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Abstract: In this paper, a tracking controller is developed for a class of nonlinear systems
subject to time delay in the control input, uncertainties in the dynamic model, and additive
disturbances. The control development is based on a novel predictor–like method to address the
time delay in the control input. Lyapunov based stability analysis is used to prove semi–global
asymptotic tracking.
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1. INTRODUCTION

Time delay, also named as time difference of arrival or dead
time in different disciplines, is a widely came across phe-
nomenon in dynamical systems in various fields Richard
[2003]. Time delay may originate from the dynamics of
systems, or may be introduced by the feedback loops,
sensors, and communication lines. For example, in teler-
obotic systems, a slave robot is forced to mimic the motion
of a master robot which are usually connected through
a communication line, and communication induced time
delay may occur and this cause reduction in system perfor-
mance or even destabilize the closed–loop system Hokayem
and Spong [2006]. Mostly to overcome its negative effects
(such as instability Datko [1988] and/or reduction in per-
formance), a significant amount of research was devoted
to time delay phenomenon, its effects on systems, and
identification and control methods. Broad overview on
time delay, its effects on systems, and open problems may
be found in Richard [2003] and Gu and Niculescu [2003].

Some of the relevant past research focused on analyzing
stability of time delay systems. In Schoen [1995], Schoen
used Razumikhin theory and Lyapunov–Krasovskii theory
to investigate the stability of time delay systems. In
Niculescu [2001], Niculescu investigated the effects of time
delays on stability of dynamical systems. In Zhong [2006],
Zhong investigated robust stability of time delay systems.

A significant amount of research was devoted to designing
controllers for systems with input delays. After Smith’s
pioneering work in Smith [1959] many researchers focused
on Smith predictor and modified the predictor for different
applications Matausek and Micic [1996], Nortcliffe and
Love [2004], Niculescu and Annaswamy [2003], Roca et al.
[2009], Majhi and Atherton [2000], Garcia and Albertos

[2008], Manitius and Olbrot [1979], Normey-Rico and Ca-
macho [2009], Kravaris and Wright [1989], Henson and
Seborg [1994], Huang and Lewis [2003]. Recently, in Krstic
[2009], Krstic considered several systems with input de-
lays and after introducing a transformation, converted the
control of systems with input delay problem to boundary
control of partial differential equations. Most of the above
approaches considered exact knowledge of system dynam-
ics. Some part of the relevant past research focused on de-
veloping robust control methods for systems with input de-
lay. The robustness of controllers to uncertainties in input
delay Niculescu [2001], Zhong [2006], Krstic [2008], Lozano
et al. [2004], model uncertainties Lozano et al. [2004],
Roh and Oh [1999], Mirkin and Raskin [2003], Marinescu
and Bourles [2000], additive perturbations Normey-Rico
and Camacho [2009], Roh and Oh [1999], Kojima et al.
[1994], Normey-Rico and Camacho [2002], Mayne et al.
[2005], Teel [1998] were demonstrated. Almost all of these
robust controllers were proposed for linear systems and/or
partial/full knowledge of system dynamics was assumed.

Review of the relevant past literature highlights the fact
that fewer results are available for nonlinear systems. In
Krstic [2009], Krstic considered nonlinear systems with
long actuator delays where exact knowledge of system
dynamics was assumed. In Kravaris and Wright [1989]
and Henson and Seborg [1994], Smith predictor based
linearizing controllers were developed for nonlinear sys-
tems, however plant models were assumed to be available.
In Huang and Lewis [2003], Huang and Lewis developed
a Smith predictor based controller in conjunction with
neural networks for a linearized sub–system of a teleop-
erator system. In Mazenc and Bliman [2006], nonlinear
sytems in feedback form with input delay was considered
and Lyapunov–Krasovskii functionals were constructed to
stabilize the system. Jankovic Jankovic [2006] proposed a
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composite Lyapunov function containing an integral cross
term in conjunction with Lyapunov–Krasovskii functionals
to stabilize nonlinear cascade systems. In Teel [1998], Teel
developed a Razumikhin type theorem that guarantees
input–to–state stability for functional differential equa-
tions subject to disturbances. Although discussing non-
linear systems, in Kravaris and Wright [1989], Henson and
Seborg [1994], Huang and Lewis [2003], Krstic [2009], Teel
[1998], Mazenc and Bliman [2006], Jankovic [2006], exact
knowledge of system dynamics were assumed when devel-
oping controllers. Recently, in Sharma et al. [2011] (and
in its preliminary version Sharma et al. [2010]), Sharma et
al. proposed two robust controllers for uncertain Euler–
Lagrange systems subject to additive disturbances and
input delay, and Lyapunov–Krasovskii functionals were
utilized along with a quadratic Lyapunov function to prove
ultimate boundedness of the error signals. According to the
authors’ best knowledge, robust control of uncertain non-
linear systems subject to input delays while guaranteeing
an asymptotic result was not addressed in the literature.

In this paper, output tracking control of uncertain nonlin-
ear systems subject to known input delay is considered.
The dynamic model is assumed to be uncertain and also
subject to additive disturbances. The main contribution
of the proposed development is the design of a filtered
error signal that is utilized to obtain a delay free open–
loop error system. This design of the filtered error signal
leads to the development of a predictor–based controller
that contains a finite integral of the past control inputs.
This design of the filtered error signal also allowed us to
utilize integral of the sign of the error terms Xian et al.
[2004] in the design of the control input. The robustness
properties of the integral of the sign of the error terms
are utilized in the Lyapunov based stability analysis and
semi–global asymptotic convergence of the error signals
are guaranteed.

2. DYNAMIC MODEL

Consider the following class of nonlinear systems Krstic
[2009]

ẋi = xi+1, i = 1, ..., (n− 1)

ẋn = f (X) + d (t) + u (t− τ) (1)

where xi (t) ∈ Rm, i = 1, ..., n, are the system states,

X (t) =
[
xT
1 xT

2 · · · xT
n

]T
∈ Rmn, f (X) ∈ Rm is

an uncertain nonlinear function, d (t) ∈ Rm represents
additive disturbances, and u (t) ∈ Rm is the control input
with u (t− τ) being the delayed control input where τ ∈ R
is the known constant positive time delay. The system
model in (1) can be rewritten as

x
(n)
1 = f (X) + d (t) + u (t− τ) . (2)

The system model in (1) is assumed to satisfy the following
properties.

Assumption 1. The nonlinear function f (X) is continu-
ously differentiable up to its second order time derivatives
(i.e., f (·) ∈ C2).

Assumption 2. The additive disturbance term is assumed
to be continuously differentiable and bounded up to its
second order time derivatives (i.e., d (t) ∈ C2 and d (t),

ḋ (t), d̈ (t) ∈ L∞).

3. CONTROL DEVELOPMENT

The control design objective is to develop a predictor–
based control law that ensures that x1 (t) tracks a reference
trajectory and that all signals remain bounded within
the closed–loop system. In the subsequent development,
the nonlinear function f (·) and the additive disturbance
term d (t) will be considered as uncertain; thus, will not
be utilized in the control design. To achieve the control
objectives, the subsequent development is derived based
on the assumption that the system state vector X (t) is
measurable.

To quantify the control objective, the output tracking
error, denoted by e1 (t) ∈ Rm, is defined as

e1 , xr − x1 (3)

where xr (t) ∈ Rm is the reference trajectory satisfying
following properties

xr (t) ∈ Cn, x(i)
r (t) ∈ L∞, i = 0, 1, . . . , (n+ 2) . (4)

To ease the presentation of the subsequent development, a
combination of the reference trajectory and its time deriva-

tives is defined as Xr (t) =

[
xT
r ẋT

r · · ·
(
x(n)
r

)T
]T

∈

Rmn.

To facilitate the control design, filtered error signals,
denoted by ei (t) ∈ Rm, i = 2, 3, . . . , n, are defined as
follows

e2 , ė1 + e1 (5)

e3 , ė2 + e2 + e1 (6)

...

en , ėn−1 + en−1 + en−2. (7)

A general expression for ei (t), i = 2, 3, . . . , n in terms of
e1 (t) and its time derivatives can be obtained as

ei =
i−1∑
j=0

ai,je
(j)
1 (8)

where the known constant coefficients ai,j ∈ R are gen-
erated via a Fibonacci number series 1 Xian et al. [2004].
Another filtered error signal, denoted by r (t) ∈ Rm, is
defined by

r , ėn + Λen + u (t− τ) − u (t) (9)

where Λ ∈ Rm×m is a constant, diagonal, positive definite,
gain matrix. It should be noted that, the above definition
for r (t) was introduced to obtain a delay–free open–
loop error system by cancelling the delayed control input
(i.e., u (t− τ)) in (2) with the same term with negative
sign in (9). It should also be noted that, since ẋn (t)
is unmeasurable, r (t) is also unmeasurable. To further
facilitate the control development, an auxiliary signal,
denoted by eu (t) ∈ Rm, is defined as follows

eu , u (t− τ)− u (t) . (10)

A filtered version of eu (t), denoted by euf (t) ∈ Rm, is
designed as follows 2

1 By definition, the first two Fibonacci numbers are 0 and 1, and
each remaining number is the sum of the previous two Koshy [2001].
2 Throughout the paper, In and 0m×r will be used to represent an
n×n standard identity matrix and an m×r zero matrix, respectively.
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ėuf = −Λeuf + eu (11)

where euf (t0) = 0m×1. After utilizing (10) and (11), the
expression in (9) can be written as follows

r = ėn + Λen + ėuf + Λeuf (12)

and after defining an auxiliary signal, denoted by η (t) ∈
Rm, as follows

η , en + euf (13)

the following expression is obtained for r (t)

r = η̇ + Λη. (14)

The auxiliary error signals euf (t) in (11) and η (t) in (13)
are introduced to put r (t) in an advantageous form that
will later be utilized in the stability analysis.

After utilizing (2), nth order time derivative of (3), (8)
(for en (t)) along with (9), the following expression can be
obtained

r = x(n)
r +

n−2∑
j=0

anje
(j+1)
1 + Λen − f − d− u (t) (15)

where the fact that an,(n−1) = 1 was utilized. The time
derivative of (15) can be obtained as follows

ṙ = S + Ñ − en − u̇ (t) (16)

where Ñ (t), S (t) ∈ Rm are auxiliary signals defined as

Ñ ,N −Nr (17)

S ,Nr − ḋ (18)

with N (X, ẋn, t), Nr

(
Xr, x

(n+1)
r

)
∈ Rm being auxiliary

signals defined as

N , x(n+1)
r +

n−2∑
j=0

anje
(j+2)
1 + Λėn − ḟ + en (19)

Nr ,N |X=Xr,Ẋ=Ẋr
= x(n+1)

r − ḟ (Xr) . (20)

Remark 1. Mean Value Theorem Khalil [2002] can be
utilized to obtain the following upper bound∥∥∥Ñ (·)

∥∥∥ ≤ ρ (‖z‖) ‖z‖ (21)

where ρ (·) ∈ R is a non–negative, globally invertible,
non–decreasing function of its argument, ‖·‖ denotes the
standard Euclidean norm, and z (t) ∈ R(n+2)m×1 is the
combined error signal defined as

z ,
[
eT1 · · · eTn eTu rT

]T
. (22)

Remark 2. Note that, since Nr (t) and Ṅr (t) are functions
of the reference trajectory and its time derivatives (which
are bounded functions of time), and since from Assump-
tion 2, d (t) and its time derivatives are bounded, it can be
concluded that S (t) and its time derivatives are bounded
functions of time.

Based on the subsequent stability analysis, the control
input is designed as follows

u (t) = K̄

(
en (t)− en (t0) + Λ

∫ t

t0

en (σ) dσ

)

+K̄

t∫
t0

(u (θ − τ) − u (θ)) dθ +Π(t) (23)

where K̄ ∈ Rm×m is a positive definite, diagonal, constant,
control gain matrix defined as K̄ , K + Im with K ∈
Rm×m being a positive definite, diagonal, constant, control
gain. In (23), Π (t) ∈ Rm is an auxiliary filter signal
updated according to the following law

Π̇ = βSgn (en + euf ) (24)

with Π (t0) = 0m×1 and β ∈ Rm×m is a positive defi-
nite, diagonal, constant control gain matrix. It should be
noted that, u (t0) = 0m×1. The controller u (t) in (23)
is a modified linear controller with robust integral of the
sign of the error term for uncertainty compensation and
predictor–like feedback term for time delay compensation.
The controller requires the current and past values of
the control input (i.e., u (t− θ)∀θ ∈ [0, τ ]). The time
derivative of the control input is found as

u̇ (t) = (K + Im) r + βSgn (η) (25)

where (9), (13) and (24) were utilized. After substituting
(25) into (16), the following closed–loop error system is
obtained

ṙ = S + Ñ − en − (K + Im) r − βSgn (η) . (26)

4. STABILITY ANALYSIS

Theorem 1. The controller given in (23) and (24) ensures
semi–global asymptotic tracking in the sense that∥∥∥e(i)1 (t)

∥∥∥ → 0 as t → ∞, i = 0, . . . , n (27)

provided that the elements of K are selected sufficiently
large relative to the system initial conditions, and the
following sufficient conditions are satisfied

βi > ‖Si (t)‖L
∞

+
1

Λi

∥∥∥Ṡi (t)
∥∥∥
L

∞

(28)

Λmin − δ −
1

2
> 0 (29)

1− τ −
τ

4δ
> 0 (30)

where δ ∈ R is a positive damping constant, Λmin ∈ R
denotes the minimum eigenvalue of Λ, and the subscript
i = 1, . . . ,m denotes the ith element of the vector or the
diagonal matrix.

Proof. See Appendix A.

Remark 3. It should be noted that, only the gain condition
in (30) depends on the time delay and it is equivalent to
the following

4δ

4δ + 1
> τ (31)

and provided that the damping constant is chosen to
satisfy δ ≫ 1, the controller can compensate for delay
values very close to one second.

5. CONCLUSION

A novel robust controller was developed for uncertain
nonlinear systems subject to constant input delay, uncer-
tainties in the dynamic model and additive disturbances.
In the design of the proposed controller, a predictor–based
structure was constructed to compensate for the input
delay and robust integral of the sign of the error terms
were utilized to compensate for the uncertainties in the
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dynamic model. Lyapunov type stability analysis was used
to guarantee semi–global asymptotic tracking of a refer-
ence trajectory. When compared with the existing studies
in the literature, the key contribution of the proposed
work is the development of the first–ever controller that
addressed robust control of uncertain nonlinear systems
with input delay while guaranteeing asymptotic tracking
via Lyapunov based stability analysis. Specifically, the
closest work to ours is the work of Sharma et al. in Sharma
et al. [2011] where two robust controllers were designed
for uncertain Euler–Lagrange systems subject to additive
disturbances and constant input delay where for one of the
controllers the inertia matrix is considered to be known. In
the design of the controllers, standard PID/PD controllers
were fused with predictor–based terms to guarantee ulti-
mate boundedness of the tracking error. To compare our
work with Sharma et al. [2011], in Obuz et al. [2012]
an extension to Euler-Lagrange systems is presented, our
robust controller is modified to be applicable to uncertain
Euler–Lagrange systems when the inertia matrix is known.
It is clear that, our controller guarantees asymptotic con-
vergence of the tracking error to zero while in Sharma
et al. [2011] ultimate boundedness of the tracking error
was obtained. However, in Sharma et al. [2011], there is
no restriction on the amount of delay, while, our stability
analysis imposed the restriction on the amount of delay to
be less than 1 sec.
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Appendix A. PROOF OF THEOREM 1

In this appendix, the proof of Theorem 1 is presented.

Proof. Let V (·) ∈ R be a Lyapunov function defined as
follows

V ,
1

2

n∑
i=1

eTi ei +
1

2
rT r +Q + P (A.1)

where Q (t), P (t) ∈ R are defined as follows

Q,

t∫
t−τ


 t∫

s

‖u̇ (θ)‖
2
dθ


 ds (A.2)

P , ζb −

t∫
t0

rT (θ) [S (θ)− βSgn (η (θ))] dθ (A.3)

where ζb ∈ R is a positive constant defined as

ζb ,

m∑
i=1

βi |ηi (t0)| − ηT (t0)S (t0) (A.4)

where the subscript i = 1, 2, · · · , n denotes the ith element
of a vector. It should be noted that, the non–negativeness
of P (t), which is essential to prove that V (·) is a valid
Lyapunov function, is demonstrated in Obuz et al. [2012].
It should also be noted that, based on the definition of
Q (t) in (A.2), it is clear that Q (t) ≥ 0. Furthermore,
following upper bound can be obtained for Q (t)

Q (t) ≤ τ sup
s∈[t−τ,t]


 t∫

s

‖u̇ (θ)‖2 dθ


 = τ

t∫
t−τ

‖u̇ (θ)‖2 dθ.

(A.5)

The Lyapunov function in (A.1) can be upper and lower
bounded as follows

W1 (y) ≤ V (y, t) ≤ W2 (y) (A.6)

where W1 (y), W2 (y) ∈ R are defined as

W1 (y) ,
1

2
‖y‖

2
, W2 (y) , ‖y‖

2
(A.7)

with y (t) ∈ R[(n+1)m+2]×1 being defined as

y ,
[
eT1 · · · eTn rT

√
Q

√
P
]T

. (A.8)

Taking the time derivative of the Lyapunov function in
(A.1) results in

V̇ =

n∑
i=1

eTi ėi + rT ṙ + Q̇+ Ṗ . (A.9)

The first term in the above expression can be written as
follows

n∑
i=1

eTi ėi = eT1 (e2 − e1) + eT2 (e3 − e2 − e1)

+ . . .+ eTn−1 (en − en−1 − en−2)

+eTn (r − Λen − eu)

=−

n−1∑
i=1

eTi ei − eTnΛen

+eTn−1en − eTneu + eTnr (A.10)

where (5)–(7), (11), and (12) were utilized. After substi-
tuting the time derivatives of (A.2) and (A.3), and (A.10)
into (A.9), and then cancelling common terms results in

V̇ =−

n−1∑
i=1

eTi ei − eTnΛen − rT r

+eTn−1en − eTneu + rT Ñ − rTKr

+τ ‖u̇ (t)‖
2
−

t∫
t−τ

‖u̇ (θ)‖
2
dθ. (A.11)

After utilizing Young’s inequality, the following upper
bounds can be obtained

∣∣eTneu∣∣≤ δ ‖en‖
2 +

1

4δ
‖eu‖

2 (A.12)∣∣eTn−1en
∣∣≤ 1

2
‖en−1‖

2
+

1

2
‖en‖

2
. (A.13)

Note that Cauchy–Schwartz inequality can be utilized to
obtain the following upper bound, Obuz et al. [2012]

‖eu‖
2
≤ τ

t∫
t−τ

‖u̇ (θ)‖
2
dθ (A.14)

and also note that

‖u̇ (t)‖
2
≤

t∫
t−τ

‖u̇ (θ)‖
2
dθ. (A.15)

After utilizing (21), (A.12)–(A.15), the right–hand–side of
(A.11) can be upper bounded as follows
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V̇ ≤−

n−2∑
i=1

eTi ei −

(
Λmin −

1

2
− δ

)
‖en‖

2
− rT r

−
1

2
‖en−1‖

2
−
(
1− τ −

τ

4δ

) t∫
t−τ

‖u̇ (θ)‖
2
dθ

+ ‖r‖ ρ (‖z‖) ‖z‖ −Kminr
T r (A.16)

where Λmin, Kmin ∈ R denote the minimum eigenvalues
of Λ and K, respectively. After utilizing (A.14), damping

out the ‖r‖ ρ (‖z‖) ‖z‖ term with −Kmin ‖r‖
2
, and then

rearranging results in the following expression

V̇ ≤ −

[
κ−

ρ2 (‖z‖)

4Kmin

]
‖z‖

2
(A.17)

where κ ∈ R is defined as

κ , min

{
1

2
,

(
Λmin −

1

2
− δ

)
,
1

τ

(
1− τ −

τ

4δ

)}
.

(A.18)
Provided that the control gains are chosen to satisfy (29)
and (30), and the elements of K are chosen sufficiently
large relative to the initial values, then the right–hand–
side of (A.17) can be upper bounded as

V̇ ≤ W (z) ≤ W (ȳ) (A.19)

where W (·) ∈ R denotes the following non–positive func-
tion

W (z) , −γ ‖z‖
2
and W (ȳ) , −γ ‖ȳ‖

2
(A.20)

where γ ∈ R is a positive constant and provided that Kmin

is selected according to the following sufficient condition

Kmin ≥
ρ2 (‖z‖)

4κ
or ‖z‖ ≤ ρ−1

(√
4κKmin

)
. (A.21)

In (A.20), ȳ (t) ∈ R[(n+1)m]×1 is defined as

ȳ ,
[
eT1 · · · eTn rT

]T
. (A.22)

Based on (A.1)–(A.8) and (A.17)–(A.20) regions D and S
can be defined as follows

D=
{
y : ‖y‖ < ρ−1

(√
4κKmin

)}
(A.23)

S =

{
y ∈ D : W2 (y) <

(
ρ−1

(√
4κKmin

))2
}
.(A.24)

Note that the region of attraction in (A.24) can be made
arbitrarily large to include any initial condition by increas-
ing Kmin (i.e., a semi–global stability result). Specifically,
(A.7) and (A.24) can be used to calculate the region of
attraction as follows

W2 (y (t0))<
(
ρ−1

(√
4κKmin

))2

(A.25)

=⇒ ‖y (t0)‖< ρ−1
(√

4κKmin

)
which can be rearranged as

Kmin ≥
1

4κ
ρ2 (‖y (t0)‖) (A.26)

where, after utilizing (A.3) and (A.8), the following explicit
expression for ‖y (t0)‖ can be derived

‖y (t0)‖
2
=

n∑
i=1

‖ei (t0)‖
2
+ ‖r (t0)‖

2
+ ζb.

From (A.1), (A.19), (A.24)–(A.26), it is clear that V (·) ∈
L∞ ∀y (t0) ∈ S; hence ȳ (t) ∈ L∞ ∀y (t0) ∈ S. By
using (3), (4) and (8), it can be proven that X (t) ∈ L∞

∀y (t0) ∈ S, then, it is clear that f (X) ∈ L∞ ∀y (t0) ∈ S.
Since r (t) ∈ L∞ ∀y (t0) ∈ S, from (14), it is clear that
η (t), η̇ (t) ∈ L∞ ∀y (t0) ∈ S. The expression in (15) can
be utilized along with (4) and Assumption 2 to prove that
u (t) ∈ L∞ ∀y (t0) ∈ S. After using these boundedness
statements along with (25), it is clear that u̇ (t) ∈ L∞

∀y (t0) ∈ S. Since u (t) ∈ L∞, from (10), it can be
concluded that eu (t) ∈ L∞; thus, from (11), it is easy
to see that euf (t), ėuf (t) ∈ L∞ ∀y (t0) ∈ S. The previous
boundedness statements and Remarks 1 and 2 can be used
along with (26), to prove that ṙ (t) ∈ L∞ ∀y (t0) ∈ S. The
previous boundedness statements can be utilized along
with (12) to prove that ėn (t) ∈ L∞ ∀y (t0) ∈ S. These
boundedness statements can be used along with the time
derivative of (A.20) to prove that Ẇ (ȳ (t)) ∈ L∞ ∀y (t0) ∈
S; henceW (ȳ (t)) is uniformly continuous. Standard signal
chasing algorithms can be used to prove that all remaining
signals are bounded. A direct application of Theorem 8.4
in Khalil [2002] can be used to prove that ‖ȳ (t)‖ → 0
as t → ∞ ∀ȳ (t0) ∈ S. Based on the definition of ȳ (t),
it is easy to show that ‖ei (t)‖, ‖r (t)‖ → 0 as t → ∞
∀y (t0) ∈ S, i = 1, 2, . . . , n. By utilizing (8) recursively, it

can be proven that
∥∥∥e(i)1 (t)

∥∥∥ → 0 as t → ∞, i = 1, 2, . . . , n

∀y (t0) ∈ S; thus, meeting the control design objective.

Remark 4. As explained in Remark 3, from the proof
of Theorem 1, there is an upper bound on time delay
that can be compensated (i.e., see (31)). This is a direct
consequence of the stability analysis. However, as detailed
in Dydek et al. [2010], when Lyapunov based methods are
utilized, usually, worst case scenarios are considered. For
example, the upper bound in (A.15) is very conservative.
Given the conservative nature of the Lyapunov based
methods, it can be said that, for some applications, delay
values that are greater than 1 sec can be compensated as
well.
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