
Dynamically Adaptive Partition-based Data Distribution Management*

Bora İ. Kumova

İzmir Institute of Technology; Department of Computer Engineering; 35430 Turkey
borakumova@iyte.edu.tr; iyte.edu.tr /~borakumova

Abstract

Performance and scalability of distributed simulations
depends primarily on the effectiveness of the
employed data distribution management (DDM)
algorithm, which aims at reducing the overall
computational and messaging effort on the shared
data to a necessary minimum. Existing DDM
approaches, which are variations and combinations
of two basic techniques, namely region-based and
grid-based techniques, perform purely in the
presence of load differences. We introduce the
partition-based technique that allows for variable-size
partitioning shared data. Based on this technique, a
novel DDM algorithm is introduced that is
dynamically adaptive to cluster formations in the
shared data as well as in the physical location of the
simulation objects. Since the re-distribution is
sensitive to inter-relationships between shared data
and simulation objects, a balanced constellation has
the additional advantage to be of minimal messaging
effort. Furthermore, dynamic system scalability is
facilitated, as bottlenecks are avoided.

1 Introduction

Establishing and maintaining network connections
for the purpose of satisfying the mutual information
requirements of the participants of a distributed
system is called data distribution management (DDM)
[14]. Alternative denominations are relevance filtering
[8], data subscription management, focus [1] data
dissemination management [7] or interest
management (IM) [16]. In this text we shall use these
terms interchangeably. The principle goal of DDM is
to deliver objects of a given distributed system the

exact amount of data they are interested in, no more
and no less.

The two basic filtering techniques, region-based
and grid-based, have been discussed in the literature
[10], [14], [2], combined with other techniques and
refined extensively, in order to improve performance.
In region-based filtering, simulation objects specify
interest areas on the shared data, in form of update
and subscription regions (Figure 1). Where
intersecting regions represent potential
communication between related objects. This
technique is inherently parallelisable upon the shared
data, if the data is represented as a homogeneous
multi-dimensional hyperspace, like in High Level
Architecture (HLA) DDM 1516 [17]. The upper bound
time complexity is O(n2), for comparing in the worst
case every subscription region with every update
region, and O(n log n) in case of recursive interest
matching algorithms [17]. In grid-based filtering,
shared data is subdivided into equal-sized value
ranges and interest matching is performed implicitly,
when interest regions fall into the same grid.
Parallelism is exploited here by performing
independently within each grid.

Synchronous Parallel Environment for Emulation
and Discrete Event Simulation (SPEEDES) operating
system [19] and Synthetic Theater of War Europe
(STOW-E) [9] were early implementations of the grid
approach. Where the latter combined both techniques
for filtering the data difference between an
intersecting region and the grid region, which seeks
reducing the network transmission of unnecessary
data. Some HLA DDM implementations have also
adopted this approach, like U.S. Defense Modeling
and Simulation Office (DMSO) Runtime Infrastructure
(RTI) [5] and Pitch RTI (pRTI) [18].

*This research was partially supported by Ege University, International Computer Institute.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

While the above techniques aim at reducing the
messaging load on the network, multicasting can
reduce the computational load on a node, by
delegating it to the related hardware unit of the
network. Assigning each intersection region or grid a
multicast group [15], [3] can reduce the computational
load for replicating a data update propagation.

Sources for computational imbalances in
distributed simulation are clusters of federates and/or
clusters of data access regions. Where cluster
formations are unpredictable, particularly in non-
deterministic application domains. For instance, the
load balancing approach proposed for HLA
implementations in [4], interprets an overloaded node
as a cluster of federates and resolves imbalances by
migrating whole federates. Data access clusters are
identified based on simulation objects' position and
extents of interest on the shared data, such as focus
[1], visibility [13], spheres of influence [12].
Connected intersections of such interest regions then
imply data access clusters.

Dynamically adaptive partition-based DDM is a
new approach for load balanced distributed
simulation that assembles and extends the above
ideas. This model is introduced here in the context of
the distributed simulation platform Adaptive Parallel
Discrete Event Simulator (APDES) [11] for non-
deterministic applications. It possesses the following
properties:
� Identifying multi-dimensional clusters within the

multi-dimensional state variable (SV) space.
� Adapting the boundaries of a multi-dimensional

SV partition to encapsulated clusters.

� Migrating a SV partition to an imbalanced
neighbouring host and splitting/merging the
partitions.

� Migrating an LP to its interest region with the
highest access cost for this LP.
The principle structure of the model is introduced

below. We shall use the following terms
interchangeably, shared data, data dimension and
state variable (SV) and refer to as d; and the terms
federate, logical process (LP) and simulation object,
although sometimes an LP may represent several
simulation objects.

2 Principle Structure of the Model

The principle idea of the new DDM model is to
distribute the shared data of an application over a
given set of hosts, by assigning each host one
partition of each data dimension and by preserving
adjacency information between partitions. Since one
partition has at most two adjacent partitions,
changing interest region boundaries need to be
communicated to at most one host, as we assume
continues value changes on SVs. Partition sizes are
dynamically calculated based on emerging data
clusters and distributed, depending on the contained
regions' access costs.

2.1 State Variable Conceptualisation

SVs are normalised within the value range [0..1],
as this facilitates homogeneous and variable-sized
partitioning over dynamically varying numbers of
hosts. Values of a SV are assumed to change
continuously to the maximum extent of the local data
partition size. An LPe may declare at most one update
region ue

i[c'1, c1] and at most one subscription region
rei[c'2, c2] per SV di, where c'1 ≤ c1, c'2 ≤ c2 and c'1, c1,
c'2, c2 = [0..1].

2.2 Data Access Evaluation

Statistics over the access to SV regions provide
qualitative information about regions and enable the
DDM to dynamically adapt to the application
behaviour, thus facilitating load balancing and
scalability. Therefore every access region is attributed
with following statistical values, which are additionally
stored at the owning LP's site.

Region access frequency. In the course of a
simulation the access frequency of SVs may change
dynamically, depending on changing interests and

dp: Data d Dimension p

rp, up[c'1, c1]: Read r, Update u Interval c'1 through c1 on dp

Figure 1. Sample Update/Subscription Regions in
the Multi-dimensional Hyperspace as of HLA DDM
1516

d q

dp

Subscription
Region

r
p
[c'

1
, c

1
], r

r
[c'

2
, c

2
]

Update
Region

up[c'3, c3], ur[c'4, c4],

u
q
[c'

5
, c

5
]

d
r

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

interactions between LPs. The access frequency F(aei

[c'1, c1]) of an update or subscription region aei[c'1, c1]
of LPe on SV i, gives information about how often it
was accessed in the most resent time interval [t', t0],
where t' = t0 - ∆f, t0 is the last global state change and
∆f the number of some most resent global state
changes. ∆f may be adapted to the overall region
access frequency of a particular application. This
information is used to optimise the distribution of the
shared data and the LPs.

Region access latency. The average time to
access a region is updated with every access to that
region with

L(ai) = (L'(ai) F(ai) + |ai|time) / (F
(ai) + 1)

ai is an abbreviation for ai[c'1, c1], L' is the previous
access frequency and |ai|time the time required for the
most resend access. The access latency of local
regions is always set to zero. In case of remote
regions, the time stamp of the incoming message is
compared with local time.

2.3 Data Cluster Detection

A cluster Ci is identified as an ordering relation of
access region boundaries on SV di:

Ci[cz'1,cz1] = {(ai[cz'2, cz2], bi[cz'3,

cz3]) | cz'1 � cz'2 ∧ cz'2 � cz2 ∧ cz'3 ��

cz3 ∧ cz'3 c� z2 ∧ cz3 c� z1 ∧ cz'1, cz1 ,
cz'2, cz2, cz'3, cz3 = [0..1] ∧ i =

[1..s]}

For any access region ai, bi. Where two clusters Ci

[cz'1, cz1] and Ci[cy'1, cy1] on the same SV di do not
intersect, iff cz1 < cy'1. The number of regions in a
cluster |Ci[cz'1, cz1]|size is stored separately. The
smallest possible cluster is a single region without
intersections |Ci[cz'1, cz1]|size = 1. Cluster detection is
processed simultaneously with interest matching, as
both share a similar algorithmic structure.

2.4 Interest Matching

Matching interest is calculated by intersecting two
boundaries of two access regions ai[c'1, c1] and bi[c'2,
c2] on SV di, such that

ai[c'1, c1] ∩ bi[c'2, c2] ≠ ∅ → c'2 ≤
c1

Only c1 and c'2 need to be compared for each
region, as the boundary values c'1, c1, c'2, c2 are
sorted. Additionally, the algorithm simultaneously
calculates the clusters Ci. For this purpose, region
boundaries on each SV are kept sorted in ascending
order, which requires an additional computational
effort. The time complexity for inserting one region
into the sorted list of regions is O(log n).

2.5 Basic Data Partitioning Concepts

Data management starts initially with gridded
partitioning the shared data in form of a table and
continues with some primitive operations on the
table.

Initial partition distribution. A data dimension d is
sub-divided into s equal-sized partitions di,j and each
partition assigned to a different host hj of the
distributed system with n hosts (Table 1).

Table 1. Initial Assignment of Data Partitions to
Hosts

di,j at hj h1 . . . hn

d1 d1,1 . . . d1,n

.

ds ds,1 . . . ds,n

The table entry at h(i, j) contains the actual
network address of the hosts hj with partition di,j. This
schema allows to find the network location of a
partition di,j with a single direct access. Depending on
the semantics of a data dimension and the location of
LPs, adjacent partitions di,j and di,j+1 may be stored at
physically closer located hosts hj and hj+1 in the
network, as region boundaries of access regions can
move only to adjacent partitions.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

Note however that in the initial configuration, the
partition index j in di,j and the host index j in hj are the
same, hence hj = h(i, j). Below, an extension to this
schema is introduced with variable-size partitioning
and partition migration, where the equality hj = h(i, j)
does not hold any more for any j.

Primitive partitioning operations. In the course of a
simulation, a partition di,j may be merged or split with
adjacent partitions di,j-1 or di,j+1. This is exemplified
below on a disengaging/engaging host, where a
column j that consists of partition j on all SVs di with i
= [0..s], is merged/split with adjacent partitions,
respectively.

By default, each partition ds,k of a disengaging host
hk is joined with one of its adjacent partitions, either
di,k-1 or di,k+1 (Table 2).

Table 2. Merging Data Partitions from a
Disengaging Host with Neighbouring Partitions

0di,j at hj . . . hk-1 hk hk+1 . . .

d1 . . . d1,k-1; d1,k d1,k+1 . . .

.

ds . . . ds,k-1; ds,k ds,k-+1 . . .

By default, a partition di on host hk-1 is split into two,
di,k-1 and di,k, and assigned to the new host hk. (Table
3).

Table 3. Splitting Data Partitions and Re-
assigning to a New Engaging Host

di,j at hj . . . hk-1 hk hk+1 . . .

d1 . . . d1,k-1; d1,k d1,k+1 . . .

.

ds . . . ds,k-1; ds,k ds,k-+1 . . .

Partition size. The size of data partitions are
directly affected by the number of available hosts.
Depending on the context of a SV di and performance
considerations during a particular application, initially
equal-sized partitions di,j may become variable or
zero-sized. Variable size partitioning allows adapting

to clusters of intersecting access regions. However, a
cluster that is split over more than one partition, can
cause additional network messaging, as intersecting
interests represent potential communication
relationships. Zero partition size of di,j indicates that
host hj does currently not maintain any value range of
that SV, which may change during an application for
load balancing purposes.

A performance issue is the ratio between partition
length and access region length, respectively:

mj = |aei[c'1, c1]| / |di,j|

For m ≤ 1 one message is required. For 1 < m, m
split regions of aei need to be maintained at m hosts,
which implies an additional network overhead of m -1
messages and an additional local overhead at m -1
hosts for pointing to the host with the owning LPe of
aei. At the site of LPe an additional local overhead of
m-1 pointers to further m-1 hosts is required.

Access region replication. For the purpose of
minimising messaging effort, for each subscribed
remote SV region, a local copy is maintained. Where
one DDM objective is to minimise the total number of
replica within a simulation, as each replica requires
one message for synchronising with each update on
the original remote data.

2.6 Multi-dimensionality of State Variables
and Data Clusters

By default all SVs are homogeneous and no
semantics are defined between value ranges of a SV
or between different SVs. However supporting such
semantics helps identifying multi-dimensional data
clusters in the context of user model semantics.
Consider for instance the state variables dp and dr in
(Figure 2). If they are evaluated independently, then
following LP clusters would result: (LP1, LP4) and
(LP2, LP3) on dp and (LP1, LP2, LP4) and (LP3) on dr. A
somehow logically combined evaluation of dp and dr
however, for instance as physical area, apparently
results in different LP clusters (Figure 2). In this case,
LP2 does no more appear in the cluster with LP1 and
LP4, as it is not intersecting with them on the physical
area.

Declaring compound SVs. A group of SVs d1, .., dq,
with 1 ≤ q ≤ s, where s is the total number of SVs of

d
1,k

d
s,k

d
1,k

d
s,k

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

the application can be introduced as one compound
SV (d1, .., dq) by declaring

d(1,..,q) = {(d1, ..., dq) | q ≤ s}

In general, the more SVs are bound to each other
by grouping relationships, the smaller the probability
for involving access regions incorrectly in multi-
dimensional data clusters. Hence, the smaller the
probability for LPs to depend on each other over
shared data.

A particular SV dk may be grouped multiple times.
Resulting consistency relationships between groups
however is in the responsibility of the user
application. For instance whether updates on dk over
one group should have consistent interpretation in an
other group that includes dk as well.

Detecting multi-dimensional data clusters. A multi-
dimensional data cluster C(1,..,q)[cz'1, cz1, ..., cz'q, czq] is
detected in two steps: Firstly, the above described
cluster detection algorithm is applied to all SVs,
independently from whether a SV is bound or not.
Secondly, for each compound SV d(1,..,q), related
access regions ae(1,..,q) and af(1,..,q), of LPe and LPf

respectively, are compared pairwise, if they intersect
on at least one SV d1, ..., dq, such that

[cz'1, cz1] ∩ [cy'1, cy1] ≠ ∅ ∨ ... ∨
[cz'q, czq] ∩ [cy'q, cyq] ≠ ∅ → Ce,f

(1,..,q)[cz'1, cz1 ∨ cy1], ..., [cz'q, czq ∨
cyq]

The time complexity for detecting q-dimensional
clusters is O(q * g) = O(n2), for comparing in the worst
case all g LPs' access regions on all q SVs. With a
recursive algorithm, the complexity reduces to O(n
log n).

Space complexity for variable-size and multi-
dimensional partitions. On one hand, less dependent
LPs require less messaging effort and can be re-
located more independently. On the other hand,
bound SVs increase the space requirement at each
host. For instance, the number of adjacent multi-
dimensional rectangular partitions increases
exponentially with s3 * 2s for increased number of s
dimensions, which is a space complexity of O(n3 2n).
It enables however encapsulating an s-dimensional
cluster within an s-dimensional SV partition. of
variable edge size. For instance, for a 3-dimensional
partition, the addresses of 3 * 23 – 3 = 21 to 24 hosts
need to be stored at each host, depending on the
location of a partition at SV boundaries. The number
increases with the number of adjacent partitions at
each edge or surface.

2.7 Optimisation of Partition Distribution

Partition distribution over the hosts is dynamically
optimised through variable-size partitioning, for
adapting to cluster formations, and partition
migration, for balancing the messaging load between
hosts.

Variable-size partitioning. A single partition di,j is
split between two clusters Ci[cz'1, cz1] and Ci[cz'2, cz2] at
(cz1 + cz'2) / 2. A multi-dimensional partition d(1,..,q) is
split between two clusters C(1,..,q)[cz'1, cz1, ..., cz'q, czq]
and C(1,..,q)[cy'1, cy1, ..., cy'q, cyq] at each SV partition
(1, ..,q), such that (cz1 + cy'1) / 2, ..., (czq + cy'q) / 2.
Consequently, variable-size partitions may emerge in
the course of a simulation (Table 4).

Table 4. Sample Variable-size Data Partitions

di,j at
h(i,j)

d1

d2

d3

h(i,j)

d
1,1

at h
1

d
1,2

at h
4

d
1,3

at h
3 d

1,4
at h

5

d
1,1

at h
3
d

1,2
at h

2
d

1,4
at h

4
d

1,5
at h

5
d

1,3
at h

1

d
1,1

at h
2
d

1,2
at h

3
d

1,4
at h

1
d

1,5
at h

4
d

1,3
at h

5

 d(p,r),2

 d(p,r),3

d(p,r),1

d(p,r),(i,j) : Partition (i,j) of SV d(p,r)

Figure 2. Sample Relationships Between Access
Regions of Logical Processes in a Two-
dimensional Data Space

LP2

LP3

LPe

Access Region
of Logical
Process e

LP4

LP1

 dp

dr

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

Note again the two kinds of indexing a host with hj
for referring to all partitions on that host and with h(i,j)
for referring to the same partition index j of all SVs i.
Accordingly, index j of two partitions di1,j and di2,j may
be equal for different SVs i1 ≠ i2, but not necessarily
located on the same host h(i1,j) ≠ h(i2,j).

Partition migration. Variable-size partitioning
allows adapting to data clusters, but can cause
growing clusters in several partitions di,j to
concentrate on one host h(i,j), which in turn can lead
to load imbalances. In order to balance the load in
such a case, clusters on that host are migrated to
hosts h(i,j-1) or h(i,j+1) and merged with their adjacent
partitions di,j-1 or di,j+1, respectively.

Candidates for migration are chosen from the list
of all clusters Ci[cz'1,cz1] on host hj, which is sorted in
descending order after cluster access cost sortdesc(A
(Ci[cz'1,cz1])). Clusters with relative high access cost
are those, whose owning LPs are located remote,
thus migrating them will at least not increase the
overall messaging effort of the application. Note that
in this process a cluster is not distinguished from a
single access region that has no intersections. The
migration is continued for all clusters, until the
accumulated cluster access costs of neighbouring
hosts are equal, relative to their local load:

∆Hj-1 * Hj-1 = ∆Hj * Hj = ∆Hj+1 * Hj+1

for hosts hj-1, hj and hj+1, respectively. Where

Hj = ∑s
i∑zA(Ci[cz1,cz2])

Where z denotes the number of regions on SV di.
Partition migration is initiated for all hosts in every
second phase of 2 * ∆f state changes, alternating
with the task for optimal placement of LPs. This
schema balances the load in a simulated annealing
fashion, where the grade of annealing is adapted
over ∆f for a given application. ∆Hj is the load factor
of host j and is re-calculated based on the local
processor load.

Cluster splitting. In cases where the above
equality for load balancing cannot be achieved on the
overloaded host, the next cluster in the list that
exceeds the equality is split, just like a partition is
split. A split cluster is principally undesired, as it

increases messaging effort, but is unavoidable, if
balanced load is required. This capability enables the
DDM to adapt to applications that may develop
increasingly growing clusters or, in the worst case,
even a single "all-one-cluster".

2.8 Optimal Placement of Logical Processes

For the purpose of balancing the process load
between the hosts, each LPe is placed on host k with
the highest access cost Ae

k for LPe:

maxν(∑s
i(Ak(rei,k) + Ak(uei,k)) iff rei,k ∩

ufi,k ≠ ∅

Where v ≤ s is the total number of regions of LPe,
e, f = [1..g] and e ≠ f, and Ae

k = Fe
k * Le

k with i ≤ s of s
SVs. A subscription region without any intersections
with update regions is excluded from the calculation,
as it has always zero access cost, wherever LPe is
located.

A sample distribution of access regions and LP
placement for hypothetical access costs is sketched
in (Figure 3). Note that, for instance subscription
region rfs,1 was not included in the calculation for the
placement of LPf, as it does not intersect with any
update region. Also, compound SV d(1,2,3) is depicted
as one-dimensional region, for simplicity, but is to be
interpreted as cubical region.

2.9 Primitive Operations on Shared Data

LPs can access the shared data over three
primitive operations: reading and updating a region
and changing region boundaries. Each operation
initiates a well defined sequence of messages for
keeping the shared data globally consistent, by
complying with the above sketched data distribution
schema [11].

Message content. The network message sent for
synchronising a remote SV is uniform. It contains the
SV value and a local time stamp.

Reading subscribed data. When LPe subscribes to
a region rei[c'1, c'1] within partition di,j on host h(i, j),
then the region is copied to the host where LPe is
located. Any following read operation from LPe within
rei[c'1, c1] is then performed locally. Thus two
messages are required for each new subscription, if
the partition is remote. Hence the messaging
overhead P for reading subscribed data is Pr = 2.

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

Updating associated data. If an update within a
region ue

i[c'1, c1] is remote, with respect to the
associated LPe, then one message is required. If the
update region intersects with a total number of v
remote subscription regions, then further v messages
are required to propagate the update on the original
data to v replica, where v = [0..n] and n is the total
number of hosts. Thus at most v + 1 messages are
required. The messaging overhead for updating
associated data becomes than Pu = v + 1.

Updating region boundaries. Changing region
boundaries, caused for instance by a moving
simulation object, requires a new calculation of
intersections with other regions. If the change on the
boundary is within the boundaries of this partition,
then no messages are required. Otherwise, one
message is send to the host with the related adjacent
partition. One further message is sent back to the
region owner, if the new boundary has crossed an
adjacent partition on an other host. Thus at most two
messages are required for this operation, yielding a
messaging overhead of Pb = 2.

2.10 Performance Evaluation

The overall performance of the DDM model in
terms of messaging and time complexity for primitive

operations on shared data is sketched in (Table 5)
and compared with the region and grid-based
algorithms for the following two cases:
� Evenly distributed interest: interest regions and

the overall access cost of the LPs are evenly
distributed over the hosts (peers).

� Single-clustered interest: interest regions and the
overall access cost of the PLs are concentrated
on one host (server).
Server. All techniques perform equal for the case

that all s SVs are maintained at a server. For read
operations, the worst case is assumed, where each
read is preceded by an update on the original data
and therefore requires a message for replication.
Messaging complexity is only O(n), as in the worst
case all n hosts may send a message to the server in
one state change. Time complexity is O(n log n),
since interest matching is performed only on the
server. For instance, the region technique combined
with the grid on a server has been proposed in [20].

Region; peer. If all SVs are fully replicated at all
peers, peer-to-peek communication is required with
the region technique. Interest has to be matched at all
n hosts over all s SVs, no matter whether all interest
regions are single-clustered or not.

...

 . ..

di,j: Partition j of State Variable i : Subscription/Update Regions r/u on di,j of LPg

h(i, j): Network Address of Partition j of SV di on Host h(i, j)
max(A1(r, ue

(8,9),1), Ak+1(r, ue
12,k+1), Ak(r, ue

(1,2,3),k)) = k : Placing LPe on Host h((1,2,3), k) = hk
max(Ak(r, uf

(1,2,3),k), Ak(r, uf4,k), Ak+1(rf12,k+1)) = k+1 : Placing LPf on Host h(12, k+1) = hk+1

Figure 3. Sample Data Distribution and Optimised Placement of Two Logical Processes for Given Data
Access Schema

 Host h
k+1

...

Subscription Replica:
rfs,1; rf(1,2,3),k; rf4,k

 Host h
k

...

Subscription Replica:
re(8,9),1; re12,k+1

rf12,k+1

r, ue
(1,2,3),k

r, ue
(8,9),1

r, uf(1,2),k

r, uf4,k r, ue
12,k+1

rf
s,1

Network

LPe
 LPf

r, ugi,j

Host h
1

...

...

Host hn
...

...

...

d(8,9),1

ds,1

d(1,2,3),k

d4,k

...

...

d12,k+1

ds,k+1

d(1,2,3),n

...

ds,n

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

Grid or partition; peer; read or update. In case of
gridded or partitioned distribution of the SVs, peer-to-
peer communication complexity is equal for
read/update operations. It reduces to O(n) for the
single cluster located at a single peer in the grid, but
remains equal, if the cluster is split over all peers
within partitions.

Grid or partition; peer; move. In case of move
operations, peer-to-peer communication complexity is
principally equal with the grid and partition
techniques, as the administrative messaging
overheads G and P are principally equal. Interest
matching reduces to O(log n) at each host. If an
application develops a single cluster, then messaging
reduces to O(n) in the grid, assuming that moving
interest regions will remain within the cell on that
peer. If the single cluster is split over all peers within
partitions however messaging remains at O(n2+P).
Interest matching increases to O(n log n) within the
single grid cell and reduces to O(log n) within each
peer's partition.

3 Conclusions

The introduced IM model inherits its adaptability
from the dynamics of the data distribution schema,
particularly the partition adaptation to data cluster
formations and the optimal LP placement, by
considering network latencies. Where LP clusters are
recognised indirectly through the local processor
load. The model benefits from the fact that no
receiver-side filtering is required, as all LPs receive
the exact amount of messages they require. The

administrative overhead is restricted to a few network
messages for maintaining partition adjacency
information. These capabilities of the model facilitate
further load balancing as well as scalability. The local
overhead for interest matching and cluster detection
is notable, but does not introduce more administration
than the grid approach. The additional administration
for adjacency maintenance does scale with increased
partition granularity, but remains still minimal and
therefore does not dramatically influence the
scalability. In fact, the administrative overhead is
expected to scale almost linear with increased
number of peers.

Remarkable is the nearly constant performance of
the partition technique that converges in all cases to
the messaging complexity O(n2) and time complexity
O(log n), which facilitates dynamic adaptability.
Although the grid technique outperforms the partition
technique in some cases, adaptability and
dynamically scalability are the significant advantage
over the grid technique. Achieving continuously
balanced load throughout an application is the only
way to guarantee real-time response at all times.

Our next goal is to examine the practical
performance of the partition-based DDM technique
for some representative deterministic and non-
deterministic applications in critical constellations.
The space complexity O(n3 2n) of a partition, for
pointing to variable-size adjacent partitions, might
prove critical in practice, especially for the case
where clusters are closely located, even for only s = 3
dimensions. The performance however is expected to
improve in general for increased partition granularity.

Table 5. Messaging, Time and Space Complexity of Operations of DDM Techniques for Evenly
Distributed and Single-clustered Interests

Technique Distribution

Operation

Read or Update (Messaging) Move (Messaging/Time)

Evenly
Distributed

Single Cluster
Evenly

Distributed/Matching Cluster/Matching

Data
Connectivity

(Space)

All

Region

Server O(n) O(n) O(n)/O(n log n) O(n)/O(n log n)

Peer O(n2) O(n2) O(n2)/O(n log n) O(n2)/O(n log n)

O(0)

O(0)

Grid Peer O(n2) O(n) O(n2+G)/O(0) O(n)/O(0) O(n 2n)

Partition Peer O(n2) O(n2) O(n2+P)/O(0) O(n2)/O(0) O(n3 2n)

Grid with Region Peer O(n2) O(n) O(n2+G)/O(log n) O(n)/O(n log n) O(n 2n)

Partition with Region Peer O(n2) O(n2) O(n2+P)/O(log n) O(n2)/O(log n) O(n3 2n)

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

4 References

[1] Benford, Steve; Fahlen, Lennart; 1993; "A Spatial Model of
Interaction in Virtual Environments", Proc. Third European
Conference on Computer Supported Cooperative Work
(ECSCW'93)

[2] Boukerche, Azzedine; Roy, Amber; 2002; "In Search of Data
Distribution Management in Large Scale Distributed Simulations";
Summer Computer Simulation Conference

[3] Boukerche, Azzedine; Amber, Roy; 2002; "Dynamic Grid-
Based Approach to Data Distribution Management"; Journal of
Parallel and Distributed Computing (JPDC); Elsevier

[4] Cai, W.; Turner, S. J.; Zhao, H.; 2002; "A Load Management
System for Running HLA-Based Distributed Simulations over the
Grid"; Workshop on Distributed Simulation and Real-Time
Applications (DS-RT'02)

[5] HLA 1.3; U.S. DoD DMSO; 1996; "HLA Data Distribution
Management Design Documentation Version 0.5, 1997"; http: //
hla.dmso.mil

[6] Helfinstine, B.; Wilbert, D.; Torpey, M.; Civinskas, W.; 2001;
"Experiences with Data Distribution Management in Large-Scale
Federations"; Winter Simulation Interoperability Workshop (SIW),
Orlando

[7] Horling, Bryan; Mailler, Roger; Lesser, Victor; 2004; "Farm: A
Scalable Environment for Multi-Agent Development and
Evaluation"; Advances in Software Engineering for Multi-Agent
Systems; Springer

[8] van Hook, Daniel J.; Rak, Steven J.; Calvin, James O.; 1994;
"Approaches to Relevance Filtering"; Distributed Simulation (DIS)
Workshop

[9] van Hook, Daniel J.; Calvin, James O.; Newton, Michael K.;
Fusco, David A.; 1994; "An Approach to DIS Scaleability"; 11th
Workshop on Standards for the Interoperability of Distributed
Simulations

[10]van Hook, Daniel J.; Calvin, James O.; Spring 1998; "Data
Distribution Management in RTI 1.3"; Simulation Interoperability
Workshop (SIW); IEEE

[11]Kumova, Bora İ.; 2005; "Scalable Interest Management in
Distributed Simulation of Intelligent Systems"; Symposium on
Design, Analysis, and Simulation of Distributed Systems
(DASD'05); The Society for Modelling & Simulation International
(SCS)

[12]Logan, B.; Theodoropoulos, G.; 2000; "Dynamic Interest
Management in the Distributed Simulation of Agent-Based
Systems"; Proceedings of 10th AI, Simulation and Planning
Conference (RAE2001); Society for Computer Simulation
International

[13]Merchant, F.; Bic, L. F.; Dillencourt, M. B.; 1998; "Load
Balancing in Individual-Based Spatial Applications"; Conference
on Parallel Architectures and Compilation Techniques (PACT'98)

[14]Morse, Katherine L.; Steinman, Jeffrey S.; 1997; "Data
Distribution Management in the HLA Multidimensional Regions
and Physically Correct Filtering"; Summer Simulation
Interoperability Workshop (SIW); IEEE

[15]Morse, Katherine L.; Bic, Lubomir; Tsai, Kevin; 1999;
"Multicast Group for Dynamic Data Distribution Management";
Proc. Of the 31th Society for Computer Simulation Conference
(SCSC)

[16]Morse, Katherine L.; 2000; "An Adaptive Distributed Algorithm
for Interest Management"; PhD Thesis; University of California,
Irvine

[17]Petty, Mikel D.; 2001; "Comparing high level architecture data
distribution management specifications 1.3 and 1516"; Simulation
Practice and Theory; Elsevier

[18]pRTI; "Pitch RTI"; http:// www.pitch.se

[19]Steinman, Jeff S.; Wieland, Frederick; 1994; "Parallel
Proximity Detection and the Distributed List Algorithm"; Workshop
on Parallel and Distributed Simulation (PADS); New York IEEE

[20]Tan, Gary; Zhang, Yu Song; Ayani, Rassul; 2000; "A Hybrid
Approach to Data Distribution Management"; Workshop on
Distributed Simulation and Real-Time Applications (DS-RT); IEEE
Computer Society

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

