

can be calculated as in Equation 4.18
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∂F
∂X

=




−α α 0 0 0 0

(β − x3) −1 −x1 0 0 0

x2 x1 −γ 0 0 0

0 0 0 −α α 0

−e3 0 −e1 (β + e3 − x3) −1 (e1 − x1)

e2 e1 0 (x2 − e2) (x1 − e1) −γ




(4.18)

Multiplying Equation 4.18 by −G then adF G can be obtained easily as in Equation 4.19

− ∂F
∂X

·G = −




−α α 0 0 0 0

(β − x3) −1 −x1 0 0 0

x2 x1 −γ 0 0 0

0 0 0 −α α 0

−e3 0 −e1 (β + e3 − x3) −1 (e1 − x1)

e2 e1 0 (x2 − e2) (x1 − e1) −γ




.




0

0

0

−g1

−g2

−g3




adF G =




0

0

0

α(g2 − g1)

g1(β + e3 − x3)− g2 + g3(e1 − x1)

g1(x2 − e2) + g2(x1 − e1)− γg3




(4.19)

C2(x, e) can be written as in Equation 4.20 such that

C2(x, e) = span








0 0

0 0

0 0

−g1 α(g2 − g1)

−g2 g1(β + e3 − x3)− g2 + g3(e1 − x1)

−g3 g1(x2 − e2) + g2(x1 − e1)− γg3








(4.20)

So as to find C3(x, e) is that the only equation left to be needed to calculate is ad2
F G

because span{G} and span{adF G} have already been found.
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ad2
F G = [F, adF G] (4.21)

For simplicity, adF G = Ψ is chosen so Equation 4.21 can be written in form:

ad2
F G = [F, adF G] = [F, Ψ] =

∂Ψ

∂X
· F− ∂F

∂X
·Ψ (4.22)

∂Ψ

∂X
is can be found as in Equation 4.23

∂Ψ

∂X
=




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−g3 0 −g1 g3 0 g1

g2 g1 0 −g2 −g1 0




(4.23)

Multiplying Equation 4.23 by F, the first term of the ad2
F G can be found as follows:

∂Ψ

∂X
· F =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−g3 0 −g1 g3 0 g1

g2 g1 0 −g2 −g1 0




.




α(x2 − x1)

βx1 − x2 − x1x3

x1x2 − γx3

α(e2 − e1)

βe1 − e2 + e1e3 − e1x3 − x1e3

−e1e2 − γe3 + e1x2 + x1e2




=




0

0

0

0

g3α(x1 − x2) + g1(γx3 − x1x2) + g3α(e2 − e1) + g1(−e1e2 − γe3 + e1x2 + x1e2)

g2α(x2 − x1) + g1(βx1 − x2 − x1x3) + g2α(e1 − e2) + g1(e1x3 + x1e3 + e2 − βe1 − e1e3)




∂Ψ

∂X
· F =




0

0

0

0

g1[γx3 − x1x2 − e1e2 − γe3 + e1x2 + x1e2] + g3α(x1 − x2 + e2 − e1)

g1[βx1 − x2 − x1x3 − βe1 + e2 − e1e3 + e1x3 + x1e3] + g2α(x2 − x1 + e1 − e2)




(4.24)

In order to obtain the second term of ad2
F G,

∂F
∂X

can be written as in Equation 4.25.
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∂F
∂X

=




−α α 0 0 0 0

(β − x3) −1 −x1 0 0 0

x2 x1 −γ 0 0 0

0 0 0 −α α 0

−e3 0 −e1 (β + e3 − x3) −1 (e1 − x1)

e2 e1 0 (x2 − e2) (x1 − e1) −γ




(4.25)

Multiplying Equation 4.25 by −Ψ we obtain the second term of ad2
F G such that

− ∂F
∂X

·Ψ =

−




−α α 0 0 0 0

(β − x3) −1 −x1 0 0 0

x2 x1 −γ 0 0 0

0 0 0 −α α 0

−e3 0 −e1 (β + e3 − x3) −1 (e1 − x1)

e2 e1 0 (x2 − e2) (x1 − e1) −γ




.




0

0

0

α(g2 − g1)

g1(β + e3 − x3)− g2 + g3(e1 − x1)

g1(x2 − e2) + g2(x1 − e1)− γg3




=




0

0

0

α2(g2 − g1)− α[g1(β + e3 − x3)− g2 + g3(e1 − x1)]

(x3 − e3 − β)α(g2 − g1) + g1(β + e3 − x3)− g2 + g3(e1 − x1) + (x1 − e1)[g1(x2 − e2) + g2((x1 − e1)− γg3]

(e2 − x2)α(g2 − g1) + (e1 − x1)[g1(β + e3 − x3)− g2 + g3(e1 − x1)] + γ[g1(x2 − e2) + g2(x1 − e1)− γg3]




− ∂F

∂X
· Ψ =




0

0

0

g1[−α2 − α(β + e3 − x3)] + g2(α2 + α) + g3α(x1 − e1)

g1[(α + 1)(β + e3 − x3) + (x1 − e1)(x2 − e2)] + g2[−α(β + e3 − x3)− 1 + (x1 − e1)2] + g3[(e1 − x1)(γ + 1)]

g1[(α + γ)(x2 − e2) + (e1 − x1)(β + e3 − x3)] + g2[α(e2 − x2) + (γ + 1)(x1 − e1)] + g3[(e1 − x1)2 − γ2]




(4.26)

Combining Equations 4.24 and 4.26 we have an ad2
F G such that

ad
2
F G =




0

0

0

g1[−α2 − α(β + e3 − x3)] + g2(α2 + α) + g3α(x1 − e1)

g1[γ(x3 − e3) + (α + 1)(β + e3 − x3)] + g2[(x1 − e1)2 − α(β + e3 − x3)− 1] + g3[(e1 − x1)(1 + γ − α) + α(e2 − x2)]

g1[(x2 − e2)(α + γ − 1)] + g2[(x1 − e1)(1 + γ − α)] + g3[(e1 − x1)2 − γ2]




(4.27)

Note that the dimension of C3(x, 0) is d ≤ 3. Without lost of generality, G is

considered as G = [0 0 0 0 − 1 0]T by chosing g1 = g3 = 0 and g2 = 1 so

C3(x, 0) = span{G, adF G, ad2
F} is written as follows:
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C3(x, 0) = span








0 0 0

0 0 0

0 0 0

0 α α2 + α

−1 −1 [x2
1 + α(x3 − β)− 1]

0 x1 x1(1 + γ − α)








(4.28)

In order to achieve complete sychronization, the accessibility distribution C has

constant dimension which can be satisfied if below conditions from Theorem 4.3 hold.

〈dh, G〉(x, e) = 0 (4.29)

〈dh, adF G〉(x, e) = 0 (4.30)

〈dh, ad2
F G〉(x, 0) 6= 0 (4.31)

In order to satisfy Equation 4.29 that the output function h(x, e) can not depend

on e2. In order to satisfy Equation 4.30 the output function can not depend on e3 since

if it depends on e3 there is state variable x1 and it can not be controlled. There is one

alternative left which is h(x, e) = e2 but if we chose output function depends on e2 then

Equation 4.31 is not hold since it also includes state variables x1 and x3. As a consequence

there is no ouput function which satifies Equaions 4.29, 4.30 and 4.31 at the same time.

As a result C3(x, 0) has variable dimension. From this result, we have found that two

Lorenz systems can not generate a tangent space of dimension d = 3 with an input vector

of constant elements. So we try to determine a tangent space of constant dimension d = 2.

Now from Theorem 4.3 again, proper output function h(x, e) can be found such that

− ∂h

∂e2

= 0, (4.32)

α
∂h

∂e1

− ∂h

∂e2

+ x1
∂h

∂e3

6= 0. (4.33)

A possible function which satisfies Equations 4.32 and 4.33 is h(x, e) = e1. Once

we have an output function, the relative degree is calculated and for this case is d = ρ =

Dim(C3(x, 0)) = 2 for all x ∈ R3. So we look for an invertible transformation for this

output function. In order to have an relative degree ρ = 2 from Definition 4.4 so that the
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system can be observable as long as below conditions hold

LGh(x, e) = 0 (4.34)

LGLF h(x, e) 6= 0 (4.35)

These are calculated as below:

LGh(x, e) = < ∂h, G > (x,w) = 0 (4.36)

LF h(x, e) = < ∂h, F > (x,w) = α(e2 − e1)
∂e1

∂e1

= α(e2 − e1) (4.37)

LGLF h(x, e) = LG[α(e2 − e1)] = α(−1
∂e2

∂e2

) = −α (4.38)

LGh(x, e) = 0, LGLF h(x, e) = −α so for ρ = 2 all requirements hold so there is a

control command which can be written from Equation 4.5 for ρ = 2 as in Equation 4.57

u =
1

LGLF h(x, e)
(−L2

F h(x, e) + K1(z1 − z∗1) + K2(z2 − z∗2)) (4.39)

From Equation 4.38, LGLF h(x, e) = −α

From Equation 4.37, LF h(x, e) = α(e2 − e1)

Then, L2
F h(x, e) = LF [α(e2−e1)] = α[(βe1−e2+e1e3−e1x3−x1e3)

∂e2

∂e2

−α(e2−e1)
∂e1

∂e1

]

So the control command u can be written down as follows:

u =
1

−α
{−α[βe1− e2 + e1e3− e1x3− x1e3−α(e2− e1)] + K1(z1− z∗1) + K2(z2− z∗2)}

In this system ρ = 2 then i = 1, 2. So we have K1 and K2 which are the control gains

and are chosen so that the system ż converges to origin. And z∗1 and z∗2 are the desired

stabilization point and by choosing z∗1 = z∗2 = 0 we make the system converges to origin.

By chosing K1 = −9 and K2 = −6 and setting z∗1 = z∗2 = 0. We know that z1 = e1 and

z2 = α(e2 − e1) so we have the control command u such that

u =
1

−α
{−α[βe1 − e2 + e1e3 − e1x3 − x1e3 − α(e2 − e1)]− 9e1 − 6(e2 − e1)} (4.40)

In order to understand whether our control signal u is proper for Lorenz system to

synchronize, the results from Simulink will be seen. As we know from section 3.3.1 initial
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condition of master system’s integrator block equals to 0.001. Since chaotic systems are

so sensitive to initial condition by setting initial condition of slave system’s integrator

block equals to 5 the difference between master and slave system can be created. At first,

the control command u can be built by Simulink blocks as in Figure 4.1.

Figure 4.1. Simulink block diagram of the control command u for Lorenz system.

After constructing the control command u by adding it to Lorenz slave system,

the synchronized Lorenz system will be obtained as in Figure 4.2. Lorenz system block

diagram can be seen in section 3.3.1 so slave system can be constructed by using that

block diagram. The only difference between master system and slave system is that there

is a control command in slave system as opposed to master system.

As can be seen in Figure 4.3 master and slave system attractors draw the same

pattern even if they have different initial conditions. In Figure 4.4, the control command

u, error signals e1, e2 and e3 can be seen respectively. As can be seen in Figure 4.4,

error signals reach to zero immediately which implies that Lorenz slave system exactly

tracks Lorenz master system. Because control command depends on e1, e2 and e3 then

it also reaches to zero. After it reaches to zero the slave system tracks master system
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Figure 4.2. Simulink block diagram of synchronized Lorenz system.
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Figure 4.3. Lorenz master and slave system with different initial conditions.
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exactly in every state. So synchronization of Lorenz master system and slave system can

be achieved by using complete synchronization approach. This Simulink design will be

used later in our System Generator design.

4.5. Synchronization of Rössler System

To show the complete synchronization valids for different attractors we will apply

it to Rössler system, too. For simplicity again we chose master and slave sytems have the

same parameter values.

ẋ = FM(x)

ẋ1 = −(x2 + x3)

ẋ2 = x1 + αx2 (4.41)

ẋ3 = β + x3(x1 − γ)

ẏ = FS(y)

ẏ1 = −(y2 + y3) + g1(y)u

ẏ2 = y1 + αy2 + g2(y)u (4.42)

ẏ3 = β + y3(y1 − γ) + g3(y)u

where the parameters α = 0.2, β = 0.2 and γ = 5.7. g1(y), g2(y), g3(y) are

chosen again as a constant for simplicity. The extended synchronization error system can

be calculated and written down as follows:

ẋ1 = −(x2 + x3)

ẋ2 = x1 + αx2

ẋ3 = β + x3(x1 − γ) (4.43)

ė1 = −(e2 + e3)− g1(x− e)u

ė2 = e1 + αe2 − g2(x− e)u

ė3 = e3e1 + x3e1 + e3x1 − γe3 − g3(x− e)u

57



F = [FM , FM − FS]T , G = [0,−g(x − e)]T and after X = [x1, x2, x3, e1, e2, e3]
T

is defined then F and G vectors can be written ib the form such that

F(X) =




−(x2 + x3)

x1 + αx2

β + x3(x1 − γ)

−(e2 + e3)

e1 + αe2

e3e1 + x3e1 + e3x1 − γe3




, G(X) =




0

0

0

−g1

−g2

−g3




The same procedure will be followed in Rössler system like Lorenz system. Recall

that we should first calculate C1(x, e). We know that C1(x, e) = span{G} so C1(x, e)

can be written such that

C1(x, e) = span








0

0

0

−g1

−g2

−g3








(4.44)

So as to find C2(x, e), adF G should be calculated as follows:

adF G = [F, G] =
∂G
∂X

· F− ∂F
∂X

·G

Because G vector has only composed of constant elements the term
∂G
∂X

·F = 0, so adF G

can be obtained by finding second term of it. It can be found as follows:

− ∂F
∂X

·G = −




0 −1 −1 0 0 0

1 α 0 0 0 0

x3 0 x1 0 0 0

0 0 0 0 −1 −1

0 0 0 1 α 0

e3 0 e1 (x3 + e3) 0 (e1 + x1 − γ)




.




0

0

0

−g1

−g2

−g3



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adF G =




0

0

0

−(g1 + g2)

g1 + αg2

g1(x3 + e3) + g3(e1 + x1 − γ)




(4.45)

In order to find C3(x, e) one step has to be taken which is to calculate ad2
F G. ad2

F G is

calculated as in Equation 4.22.

ad2
F G = [F, Ψ] =

∂Ψ

∂X
· F− ∂F

∂X
·Ψ

So let us start with by finding the first term of ad2
F G which is

∂Ψ

∂X
· F:

∂Ψ

∂X
· F =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

g3 0 g1 g3 0 g1




.




−(x2 + x3)

x1 + αx2

B + x3(x1 − γ)

−(e2 + e3)

e1 + αe2

e3e1 + x3e1 + e3x1 − γe3




∂Ψ

∂X
·F =




0

0

0

0

0

g1[β + x3(x1 − γ) + e3e1 + x3e1 + e3x1 − γe3] + g3[−(x2 + x3)− (e2 + e3)]




(4.46)

The second part of ad2
F G can be found such that
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− ∂F
∂X

·Ψ =

−




0 −1 −1 0 0 0

1 α 0 0 0 0

x3 0 x1 0 0 0

0 0 0 0 −1 −1

0 0 0 1 α 0

e3 0 e1 (x3 + e3) 0 (e1 + x1 − γ)




.




0

0

0

−(g1 + g2)

g1 + αg2

g1(x3 + e3) + g3(e1 + x1 − γ)




− ∂F
∂X

·Ψ =




0

0

0

g1 + αg2 + g1(x3 + e3) + g3(e1x1 − γ)

g1 + g2 − α(g1 + Ag2)

(x3 + e3)(g1 + g2) + (γ − e1 − x1)[g1(x3 + e3) + g3(e1 + x1 − γ)]




(4.47)

By combainig Equations 4.46 and Equation 4.47, ad2
F G can be obtained as follows:

ad2
F G =




0

0

0

g1(x3 + e3 + 1) + g2α + g3(e1 + x1 − γ)

g1(1− α) + g2(1− α2)

g1(β + x3 + e3) + g2(x3 + e3)− g3[x2 + x3 + e2 + e3 + (γ − e1 − x1)
2]




Without lost of generality, G vector can be considered as G = [0 0 0 0 −1 0]T by chosing
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g1 = g3 = 0 and g2 = 1 so C3(x, 0) = span{G, adF G, ad2
F G} is written as follows:

C3(x, 0) = span








0 0 0

0 0 0

0 0 0

0 −1 α

−1 α 1− α2

0 0 x3








(4.48)

In order to achieve complete synchronization, accessibility distribution function has to

be constant dimension. If below conditions from Theorem 4.3 hold then this system has

constant degree with d = 3.

〈dh, G〉(x, 0) = 0 (4.49)

〈dh, adF G〉(x, 0) = 0 (4.50)

〈dh, ad2
F G〉(x, 0) 6= 0 (4.51)

In order to satisfy Equation 4.49, the output function h(x, e) can not include the

term e2. So as to satisfy Equation 4.50, the output function can not include e1. There

is one alternative left which is h(x, e) = e3. If we chose h(x, e) = e3 then Equation

4.51 is violated since if we chose h(x, e) = e3 then 〈dh, ad2
F G〉(x, 0) = x3. However,

this condition depends on state x3 which is chaotic and can not be modified. As a result

C3(x, 0) has variable dimension. So, it is not possible to satisfy conditions Theorem

4.3. From this result we find that two Rössler system can not generate a tangent space of

dimension d = 3 with an input of constant elements. With this in mind we try to determine

a tangent space of constant dimension d = 2. From Theorem 4.3 we can calculate the

output function h(x, e) such that

− ∂h

∂e2

= 0, (4.52)

− ∂h

∂e1

+ α
∂h

∂e2

6= 0. (4.53)

A possible function which satisfies Equations 4.52 and 4.53 is h(x, e) = e1. We

have an output function the relative degree is calculated and for this case is d = ρ = 2 =

Dim(C3(x, 0)) for all for all x ∈ R3. In order to have an invertible transformation with
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ρ = 2, from Definition 4.4 (i) LGh(x, e) = 0 and (ii) LGLF h(x, e) 6= 0 then they can be

found as follows:

LGh(x, e) = < ∂h, G > (x, w) = 0 (4.54)

LF h(x, e) = < ∂h, F > (x,w) = −(e2 + e3)
∂e1

∂e1

= −(e2 + e3) (4.55)

LGLF h(x, e) = LG[−(e2 + e3)] = −(−1
∂e2

∂e2

) = 1 (4.56)

LGh(x, e) = 0, LGLF h(x, e) = 1 after all requirements hold the control command u for

ρ = 2 can be written as follows:

u =
1

LGLF h(x, e)
(−L2

F h(x, e) + K1(z1 − z∗1) + K2(z2 − z∗2)) (4.57)

The term LGLF h(x, e) has been found previously in Equation 4.56. L2
F h(x, e) needs to

be found.

L2
F h(x, e) = LF [−(e2 + e3)] = −[e1 + αe2 + e3e1 + x3e1 + e3x1 − γe3] (4.58)

We know that z1 = h(x, e) = e1 and z2 = LF h(x, e) = −(e2 + e3) then we can find the

control command by chosing proper conrol gains K1 = −9 and K2 = −6 as follows

u = [e1 + αe2 + e3e1 + x3e1 + e3x1 − γe3 − 9e1 + 6(e2 + e3)] (4.59)

After obtaining control command u, the Simulink diagram will be constructed.

Figure 4.5 represents feedback control signal u and by adding u to Rössler slave system

the design can be completed. We know from sectiom 3.3.2 that Rössler master system

Integrator1 block has initial condition equals to 3.0474. On the other hand, we set In-

tegrator1 block of Rössler system to -5 so that the difference between master and slave

system can be created with respect to their initial conditions. The synchronized Rössler

system can be constructed as in Figure 4.6.

As can be seen below Figure 4.7 trajectory of slave system follows trajectory of

master system. We also examine Figure 4.8 which represents the behaviour of control

command u and error signals e1, e2 and e3 respectively. We can understand from Figure
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Figure 4.5. Simulink block diagram of the control command u for Rössler system.

Figure 4.6. Simulink block diagram of the synchronized Rössler system.
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Figure 4.7. Rössler master and slave system with different initial conditions.

4.8 that when error signals stabilize at zero in amplitude then the control command u

reaches to zero since it depends on error signals which means that the synchronization of

Rössler system is completed successfully.
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Figure 4.8. The control command u and error signals e1, e2 and e3.
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4.6. Synchronization of Linz and Sprott System

Linz and Sprott system is the third chaotic system which we will study on. Linz

Sprott master and slave systems are given respectively:

ẋ = FM(x)

ẋ1 = x2

ẋ2 = x3 (4.60)

ẋ3 = −αx3 − βx2 − (|x1| − 1)

and ẏ = FS(y) + g(y)u

ẏ1 = y2 + g1(y)u

ẏ2 = y3 + g2(y)u (4.61)

ẏ3 = −αy3 − βy2 − (|y1| − 1) + g3(y)u

where the parameters are α = 0.6 and β = 1. gi with i = 1, 2, 3 functions are

chosen as constant for simplicity. The extended synchronization error system can again

be constructed by using 4.1 as follows:

ẋ1 = x2

ẋ2 = x3

ẋ3 = −αx3 − βx2 − (|x1| − 1) (4.62)

ė1 = e2 − g1(x− e)u

ė2 = e3 − g2(x− e)u

ė3 = −αe3 − βe2 − (|e1| − 1)− g3(x− e)u

Then we can express above system such that F = [FM , FM − FS]T , G = [0,−g(x− e)]T
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and X = [x1, x2, x3, e1, e2, e3]
T write them down as follows

F =




x2

x3

−αx3 − βx2 − (|x1| − 1)

e2

e3

−αe3 − βe2 − (|e1| − 1)




, G =




0

0

0

−g1

−g2

−g3




The same procedure will be applied to Linz and Sprott system. At first, there is whether

control command u which make two chaotic systems are sychronized. So let us start

with writing C1 and then calculating C2 and C3 in order to see accessibility function has

constant constant dimension d = 3. C1(x, e) can be written as follows:

C1(x, e) = span








0

0

0

−g1

−g2

−g3








(4.63)

In order to find C2(x, e) we should first calculate adF G

adF G = [F, G] =
∂G
∂X

· F− ∂F
∂X

·G

∂G
∂X

· F = 0 as G vector only contains constant terms. We can find adF G by calculating

the second term of it such that

− ∂F
∂X

·G = −




0 1 0 0 0 0

0 0 1 0 0 0

−sgn(x1) −β −α 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 −sgn(e1) −β −α




.




0

0

0

−g1

−g2

−g3



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adF G =




0

0

0

g2

g3

−g1sgn(e1)− βg2 − αg3




(4.64)

There is one calculation has to be done to obtain C3(x, 0). By calculating ad2
F , the acces-

sibility distribution of Linz and Sprott system will be obtained. ad2
F is wirtten as follows

ad2
F G = [F, Ψ] =

∂Ψ

∂X
· F− ∂F

∂X
·Ψ (4.65)

∂Ψ

∂X
·F = 0 since Ψ does not contain any state variables.So in order to find ad2

F we should

calculate the second part of Equation 4.65 as follows:

− ∂F
∂X

.Ψ = −




0 1 0 0 0 0

0 0 1 0 0 0

−sgn(x1) −β −α 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 −sgn(e1) −β −α




.




0

0

0

g2

g3

−g1sgn(e1)− βg2 − αg3




ad2
F G =




0

0

0

−g3

g1sgn(e1) + βg2 + αg3

−g1αsgn(e1) + g2[sgn(e1)− αβ] + g3(β − α2)




(4.66)

C3(x, 0) can be constructed by setting g1 = g2 = 0 and g3 = 1 for simplicity then C3(x, 0)

is written as follows
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C3(x, 0) = span








0 0 0

0 0 0

0 0 0

0 0 −1

0 1 α

−1 −α β − α2








(4.67)

If following Equations 4.68, 4.69 and 4.70 hold then Theorem 4.3 conditions are

satisfied so we can chose proper output function then calculate proper control command

u such that two Linz and Sprott systems can be synchronized each other.

− ∂h

∂e3

= 0, (4.68)

∂h

∂e2

− α
∂h

∂e3

= 0, (4.69)

− ∂h

∂e1

+ α
∂h

∂e2

+ (β − α2)
∂h

∂e3

6= 0. (4.70)

A possible function which satisfies above Equations is h(x, e) = e1. So we have an

output function which satisfies Equation 4.68, 4.69 and 4.70 then the constant dimension

is calculated and for this case is d = 3 = ρ = Dim(C3(x, 0)) for all x ∈ R3. In order to

have relative degree ρ = 3, there three conditions which must be satisfied. These are (i)

LGh(x, e) = 0 (ii) LGLF h(x, e) = 0 and (iii) LGL2
F 6= 0 from 4.4 then let us find them

as follows:

LGh(x, e) = 〈∂h, G〉 = 0,

LF h(x, e) = 〈∂h, F〉 = e2,

LGLF h(x, e) = LGe2 = 0, (4.71)

L2
F h(x, e) = LF LF h(x,w) = LF e2 = e3,

LGL2
F = LGe3 = −1 6= 0 (4.72)

LGh(x, e) = 0, LGLF = 0 and LGL2
F = −1 have been calculated so the control command

u can be written as follows:
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u =
1

LGL2
F h(x, e)

[−L3
F h(x, e) + K1(z1 − z∗1) + K2(z2 − z∗2) + K3(z3 − z∗3)] (4.73)

LGL2
F h(x, e) = −1 is known so we need to find the term L3

F h(x, e) such that

L3
F h(x, e) = LF [L2

F h(x, e)] = LF (e3) = −αe3 − βe2 − (|e1| − 1) (4.74)

Then we can write the control command u by choosing K1 = 50, K2 = 50 and K3 = 50

properly so that synchronization error system reach stabilization point which we choose

for Linz and Sprott system as zero.

u = −αe3 − βe2 − (|e1| − 1)− 50e1 − 50e2 − 50e3 (4.75)

Figure 4.9. Simulink block diagram of the control command u for Linz and Sprott system

We completed our design by finding control command u. It is time to see the

results in Simulink. Using Simulink blocks we construct a control command u as in

Figure 4.9 so that two Linz and Sprott systems are synchronized. In order to see this we

chose different initial conditions for master and slave system. Master system Integrator2

block has initial condition equals to 0.000001 and slave sytem Integrator2 block has initial

condition equals to 1 in Figure 4.10.
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Figure 4.10. Simulink block diagram of the synchronized Linz and Sprott system.
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Figure 4.11. Linz and Sprott master and slave system with different initial conditions.
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Figure 4.12. The control command u and error signals e1, e2 and e3.
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As can be seen in Figures 4.11 Linz and Sprott slave system exactly tracks Linz

and Sprott master system. We can also see the synchronization of Linz and Sprott system

by examining Figure 4.12. As we can see in the Figure 4.12 as the time passes error

signals reaches to zero and remain on it. Because the control command u composed of

error signals, it also reaches to zero which means there is no input vector for Linz and

Sprott slave system which means that synchronization is completed successfully.

4.7. Synchronization of Chua System

In this section synchronization of two identical Chua’s circuits will be examined.

Master and slave system parameter values are chosen equal to each other for simplicity

again. g(x1) function is replaced by f(x1) in order not to confused with the input vector

of the slave sytem. Chua master and slave systems can be represented as follows:

ẋ = FM

ẋ1 = kα[x2 − x1 − f(x1)]

ẋ2 = k(x1 − x2 + x3) (4.76)

ẋ3 = k(−βx2 − γx3)

ẏ = FS + g(y)u

ẏ1 = kα[y2 − y1 − f(y1)] + g1(y)u

ẏ2 = k(y1 − y2 + y3) + g2(y)u (4.77)

ẏ3 = k(−βy2 − γy3) + g3(y)u

Functions g1(y), g2(y) and g3(y) are the corresponding elements in the input vec-

tor of the slave system again. g1(y), g2(y) and g3(y) are chosen as constant functions

so that our design process will be easy to calculate. The extended synchronization error

72



system is written as follows:

ẋ1 = kα[x2 − x1 − f(x1)]

ẋ2 = k(x1 − x2 + x3)

ẋ3 = k(−βx2 − γx3)

ė1 = kα[e2 − e1 − f(e1)]− g1(x− e)u (4.78)

ė2 = k(e1 − e2 + e3)− g2(x− e)u

ė3 = k(−βe2 − γe3)− g3(x− e)u

Equation 4.78 can be written in affine form as Ẋ = F(X) + G(X)u where F(X) =

[FM , FM −FS]T and G(X) = [0,−g(x, e)]T and X = [x1, x2, x3, e1, e2, e3]
T . Then F and

G vectors can be written such that

F =




kα[x2 − x1 − f(x1)]

k(x1 − x2 + x3)

k(−βx2 − γx3)

kα[e2 − e1 − f(e1)]

k(e1 − e2 + e3)

k(−βe2 − γe3)




, G =




0

0

0

−g1

−g2

−g3




After defining F and G vectors. In order to obtain C3(x, 0), C1(x, e) and C2(x, e) have to

be calculated. C1(x, e) = span{G} is known. In order to obtain C2(x, e), adF G has to

be calculated such that

adF G = [F, G] =
∂G
∂X

· F− ∂F
∂X

·G

Because the vector G is only composed of constant elements then derivative of G with

respect to X equals to zero then we only need to calculate − ∂F
∂X

·G to find adF G.

− ∂F
∂X

·G = −




a11 kα 0 0 0 0

k −k k 0 0 0

0 −kβ −kγ 0 0 0

0 0 0 a44 kα 0

0 0 0 k −k k

0 0 0 0 −kβ −kγ




.




0

0

0

−g1

−g2

−g3



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a11 = −kα− kα{m0 − 1/2(m1 −m0)[sgn(x1 + 1)− sgn(x1 − 1)]}
a44 = −kα− kα{m0 − 1/2(m1 −m0)[sgn(e1 + 1)− sgn(e1 − 1)]}

adF G =




0

0

0

g1[−kα− kα{m0 − 1/2(m1 −m0)[sgn(e1 + 1)− sgn(e1 − 1)]}+ g2kα

g1k − g2k + g3k

−g2kβ − g3kγ




(4.79)

After finding adF G, C2(x, e) can be written such that

C2(x, e) = span








0 0

0 0

0 0

−g1 b42

−g2 g1k − g2k + g3k

−g3 −g2kβ − g3kγ








(4.80)

b42 = g1[−kα− kα{m0 − 1/2(m1 −m0)[sgn(e1 + 1)− sgn(e1 − 1)]}+ g2kα.

In order to obtain C3(x, 0), ad2
F G needs to be found. ad2

F G can be calculated as follows

ad2
F G = [F, adF G] = [F, Ψ] =

∂Ψ

∂X
· F− ∂F

∂X
·Ψ

∂Ψ

∂X
= 0 because derivative of the Ψ with respect to X equals to zero. So ad2

F G = − ∂F
∂X

·Ψ

− ∂F
∂X

.Ψ = −




a11 kα 0 0 0 0

k −k k 0 0 0

0 −kβ −kγ 0 0 0

0 0 0 a44 kα 0

0 0 0 k −k k

0 0 0 0 −kβ −kγ




.




0

0

0

c4

g1k − g2k − g3k

−g2kβ + g3kγ



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a11 = −kα− kα{m0 − 1/2(m1 −m0)[sgn(x1 + 1)− sgn(x1 − 1)]}
a44 = −kα− kα{m0 − 1/2(m1 −m0)[sgn(e1 + 1)− sgn(e1 − 1)]}
c4 = g1[−kα− kα{m0 − 1/2(m1 −m0)[sgn(e1 + 1)− sgn(e1 − 1)]}+ g2kα

ad2
F G =




0

0

0

d4

d5

kβ(g1k − g2k − g3k) + kγ(−g2kβ − g3kγ)




d4 = {kα + kα{m0 + 1/2(m1−m0)[sgn(e1 + 1)− sgn(e1− 1)]}}{g1[−kα− kα{m0−
1/2(m1 −m0)[sgn(e1 + 1)− sgn(e1 − 1)]}] + g2kα}+ kα(g2k − g3k − g1k)

d5 = k[g1{kα+kα{m0 +1/2(m1−m0)[sgn(e1 +1)−sgn(e1−1)]}}+g2kα]+k(g1k−
g2k + g3k) + k(g2kβ + g3kγ)

After setting g1 = g2 = 0 and g3 = 1 for simplicity, C3(x, 0) can be written as follows:

C3(x, 0) = span








0 0 0

0 0 0

0 0 0

0 0 −k2α

0 k k2(1 + γ)

−1 −kγ −k2(β + γ2)








(4.81)

First Theorem 4.3 conditions are stated as below in order to test whether Chua system

accessibility distribution function has constant dimension for ρ = 3.

− ∂h

∂e3

= 0 (4.82)

k
∂h

∂e2

− kγ
∂h

∂e3

= 0 (4.83)

−k2α
∂h

∂e1

+ k2(1 + γ)
∂h

∂e2

− k2(β + γ2)
∂h

∂e3

6= 0 (4.84)
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In order to satisfy Equations 4.82, 4.83 and 4.84, the output function can be chosen

as h(x, e) = e1 then conditions of Theorem 4.3 are satisfied. There is one more thing

which has to be considered is that in order to have relative degree ρ = 3, there are three

conditions below from Definition 4.4 as follows:

LGh(x, e) = 0 (4.85)

LGLF h(x, e) = 0 (4.86)

LGL2
F 6= 0 (4.87)

So let us examine that above conditions hold for Chua system.

LGh(x, e) = 〈∂h, G〉 = 0 (4.88)

LF h(x, e) = 〈∂h, F〉 = kα[e2 − e1 − f(e1)] (4.89)

LGLF h(x, e) = 0 (4.90)

L2
F h(x, e) = kα{k[e1 − e2 + e3]− kα[e2 − e1 − f(e1)]− f(ė1)} (4.91)

LGL2
F h(x, e) = −k2α (4.92)

LGh(x, e) = 0, LGLF h(x, e) = 0 and LGL2
F h(x, e) = −k2α. As it can be seen, all

requirements hold then the control command can be written in the form for ρ = 3 as

follows:

u =
1

LGL2
F h(x, e)

[−L3
F h(x, e) + K1(z1 − z∗1) + K2(z2 − z∗2) + K3(z3 − z∗3)] (4.93)

In order to calculate the control command u, L3
F h(x, e) needs to be found, because other

functions have been calculated.

L3
F h(x, e) = kα{k[kα(e2 − e1 − f(e1))− k(e1 − e2 + e3) + k(−βe2 − γe3)]

−kα[k(e1 − e2 + e3)− kα(e2 − e1 − f(e1))− f(ė1)]− f(ë1)}

In order to synchronize master and slave system proper control gains have to be chosen

such that K1 = 9, K2 = −9 and K3 = −9. z1 = h(x, e) = e1, z2 = LF h(x, e) =

kα(e2−e1−f(e1)) and z3 = L2
F h(x, e) = kα[k(e1−e2+e3)−kα(e2−e1−f(e1))−f(ė1)].
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And the stabilization points of the system coordinates are z∗1 = z∗2 = z∗3 = 0. Then the

control command can be written as follows:

u =
1

k
{k[kα(e2 − e1 − f(e1))− k(e1 − e2 + e3) + k(−βe2 − γe3)]

−kα[k(e1 − e2 + e3)− kα(e2 − e1 − f(e1))− f(ė1)]− f(ë1)}
− 1

k2α
{K1e1 + K2kα(e2 − e1 − f(e1))

+K3kα[k(e1 − e2 + e3)− kα(e2 − e1 − f(e1))− f(ė1)]} (4.94)

then we can construct control command u by using Simulink block as in Figure 4.13.

Figure 4.13. Simulink block diagram of the control command u for Chua systems.

Chua master and slave system trajectories draw the same pattern in Figures 4.15.

In Figures 4.16, error signals remain at zero after synchronization is achieved then the

control command also remains at zero since it depends on error signals. It means that

there is no difference between master and slave systems after control command remains

at zero which means that complete synchronization is achieved.
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Figure 4.14. Simulink block diagram of the synchronized Chua systems.
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Figure 4.15. Chua master and slave system with different initial conditions.
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Figure 4.16. The control command u and error signals e1, e2 and e3.
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CHAPTER 5

FPGA IMPLEMENTATION

In this chapter, System Generator implementation is described. Lorenz system,

Rössler system, Linz and Sprott system and Chua system (Leonardo, et al. 2005) are

simulated by Matlab. Then, Integrated Software Environment (ISE) program is intro-

duced. Next, Digital-to-Analog (DA) converter is explained. The last part of this chapter

composed of synchronized chaotic generators which are implemented to FPGA and the

results are presented.

5.1. Implementation Process

Since System Generator (Xilinx 2007a) uses the same Simulink program inter-

face, basically it will be necessary only to translate Simulink structure prensented in chap-

ter 3 and chapter 4 and make some adjustments. The goal at this stage is to obtain the

same results by using System Generator software. The first step in order to construct

synchronized chaotic systems is to translate four Simulink structures designed in chapters

3 and 4. Simulink main library’s block elements which were used previously are: Gain,

Sum, Constant, Products, Abs, Integrator. So as to make the translation, we need to re-

place the Simulink main library’s blocks by the corresponding Xilinx Blockset library’s

elements and correctly adjust their parameters.

The only two exceptions are Simulink main library’s blocks Abs and Integrator,

which are not available on Xilinx blockset library. Therefore they will be implemented

using other blocks elements as will be seen below.

The implementation of Simulink main library’s block Abs is very simple. By using

the Xilinx block MCode block we can obtain proper block which acts as Abs in Simulink

main library. This block provides a convenient and flexible way to calculate arithmetic

functions.

The code used to implement the Abs function is presented on Table 5.1 below. As

can be seen, the function module just compares the input u to zero and then multiplies

it by -1 when the u is negative. There is only one point to take care of this MATLAB
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Figure 5.1. MCode Xilinx Block.

Table 5.1. MATLAB function ”module.m”

Function [mu] = module(u)

if u >= xfix({xlSigned, 32, 16, xlT runcate, xlWrap}, 0)

mu = u;

else

mu = -u;

end

function: how to convert the double size number zero to a fixed number. We need to

specify correctly how the number zero will be represented as can be seen on Table 5.1. In

this example, the number zero is converted to a 32 bits long signed number, which has the

binary point placed at position 16, the quantization method is Truncate and the overflow

procedure is Wrap.

Figure 5.2. MCode Xilinx block parameters.

Figure 5.1 and 5.2 represent the MCode block and its configuration parameter

window, respectively. As can be seen, the block has only one input u and one output mu

that is the module on the value presented on the input.
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The second block which Xilinx block library’s does not have is Integrator block

in Simulink library. The integrator model is translated using Xilinx blocks as can be

seen in Figure 5.3. The mathematical expression of it can be written: X ′(t − dt) =
X(t)−X(t− dt)

dt
. The parameter dt presented in the block dt represents the integration

step. The initial state of the integrator is stored inside the block Register, in the field

Initial Value.

Figure 5.3. Integrator model using Xilinx blockset library.

After missing blocks in Xilinx blockset library’s are constructed, the design can

be completed by arranging System Generator block in Xilinx blockset library as in Figure

5.4. There are three options in Synthesis tool section: Synplify, Synplify Pro and XST

(Xilinx Synthesis Tool). XST will be used to synthisize synchronized chaotic systems

which was designed in the previous chapter. There are two options in Hardware descrip-

tion language section: Verilog and VHDL (Very-high-speed integrated circuits Hardware

Description Language). VHDL will be used to program FPGA. FPGA clock period can

be arranged so that the desired outputs will be obtained. 100 ns is used as a clock period

in all designs. The last thing which has to be arranged is Simulink system period section.

It can be set as the same in Simulink fundamental sample time. After all requiremetns

are done by pressing Generate button in System Generator block, ISE Project file will be

obtained.

ISE is Xilinx design software suite (Xilinx 2007b). As can be seen in Figure 5.5,

there are three steps in order to obtain bitstream file. These steps are: Sytnhesize, Imple-

ment Design and Generate Programming File. By clicking Configure Device (IMPACT)

in Generate Programming File, bitstream file can be obtained. By loading bitstream file

to FPGA, programming process of FPGA can be completed.

The model of FPGA is Xilinx ML 402 (Xilinx 2006) which does not support

analog output. In order to have analog outputs, DA converters are used. In this study
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Figure 5.4. System Generator block in Xilinx blokset library.

Figure 5.5. Source window of ISE
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AD7846 (Analog Devices 2007) ICs from Analog Devices are used to convert digital

signal to analog signal. AD7846 provides 16-bit resolution with parallel input. Synchro-

nized chaotic generator systems are designed with 32-bit resolution so the size of output

functions have to be converted as 16 bits so that AD7846 can work. At the same time

AD7846 does not recognize signed bit in data set come from FPGA. In order to solve this

problem the most significant bit of the data set can be inverted by invertor. These two

operations can be done by using System Generator blocks as in Figure 5.6.

Figure 5.6. Reduction of resolution and inverting of most significant bit.

5.1.1. Implementation of Synchronized Lorenz System

The Lorenz system presented previously on Equation 3.1 is now implemented

using Xilinx blockset library’s elements as can be seen in Figure 5.7 below. Three in-

tegrators blocks that can be seen on this structure are the same as already presented in

Figure 5.3. The Integrator F1 block has initial condition equal to 0.001. The other two

integrators have initial condition equal to zero. The integration step dt used in this design

is equal to 0.001. The block AddSub is composed of one adder and one subtracter, and it

performs the operation a− (b + c) = a− b− c. This circuit uses 32-bits words with the

binary point position after the bit number 16.

The chaotic behaviour of this circuit can be seen on its attractor in Figure 5.8

(compare it with the Lorenz attractor presented in Figure 3.3).

In order to obtain synchronized Lorenz system, the control command u has to be

constructed by using Xilinx blockset library’s elements. As we know the expression of

u from Equation 4.40 then the control command u can be constructed by Xilinx blockset

elements as in Figure 5.9 below.

After constructing the control command u then we apply it to Lorenz slave sys-

tem so that synchronized Lorenz system can be completed successfully. In Figure 5.10,
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Figure 5.7. Lorenz system by System Generator.
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Figure 5.8. Lorenz system attractor.

85



Figure 5.9. The control command u for Lorenz system by System Generator.

synchronized Lorenz system can be seen.

Lorenz master system’s Integrator F1 block initial condition is set to 0.001 and

Lorenz slave system’s Integrator F1 is set to 5. By setting master and slave Lorenz system

with different initial conditions, as in chapter 4 section 4, synchronization process can be

observed. Figure 5.11 represents Lorenz master system attractors and Lorenz Slave sys-

tem attractors, respectively. As can be seen in Figıure 5.11, Although they have different

starting points because of initial conditions, they draw the same pattern after synchroniza-

tion is completed.

Figure 5.12 represents the behaviour of control command u and difference be-

tween Lorenz master system state variables and Lorenz slave system state variables, re-

spectively. As chapter 4, It means that synchronization of Lorenz system can be achieved

successfully. If Figure 5.12 and Figure 4.4 in chapter 4 draw the same pattern then this

design can be implemented to FPGA by using ISE program.

After implementing synchronized Lorenz system to FPGA , by using ISE pro-

gram, how much source is consumed by synchronized Lorenz system can be seen in

Table 5.2.

Figure 5.13 represents Lorenz master system state variables x1, x2 and x3 and

Lorenz slave system state variables y1, y2 and y3, respectively. This Figure was captured
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Figure 5.10. Synchronized Lorenz system by System Generator.
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Figure 5.11. Synchronized Lorenz system attractors.
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Figure 5.12. The control command u and error signals e1, e2 and e3 respectively.

Table 5.2. The source used by synchronized Lorenz system.

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 650 30,720 2%

Number of 4 input LUTs 3,776 30,720 12%

Logic Distribution

Number of occupied Slices 2,355 15,360 15%

Number of Slices containing only related logic 2,355 2,355 100%

Number of Slices containing unrelated logic 0 2,355 0%

Total Number of 4 input LUTs 4,208 30,720 13%

Number of bonded IOBs 161 448 35%

Number of DSP48s 28 192 14%

Total equivalent gate count for design 42,289
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Figure 5.13. Lorenz master system state variables and Lorenz slave system state variables.
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from scope screen and the blu line represents Lorenz master system state variables and the

purple line represents Lorenz slave system state variables, respectively. As can be seen in

Figure 5.13, the synchronization of two chaotic systems can be achieved.

Figure 5.14 represents control command u and synchronization error signals e1,

e2 and e3, respectively. As can also be seen in Figure 5.14, control command and error

signals remain around zero which means that synchronization of two systems can be

completed.

Figure 5.14. The control command u and error signals e1, e2 and e3 for Lorenz system.

The last Figures are 5.15 and 5.16. Figure 5.15 from Matlab which is drawn by

using master state variables versus corresponding slave state variables. Figure 5.16 is

captured from scope screen, it is drawn by using the same technique as Figure 5.15. They

show similar pattern which again means that the synchronization of two chaotic systems

are done.
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Figure 5.15. x1 versus y1, x2 versus y2 and x3 versus y3 by using System Generator.

Figure 5.16. x1 versus y1, x2 versus y2 and x3 versus y3 after implementation.

91



5.1.2. Implementation of Synchronized Rössler System

Rössler system presented previously on Equation 3.2 is now implemented using

Xilinx library’s elements as can be seen in Figure 5.17 below. All integrators blocks have

initial condition equal to zero, except the block Integrator F2, which has initial condition

equal to 3.0474. The integration step dt used in this circuit equal to 0.01.

Figure 5.17. Rössler system by System Generator.

Figure 5.18 represents the attractor of Rössler system. After comparing Figure

5.18 with Figure 3.5 which was implemented by Simulink blocks, the control command

u can be constructed by Xilinx blockset library’s elements.

After constructing Rössler system as in Simulink design, the control command u

can be created by using Xilinx blockset library’s elements. Then, it is used to synchronize

Rössler systems. The control command u expression is known in Equation 4.59 then, it

is obtained as in Figure 5.19. .

Synchronized Rössler sytem can be completed by adding control command u to

Rössler slave system and setting Integrator F2 block in Rössler slave system equals to

−5. This system is built by using Xilinx blockset library’s elements as in Figure 5.20.

Figure 5.21 represents Rössler master and Rössler slave systems trajectories, re-

spectively. As can be seen in Figure 5.21, the starting point of two systems are different,

however, they draw the same pattern after synchronization is completed.

Figure 5.22 represents control command u and synchornization error signals e1, e2
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Figure 5.18. Rössler system attractor.

Figure 5.19. The control command u for Rössler system by System Generator.
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Figure 5.20. Synchronized Rössler system by System Generator.
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Figure 5.21. Synchronized Rössler system attractors.
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Table 5.3. The source used by synchronized Rössler system.

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 574 30,720 1%

Number of 4 input LUTs 1,859 30,720 6%

Logic Distribution

Number of occupied Slices 1,153 15,360 7%

Number of Slices containing only related logic 1,153 1,153 100%

Number of Slices containing unrelated logic 0 1,153 0%

Total Number of 4 input LUTs 1,859 30,720 6%

Number of bonded IOBs 161 448 35%

Number of DSP48s 50 192 26%

Total equivalent gate count for design 21,635

and e3. The synchronization of Rössler is completed when there is no difference between

master and slave systems. If the error signals equal to zero then it means the synchroniza-

tion of the system is achieved as in Figure 5.22.

After implementing synchronized Rössler system to FPGA, by using ISE pro-

gram,how much source is consumed by synchronized Rössler system can be seen in Table

5.3.

Figure 5.23 represents Rössler master system state variables x1, x2 and x3 and

Rössler slave system state variables y1, y2 and y3, respectively. This Figure was captured

from scope screen and the blu line represents Rössler master system state variables and

the purple line represents Rössler slave system state variables, respectively. As can be

seen in Figure 5.23, the synchronization of two chaotic systems can be achieved since

master and slave system state variables have the same graphs.

As can be seen in Figure 5.24, the control command and error signals remain

around zero which means that synchronization of two systems can be completed.

Figure 5.25 from Matlab which was drawn by using master state variables versus

corresponding slave state variables. Figure 5.26 was captured from scope screen, it was

drawn by using the same technique as Figure 5.25. They show similar pattern which again

means that the synchronization of two chaotic systems are achieved.
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Figure 5.22. The control command u and error signals e1, e2 and e3 for Rössler system.
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Figure 5.23. Rössler master system and Rössler slave system state variables.
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Figure 5.24. The control command u and error signals e1, e2 and e3 for Rössler system.
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Figure 5.25. x1 versus y1, x2 versus y2 and x3 versus y3 by System Generator.
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Figure 5.26. x1 versus y1, x2 versus y2 and x3 versus y3 after implementation.

99



5.1.3. Implementation of Synchronized Linz and Sprott System

Linz and Sprott system presented by Equations 3.3 is implemented using Xilinx

blockset library’s elements as can be seen in Figure 5.27 below. The system was imple-

mented using a integration step dt equal to 0.01, the integrator F3 has initial condition

equal to 0.001 while the other two integrators has initial condition equal to zero.

Figure 5.27. Linz and Sprott system by System Generator.

The chaotic behaviour of this system can be seen by means of its attractor in Figure

5.28.
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Figure 5.28. Linz and Sprott system attractor.

By using Equation 4.75 and Figure 4.9 from previous chapter, the control com-
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mand u is easily constructed by using Xilinx blockset library’s elemen’s as in Figure

5.29. In order to simplify complexity of design, the subsystem was added to design and

its name is AddSub block which is composed of 5 adders and one subtracter.

Figure 5.29. The control command u for Linz and Sprott system by System Generator.

After constructing proper control command u for Linz and Sprott system by apply-

ing it to Linz and Sprott slave system (Figure 5.30) in order to obtain slave system which

tracks master system in every state. Although Linz and Sprott master system integrator

F3 block has initial condition equal to 0.001, Linz and Sprott slave system integrator F3

block has initial condition equals to 1 as can be seen in Figure 5.31. After synchronization

is completed, two attractors draw the same trajectories as in Figure 5.31.

Figure 5.32 represents the behaviour of control command u and synchronization

error signals of synchronized Linz and Sprott system. When the errors of system equal

to zero then slave system tracks master system in every state which means that the syn-

chronization is completed successfully. After synchronization was done, the design can

be implemeted by ISE then Figure 5.33 represents Linz and Sprott master and slave state

variables. The blu line represents Linz and Sprott master system state variables and the

purple line represents Linz and Sprott slave system state variables. As can be seen in

Figure 5.33, they are synchronized.

After implementing synchronized Linz and Sprott system to FPGA , by using ISE
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Figure 5.30. Synchronized Linz and Sprott by System Generator.
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Figure 5.31. Synchronized Linz and Sprott system attractors.
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program, how much source is consumed by synchronized Linz and Sprott system can be

seen in Table 5.4. Because Linz and Sprott system has the simplest state space equation

with respect to Lorenz, Rössler and Chua systems so it consumes minumum resource of

FPGA.

Figure 5.34 represents control command u and synchronization error signals e1,

e2 and e3, respectively. As can also be seen in Figure 5.34, control command and error

signals remain around zero which means that synchronization of two systems can be

completed.

The last Figures are 5.35 and 5.36. Figure 5.35 from Matlab which is drawn by

using master state variables versus corresponding slave state variables. Figure 5.36 is

captured from scope screen, it is drawn by using the same technique as Figure 5.35. They

show similar pattern which again means that the synchronization of two chaotic systems

are successfully done.
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Figure 5.32. The control command u and error signals e1, e2 and e3.
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Figure 5.33. Linz and Sprott master and Linz and Sprott slave system state variables.
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Table 5.4. The source used by synchronized Linz and Sprott system

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 384 30,720 1%

Number of 4 input LUTs 1,718 30,720 5%

Logic Distribution

Number of occupied Slices 1,001 15,360 6%

Number of Slices containing only related logic 1,001 1,001 100%

Number of Slices containing unrelated logic 0 1,001 0%

Total Number of 4 input LUTs 1,718 30,720 5%

Number of bonded IOBs 161 448 35%

Number of DSP48s 30 192 15%

Total equivalent gate count for design 18,648

Figure 5.34. The control command u and error signals e1, e2 and e3.
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Figure 5.35. x1 versus y1, x2 versus y2 and x3 versus y3 by System Generator.

Figure 5.36. x1 versus y1, x2 versus y2 and x3 versus y3 after implementation.
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5.1.4. Implementation of Synchronized Chua System

Chua system presented previously in Equations 3.7 is now implemented using Xil-

inx blockset library’s elements as can be seen in Figure 5.37 below. The block integrator

F1 has initial condition equal to 1. The other two integrators have initial condition equal

to zero. The integration step used here is dt = 0.001. The nonlinear element represented

by function (Equation 3.8) is implemented as can be seen in Figure 5.38. In this design

we used parameters which are stated below in Equations 5.1.

Figure 5.37. Chua system by System Generator.

α = 6.579229467

β = 10.897662619

γ = −0.044744029 (5.1)

m0 = −0.652335418

m1 = −1.811973075

k = 1

The same result is obtained in Figure 5.39 if we compare it with Figure 3.17. So
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Figure 5.38. Non-linear function.

we can accomplish the same attractor behaviour of Chua system by using Xilinx blockset

library’s elements.
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Figure 5.39. Chua system attractor.

The control command u can be constructed by using Xilinx blockset library’s

elements. As we know the expression of u from Equation 4.94 then we can build the

control command u as in Figure 5.40 below.

After constructing the control command u then by applying it to Chua slave sys-

tem, the synchronized Chua system can be completed successfully. Synchronized Chua
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Figure 5.40. System Generator block diagram of the control command u for Chua sys-

tems.

system can be built by Xilinx blockset library’s elemets as in Figure 5.41.

Chua master system Integrator F1 block initial condition is set to 1 and Chua slave

system Integrator F1 is set to 10. Alhtough master and slave system totally different initial

conditions they draw the same pattern as can be seen in Figure 5.42.

Figure 5.43 represents the behaviour of control command u and synchronization

error signals of synchronized Chu system. When the errors of system equal to zero then

slave system tracks master system in every state which means that the synchronization

is completed successfully. After synchronization is done, the design can be implemeted

by ISE then Figure 5.44 represents Chua master and slave state variables. The blu line

represents Chua master system state variables and the purple line represents Chua slave

system state variables. As can be seen in Figure 5.44, they are synchronized.

After implementing synchronized Chua system to FPGA , by using ISE program,

how much source is consumed by synchronized Chua system can be seen in Table 5.5.

As can be seen in Figure 5.45, the control command u and error signals e1, e2

and e3 remain around zero which means that synchronization of two systems can be com-

pleted.
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Figure 5.41. Synchronized Chua system by System Generator.
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Figure 5.42. Chua master and slave system with different initial conditions.
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Figure 5.43. The control command u and error signals e1, e2 and e3.

Table 5.5. The source used by synchronized Chua system.

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 590 30,720 1%

Number of 4 input LUTs 4,571 30,720 14%

Logic Distribution

Number of occupied Slices 2,605 15,360 16%

Number of Slices containing only related logic 2,605 2,605 100%

Number of Slices containing unrelated logic 0 2,605 0%

Total Number of 4 input LUTs 4,580 30,720 14%

Number of bonded IOBs 161 448 35%

Number of DSP48s 94 192 48%

Total equivalent gate count for design 47,269
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Figure 5.44. Chua master system state variables and Chua slave system state variables.
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Figure 5.45. The control command u and error signals e1, e2 and e3.

The last Figures are 5.46 and 5.47. Figure 5.46 from Matlab which is drawn by

using master state variables versus corresponding slave state variables. Figure 5.47 is

captured from scope screen, it is drawn by using the same technique as Figure 5.46. They

show similar pattern which again means that the synchronization of two chaotic systems

are done.
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Figure 5.46. x1 versus y1, x2 versus y2 and x3 versus y3 by System Generator.
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Figure 5.47. x1 versus y1, x2 versus y2 and x3 versus y3 after implementation.
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CHAPTER 6

CONCLUSION

A nonlinear geometric controller and chaotic systems were implemented by FPGA

for synchronization. This is, a nonlinear geometric controller which was designed to syn-

chronize each chaotic system individually. The controllers performance were such that the

synchronization of Lorenz system, Rössler system, Linz and Sprott system and Chua sys-

tem have been achived. System Generators provides an efficient way to design dynamic

nonlinear control system using a FPGA board with hardware simulation. Therefore re-

configurable devices provide very powerful tool for the control of complex nonlinear

systems.

Lorenz systems uses 42,289 logic gates in order to be implemented to FPGA.

Lorenz system consumes so many logic gates because there are two multiplication calcu-

lations between state variables. However its experiment results are very good, it consumes

so much source with respect to Rössler system and Linz and Sprott system.

Rössler system uses 21,645 logic gates. Rössler system is efficient at both using

source and having sufficent results from synchronization implementation. There is only

one nonlinearity in Rössler system which is multiplication of state variables. Although

Rössler system consumes a bit more source than Linz and Sprott system, the experimental

result of Rössler system is much more better than Linz and Sprott system’s.

With respect to experimental results, Linz and Sprott system consumes the source

of FPGA most efficiently. Linz Sprott system uses 18,468 logic gates. Since Linz and

Sprott system is composed of simple equations with respect to other chaotic generators.

However it consume a few source its results in experiment is not as efficient as other

chaotic generators.

The last system is synchronized Chua system which uses 47269,065 logic gates.

However Chua system does not include multiplication of state variables, it consumes so

much source with respect to Lorenz system, Rössler system and Linz and Sprott system

because Chua system’s non-linear function contain so many elements to be implemented.

The experimental results of Chua is not as good as Rössler, though.
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