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A B S T R A C T

We theoretically investigate the effects of atomic defect related short-range disorders and electron-electron in-
teractions on Anderson type localization and the magnetic properties of hexagonal armchair graphene quantum
dots using an extended mean-field Hubbard model and wave packet dynamics for the calculation of localization
lengths. We observe that randomly distributed defects with concentrations between 1 and 5% of the total
number of atoms leads to localization alongside magnetic puddle-like structures. Although the localization
lengths are not affected by interactions, staggered magnetism and localization are found to be enhanced if the
defects are distributed unevenly between the sublattices of the honeycomb lattice.

1. Introduction

Graphene [1–5], a promising single-layer material for electronics
applications, has been getting increasing interest in understanding and
engineering its properties at the nanoscale to form graphene nanor-
ibbons and dots. Indeed, electronic, magnetic and optical properties of
graphene can be tuned by changing edge, shape, doping and number of
layers [6–38]. On the other hand, introducing adatoms [39–44] or
vacancies [45–49] can also significantly affect its physical properties.
For example, a dramatic increase in resistivity of graphene, metal-to-
insulator (localization) behavior and magnetic moment induction
which led to spin split state at the Fermi energy were observed in
several experimental works by introducing hydrogen adatoms on gra-
phene [41,43,50]. Additionally, local magnetism due to vacancies
created by irradiation of graphene samples were detected [46,49].

There have been many theoretical attempts to explain induction of
metal-to-insulator transition and magnetism brought about by adatom
or vacancy related disorders in graphene structures [30,31,51–61]. For
instance, ferromagnetic or antiferromagnetic behavior of quasilocalized
states can be induced by introducing two atomic defects on the same or
opposite sublattices of the honeycomb lattice. Furthermore, it was
found that vacancy related sublattice imbalance which leads to total
spin S ≠ 0 can induce global magnetism predicted by Lieb and sub-
lattice balance which leads to total spin S=0 can induce local mag-
netism by using mean-field Hubbard model for graphene ribbons
[52,62]. On the other hand, Schubert et al. [61] used a tight-binding
(TB) model ignoring magnetic effects to show that low concentrations
of randomly distributed hydrogen adatoms lead to metal-to-insulator

transition in graphene, although alongside formation of electron-hole
puddles that tend to suppress Anderson localization [63].

An interesting and natural question to ask is whether the magnetic
and localization properties are affected by each other, which, to the
best of our knowledge, remains unaddressed presumably due to diffi-
culties in incorporating electron-electron interactions in large size sys-
tems. In this work, in order to find out the role of atomic defects in both
the localization of electronic states and the magnetic behavior at the
nanoscale, we perform mean-field Hubbard (MFH) calculations for
medium sized graphene quantum dots (GQD). More specifically, we
focus on hexagonal shaped GQDs with armchair edges which are, unlike
zigzag edges, free of magnetized edge effects. Thus hexagonal armchair
GQDs allow for an unbiased investigation of defect induced magneti-
zation and provide a link between nanosize and bulk limits. The loca-
lization properties are investigated using wave function dynamics. We
show that localization of electronic states can occur due to atomic de-
fects, together with formation of magnetic puddles. We found that,
although the localization lengths are not affected by interactions for
evenly distributed defects between the two sublattices, an uneven dis-
tribution between the two sublattices can significantly enhance both
the localization and the magnetization. Surprisingly, no spin dependent
localization lengths were observed.

2. Method and model

We use the extended one-band MFH model where the single elec-
tron states can be written as a linear combination of pz orbitals on every
carbon atom since the sigma orbitals are considered to be mainly
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responsible for mechanical stability of graphene. Within the extended
MFH model, Hamiltonian can be written as:

= ∑ +

+ ∑ − + ∑ −( )
H t c c h c

U n n V n n

( . )

( 1)

MFH ijσ ij iσ jσ

iσ iσ iσ ijσ ij j iσ

†

1
2 (1)

where the first term represents the TB Hamiltonian and tij are the
hopping parameters given by tnn=−2.8 eV for nearest neighbours and
tnnn=−0.2 eV for next nearest-neighbours [64]. The ciσ

† and ciσ are
creation and annihilation operators for an electron at the i-th orbital
with spin σ, respectively. Expectation value of electron densities are
represented by 〈niσ〉. The second and third terms represent onsite and
long range Coulomb interactions, respectively. We note however that,
the inclusion of long-range Coulomb interactions did not significantly
affect the numerical results in this work. This is in contrast with our
previous work [26] on the investigation of long range scatterers which
cause strong density modulations, leading to non-negligible long-range
Coulomb interactions. We take onsite interaction parameter as
U=16.522∕κ eV and long-range interaction parameters Vij=8.64∕κ
and Vij=5.33∕κ for the first and second nearest neighbours with ef-
fective dielectric constant κ=6 [65], respectively. Distant neighbor
interaction is taken to be 1∕dijκ and interaction matrix elements are
obtained from numerical calculations by using Slater πz orbitals [66].
To account for short-range disorder effects (which may be due to va-
cancies or hydrogen adatoms), we simply remove corresponding pz
orbital sites. This model assumes that sp2 hybridization of atoms
neighboring the defect and the honeycomb lattice are not distorted.

A critical step in the numerical calculations is the initial guess state
used for the self-consistent diagonalization of the MFH Hamiltonian, as
there is a high risk of getting stuck in a local energy minimum for
systems with several thousands of atoms. Local version of Lieb's the-
orem provides a convenient way to generate the initial state. According
to Lieb's theorem [62], if there is an overall imbalance between the
number of A and B sublattice atoms in a bipartite lattice, a finite
magnetic moment (NA−NB)∕2 arises at zero temperature. Locally,
such imbalance occurs in the vicinity of atomic defects. Therefore, in
our initial density matrices, we assume a surplus of spin up (down)
density around type-A (B) vacancies, leading to our lowest energy so-
lution.

Once the self-consistent Hubbard quasi-particle states ψnσ(x) with
energy En are obtained, we proceed with the computation of time-de-
pendent wave functions. Assuming an initial wave packet of the elec-
tron injected through one corner of the hexagonal QD (see Fig. 1) as
Ψ(t=0) with average energy ⟨ ⟩Ei of width δEi ∼ tnn∕2, the evolution is

given by = ∑ ⟨ = ⟩ −t ψ t e ψΨ( ) Ψ( 0)n nσ
iE t

nσ
/ℏn . When the time scale is

sufficiently large, t ≫ t0= ℏ∕tnn, (where t0 ∼ femto second) the system
reaches a quasi-stationary state from which it is possible to deduce the
localization properties [61].

3. Results and discussions

3.1. Tight-binding results

Time evolution density plots for a ⟨ ⟩ =E 0.38i eV (around Fermi
level) wave packet are shown in Fig. 1, at t=0, t∕t0= 30 and
t∕t0= 106 (from left to right), for defects concentrations of 2% (upper
panels) and 5% (lower panels). Initially, at t=0, we assume that the
injected wave packet occupies a small, defect-free region of the QD. As t
is increased, the density propagates slower for higher defect con-
centrations, before reaching a quasi-stationary state above t∕t0= 104.
At higher time scales, t∕t0= 106 (order of nano second), the wave
packet is still localized around the corner of the QD, especially visible at
the higher defect concentration.

In order to investigate the localization more systematically in-
cluding size dependence, in Fig. 2 we plot the injected electron's
probability density as a function of distance to the lead corner, in-
tegrated over an angle of π∕3 (see Fig. 2a), and averaged over 20
randomly generated defect configurations (evenly distributed between
sublattice A (50%) and B (50%) for the main frames but unevenly as A
(100%) and B (0%) for the inset figure), obtained from TB calculations.
Moreover, time averages over 36 samples between t∕t0= 5×105 and
4×106 were performed. Here, each column corresponds to a different
size GQD having 5% defect concentration. We note that we do not show
figures for concentrations less than 5%. Localization lengths denoted by
λ were estimated for different injected electron energies (one near the
Fermi level, other two in deep conduction and valence bands), by
logarithmic curve fitting [61]. At 1% defect concentration, size effects
dominate the densities. Estimated localization length is larger than the
system size even for the largest QD (25 nm wide) and the energy de-
pendence is weak. As the defect concentration is increased to 2%, we
find λ ∼ 12 nm for 0.38 eV (Fermi level energy) for all QD sizes. At
−1.6 and 2.4 eV, λ exceeds the system size. Defect concentration of 5%
has localization length of λ ∼ 3.5 nm for ⟨ ⟩ =E 0.38i eV for all QD sizes
(see Fig. 2b, c and d). Additionally, we observe localization (λ ∼
6.5 nm) for the energies ⟨ ⟩Ei =−1.6 and 2.4 eV. The calculated loca-
lization lengths here are consistent with the TB results by Schubert et al.
[61] obtained for ribbon geometries. Furthermore, as seen in the inset
of Fig. 2b, the localization is enhanced for an unbalanced distribution of
100–0%, consistent with the finding of Ref. [67] obtained for bulk
graphene.

3.2. Mean-field hubbard results

In the following, we will focus on 13 nm QDs (containing 5514
atoms) in order to investigate the effects of interactions on spin den-
sities and DOS through self-consistent mean-field Hubbard calculations.

Fig. 3 shows the spin resolved DOS for defects concentrations of 2%
(upper panels) and 5% (lower panels). On the left panels, we consider
equal number of randomly distributed defects on A and B sublattices
(50-50%). Even though the total spin of such a system is zero as pre-
dicted by Lieb's theorem [62], a slight asymmetry can be observed
between spin up and down impurity peaks in the vicinity of Fermi level,
due to broken sublattice symmetry. On the other extreme, if all defects
are placed on sublattice A (right panel), total spin is equal to half of the
total number of defects, and a clear spin splitting is observed in DOS, a
signature of ferromagnetic coupling. As expected, as the concentration
of defects is increased from 2% to 5%, impurity peaks become more
pronounced. The black dots represent energy values of interest which
will be used below to calculate the localization lengths for wave packets
with different average energies.

Fig. 1. Time evolution of electronic density obtained by TB model for dis-
ordered GQD (containing 5514 atoms and width size 13 nm). Electron injected
through one corner of the QD has average energy of ⟨ ⟩ =E 0.38i eV. Each column
panels show the snapshot of wave packet propagation at, from left to right, time
t=0, t=30t0 and t=106t0. Top and bottom panels are for 2% and 5% dis-
order distributions, respectively.
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Before discussing the spin-dependent localization properties, in
Fig. 4, we examine spin densities ni↑− ni↓ (upper panels) in terms of
defect positions (lower panels) for different concentrations and sub-
lattice distributions. When the system is antiferromagnetic (AFM, for
even number of sublattice A and B defects), statistical distribution of
defects gives rise to formation of magnetic puddles with opposite signs
(shown in red and blue colors online). We note that, a formation of
(non-magnetic) electron-hole puddles due to atomic defects was pre-
viously observed in a TB study of LDOS in large graphene ribbon
structures [61]. It was found that as the defect concentration increases
from 0.1% to 1%, the spatial extent of electronic puddles is reduced
below 1 nm from 5 to 10 nm. Although the scale of our magnetic puddle
size is consistent with the findings of Ref. [61] for 1% impurity con-
centration, we do not observe clear change in puddle size as we increase
the defect concentrations. The formation of magnetic puddles observed
in our calculations is presumably mainly due to the statistical dis-
tribution of defect-induced spins rather than more subtle quantum in-
terference or interaction effects. We observed similar magnetic puddle-
like structures for other 19 different disorder configurations. On the
other hand, for the uncompensated distribution of defects (100-0%),

the coupling between the local magnetic moments is ferromagnetic
(FM), as shown in the rightmost panel. Interestingly, the magnitude of
the magnetic moments is almost an order of magnitude larger than for
the FM case. This is somewhat consistent with the findings of Ref. [60]
where it was found that for defect concentrations larger than 0.6%, the
antiferromagnetic coupling is suppressed. However, in our results, we
find a reduction of magnetization instead of a complete suppression,
even at high defect concentrations. This difference is due to the com-
plete randomization of defect positions (for a given concentration) as-
sumed in our model, unlike the fixed inter-defect distance model used
in Ref. [60]. We will investigate this issue further through staggered
magnetization in the next subsection.

3.3. Localization versus magnetization

After having established the extend of disorder induced localization
in within tight-binding model in subsection (3.1) and the extend of
disorder induced magnetization within mean-field Hubbard model, we
now focus on the relationship between localization and magnetization.
In Fig. 5, we plot the angle integrated quasistationary electronic den-
sities, similar to Fig. 2, but obtained using spin-resolved MFH quasi-
particle states. As before, the densities are averaged over 20 config-
urations and the plots include corresponding error bars. Upper and
lower panels correspond to 2% and 5% defect concentrations, respec-
tively, while left and right panels correspond to evenly (50-50%) and
unevenly (100-0%) distributed defects among the two sublattices. Al-
though both spin up and down densities are plotted in each subfigure,
to our surprise no noticeable difference was found between them,
within the statistical error based on 20 randomly distributed config-
urations. For evenly distributed defects, the estimated localization
lengths from MFH calculations are similar to those obtained from TB
calculations of Fig. 2. Moreover, if the defects are distributed unevenly
among the sublattices, localization lengths in the vicinity of Fermi level
decreases considerably from λ ∼ 15 nm to λ ∼ 12 nm for 2% con-
centration and from λ ∼ 3.5 nm to λ ∼ 2 nm for 5% concentration of
defects, consistent with the inset of Fig. 2b. This is due to the fact that
an even distribution of defects causes more impurity-level hybridization
around the Fermi level compared to uneven distribution that gives rise
to sharper and stronger peak in DOS as seen in Fig. 5. Away from Fermi
level, no significant sublattice effect is observed, as expected.

A useful quantity that describes the magnetic properties is staggered
magnetization defined as:

∑= − −↑ ↓M n n( 1) ( )/2stag

i

x
i i

(2)

where x is even for A and odd for B sublattice sites. In Fig. 6, we plot the
staggered magnetization per impurity, Mstag∕Nimp as a function of

Fig. 2. (a) Cartoon of propagation of waves corresponding to an electron injected from one corner of the QD. (b), (c) and (d) Time and angle averaged electronic
densities for different incoming wave packet energies, obtained by TB method. (b), (c) and (d) corresponds to GQDs containing 5514, 10806 and 21426 atoms,
respectively, and having 5% percent of randomly created disorder (evenly distributed between sublattice A and B). Inset shows uneven distribution of defects (100-
0%). 5% defect concentration has localization length of λ∼ 3.5 nm for ⟨ ⟩ =E 0.38i eV for all QD sizes and localization length (λ∼ 6.5 nm) for the energies ⟨ ⟩=Ei −1.6
and 2.4 eV.

Fig. 3. Density of states for spin down (red solid line) and spin up (dashed blue
line), for 2% (upper panels) and 5% (lower panels) disorder concentrations,
randomly distributed among each sublattice as 50% (50%) (left panels) and
100% (0%) (right panels) for sub lattice A (B). Black dots show incoming
electron's energy to be used in localization length calculations. EF indicates the
Fermi energy. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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defects concentration of 0.3–5% for the AFM and FM configurations,
averaged over 20 disordered samples. For each case, the localization
length λ is also shown. Several interesting observations can be made
from Fig. 6. First, magnetization of AFM configurations (same-sub-
lattice defect distribution) is considerably lower than the FM config-
urations (even distribution). This reflects the suppression of anti-
ferromagnetic coupling whenever two impurities are close to each other
[60], as discussed above (see Fig. 4). Also, the AFM error bars are much
larger than the FM error bars, showing that the AFM magnetization is
more sensitive to the specific distribution of the defect sites. Indeed, for
some of the samples, large regions dominated by same-sublattice type
defects may be present, causing weaker AFM suppression. However the
net AFM magnetization is never completely suppressed. Another

important observation is that the localization is consistently stronger
for the FM configuration than for the AFM configurations. This results is
consistent with the conductivity calculations based on tight-binding
results of Ref. [67], where compensated distribution of defects in a
graphene sheet leads to more localization than the same sublattice
distribution. Finally, we see that as the defect concentration increases,
the localization length decreases as expected, and the staggered mag-
netization per impurity slightly decreases. Net staggered magnetization
of course increases with increasing number of defects.

4. Conclusions

To conclude, we studied random disorder induced localization and
magnetic properties in medium sized hexagonal armchair graphene
quantum dots, using tight-binding and mean-field Hubbard approaches.
We observed magnetic puddle-like formations induced by random

Fig. 4. Magnetic puddle formation in antiferromagnetic (AF) and ferromagnetic (FM) GQDs. Disorders are randomly distributed among each sublattice as 50% (50%)
(first three panels) and 100% (0%) (last panel) for sub lattice A (B). Upper panels show spin density profile and red (blue) regions represent either spin up or down
electrons. The corresponding disorder sites are shown in lower panels by blue circles and red crosses. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 5. Time and angle averaged electronic densities for different incoming
wave packet energies and spins, obtained by MFH method. Upper and lower
panels correspond to 2% and 5% defects concentrations. Left and right panels
correspond to AFM (even distribution) and FM (same-sublattice distribution)
configurations averaged over 20 samples each containing 5514 atoms.

Fig. 6. Staggered magnetization per impurity as a function of disorder con-
centration for AFM and FM configurations. The results are averaged over 20
random disorder samples each containing 5514 atoms, and corresponding error
bars are plotted. For data point, corresponding the localization length λ is also
shown.
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distribution of defects with concentrations between 1% and 5%. For QD
sizes above 12 nm, defect concentrations of 2% is needed in order to
observe localization effects. Although the localization lengths are not
directly affected by interactions, we show that, if the disorder sites are
distributed on a same sublattice of the honeycomb lattice, significantly
enhanced magnetism and localization occurs compared to the evenly
distributed antiferromagnetic case. Surprisingly, no spin dependence of
localization length was observed in neither AFM nor FM cases.
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