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ABSTRACT

MULTIMEDIA PLAYER IMPLEMENTATION ON EMBEDDED
SYSTEMS

There has been a surge in the number of digi#ibaand video content in recent
years. Advances in the compression and storagedéagies and improvements in the
speed of internet connection have enabled widedpusa of multimedia content. A
wide variety of devices have been introduced tmdeand play these media contents.
Initially designed as a mere voice communicationicks the mobile phones nowadays
come equipped with a variety of multimedia capébsi including media players

despite their limited system resources.

Nowadays, huge servers host dramatically increasedb and video contents.
Users prefer to watch these contents while stregmather than downloading them
first. So, streaming media players are responsiblegpresent multimedia contents
without annoying interrupts.

This thesis firstly introduces challenges in desend implementation of a
streaming media player and then proposes solutibtasn challenges are keeping
audio-video synchronization and server-client syoolzation and detecting stream
type, handling of multithreaded operations and druffnanagement. Audio-video
synchronization problem is solved by using audionasster stream. Server-client
synchronization problem is solved by designing aypack mechanism that keeps
synchronization with the server by tuning the phkmglo rate of a streaming media
without losing lip-sync between audio and videoeTgroposed streaming player also
has a feature of identifying the type of a medi@ash very rapidly without using a
discrete stream inspector module. The presentdgrdesheavily multithreaded which
is implemented on Linux platform, moreover it issal convenient for and

implementable on any multithreaded platform.



OZET

GOMULU SISTEMLERDE COKLU ORTAM OYNATICI
GERCEKLESTIRIMI

Son ylllarda sayisal ses ve gorunti igiein sayisi belirgin bigekilde yukseldi.
Sikistirma ve saklama teknolojilerindeki ilerlemeler weternet bglanti hizindaki
iyilesmeler coklu ortam iceginin yaygin birsekilde kullaniimasina imkan tanidi. Bu
ortam iceriklerini ¢tzebilen ve oynatabilen gehir yelpazede cihazlar tanitildilk
basta sadece ses ilgitin cihazi olarak tasarlananstaabilir telefonlar, kisith sistem
kaynaklarina rgmen, bugtnlerde g#li cokluortam icerkilerini oynatabilme yetegiee

sahipsekilde geliyorlar.

Bugulnlerde, blytk sunucular son derece hizlsékilde artan ses ve gortnti
icerigine sahiplik ediyorlar. Kullanicilar, bu igerikledihazlarina timuyle indirdikten
sonra izlemek yerine daha icerik cihazlarina akarkeyretmek istiyorlar. Dolayisiyla,
akan ortam oynaticilari, ¢oklu ortam iceriklerirahatsiz edici kesilmeler olmadan

sunmak zorundalar.

Bu tezde, ilk olarak akan ortam oynatici tasariasimda ve
gerceklgtiriimesinde kagilasilan zorluklar ve daha sonra da bu zorluklagacak
cbzumler dneriliyor. Temel zorluklau sekilde siralanabilir; ses-goruntiglemesi ve
sunucu-istemci gemesini sglamak, akan icegin turinin belirlenmesi, sezamanli
islerin yonetimi ve bellek yOnetimi. Ses-goruntg§leenesi sorunu ses baz alinarak
¢Ozuldl. Sunucu-istemcglemesi sorunu ise akan ortam igerin oynatiima hizini ses-
gorunti  glemesi bozulmayacaksekilde ayarlayabilen bir c¢alma mekanizmasi
tasarlanarak ¢ozuldi. Onerilen tasarim, akan odgnaticisinin ortam tirini ayri bir
ortam turd taniyici modile ihtiyag duymadan cok ugalbir sekilde tanimasina da
olanak veriyor.  Airlikh olarak & zamanl glerden olgan Onerilen tasarim Linux
Uzerinde gercekdgiriimis, bununla birlikte ¢ zamanli § kosturabilen henhangi bir

platform icin uygun ve bdyle bir platformda gergakirilebilir.
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CHAPTER 1

INTRODUCTION

Media players have the most important role for kimg of digital entertainment
systems such as DVD players, DVB set-top boxesYIBdt-top boxes, PCs and even
for handheld devices like cellular phones. The neimbf digital audio and video
content on Internet increased dramatically in receears. The advances in IP
technology and infrastructure such as fibre omhhology make Internet appropriate
for audio and video streaming which require highdwvaidths (Conklin, et al. 2001). For
instance, IPTV enables watching TV channels thromggrnet with high quality. User
generated content, such as YouTube’s videos, @ amother important reason of
increasing multi media data. The increasing multimecontents are enjoyable only
with the presence of a well done media player. &mnedia player which will not
degrade QoS (Quality of Service) or QoE (Quality udfer Experience) is more
important than it has been even before.

The player described in this thesis is a multimguleyer which is capable of
playing various media formats. It is a streamingdiaeplayer which plays contents
streamed over a channel by a server. Capabilityplafing various formats is a
challanging task, because an abstraction layen other words an interface is needed
by the player to access and use various formatb&enan, et al. 2005). For instance,
various video codecs such as MPEG-2, MPEG-4 (Li0120and H.264 must be
accessable over a common interface, and desighisgiriterface requires at least a
basic understanding of video coding. Furthermodeep investigation of video codecs
is required if hardware decoding blocks will be igesd for the target embedded
system. Because, video decoding requires high ctatipn power, hence using a
software video decoder for embedded systems is amotefficient way. Instead,
programmable DSP blocks or hardware acceleratoes used for video decoding on
embedded systems (Sethuraman, et al. 2005).

Digital multimedia streaming (Dapeng, et al. 200d9pecially video and voice
streaming over IP has been one of the most popagaes for recent years. There are
two types of digital media streaming (Suarez, e2@05) according to the origin of data
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to be streamed: live streaming and streaming ofipusly processed and stored
multimedia data. First one requires realtime enogdind processing schemes at server
side and generally streamed as broadcasts. Tlee tate does not have encoding time
limits, so better quality at lower bitrates candobieved by giving video encoders more
time. Video on Demand (VoD) streaming is a goodwepla for the latter one.

The proposed media player design is implementedirmumx which is widely used
on many embedded devices. According to (COTS Jo@Wnéne 2004) Linux is not
designed for embedded systems and using Linux inedded system may have risks
such as interrupt latency, thread response time dewice drivers. However, the
number of embedded devices that host Linux as tpgraystems continues to increase

year by year as seen in the Figure 1.1.
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Figure 1.1 Embedded OS sourcing trends

(Source: Linux Devices 2007)

Some of the top reasons behind the popularity auxion embedded devices
according to the survey by (Linux Devices 2001)as¢he following:

*» Source code is available and free

* No runtime royalties

* Robustness and reliability



« Linux has excellent networking support

» There are more drivers and tools available

* Lots of programmers are familiar with Linux

* It's not from Microsoft

Although Linux is used for the implementation ofetlstreaming multimedia
player proposed in this thesis, it is also possiblase another multithreaded operating
system since the proposed player architecture di@@pendency on Linux.

The support for common container formats such ggpavgram stream, transport
stream, mov, asf; common audio codecs such asmgsicam, ac3 and common video
codecs such as MPEG-2, MPEG-4, DivX, H.26x is@aitfor a multimedia player.

The proposed streaming multimedia player have #palaility of playing from a
variety of sources via various protocols such ag, mhms, rtp, rtsp, rtcp, (Liu 1999)
udp, etc.

The seamless playback of media streams which ejairtight synchronization
with streaming server is a very challenging task¢oomplish. However this is a must
feature for a streaming media player, and propesedia player in this thesis uses a
patent pending solution for this problem.

The lip synchronization between audio and videal$® very important in aspect
of QOE. The lip synchronization implies a perfeghchronization between audio and
video data. This is also called as intra synchiation.

The economic utilization of mostly limited systeesources is very critical for
embedded systems. Hence, streaming media playetr Imudesigned in a way that
makes efficiently use of system resources possible.

Trick modes including seeking to a backward or fdv position must be
supported by streaming media player. Implementingk tmodes is also a very
challenging task. Because audio and video synchation must be re-established after
trick mode operation is realized and so audio arteosr must be processed in a
synchronized way during trick mode to enable a gimoesume possible.

The proposed streaming media player design is lyeaviltithreaded, hence
requires a multithreading operating system. It lnge® a modular structure with each
module designed to realize a single task such exdileg the video, de-multiplexing the
media stream or playing audio, etc. Modular stmecimakes efficient implementation
of the features discussed above possible.

Audio and video synchronization is critical to mmlédia systems (Georganas

3



1996). The proposed design will employ a precisdiaand video synchronization
scheme. This scheme utilizes audio presentatioa stamps to update player’'s master
clock, resulting in a smoother and inter-synchrediplayback.

Chapter-2 introduces the basic principles of thggtali video coding (Conklin, et
al. 2001) and the structure of media streams. Tiseaestrong relationship between the
structure of the media streams and the designeastiieaming media player.

Chapter-3 explains the components and the logidndekhe design of the
streaming media player. Chapter-3 also explains Hhiogv player works. How the
multithreaded operations and circular buffers anedted is explained in detailed. Steps
required to play an ordinary media stream is erpldiin detail. This chapter also
explains how the stream inspection is realizectieffitly by the proposed design.

Chapter-3 also tries to explain one of the mostlehging issues for streaming
media players, that is, audio-video synchronizaposblem. The proposed solution for
this problem offers using audio stream as masteast which will be explained in
detail in this chapter. Lastly, other most impottesue in designing streaming media
players, that is, server-client synchronizatiorexplained. A patent pending solution
(filed to European and US patent offices) for hvigblem is proposed.

Chapter-4 explains the details of the implementatiMain implementation
modules of the player are explained in detail. Beecodes written in C are used to
show the implementation details of the modules.

Chapter-5 explains the proposed iddias in brief@mtludes the thesis.



CHAPTER 2

VIDEO DE/CODING

In recent decades video coding has been a popesaarch area in Electrical
Engineering and Computer Engineering, strongly beeaof developments in digital
signal processing and advances in computer tecgynolo

A digital video is made up of the individual siithages or "frames" that, when
played in sequence, are able to give the impressianovement. The impression of
motion and continuum is due to the limitations e thuman visual system. Video
processing is tightly related to image processhepce in fact, video is nothing else
than sequentially recorded images.

Video coding generally refers to digital video augli because it is much more
efficient to process video signals after they aggtided from analog signals. Lossless
digitization of analog signals can be realized aticg to the Nyquist sampling
theorem which states that the sampling frequency shoulatdeast twice the highest

frequency contained in the signal.

EamplingZ 2 fhighest (2-1)

If analog signal is discretely sampled at a rat ik insufficient to capture
changes in the signalliasing will arise. “The wagon wheel effect can be a good
example of aliasing for video films. This is becaw®ntinuously varying images are
being discretely sampled at a rate of 24 frames/Hee Nyquist sampling theorem tells
us that aliasing will occur if at any point in thmage plane there are frequency
components, or light-dark transitions, that ocastdér thangf/ 2, which in this case is
12 frames/sec. But in many situations the lighkdaansitions may be occurring faster
than this, such as a wagon wheel or propellerirgjat high speed (Olshausen 2000). ”

Consider a wagon wheel with eight spokes turning ete of 2.5 revolutions per
second in the clockwise direction. In this case, wagon wheel will move by 83% of

the spoke spacing each frame, since;(Olshauser) 2000

((2.5revs/sec) x (8 spokes /rev) ) / (24nfea / sec) = 0.83 spoke / frame  (2.2)
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Figure 2.1. Aliasing in video films.
(Source: Olshausen 2000)

“The problem the brain faces in viewing these franmerapid succession is that
there are two interpretations. One interpretat®that the wheel has moved by 83% of
the spoke interval in the clockwise direction. Efrnative interpretation is that it has
moved by 17% of the spoke interval in the counteciavise direction. It turns out that
the brain prefers the latter interpretation, andasoa result you perceive the wheel
moving backwards (counter-clockwise) at a slowesespthan it is actually moving.
(Olshausen 2000)”

2.1. Structure of Digital Images

A video stream is composed of sequentially reegrdigital images (Netravali
and Haskell 1988) and a digital image is represkibte samples arranged in a two
dimensional arrayRixel is the name of each sample in this array, whitérsdo picture
element. So each pixel is located uniformly on diaee that is called as spatial domain.
It holds an integer value that represents thensgitg of light or a color.

It is common to use 256 gray levels to representrage in gray tones, in this
case each pixel will hold a single value betweetbb- The brightness step size 1/256 is
close to what a human eye can perceive, in otheadswthe quality of an image
according to a human will not change significattiyusing more than 256 gray levels.
The other reason of choosing the number of graglteas 256 is related to computer
science. By this way, each pixel can be represebyed byte, that is 8 bits and can
represent 2= 256 distinct values.

In Figure-2.2 a grayscale image of the planet VertiZ00x200 pixels resolution
is shown. “When this image was acquired, the valueach pixel corresponded to the



level of reflected microwave energy. A grayscalagm is formed by assigning each of
the 0 to 255 values to varying shades of gray ($48097) .”
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Figure 2.2. Structure of a grayscale image
(Source: Smith 1997)

Color can be added to the digital image by varivays. One way is adding
chroma components to the grayscale image whichlisccas luma component. In this
way, a colorfull digital image is composed of threemponents; the Y component
determines the brightness of the color (referredhidduminance), while the Cb (blue
difference) and Cr (red difference) components rdatee the color itself (called as
chromas). In other words, each pixel will haveddnponents, each component will
hold a single value between 0-255, that means eachponent has 256 level of
guantization and takes one byte from memory. Asltesach pixel is represented by 3
bytes in memory. By using three components 256x256x= 16.8 million different
colors can be defined, hence a colorspace is foroaiéd as YCbrCr colorspace which
is a subspace of all colors of real life. The term&bCr and YUV are used
interchangeably, however the term YUV usuallu ugedhe analog correspondence of

YCbCr with scale factors.



Cr(v)

Figure 2.3. Forming a colorfull digital image

The other way of forming color images is using RG#&orspace. In this format
each pixel is composed of R (red), G (green) arfdl&e) components. In other words,
each component represents the intensity of onbeothree primary colors: red, green,
blue. The set of all possible colors that can bemased by mixing these three primary
colors is called agamut. Conversion between RGB and YUV colorspaces isiptes

by using following formulas;

From RGB to YUV :

Y 0299 0587 0.1 R
U| =| -0.147 -0.289 0.4 G (2.3)
Vv 0.615 -0.515 -0.100| |B

It can also be represented as:

Y = 0.299R + 0.587G + 0.114B (2.4)
U=-0.147R - 0.289G + 0.436B (2.5)
V = 0.615R - 0.515G - 0.100B (2.6)
From YUV to RGB :
R 1 0 0.14 Y
G| = 1 -0.395 -0.58 U (2.7)
B 1 2.032 0 V

It can also be represented as:

R=Y +1.140V (2.8)
G =Y -0.395U - 0.581V (2.9)
B =Y +2.032U (2.10)

YUV colorspace is the standart color encoding syster analog television
system worldwide (NTSC, PAL). Main reason of thecidion is historical, because the

early television sets were designed for black amitensignals hence video cameras
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were only capable of generating B&W signals unfib@s. After color signals were
developed, a method compatible with B&W TV infrasture is needed. Y signals were
already being transmitted by the current systethat time, so engineers find out UV
signals as solution. U and V signals were coléfetBnce signals and can be calculated
from original RGB colorspace and the lumaY signasusing the formulas seen at
above.

Most of the image and video compression formatgepréUV as the colorpace.
Because, the human eye is more responsive to begbtather than color. Furthermore,
when the resolution of chroma frames are set dsofighe resolution of luma, human
eye cannot perceive the difference. So, half ofodwedwidth required to transmit or the
storage to save the image/video is saved. The comsinon color encoding format for

image/video encoders is YUV420 by which chromasbhetion set half of the luma’s.

Y Frame U Frame V Frame
QYl .Yz .Yg .Y4 .U]_ .U2 .Vl .VZ
oYs oYy eoY; eYg olUs; elU, oV3 oV,

QYg .Ylo OYll .Y12

oY i3 oY 15 oY 50Y g

Figure 2.4. The structure of YUV420 color encodiognat

The result colorfull frame, that is composed of twmponent frames at the

above will be as the following:

eY,U;V; eY,U;V, eY;U,V, eY,U,V,

oY UV, eYsU,V; eY,U,V, eYgU,V,

oY, UsV; eY,UsV; oY UV, eY U,V

oY 3UsVs @Y UsVs @Y sUsV, @YUV,

Figure 2.5. Composing colorfull image from YUV420nes



The structure of a raw (not compressed or encodé&j420 video bitstream
includes ordered sequence of frames, Y frame wisidbllowed by U and V frames.
The YUV420 video streams are often stored in filéh “.yuv” extension.

At the above in the Figure 2.5. each capital lef¥et),V) represents a byte,
hence holds a value between 0-255. The positidihese bytes in the video bitstream

will be as the following;

Y1Y2Y3YaYsYeY7Ye Yo Y10 Y11 Y12 Y13 Y14 Y15 Yis Ur Uy U3 Us V1 V2 V3V, eof

2.2. Video Compression Techniques

Digital video compression has made it possiblestte, stream and transport
large amounts of video content which was once iota due to the excessive size of
the data files required to convey the necessaprnmdtion. Digital video compression,
especially the MPEG (Gall 1991) formats and paldidy the MPEG-2 format (Puri
1993) is widely used in devices ranging from DVRy@rs to satellite and terrestrial set
top boxes to network video servers and receivers.

The amount of data require to transmit or store (aat compressed) digital
video is far too much. For instance, for the ma&joof countries using PAL (including
Turkey), the number of frames (digital images/piet) showed per second is 25. The
resolution of each frame is 720x576. Assume thatdblor encoding format of raw
frames are YUV420, then required bandwith to trahdims video signal can be
calculated as the following;

25*( (720*576) *1 + (360*288)*2 ) = 25*1.5*72%76 = 15,552,000 byte/sec (2.11)
Y frame U and V frames =.8Mbyte/sec

Transmitting or storing video data without comphnegdgs not an efficient way,
since video frames have spatial and temporal reghoyd at remarkable amounts.
Video compression technigques aim to remove thedandancies to lower required
bandwidth to transmit video signals. Thpatial redundancy is observed because of

the pixels that are replicated within a single feaofi video. Theéemporal redundancy
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arises when there similarites between consecutarads which is the common case,
since there are only 40 milliseconds (1sec/25 hesjeen successive frames.

If a video frame is compressed by just removingtigp redundancies, then it is
called asintra-frame (intra coded frame), however if temporal redundesare also
removed, then it is called ager-frame (inter coded frame).

Commonly used video codecs (MPEG-2, h.264) uddoak based coding
scheme. That is, video images are divided Idbeks (such as 8x8 blocks) before being
processed. For instance, MPEG-2 firstly dividesnaage into 16x16 squares which are
called asmacroblock. Then, each macroblock is divided into 8x8 squacefled as
blocks.

video frame

8 pixels

& pixels

Figure 2.6. A video frame divided by macroblocks

In MPEG-2, 16x8 blocks are also used when imagesdarnded intofields
which are created by dividing the video image itwo parts; odd rows of the image

compose the first part(or field), and even rows pose the second one.

top-field

bottom-field

Figure 2.7. Fields in MPEG-2
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The conventional coding schemes (such as MPEG&au®ding methodology
which can be called as “divide and compress”. 8stly overall picture sequence is
divided into group of pictures. Then each pictwedivided into group of macroblocks
called asslice and then each slice is divided into macrobloaks$ @ach macroblock is
divided into blocks. In other words, video streasrdivided into parts according to a
hierarchy as showed in Figure 2.8.

Wideo Sequence

T

-
*
l—— Group of Pictures —f

o B N N N i [ [ O N O e
Picture Block _+_

Slice Mzt ol lock g
+—"‘./ pixels

g

pi:{els

Figure 2.8. MPEG-2 Video stream data hierarchy
(Source: Basith 1996)

2.2.1 Pre-processing

Video images may contain noise which effects them@ssion of video in a
negative way, since commonly used compression tgeba such as DCT (Discrete
Cosine Transform) are based on correlation of ikelg in an video image which is
degraded by the noise. So, filtering out noise havegreat importance before
preprocessing.Filtering video images in a way tokendahem more suitable for
compression may also be very effective. It maydadized by filtering out non-essential
visual information from the video signal. Furthemesosome lossy operations or filters
may be used to make video images more compressatiteas using blurring filters.

The quantization is commonly used in video codegchsas MPEG-2, h.264.
Actually quantization is not a pre-processing teghe, and it is used after DCT
operation. In other words, after DCT operationppleed to a block, a new block at the
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same size that holds DCT coefficients of input klecgenerated. The generated DCT
coefficients are integer values, and these coefiisi are divided by a positive integer
(such as 2) to represent the coefficient with few#s. For instance, if an integer
number is divided by 2, the number of required totsepresent it will be one bit less.
However, this is a lossy operation because wherry& reconstruct the number by
multiplying the division by 2, if the divided numbis odd then the result of multiplying
will be the original number minus one. This methizd known as quantization
(reconstruction by multiplying is called as dequeation) and it is a very frequently
used method in image/video compression althoughegmecision is sacrificed in order
to increase compression ratio.

Quantization is usually done after DCT. This isexsally effective, if the used
numbers in these operations are floating or doutlmbers. Otherwise, if integer
numbers are used, quantizing before DCT may inereaspression ratio, because after
quantizing increases correlation of pixels in ackldSo, when DCT operation is applied
there will be fewer number of coefficients. So, dittgr that increase the correlation of
pixels in the block will increase the compressiatia. Of course filtered signals must
be recoverable without loss or with acceptable .|dssr example, the following
proposed method increases the correlation andpbssible to reconstruct the original
block after the filter is applied.

2.2.1.1 Pre-Process Filter Example

This method aims to increase the correlation of pipeels in a block by
converging value of each pixel to a specific numbies reasonable to select this target

number as the average of the pixel values in tbekbl

10 25 20 40 The avg. value = 20,31 15 22 20 30
Then, target value is 20
30 40 10 15 FI LTER R P5 30 15 17
20 10 5 30 Sum each pixel with 20 20 15 12 25
and
10 10 20 30 divide the result with 2 15 15 20 25
Original Block(A) Filtered Block (B )

Figure 2.9. Filtering of a 4x4 block with the prged method
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The proposed filter increases the correlationhef block, so after the DCT is
applied there remains fewer number of coefficigntsransmit. In order to reconstruct
the original block, the target number used to gaeenew block is needed. However, it
IS not necessary to transmit this number to theodiec because the target can be
calculated by using filtered block. The averagehef pixels in the block will give the
number used as the target value.

15 22 20 30 The avg. value = 20,31 10 24 20 40
Then, target value is 20
45 30 15 17 RECONSTRUCT » 30140 10 14
20 15 12 25 Multiply each pixel with 2 P0 10 4 30
and
15 15 20 25 subtract 20 from the result 10 10 20 30
Filtered Block(B) Reconstructed B lock(R)
0100
0 001
The Difference Block = (A) - (R) =
0100
0100

Figure 2.10. Reconstruction of 4x4 block after ph@posed filter is applied

2.2.2 Intra Frame Coding ( Eliminating Spatial Redundancy )

Spatial redundancy represents redundant datanwatisingle frame of video. So
intra frames are coded independently from othemé&m Spatial redundancy occurs
because adjacent pixels in a single frame are aiterelated. In MPEG terminology,
such frames are referred laames. An | frame may be thought of as a key frame or
reference video frame which acts as a point of @mmpn to other frames during
encoding, decoding and playback. Pictures betweer frames including first | frame
is calledGroup of Pictures (GOP) in MPEG terminology. For instance, in MPE@-2

GOP is generally composed of 12 or 24 pictures.
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2.2.2.1 Step by Step Intra Frame Coding (Encoding)

Although each digital video compression format hiés own particular
characteristics, a number of common features a® @esent. In the following, basic
methods used in intra coding will be given.

2.2.2.1.1 Divide Frame Into Macroblocks

A raw picture of video is composed of three fran¥&i,V. If the resolution of
raw picture isCIF (352x288), then the resolution of Y frame will @lbe in CIF
resolution. The color encoding format is generaéliected as YUV420, if so then U and
V frames will be in the half resoluticdQCIF (176x144) of the Y frame.

Then Y frame is divided intmmacroblocks (MBs), each macroblock is a 16x16
pixels square. The chroma frames (U and V) whiehiarthe half resolution of the Y
frame are divided intoblocks, with each block in 8x8 pixels resolution. So a
macroblock of Y frame corresponds to a block of ndl @ block V frame. In other
words, a macroblock of original picture is recousted by using the corresponding
macroblock of Y frame, and corresponding blockdJoand V frame as shown in the
Figure 2.11.

V frame

—
b
IIIIIIIII |IIIIIIII !
;
| ‘
’
|
' .
! ’
/

I B -0
| Ublock Vblock

Video Picture

chlck macroblock of
ariginal picture

3

000900000 EROOE S
soeeeecdcec0aene
socecceceeee0aRee
ecesceceEeRROeRee
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eccccecsecesbdone
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sesseeodesdeeone
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eeoe0ede 00 es oo
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Figure 2.11. Reconstruction of the picture by usitogks of YUV420 frames
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In order to reconstruct the original picture, cheo(W and V) frames must be
upscaled to the size of Y frame. This is generaltgomplished by replicating each
pixel of a chroma frame as shown at the below ef Figure 2.11. Although, it is
possible to use any other interpolation methodpecale chroma frames. The effect of
using better algorithms to upscale chroma framdknet be perceivable by human
eyes. This is the reason of the idea behind usidy420 frames instead of YUV422

frames (each component frame is in the same siteeafomposed picture).
2.2.2.1.2 Discrete Cosine Transformation (DCT)

DCT is the most common transformation method useslideo compression.
Video codecs such as MPEG1-2-3-4 and H261-262-883-&ll use compression
provided by the nature of DCT. “DCT is an orthogomathematical transform that is
used to remove spatial redundancy by concentratiagsignal energy into only a few
coefficients (Mikaeli and Ying 2004)” The mathencati expression of DCT is given in
(2.12).

7 7

F(u,v) = 0.25 C(u) C(v) | D f(xy) cos(((2x + 1)m)/16) cos(((2y + 1)m)/16) (2.12)
x=0y=0

uv,x,y=0,1,2,...7

(x, y) are spatial coordinates in the sample domain
(u, v) are coordinates in the transform domain
Cw)=1AH2 forw=0,

Cw)=1 forw > C

The DCT is applied to each block of YUV frames,ather words 8x8 DCT
operation takes each block as input and generatesvaBx8 block which is composed
of DCT coefficients as seen in the Figure 2.12.ciEE®CT coefficient indicates the
amount of a particular horizontal or vertical fregy within the block. DCT coefficient
at the position (0,0) is the DC coefficient thapnesents average sample value (Jack
2005).” Since DC value conveys much more informmatitman any other DCT
coefficient, it has great importance and is treaeecially while packeting to transport.
“Since natural images tend to vary only slightlgrfr sample to sample, low frequency

coefficients are typically larger values and highgliency coefficients are typically
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smaller values (Jack 2005).” So, non-zero DCT coiefits are seem to be occur near
DC value. In other words, the probability of ocaogr of a non-zero DCT coefficient

reduces as its distance to DC value increases.

Resolution 720x572 pixels DC oG
HORIZONTAL
FREQUENCY
40]38]45l40l43[5 46058 44-5|0|-4|0|-1j0 |0
39)30[4H32147 097 7|89 12jo3jojojojojo
50j40j25|54{66)60]33|32 ojlofjojofojolofo
57|28fz8l66[47|11] 2 | 5 olojojofojojofo
S59|36f47|62l24] 2 911' olofojofo]o]ofo
5al41|s5|53] 6 |4 Jio] 1 olofolofo]o]ofo
5e|33l57|39 3 |5 |4 |2 olofolofo]o]ofo
M EEEIEHEE ojojojajojojojo
Block at 8x8 pixels Color value matrix DCT coefficients
INCREASING
VERTICAL

FREQUENCY

Figure 2.12. 8x8 DCT of a block
(Source: Mikaeli and Ying 2004)

2.2.2.1.3 Quantization

The quantization is a commonly used video compoestgchnique (Viscito and
Gonzales 1991). Actually, quantization is a losgynpression technique which is
generally used after DCT operation. In other woedter DCT operation is applied to a
block, a new block at the same size that holds @@&fficients of input block is
generated. The generated DCT coefficients are @énteglues, and these coefficients are
divided by a positive integer (such as 2) to repméshe coefficient with fewer bits. For
instance, if an integer number is divided by 2,nbenber of required bits to represent it

will be one bit less. However, this is a lossy @pen because when we try to
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reconstruct the number by multiplying the divisioy 2, if the divided number is odd
then the result of multiplying will be the originalmber minus one. This method is
known as quantization (reconstruction by multiptyis called as dequantization) and it
is a very frequently used method in image/video m@ssion although some precision
Is sacrificed in order to increase compressiomrati

Each coefficient of 8x8 DCTized block is not quaatl with the same value.
Because the most significant low frequency coedfits are grouped around the DC
coefficient, and farther from the DC value both @meplitude and the significance of the
DCT coefficients decreases. “So, higher frequengdsch are farther from DC value)
are quantized more coarsely than lower frequenale® to visual perception of
quantization error. This results in many DCT camdints being zero, especially at the
higher frequencies (Jack 2005).” In order to quangach coefficient with a different
value, aquantization matrix is used. This is a 8x8 matrice which is alreadgviam by
decoders or sent to decoders within encoded stréam . quantization matrix used for
intra frames by MPEG2 is showed in the Figure 2.13.

65 40 -25 5 0 -6 0 O 8§ 16 19 22 26 27 29 34 8 2 -1 0 0 0 0 o0
220100 3 0 0 0 O 16 16 22 24 27 29 34 37 -1'10 0 0 0 0 0
10 0 0 0O 0 0 0 O 19 22 26 27 29 34 34 38 1 00 0 0 0 0 0
300 28 0 00 0 0 22 22 26 27 29 34 37 40 101 0 0 0 0 o
5 0 0 0 650 0 0 % 22 26 27 29 32 35 40 48 — 0O 00 0 2 0 0 9
0 0 0 700 0 200 26 27 29 32 35 40 48 58 0 00 -2 0 0 0 0
3 00 0O 0 0 0 0 26 27 29 34 38 46 56 69 0O 00 0 0 0 0 0
O 00 O 0 0 0 0 27 29 35 38 46 56 69 83 0 00 0 0 0 0 0
DCTized Block Quantization Matrix Quantized Block

Figure 2.13. Quantization of a 8x8 block

2.2.2.1.4 Zig-Zag Scanning

After a block is DCTized and then quantized, norezBCT coefficients are
grouped around the DC coefficient as seen in tlgeirEi 2.13. In the next step, the
quantized block will be coded by using run-lengtiling. However, before run length
coding, the DCT coefficients are moved from 8x8natto a one dimensional array by

scanning matrice in a zig-zag order. The reasoiscanning in zig-zag order is to
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produce long runs of zero coefficients and to mthlkearray more proper for run-length
coding. Since DC value stores the most of inforamgtiit is treated specially and

transmitted independently.

o e e Lot Gl P el s P
S A A i i
FIF i NG i | A 5
- E E:
ol A A | RIEIEIE
112 4 /]
ol ol elo]s] 21 EA A A Y
Ao oo o] s o o | o] ]

v

‘82—111—1000—10000000010000000000000000000—20000000000000000000000000

Zig Zag Scanned Array

Figure 2.14. Zig-Zag scanning of quantized DCTcklo

2.2.2.1.5 Run-Length Coding

One-dimensional array, which is generated by zm-geanning of quantized
DCT block as shown in Figure 2.14, is coded bycaneue called run-length coding.
Run-length coding aims to represent the one-dinoeasiarray with fewer number of
elements. This is accomplished by using run-lemgtins; run indicates the number of

zero coefficients that a leading a non-zero coiefficwhich is called aength.

DC Valuewill be transmitted seperately

‘[8]2-111-1000-10000000010000000000000000000-20000000000000000000000000

Zig Zag Scanned Array
R(l)mibcngih ZDC Valueis transmitted seperately

N R EINIE]
. - 5 \ / A
0 1 Run-Length Pairs
0 -1
3 -1
8 1

19 2

Figure 2.15. Run-Length coding
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So, the zero coefficients at the end of the arr@yret represented by a run-
length pair, since there is no non-zero coefficitrdt ends the run. The run-length
coding of one-dimensional array in the Figure 2isl4éhowed in the following Figure
2.15.

2.2.2.1.6 Variable Length Coding (VLC)

Run-Length pairs which are generated by using agscanned array are coded
with a lossless compression technique before tremsson. This technique assigns a
binary code to each run-length pair according ® fihir's occurance probability. For
instance, if a run-length pair is frequently ocedir so it has high probability of
occurance, then the length of assigned binary todbis pair will be shorter. So, the
length of assigned binary code is determined atogr pair's occurance probability.
Hence, run-length pairs will be represented bytyicades that have variable lengths.

That is why this technique is called\agiable length coding

SYMBOL PROBABILITY CODE
1
A 36 1 26
1
B A5 —— ) at1 45
al za 1.0
C Az —— aia .30
1 a
o A1 — ao11 44
1 Eid}
al zo
E 09 ——| aoia 28
) a
F .07 2B Qoo 25
1 a
& 05 —————— 1 goood1 <5
a
1 18
H oz— [ 08 goooo1
a| o3
01 —— aooooo HE

AVERAGE WORD LEMNGTH 2.77
[in binary digits)

Figure 2.16. Variable length coding (Huffman Cayin
(Source: Mikaeli and Ying 2004)
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This technique can also be called datistical coding or entropy coding.
Entropy coding benefits from the fact that, “sommets certain values are used more
often than others, so a coding system can be dasigntransmit the high-occurance
values with a short(few bit) code, meanwhile, lEsguently occurring values can use
longer bit codes. In this way, we can achieve aiBgant improvement in the
transmission efficiency. The Morse code of Teleghgpsystem uses this principle.
Huffman coding is the most common method for diatiscoding and it's widely used

in video compression algorithms.”

2.2.2.1.7 A New VLC Method

In intra frame encoding, encoders divides the fam®® n x n (8 x 8 for MPEG-
2) square blocks. These blocks are then DCT wamsfd, quantized and variable
length encoded. There are fixed variable lengthecadbles for most of the encoding
schemes such as MPEG-1 and MPEG-2. These tableesigned particularly for 8x8
blocks considering the probability of the runs dedels that may come from such a
block.

The design of these tables affects the degreempession. These tables must
be able to cover all possible run and the levetspdiven the least probable run and

level pair must be able to be represented. Thisicesthe efficiency of such tables.

DCTized DCTized and Quantized
8x8 block 8x8 block 8x8 block Zig Zag

DCT transform Quantization 5

QOOUX OO0

OO OO
[aonl o Lo e e

zig scanned array
|>.<xuuum<‘0xxx0000xooxuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuunuuuuuuuuuuuu

| \Ievel : value of non-zero coefficient
DC value -\
run : number of zeros that leading a level

Figure 2.17. Intra frame encoding
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When an nxn (8x8) block from a natural image is D&ansformed, the most
significant low frequency coefficients are groupdund the DC coefficient. Farther
from the DC value both the amplitude and the sigaifce of the DCT coefficients
decreases. In the proposed method, instead of asuhgtable for the whole nxn (8x8)
block a special vic table is designed for a smatlex m (m < n) block around the DC
value. This way the efficiency of the new vic taldencreased. That is, smaller variable
code lengths are used to encode the most signifie@i coefficients. Designing such a
special vic table for a smaller block size willuksn more compression than using the
standart tables for the larger nxn block for themaayuality level. The less significant
DCT coefficients lying outside the smaller (mxmpdit are eliminated resulting in
further compression. The size of the inner block be variable depending on the

particular application and target rate and disborti

8 x 8 DCTized and Quantized Block

A DCT coeff.
m x m block | sk DC coeff. in this area
n ff.,
around DC coe m are eliminated
A
.-"/
DCT coeffs. —_— '/ !
in this area m
are coded with
special vic table <+

Figure 2.18. Coding of a part of DCTized block

2.2.3 Inter Frame Encoding ( Eliminating Temporal Redundancy )

The temporal redundancy arises because of the similarites between the
consecutive frames. The frames that are comprdgsetiminating the redundant data,

as shown in Figure 2.19., between itself and aeaf®e frame are calleshter frames.
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the next frame from the sequence

compensated frame with motion vectors

Figure 2.19. Difference of consecutive video frames
(Source: Compression 2002)

In video encoding particularly in MPEG encoding ¢Kell, et al. 1997) , there
are three types of frames; I, P and B franhémmes are intra frames which are used as
reference frames for the subsequent B and P framkames do not refer to other
frames to be decoded. frames refer to the | frames through motion vectors ¢o b
decodedB frames refer to the | or P frames or both to be decatiedugh motion
vectors. Therefore B and P frames are calledptieelicted frames and | frames are

called thereference frames.

Bidirectional Interpolation

Figure 2.20. Intra (I) and Inter (B and P) frames
(Source: ISO/IEC 13818-2 1995)
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2.2.3.1 Motion Compensation (Motion Prediction)

Motion compensation method aims to find similardi® between consecutive
frames by searching each block of inter frame (pted frame) in the reference frame
(Stiller and Konrad 1999).

Encoders search for predicted frame blocks in egfeg frame that results in the
closest match, then subtracts the found referetaxk lrom the one in the predicted
frame for which the search is done. This is cabfmtk-based motion compensation
The block size is generally constant (16x16 in MPEGhowever it is also possible to
use variable block sizes to define an object moceirately (Chan, et al. 1990).

When the closest match found, the motion vectorcatculated and the
difference block is transformed and coded. The #@mo code least amount of
information for the predicted frame in order to iavle least possible bit-rate for the
encoding. Motion vectors are two dimensional vectitvat point to the block in the

reference frame which is closest to the currentlblo the predicted frame.

reference frame predicted frame

search area M x M

] nxn

| predicted block
nxn

reference block

Figure 2.21. Motion search for predicted block

2.2.3.2 Motion Search Algorithms

Motion search algorithms (Jamkar, et al. 2002) ose of different possible
matching criterions such as SAD (Sum Absolute Déifees), MAD (Mean Absolute
Difference) or MSE (Mean Square Error) to find thest match. Among various
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criterias, SAD is the most popular one. For a blatke of 16x16, the criterias

mentioned can be defined as;

16 16
SAD =) > | Byedi, )~ Bui, ) | (2.13)
i
16 16
MAD = (1/256)) )| Byedi, i) = Bei 1 ) | (2.14)
o
16 16
MSE = (1/256) D ( Byedi , ) — B, i) )* (2.15)

J

Firstly, an arbitrary block is selected from seaeska at the reference block
according to a searching algorithm. Comparing akgible candidate blocks in the
search area is known &dl motion search. If the search area is the reference frame,
that is all blocks in the reference frame will lbsted to find the best matched one, then

it is called agylobal motion search.

select an uncompared
block from the search area
in the reference frame

=~

predicted block —>| subtract blocks

difference block

-

SAD or MSE
result yes
~d
.
res < SAD% false are there any™~_ no selected reference
res < MSEmin uncompared block and
A “._ blocks? / motion vector
h AN

N
true
SADmin = res

MSEmin = res

Figure 2.22. Full motion search
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Generally all of candidate blocks in the searclaame not tested, since it is not
a very efficient. Most motion search algorithms pame only a part of all possible
blocks in the search area. Generally the sizé@fsearch area is selected as 32 x 32
pixels. In MPEG-1-2, motion search is realized 8yng macroblocks(16x16) of luma
frame(Y). A separate motion search for chroma fis(tdeand V) is not computed.
Instead, the same vector that is computed for lumacroblock is used for
corresponding U and V macroblocks. If color encgdiormat is YUV420, the
coordinates of motion vector found for Y macroblaeklivided by 2 to find the motion
vectors of corresponding U and V blocks. In thdofelng motion search algorithms
(Turaga and Alkanhal 1998), for demonstration pagsoit is assumed that searched

block size 8x8 and search area is 16x16.

2.2.3.2.1 Three Step Search

Three step search is a very widely used searchitiligosince its simplicity and
performance. Firstly, a step size is set such@geds. This step size shows the distance

of firstly selected candidate blocks to the cenfesearch area.

selected block in 1st Step
-~

&ﬂf gl
«& o .- selected block in 2nd Step

L

&
-
o

16 pixels o "

™ ~ selected block in 3rd Step

=
-

. shows center of candidate & x 8 block

A~
~J

16 pixels

Figure 2.23. Three-step search (initial step sige :

At each step, SADs (Sum of Absolute Differences)¥aandidate blocks (one

is at center and others are at the main and inéén-tirections) are computed, and the
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block with the minimum SAD is selected as the ceptsition for the next step and the
step size is halved. This step is repeated urdiktep size becomes smaller than 1. The
selected block with the minimum SAD at the laspssethe matched block.

2.2.3.2.2 One At a Time Search

One at a time algorithm, as the name implies, parkes candidate block at each
comparison step. This is a very simple and effectblock based motion search

technique.

16 pixels

shows center of candidate 8 x 8 block
o the number in the middle shows the
step number
O shows the block with minimum SAD
at the indicated step

VARS
~J

16 pixels

Figure 2.24. One at a time search

This algorithm tries to find the block with minimu®AD on the horizontal
direction at first. So, three blocks on the horizbrdirection about the center of the
search window is selected as first candidateddflilock with the smallest SAD is at
the center then the vertical search begins.

Otherwise, the search continues in the directiothefblock with smallest SAD
while the next candidate block in this directiors b smaller SAD than the current
block. So, going on the same direction if the nextdidate block has a larger SAD,

then horizontal search is ended and vertical sdaggins from this point.
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Vertical search works in the same manner with lootial search, so the firstly it
is decided to go upward or downward according ® $ADs. And after one of either
directions is selected, the search in this directontinues until a block with larger
SAD is found.

2.2.3.2.3 Logarithmic Search

This algorithm is very similar to TSS (Three Stega&h) and was introduced at
the same time with TSS. Although this algorithmuiegs more steps than the TSS, it
can be more accurate especially when the searafowiis large (Turaga and Alkanhal
1998).

o the number in the middle shows the

step number

16 pixels
P 0"¢"¢: shows center of candidate 8 x 8 block

é_ d O shows the block with minimum SAD
at the indicated step

A~
~

16 pixels

Figure 2.25. Logarithmic search

Firsty a step size is initiated as in TSS. At eatdp, SADs (Sum of Absolute
Differences) for 5 candidate blocks (one is at eerdand others are at the main
directions at the distance of selected step sime)camputed, and the block with the
minimum SAD is selected as the center positiorttiernext step. If the positon of best
match is at the center, then the step size is talviéhis step is repeated until the step

size becomes equal to 1. When the step size becbnadksthe nine block around the
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center are chosen for comparison and the best atthemg is picked as the required
block (Turaga and Alkanhal 1998).

2.2.3.3 A New DCT Based Motion Search Criteria

Classical motion search algorithms, as discusdeavea uses SAD (Sum
Absolute Differences) or MSE (Mean Square Erroijeda to find the best match.
However, both of these methods do not automatiggligrantee the least coefficient
count for the currrent block. There is no direefation between the SAD or MSE

metrics and the number of DCT coefficients to beecb

select an uncompared
block from the search area
in the reference frame

=

predicted block ———>| subtract blocks

difference block

)

count non-zero

DCT coefficients
result
N yes
.
result <\ are there any™. no selected reference
) false block and
min. coeff. *._ uncompared ock an
\\ count . blocks?/ motion vector
N AN
true‘
min. coeff. count

= result

Figure 2.26. Full motion search with DCT based imiatg criteria

Instead, the proposed method directly uses the aundd quantized dct

coefficients as a measure of block matching. Tieshod guarantees the least count of
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DCT coefficients to be VLC encoded. Each time tlherent block in the predicted
frame is compared with a block in reference frathe, number of quantized DCT
cofficients are found by subtracting both blocikking DCT of the result and applying
the quantization. The block in the reference fraiim&t gives the least number of

guantized DCT coefficients is selected and its arotiector is calculated

2.3. The Structure of Media Streams

What a media player does is roughly saying convgmnedia bit stream into real
life audio and video signals. So, understanding hanedia bitstream is generated has a
critical importance before starting to design a mgdiayer. And for the same reason the

aim of this section is to introduce the structurenedia streams briefly.

3 audio out
media bitstream — Player

———> video out

Figure 2.27. Media player as a black box

A media bitstream contains one or more element@eass of video and audio,
as well as other data. A typical media stream iseggted by multiplexing audio and
video bitstreams into one single bitstream. The/grlaeads media bitstream as input
and generates audio and video from that bitstrézefore going on to the design of
media player, analyzing the structure of the mdaliatreams will provide better
understanding.

Media bitstream is generated by an encoding systRith is composed of one or
more encoders and a multiplexer as seen in thed-28. Raw (as they are captured)
audio and video streams go through the audio addovencoders respectively. The
encoder encodes raw stream and feeds the encosednsto the multiplexer. Each
feeded bitstream to the multiplexer can be calledetementary stream” as in MPEG

standard. Then, elementary streams are packetimbd packet header is generated for
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each packet. The packet header shows the chastictefieach packet, such as the type
(video, audio, etc), presentation or decoding tohelementary stream unit that the said
packet conveys (Shibata, et al. 1995). In otherdwjoreach elementary stream is
packetized with specific headers to the elemensirgam and to the packet itself.

Multiplexer combines these packets into one sibgkiream and also adds information

such as how many elementary streams are multiplaxedtiplexing rate, maximum

required buffer size after de-multiplexing, typetbé elementary streams or the clock
reference.

audio encoded audio stream
raw audio stream encoder

. multiplexed stream
m clock multiplexer P
N
video
raw video stream | encoder | encoded video stream

Figure 2.28. The encoding system that generategsarbédtream

Data packs that convey the information related wite multiplexing can be
thought as a layer which can be called as systgar ks in MPEG streams (Hemy, et
al. 1999). Elementary stream packets composeferetit layer, called compression
layer, which lies beneath the system layer as setre Figure 2.29.

System layer and multiplexing method describes ainat format of the media
stream. Container formats aim to multiplex one arenelementary streams into one
single bitstream. For instance, assume that thexeveo elementary streams, one is
audio and the other is video that is the most comoase. Firstly, audio and video data
are captured by distinct devices, and then encbgeseparate encoders as seen in the
Figure 2.28. If it would possible to capture andorel audio and video as a single
signal, obviously, multiplexing will be unnecessary

An other important point is the difference betweecording way of the audio and
the video, that is, video is not very coarsely si@egompared to audio. Video data is
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composed of sequential pictures which are capt@®80 times per second, hence
gives an impression of continuity. So while playwdeo stream, each picture stays on
screen about 30-40 milliseconds. However these esgi@l pictures seems like
continuous to us because of sampling rate of oes end incredible interpolating
capability of our brains. Pictures, can also béedahs frames, are the key units for the
video recording process. Audio signals are recomedh shorter intervals producing

audio frames. Either audio or video encoders work frame based manner.

System Packet

| J | SYSTEM LAYER

conveys information
about how the stream is
multiplexed

:l COMPRESSION LAYER

.+" elementary stream packet -, .- ‘elementary stream packet"-.

encoded audio stream |
7

encoded video xtreaml /

packet headers specific
to the elemantary streams that
the packet conveys

Figure 2.29. The layers media bitstream

The most challenging issue in multiplexing is htavmaintain synchronization
between audio and video streams (Blakowski andh®ietis 1996). Audio and video
synchronization is achieved by injecting timingamhation such as presentation time,
reference clock, and time interval between seqakfriames into multiplexed stream
(Tryfonas and Varma 1999). The details of audio a0 synchronization will be

given in the further sections.

2.3.1. Container Formats

Container formats are designed to contain and gon&gous types of multimedia
elementary streams, generally compressed by st@iaddrencoders.
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There are various container formats some of whioé @ore suitable for
streaming of media and some of which are more deitéor trick modes and local
storage. Container formats add an overhead tosile. So same content in different
containers may have different file sizes.

Generally container formats suitable for streamadds more overhead because
they are designed to be more error resilient. Goataformats have the capability to
hold many type of audio and video streams, as aglbther media streams. However,
some container formats may be dedicated only fa& type of stream such as audio
stream containers like WAV (short for Waveform), &l (Audio Interchange File
Format) or XMF (Extensible Music Format).

2.3.1.1. MPEG-2 Containers

ISO/IEC 13818 which is also known as MPEG-2 codstandard has 11 parts
(Table 2.1) currently. First part, ISO/IEC 13818also known as system part, describes
MPEG-2 container which explains synchronization amaltiplexing of one or more
elementary streams such as audio and video, or d#ta into one single stream (Gall
1991). Although, containers described in MPEG-2t darISO/IEC 13818-1 1994)
typically convey MPEG coded video or MPEG codediaustreams, it is also possible
to multiplex elementary streams coded with othenwmn encoders such as h264, ac3

by using MPEG-2 containers.

Table 2.1. Parts of the MPEG-2
(Source: ISO/IEC 13818-1 1994)

ISO/IEC 13818-1 Systems

ISO/IEC 13818-2 MPEG-2 Video

ISO/IEC 13818-3 MPEG-2 Audio

ISO/IEC 13818-4 Conformance testing

ISO/IEC 13818-5 Software simulation

ISO/IEC 13818-6 Extensions for DSM-CC

ISO/IEC 13818-7 Advanced Audio Coding (AAC)

ISO/IEC 13818-8 Video, extension to 10-bit input symbols

ISO/IEC 13818-9 Extension for real time interface for system decsde
Conformance extensions for Digital Storage Median@and

ISO/IEC 13818-10 and Control (SSM-CC) )

ISO/IEC 13818-11 Intellectual Property Management and ProtectioVi(p
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The burden of program stream headers to overa#itbiis minimal, however it is
not enough error resilient for communication pugsodence, it is used as a container
format for storage purposes such as in DVDs. Thgram stream is also more suitable

for realization of trick modes than transport stnea

2.3.1.1.1. MPEG-2 Program Stream

MPEG-2 program stream is a very commonly used aoertdormat. The name of
an ordinary MPEG program stream file ends with .theg, .mpeg or .vob extension.
ISO/IEC 13818-1 describes program stream as “arsti@efinition which is tailored for
communicating or storing one program of coded daid other data in environments
where errors are unlikely, and where processingysfem coding, e.g. by software, is a
major consideration (ISO/IEC 13818-1 1994).” Peogrstream is as stated before

more suitable for storage purposes, since not eesdient for communication.

Table 2.2. Syntax of pack header
(Source: ISO/IEC 13818-1 1994)

Syntax Number of
bits
pack_start_code Ox000001BA 32
‘01 2
system_clock_reference_base [32..30] 3
marker_bit 1
system_clock_reference_base [29..15] 15
market_bit 1
system_clock_reference_base [14..0] 15
marker_bit 1
system_clock_reference_extension 9
marker_bit 1
program_mux_rate 22
marker_bit 1
marker_bit 1
Reserved 5
pack_stuffing_length 3
for(i=0;i<pack_stuffing_length; i++){ 8
stuffing_byte }
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MPEG-2 program stream is composed of packs andepaclPacks convey
packets in their payloads. In order to demultigbeggram streams as shown in Table
2.2, firstly a pack header must be found. Each peader starts with a 32 bit pack start
code 0x000001BA which is used to identify a packdes Table 2.1. The pack size is
variable and the size of the pack is written inphek header. In VOB files each pack is
2048 bytes. “Program streams may be either fixechaable bitrate. (ISO/IEC 13818-1
1994)” Bitrate of program stream can be calculdigdusing multiplexing rate and
system clock reference (SCR) values in pack header.

Packets, which are conveyed in the payloads of gpacke generated by
packetizing encoded elementary streams. Hence {sathieg are described in MPEG-2
specification are known as Packetized Elementarga8t (PES) packets. “Transport
streams and program streams are each logicallytrooted from PES packets”, so PES
packets can be used as basic units while conveftnragsport Stream to Program
Stream or vice versa. Each PES packet consistalpfome type of elementary stream.
PES packet header gives information about the eleanestream such as whether it is

audio or video and its encoding type, presentaimhdecoding timestamps, etc.

Table 2.3. Demultiplexing Program Stream
(Source: ISO/IEC 13818-1 1994)

Syntax Number of
bits
MPEG2_program_stream(){
do{ pack() } 32
MPEG_program_end_code}
pack(){
pack_header()
while (nextbits() = = pack_start_code_prefix) Variable
{ Length

PES_packet();
}

}

After packet header is readed according to theelald, then payload or in other
words, bytes until the next pack header are stase®ES packet content. Then, PES

packet header is read and payload of PES pacfesdsto the appropriate decoder.
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2.3.1.1.2. MPEG-2 Transport Stream

MPEG-2 transport stream container is also descrilhé8O/IEC 13818-1 system
part and is designed to be convenient for transpamboses, hence used in broadcast
applications such as DVB and ATSC.

PES packets are key structures for both of MPEQatoers. So, converting
transport stream to program stream or vice versabeadone by using PES packets.
Transport streams are composed of packets which&®dytes in length and has a 13-
bit packet id (PID) number that identifies the petcks shown in Table 2.3. Transport
Stream can convey one or more program contentsufiplaxed in a single bitstream.

Table 2.4. Syntax of a Transport Stream packet
(Source: ISO/IEC 13818-1 1994)

Syntax Number of
bits
sync byte 0x47 8
transport_error_indicator 1
payload_unit_start_indicator 1
transport_priority 1
PID 13
transport_scrambling_control 2
adaptation_field_control 2
continuity counter 4
if ( adaptation_field_control ==10" ||
adaptation_field_control = =11’ ) Variable
adaptation_field() Length
}
if ( adaptation_field_control =='01" ||
adaptation_field_control = = ‘11"
for (i=0;i<N;i++){
data_byte 8
}
}

One program content is composed of one audio aedvimieo elementary stream

in general. However there can be other elementaryams such as audio for

36



multilanguage support or subtitles, etc. in a @nglogram. Each elementary stream has
a unique PID, so an elementary stream is extraayedbtaining the packets with this
unique PID.

The Program Map Table (PMT) is also one 188 hgesport stream packet that
shows the PIDs of the elementary streams for afgppeogram. PMT tables have also
unique PID numbers and these pid numbers can baceed from Program Association
Table (PAT) packet. PID of a PAT packet is mustzbe and is constant and same for
all transport streams, however PID of PMT tabled by the way PID of elementary

streams are not predefined and must be read fromad PMT tables.

2.3.1.2. Audio Video Interleaved (AVI)

The Microsoft Audio Video Interleaved (AVI) is amar very common container
format (Zimmerman 2003), and actually it is a spkzation of Resource Interchange
File Format (RIFF) which is composed of packets$echlists or chunks. Chunks are the
simplest units and have a 4-byte identifier in homa@adable form such as “avih” or
“idx1” and 4 byte chunk size. Lists can be commisé lists or chunks and start with
“LIST” characters and the 4 byte identifier anché byte list size as seen in the Figure
2.30.
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Figure 2.30. Graphical Representation of AVI camaiformat
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CHAPTER 3

THE PROPOSED MEDIA PLAYER

3.1. The Design of the Media Player

The presented player in this thesis has a moduathhaavily multithreaded design
that makes it more maintainable and scalable. &« e the Figure 3.1, a streaming
media player is composed of buffers which are shara concurrent processes
(threads) and modules which are responsible tizeealspecific task such as demuxing,
decoding, etc.

[\'idcu frame
Video Decoder PTS
4 decoded video fifo | [ Video Renderer

~
/:eads
system clock @J(— 0
’ updates @

A

0 decoded audio fifo Audio Renderer
Audio Decoder | audio frame
|

N

Bitstream e
Reader &
=

"5'&%
PTS

INPUT MODULES ‘ DECODER MODULES ‘ OUTPUT MODULES

Figure 3.1. The design of the media player

3.1.1. Multithreaded Design

Playing a media stream requires implementatioraskd such as reading media
stream from network or a storage device, de-meltiplg read media stream into its

elementary streams, decoding de-multiplexed eleangnstreams and rendering
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decoded elementary streams. As seen in the Fig@re&h task has its own thread,
therefore tasks are running continuously and indegetly. Each task reads input data
from a circular buffer and writes to another cierubuffer after processing it. So,
implementation of a task can be done in any walif compatible with the read and
write interfaces of these circular buffers. Thiske® the abstract implementation of
tasks possible and the design gains modularitythEtmore delay in a task can be

compensated by circular buffers between the salddad its dependent tasks.

_ () video (7 video
decoder renderer

media stream reader demultiplexer
source O. O \

() audio
decoder

() audio

renderer

(o)

symbols circular buffers
D circular bufter I+ input buﬂe_r -
2 : demuxed video buffer
3 demuxed audio bufTer
O thread loop ) .
4 : decoded video buffer
I:l core module 5 : decoded audio buffer

Figure 3.2. Threads and circular buffers of theppsed streaming media player

Since playing audio is a continuous process, ittrbesdone within a dedicated
thread. Audio driver of the system may implemeid thread internally, so a dedicated
thread created by the application programmer maynmecessary. Although, realizing
said tasks serially without using dedicated thraagsossible, it requires a tight timing,

and therefore this design is more convenient fak trsne operating systems.

3.1.2. Modules

The presented player uses modules to realize thereel tasks in order to play a

media stream. A module is implementation of a tagskh as decoding video, de-
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multiplexing media stream, etc. Modules have prieéefinterfaces for input and output
parameters. Therefore modules can implement taskmy ways according to these
interfaces. This hides details of implementationthaf task by a module from the other
modules that uses the said module.

The modules can be divided into 2 parts as; cordubes and plug-in modules.
Core modules use plug-in modules to realize a 8peask such as mpeg decoding. For
instance video decoder module is a core module whges mpeg decoder module to
decode mpeg coded streams. Therefore mpeg decooldulenis a plug-in module
which will be linked to video decoder core modufethe video is mpeg coded.
However, if the video is coded with another encoslesh as h264, then h264 decoder

module will be linked to video decoder core modasgea plug-in module.

3.1.3. Circular Buffers

There are five circular buffers used in the propoarchitecture shown in Figure
3.2 which have the same functionality and structure

« Input Buffer is between the reader and the detpileker module. It conveys
read data from reader to the de-multiplexer.

* De-multiplexed video data buffer is between tkentultiplexer and the video
decoder thread. It conveys the de-multiplexed arwb@ed video data pack and a PTS
value assigned to this pack.

* De-multiplexed audio data buffer is between tleentlltiplexer and the audio
decoder thread. It is used to store de-multiplexted encoded audio packs with PTS
values attached.

» Decoded video data buffer is between the videxmder and the video renderer.
It holds the decoded video frame packs with PT8asl

* Decoded audio data buffer works between the adeicoder and the audio

renderer. It conveys the decoded audio frameslaidRTS data.

3.1.4. Thread Synchronization on Circular Buffers

For each of the circular buffers, the same probdemerges; a thread produces and

adds data pack to the circular buffer and anotheyatl consumes and gets data pack
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from the circular buffer. Two different threads magcess the same buffer at the same

time or the buffer may be completely full or empibhis problem is called “the

producer-consumer problem” or “bounded buffer peafil. One should avoid the

access of different threads at the same time,te®producer thread when the buffer is

full or stop the consumer thread when the bufferempty. Proposed design for

streaming media player requires sharing of datar auecular buffers between

simultaneous tasks as graphically reprensentetyatd=3.3.

/_Qa\write pos

thread

read pos w
3

thread

Figure 3.3. Producer - Consumer problem for cinchigfers.

In presented player, this problem is solved by gi$imo semaphores and a mutex

for each of circular buffers. Writing to and reagliinom same position at the same time

is prevented by using a mutex.

Table 3.1. The pseudo code for producer consunoéigm

11

initializations

#define PACK_CNT 10

full_smphr = init_smphr(PACK_CNT, PACK_CNT);
empty_smphr = init_smphr(0, PACK_CNT);
data_mutex = init_mutex();

/I producer
Wait_for_available_slot(full_smpr);
Get_mutex(data_mutex);

Add_pack();

Release_mutex(data_mutex);
Increment_available_slot(empty_smphr);
/[ consuner
Wait_for_available_slot(empty _smpr);
Get_mutex(data_mutex);

Get_pack();

Release_mutex(data_mutex);
Increment_available_slot(full_smphr);
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Assume that the function prototype to initialize aemaphore is
init_smphr(available_slot_num, max_slot_num), tkie® pseudo code in the Table 3.1
can be written as solution to producer-consumelblpro.

Selecting reasonable sizes for the circular buffeedso an important issue. In the
computation of the size of the de-multiplexed videdfer one should make sure that
the total duration of de-multiplexing, decoding gmesentation of a frame must not
exceed 1000 / fps milliseconds. For example, fatideeo stream with 25 frames per
second, sum of de-multiplexing, decoding and prasiem must not exceed 1000 / 25 =

40 milliseconds.

de-multiplexing + decoding + presentation <= 100§/f (3.2)

Above inequality also enforces following inequality

decoding < 1000/fps; (3.2)

Assuming the worst case, in which decoding take80fPs milliseconds, de-
multiplexing will continue to fill circular bufferSo, if bitrate of video stream is B kbps,
then FIFO buffer will be filled with B fps Kbits. his is the worst case, so we can

compute the size of de-multiplexed video FIFO hudfging the following formula:

dmxd_vid_cbuf_size = video_bitrate / fps; (3.3)

Size of the de-multiplexed audio circular buffendse computed by applying the

same methodology. If playing an audio frame takesilNseconds, then

dmxd_aud_cbuf_size = audio_bitrate * N /1000 (3.4)
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Most of the system memory is used by decoded vailenlar buffer, because a
pack in the decoded video circular buffer is congaosf a decoded video frame and a
PTS value. The memory required to save a decod#ebvirame is very large when
compared to the decoded audio frame, encoded widencoded audio frame.

Size of the memory to save a decoded frame (in Y2OVdolorspace) is 1.5 *
frame_width * frame_height bytes. In order to usemmory efficiently, the buffer
required to save a decoded frame pack is alloda¢éare saving each decoded frame
and is de-allocated after the decoded frame isepted. So if there are no decoded
frames in the decoded video circular buffer, theoded video circular buffer will not
take any memory.

Pack count for the decoded video and audio cirdoldfers can be set to unity;
since it is more reasonable to store audio or vidames in de-multiplexed circular

buffers before they are decoded.

3.2. How the Player Works

The media player processes media bitstream in ¢odgenerate audio and video
output. This process includes following steps;

* Firstly, reader module must be selected accortirije stream source

» Secondly stream type must be identified.

* Thirdly stream must be demultiplexed with a progemuxer.

« Demultiplexed elementary streams must be decbggoper decoders.

* Lastly, decoded streams must be rendered withepreenderers without losing

lip-sync between audio and video outputs.

3.2.1. Deciding Appropriate Reader Module

The presented player aims to access a variety wices such as Ifs (local file
system), http, mms, udp, rtp, rtsp, rtcp, dvb, dett. Therefore, a distinct reader
module must be implemented for each protocol. Hammore, each reader module must
be used via a predefined common interface; hereettiner modules in the player will

be unaware of which reader module is selected btua
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For this reason, a core reader module is implerdemteich is the common
gateway to the reader modules. Selected readerlenadube used via this core reader
module as seen in the Figure 3.4.

It is not necessary for a reader module to supgbfeatures written in common
interface. For instance, seek feature while readiignot be supported for dvb, udp or
rtp. Because these protocols are not suitableckek speration.

Selection of the appropriate module can be dongadbging the filename or by a
parameter which is given by the user. For instaificke filename is started with http://,
then http reader module will be selected. Additlynaiser can enforce the player to

select a specific reader module via command lingraphical user interface.

LIFS READER

. Ifs  open
- Ifs_read
L Ifs_seck
- Ifs _close

CORE READER
MODULE

read HTTP READER

http__ open
http_read
http_seeck
http__close

LV READER

udp  open
udp  read
udp close

Figure 3.4. Core reader module and plug-in readstutes

3.2.2. Inspecting Stream Type

In order to start playback of a media stream, thggr must detect features of this
stream. At first container type must be detectellhddigh filename extension of a
media stream usually shows its container type sschvi, ts, mov, mpg, etc., deciding
container type by just according to the extens®mat a proper way. So, it is also
required to scan stream to find unique symbolsiipg¢o the container type to be sure
that the stream’s container type is what the ext@nshows if there is a filename

extension. Otherwise, inspecting of the stream wolhtinue until its container type is
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detected. If the player cannot find container tygethe stream, it will return that
playback is failed because of unknown containee typ

For instance, transport streams are usually nam@udextension ts. or trp. after
they are recorded. So, if the extension of the nah@media file is ts or trp, it will be
rational to check stream if it is really a trangpiream at first. For this reason, distinct
features of a transport stream from other contaiym¥s must be known. That is a trans-
port stream is composed of packets with 188 bynelsesach packet has a sync byte as
first byte which is equal to 71 in decimal, so atp# the stream can be scanned to
check if this policy is valid.

The amount of the stream required to detect coastaype is variable for different
container types. However, scanning more stream giwié more accurate results in
general.

The container type is the first required data &pett the media stream, after the
container type of the stream is found, it is pdssib gather information like how many
elementary streams that media stream includes,odec types of the elementary
streams. For this reason, according to the contéype, headers that give information
about the elementary streams of that media streasst e found. The place and
structure of these headers is distinct for eacliatoer type. For instance, for avi format
this information can be found just at the starthef stream, however for mpeg streams it
may require to scan stream for a while to reachr¢qaired headers.

Encoding types of the elementary streams must bedfat first to be able to
select appropriate decoder modules for decodingyelmeral, this information can be
found at the system layer, that is container typ¢éhe media stream, however it also
requires checking elementary stream is really eedwdth the encoder that is written in
system layer.

For this reason, the media stream must be de{texgd for a while until a part
of the elementary stream is extracted. It is attechpo decode the extracted elementary
stream by the decoder offered in the headers ofaswer. If it is decodable then the
offered decoder is selected as decoder moduleyvaiee the other decoder modules
that-the player supports tried until the proper anéound. If an appropriate decoder
cannot found, the player returns that the playhadkiled because of unknown codec
type.

If the media stream includes video elementary siretis also required to inspect

frame rate and frame size in width and height al$ ageits codec type. However, said
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features of the video stream may not be found enctintainer headers. In that case, the
features of the video stream must be extracted thanvideo elementary stream which
requires de-multiplexing of the media stream taaottthe video elementary stream.

The frame size is required to allocate decodedédrhaifers and to initialize video
renderer module. Video rendering and video decou®tule also requires frame rate of
the video stream which will be used when assignargvalidating presentation
timestamps of the decoded video pictures to proaidmooth playback.

If the media stream includes audio elementary stréiais also required to inspect
channel count, sampling frequency as well as itkecdype. However, said features of
the audio stream may not be found in the headetheofcontainer. In that case, the
features of the audio stream must be extracted themaudio elementary stream which
requires de-multiplexing of the media stream taaottthe audio elementary stream.

In general, the media players include a streameictsp module which inspects
and gathers all of the required data before th# staplayback. However, the presented
player does not include a discrete stream insp@actatule. Instead required information
is gathered as the media stream flows through th@ures which makes inspection of
media stream rather faster and does not requioen@lex stream inspector module.

As discussed above, to gather information suchrasd size for video or
sampling rate for audio may require de-multiplexargl decoding media stream for a
while in a discrete stream inspector module. Tleegfthe stream inspector module
needs de-multiplex and decode capability for aetgrof containers and codecs which
increases the complexity of the inspector module.

As seen in Figure 3.5, inspection and gatheringfalequired data is not realized
by a single module. When data reach to the de-phetter core module, it tries to find
out the container type of the media stream, simopgy de-multiplexer plug-in module
will be selected according to the container.

After container type is found, demultiplexer maglldegins to realizing its task
without need of any other information about the rmaestream. Video decoder core
module waits for buffer number 2, the de-multiplexéll extract elementary video
stream to this buffer. If stream reached to videcodler core module it first tries to
inspect stream to find out the codec type of thilewistream.

After codec type found, the video decoder core utodalls the proper decoder

and decoding loop begins. After the decoding offitse frame we know the frame size,
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and frame rate precisely. Therefore, we can imgalthe video renderer after the
decoding of the first frame.

Features of the audio elementary stream are estradtthe audio decoder core
module with the same way. If media stream contaimg one elementary stream, for in-
stance if there is no audio in the media stream bikffer 3 will never be filled, so the
audio core decoder module will never be startedifersaid media stream.

So as seen in the Figure 3.5, the required datspected at where it can easily be

gathered which makes stream inspection simplefastdr.
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Figure 3.5. Stream inspection as the media stré&ams through modules.
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3.2.3. Demultiplexing

As discussed in the previous section, the struabfirtne media streams, media
streams are composed of one or more multiplexedesieary streams.

The media streams are multiplexed in various waligchvare defined by their
container type. The presented player aims to p#ipous media formats such as avi, ts,
mpg, mp4, mov, etc. and each of these containendts require a distinct de-
multiplexer implementation. Furthermore, there musta common interface for these
various container formats, so the demultiplexeeguopdule can be linked to the proper
demultiplexer plug-in module which performs the ddtiplexing for a specific
container format via this common interface. So,dtieer modules of the player will be
unaware of the actual demultiplexer plug-in modaed will interact only with the
demultiplexer core module which is already linkedthie actual demultiplexer plug-in
module.

At first, demultiplexer core module tries to findpopriate demultiplexer plug-in
module by analyzing data that it takes as inputerAthe proper plug-in module is
selected, the core module starts a demultiplexdmgad which has a demultiplexing
loop that calls get new packet() continuously. getv_packet() returns new
demultiplexed packet and its features. (e.g. asdio or video, does it have presentation
timestamp? etc.)

Demultiplexer core module has its own thread rugnand it continues to
demultiplex while one of demultiplexed output buéfébuffer 2 and 3 in the Figure 3.5)
is not full. Other-wise demultiplexer will wait fothe relevant decoder to decode
demultiplexed packs. However this is not a dest@utlition in the case of live streams,
because it will cause overflow and hence data $osse

3.2.4. Decoding

There are various video and audio compression fiersiech as MPEG1/2 video,
H.264, DivX for video and MPEG audio, ac3 for audi@ch compression format, i.e.
encoding method, requires a distinct decoder. Tiesgmted player aims to support
various audio and video codecs. Therefore the ptedeplayer has decoder plug-in
modules, each of which implements a different coddtere are two decoder core
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modules in the presented player, one is for audibthe other is for video. The decoder
core modules provide a common interface for decptigy-in modules.

Decoder modules also have their own threads, awmdditley continues while
relevant demultiplexed circular buffers (with thenmber 2 and 3 in the Figure 3.5) is
not empty or relevant decoded data circular buf{ensh the number 4 and 5 in the
Figure 3.5.) is not full.

For instance, the video decoder module reads edoadeo data and a PTS value
from demultiplexed video data buffer 2 in Figur®.3When the decoding of each frame
is completed, last read demultiplexed pack’s PTI8eves assigned to this frame and the
frame is stored in the decoded video data bufiarigure 3.5. However, not all frames
have a PTS value read from the bitstream. For $wahes, PTS value is computed

from the old pts values and frame rate using theviing formula:

New_ PTS =0OId_PTS + 1000 / frame_per_seconds; (3.5)
Old_PTS = New_PTS; (3.6)

The video decoder core module, firstly tries toedetcodec type of the
demultiplexed video stream that it reads from tineutar buffer 2 in Figure 3.5. After
the codec type is detected, the proper video decptlieg-in module is selected
accordingly. Then, the video decoder core modulartssta loop that calls
video_decoder_decode continuously. This functiothés main decoding function that
must be implemented by each video decoder plug-amuie. It hides most of the
complexity of decoding process and provides a snapld efficient interface to interact
with the decoder. It is required that the videoatkss plug-in module operates on a
frame-by-frame basis to be compatible with the dmeoder module.

For instance, the C like pseudo code in Table B®vs the video decoder core
module that calls video decoder plugin module loap. VideoDecoderContext is the
structure that holds information about the decodi&o stream such as hor_size,
ver_size or frame_rate. Except codec_id and midata, all of the members of this
structure must be set by the decoder plug-in modRierate data is a generic void
pointer argument. It is set to non-NULL only if tlikecoder in use needs a private

argument not specified by the other fields.Sinceoders and hence decoders, work
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with YUV frames VideoFrame is the structure thatdefined to hold the luma and

chroma components of the decoded frame.

Table 3.2. The interaction between the core angling-in video decoder modules.

bool decode loop()
{
unsigned char * demuxed_video_start;
unsigned int demuxed_video_size;
int got_video_frame;
VideoFrame video_frame;
VideoDecoderContext video_context;
DmxVideoCircularBuffer_read(&demuxed_pack);
demuxed_video_start = demuxed_pack.data;
demuxed_video_size = demuxed_pack.size;
while (demuxed_video_size > 0)
{
decode_byte cnt = video_decoder_decode( &videuderth
&video_frame,
&got_video_frame,
demuxed_video_start,
demuxed_video_size);
if (decoded_byte cnt < 0)
printf(“Error at video decoding.”);
if (got_video_frame)
{
DecVideoCircularBuffer_write(video_frame);
}
demuxed_video_start += decoded_byte_cnt;
demuxed_video_size -=decoded_byte cnt;
}
return true;
}
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Video decoder core module should transfer a newlchaf input data that is
buf_ptr in the following prototype, to the decodey the video_decoder_decode
function as seen in Table 3.2. VideoDecoderComteay be updated by the de-coder
plug-in module, therefore transferred as a point€he size of the given coded data
chunk must be given to the decoder plug-in modude ®y using buf_size. Video
decoder plug-in module will continue to decode giveput coded data until a frame is
decoded or end of buffer is reached. If decodeg-plumodule achieves to decode a
frame with given buffer, decoded frame will be reed in structure named
VideoFrame, and got_video_frame will be set to.tReturn parameter of this function
will show how many bytes consumed from the buf_ptrgot video frame is true, i.e.
a frame is successfully decoded; the return vaduebe less than buf_size. Other-wise
it must be equal to buf_size which means all oegibuffer chunk is consumed and no

frame is decoded.

3.2.5. Rendering

Implementation of the video output is platform degent. For instance, directX
library can be used on Windows, where directfbseduon Linux. Moreover, SDL can
be used for both of these OS. Furthermore, theng lmeamany options to implement
video rendering on a single platform. Thereforeg thresented player has video
rendering plug-in modules each of which uses andistendering library that can be
accessed via a video renderer core module.

Implementation of the audio output will also befetling from platform to
platform. And there also be many ways to implemandio rendering on a single
platform such as ALSA and OSS on Linux. Therefanggio renderer plug-in modules
can be implemented for distinct libraries. Eachiaudnderer plug-in module must be
implemented according to the common interface @efiby the audio renderer core
module.

The Renderer core modules have their own threadsing. Audio renderer core
module has a great importance in providing intanchyonization, since it sets and
updates system clock according to the PTS valuesudio frames and when writing
data to the audio driver’s buffer blocking 10 medhaust be used.
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Video renderer core module displays the video fawxording to the frame rate
by using PTS values and the system clock whichpdated by the audio renderer
periodically to maintain intra and inter synchratian.

In fact, the presentation of video frames by thaewirenderer may not always be
with a constant framerate, instead a fine adjustrmreithe frame rate can be done to
ensure synchronization between server and clieplicapions with-out introducing a
perceptible distortion.

For example, for a video stream with 25 fps frartesrthe presentation duration
of each frame must be 40 milliseconds. Howevemrseof live streams, this value may
need to be greater or smaller than 40 millisecdadsrovide synchronization between
server and client applications.

Furthermore, to keep video in sync with audio, sondeo frames may be
presented longer or shorter than normal. Gener#llgse adjustments need not be
applied very often, and the adjustment is done iwith certain limit so that the

smoothness of video playback is not lost.

3.3 Synchronization

Synchronization problems can be divided into twaegary: audio-video
synchronization problems which is also called asaisynchronization and server-client

synchronization problems which is also known asrisynchronization.

3.3.1. Audio-Video Synchronization

Audio-video synchronization is one of the most Erading issues in media
player architecture design. This is due to the tlaat audio and video data are captured
by distinct devices, and then encoded by separeteders as seen in the Figure 3.6. If
it would possible to capture and record audio ai@gos as a single signal, obviously,
there will be no synchronization problem.

If audio and video would be transferred throughfedént channels without
multiplexed and delays because of en-coding or rélgoroperty are ignored, it would
be easier to play audio and video in synchronimatitowever, obviously total time for

encoding, decoding, transporting of audio and viskeeams will not be equal. As seen
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in the Figure 3.6., if dA is the time differencetleen an audio frame is captured and
played, and dV is the time between a video frameaptured and showed, then

synchronization can be provided if and only if dfequal to dV.

|
dh = time between apdio in and out
- -

|
|
| ‘ —
audio audio
- | _
audio in _| capture & encoder decoder & player o audio out
davice device |
| |
| |
| video video |
video in  capture & encoder dacoder & player —— video out
T PEE
device device

dV = time between video in and out

! |
- "
I |

Figure 3.6. Synchronization of audio and videoasecof separate channels.

However, if the audio and the video stream are ipiaked into one single
bitstream at encoder or server side as seen ifrithee 3.7, then multiplexed stream
will be send over one single channel to the clientdecoder side where it will be
demultiplexed to the audio and the video strearhs. dhannel between the encoder and
the decoder system can be thought as a storageedeviwell as any network link. The
encoding and the capturing duration of the audid e video streams are not equal,
therefore the multiplexer must follow a strategy nake it possible for the player
system to play audio and video in synchronization.

There are two widely known strategies used in rpl@iking for the sake of audio
video synchronization. First strategy is to noteegng times of the video and the audio
frames to the recording system. Each of the auddbthe video frame can be attached
with a timestamp that shows their capture timeuAlty, the capture timestamps can be
thought as the presentation times of frames, heallted as presentation timestamps.
So, the presentation timestamps are assigned acgdalthe recording system clock,
which is generally referred as the system clocle pbsition and order of the audio or
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video frames on the multiplexed stream does not aeg timing information. Instead,

timing and synchronization is achieved throughubke of time stamps inserted into the
multiplexed stream by the encoding system. Them®st (audio and video PTS) must
be correctly used to attain a perfectly synchrashigeesentation. The use of these PTS

values in a proper way is up to the media player.

|dA1 = duration for | |dA2 = doration for |
|
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Figure 3.7. Synchronization of audio and videoasecof single channels.

The second strategy is simpler but not conveni@ntransporting over networks.
Since the frame rate is constant during the videmence, the time interval is equal and
constant for two consecutive video frames. Audim@ieng rate which shows how
many audio samples must be played in a secondasaatonstant value. So, instead of
attaching a presentation timestamp to each fraime sampling rate of the audio stream
and the frame rate of the video stream can betat¢o the headers of the multiplexed
stream as in avi containers. The presentation immilliseconds) of each frame can be

calculated by using the frame rate and frame nuravén the following:

time interval = 1000 / frame rate 3.7)
PTS of ith frame = start_offset + (i x timeantal ) (3.8)
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First pts of audio or video can be a non-zero valuether words, pts values of
the first audio and first video frame can be nataqSo, if the pts value of the first
frame is not zero, then this value can be usedaats sffset in calculation of pts values
of later frames as in the above formula.

The presented player requires a pts value for eledoded (video and audio)
frame which can be obtained from multiplexed streaman be calculated by using the
frame rate as in the above formula. The player absuires a master clock in
milliseconds resolution which will show the curré¢ime in player domain. The system
that the player works on must already have a ctbhek works at least at milliseconds
resolution. Therefore the rate of the system clmaok be used as reference for the master
clock. So, there will be an offset between the mrastock and the system clock. In
other words the master clock can be calculatedtmmg by adding this offset to the
system clock.

Audio must be played continuously. Playing of audioealized by feeding the
buffer of the audio driver. In the conventional hats, the audio frame is feeded to the
audio driver’s buffer if the audio frame’s pts valis equal to the player’s master clock.
Then the audio driver begins to play this buffdneiie are critical problems which arise
mainly from playing audio due to the fact that audriver, as well, has its own clock.
Thus, the time required to play an audio frame ddpen the audio driver’s clock rate.
Assume that an audio frame begins to play on ti# time according to its PTS value.
If audio driver’s clock rate is faster, the playiofjthe audio will be finished early, so
next audio frame will not be played just after poe¢ audio frame. There will be
perceptible gaps (silence) between audio framesil&@ly, if the audio driver’s clock is
slower, then the audio frame will be played longed again there will be perceptible
distortions. Because, the audio driver has its @latk and the clock rate of the
player’s audio driver’s clock may not be equalhle encoding system’s audio driver’s
clock. Conventional player’s solve this problemdsgpping or duplicating audio frame
which causes perceptible defects.

However, there is another known solution of thi®hbem. In this solution
method, audio driver's buffer is feeded with thextnaudio frame when just after the
playing of current audio frame is completely firesh So, audio pts values are ignored.
Obviously this will prevent gaps or overwritingsowever synchronization between
audio and video will be lost by the time. Becauséhé audio driver’'s clock rate is

faster, audio will begin to playing before corresgimg video frames. Otherwise audio
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will be late for corresponding video. Thereforeyg rate of video is must be updated
according to the playing rate of audio.

Audio driver’'s buffer is set to blocking io acce$®, audio driver will prevent
overwriting, and any write request will be waitedtil the driver’s buffer become
empty. If the audio driver’s buffer is empty nexiting audio frame is feed to the said
buffer, and pts value of this frame is assignednaster clock. As discussed above,
master clock is some offset plus system clock;etloee actually this offset will be
updated.

Audio driver’'s buffer is set to blocking io acce$®, audio driver will prevent
overwriting, and any write request will be waitedtil the driver’'s buffer become
empty. If the audio driver’s buffer is empty nexiting audio frame is feed to the said
buffer, and pts value of this frame is as-signednaster clock. As discussed above,
master clock is some offset plus system clock;etfoee this offset will be updated.

Indeed we have three independent clocks to ree@beillore ensuring a seamless
playback, first the players system clock, secoral éhcoders time stamps which are
assigned according to the encoder’s clock and thicaudio drivers own internal clock.

Another problem with the audio is the delay whidtwrs just before playing an
audio frame because of the initialization of thdialbuffer. Due to this delay, an audio
frame which is planned to start playing at timewil| be played after a delay, at time T
+ dt. So, this dt value that shows delay that nigstaken into account to reach an

accurate synchronization.
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Figure 3.8. Relation between players’ clock and@tichestamps
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Figure 3.8. describes the relationship betweenthihee clocks. The horizontal
axis is the player's clock PSC, the vertical agighe PTS values received from the
stream. The points on the horizontal axis t1, m2represent the times that the audio
driver asks for a new audio sample. The differdmetgveen the successive points (tn-tn-
1) is nearly constant. Instead of dealing with delio drivers clock directly, it is more
useful to know the t values for our purpose. Thera first order relation between the
PTS values and the PSC.

PSC = ?*PTS + X (3.9)
? = (t1-t2) / (PTS2-PTS1) (3.10)
x = offset (3.11)

From Figure 3.8, it is understood that the raténofease in PTS values may not
necessarily follow the rate of increase in systémek; due to the obvious fact that the
player system and encoder system have two indepemystem clocks, that is, the
slope of the line in Figure 3.8 may not exactlylbd herefore, in calculating the offset
value X, this must be taken into account. Instdaatoepting the initial offset value x =
tl — PTS1, the exact offset value can dynamicadlycomputed each time a new PTS

value is read from the stream by the equation §3.12

offset = x = t1 — (PTS1 * (t1 — t2) ) / (PTSPFS1) (3.12)

By using the equations above, we indeed couplemheoders clock to our actual
player clock through a first order relation. Usitis relation, we first convert the PTS
value of a frame to a new time value and if thisiganatches with the players clock we
present the frame. The coefficients in the aboweatgns will be dynamically updated
each time a new PTS is received resulting in a nameurate synchronization as
playback continues.

There is another thing that the Figure 3.8 andath@&ve relations hint. This is the

fact that audio drivers clock is the master sinaehetime the audio driver asks for a
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new sample, we feed it and all other things inclgdiideo presentation follows this as
slaves. For instance, if the pts value of the flestoded video frame is equal to the
master clock it will be showed. Since master clsckpdated by audio driver, and video
player uses master clock to compare video framhkgske audio and video will be
synchronized. This is natural because in a meaighbpick system audio is most delicate
part to handle as it must be perfectly continuous.

3.3.2. Server-Client Synchronization

There is an increasing demand on the transmissfomexlia streams over
networks, particularly on the Internet (Garnerakt2006). Streaming servers (Abdel-
Baki 2003) send the data at a prescribed averagerdte. This average data rate is
maintained by scheduling algorithms (Jarmasz aratgamas 1997).

Early media players for decoding audio and vidgucglly required that the entire
content be downloaded on the local computer beatweeplayer starts playing. Recent
players began to support streaming capabilitiebuliffering some data and starting to
play before the entire content has arrived. Ifdag rate of the incoming media stream
is not sufficient, the player pauses and contirtagday when its buffer is filled again.
Buffering also compensates for jitter in the channe

The main challenge is smooth playback of audio Issortized with video under
varying network conditions without buffer overfloar underflow. This is mainly
accomplished by adjusting the playback rate acongrdo the server’'s clock rate
(Garner, et al. 2006). The previous methods usedcomplish this task are given in the
Appendix A.

The presented streaming media player dynamicalpngés its playback rate
according to varying network conditions for contms and smooth playback of
streaming media (Guo, et al. 2001). The player aflgnplays at an original data rate
defined by stream parameters. When input packats tst arrive faster or slower, the
player does not stop to rebuffer, generates a dtatle based on the difference between
the server’s clock value and the player’'s clockuealand adjusts the player’s clock
value based on the generated clock state. Audob st unchanged as it is slowed and

video frame rate is slowed as necessary.
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The proposed streaming media player varies theafateitput of the mentioned
media stream from the mentioned output device suensmooth playback of audio and
video together, based on the clock state value,reiiethe speed change varies

according to the formula (3.13):

s =m (SC(t) — PC(t)) / (SC(t) — SC(t-1)) @.1

where s is the speed up or slow down ratio witlpeesto the original speed; m is the
maximum allowable slow down ratio with respect e wriginal speed; PC(t) is the

player’'s clock value at sampling time t; and S@&the server’s clock value at sampling

time t.
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Figure 3.9. Prior art: conventional streaming mqulégyer and streaming server

Figure 3.9 describes the prior art, including andéad streaming server 101, a
network communication link 102, and a standardastieg media player 103.

In a standard streaming server 101, audio, videbaodiner inputs are input to the
streaming server through the capture devices. dnFigure 3.10, audio capture device
104 and video capture device 105 are shown. Thsilgescapture devices which may
be present in a streaming server may not be limidexidio and video. In this preferred

embodiment, only audio and video are shown budiit lse generalized to other capture
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devices as well. Audio data captured by 104 is settie audio encoder 106, and video
data captured by 105 is sent to video encoder @02ricoding. Encoded media data
such as audio and video are multiplexed by theipleter device 108 which also gets
the server’s clock value from the server’s clock.10

The multiplexed media stream output by 108 is sewmér the network
communication link 102 to a streaming media play@3.

200
212 214 218
audio audio :
audio
% decoder speed d
. renderer
device r controller
210 211
] . 216 \L
| & input demultiplexer | | clacks PLAYER's
buffer device ] comparator 219 clock
video video vidao
% decoder speed R
device controller
213 215 219

STREAMING MEDIA PLAYER

Figure 3.10. Proposed streaming media player

A standard media player buffers the media strearthéynput buffer 110 and the
media is passed to the demultiplexer device 1llmudplexer device 111,
demultiplexes the different media streams and réaglserver’s clock value. Two of the
outputs of the demultiplexer device 111, namelyi@uwhd video, are illustrated. The
demultiplexer updates the player’s clock 112 witke server’'s clock value. Encoded
audio and video outputs of the demultiplexer devidd are input into the audio
decoder device 113 and the video decoder device Dédoded audio is sent to the
audio renderer 115 and decoded video is sent teide® renderer 116.

Figure 3.10 describes the proposed method usebeirstteaming media player
103. 201 is the clocks comparator device which cmepthe server’s clock value and

the player’s clock value and generates a clocle stalie. The amount of data transfered
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from audio decoder device 113 to the audio rendgtér is controlled by the audio
speed controller 202. The amount of data transfémed video decoder device 114 to
the audio renderer 116 is controlled by the audeed controller 203.

The clock state value generated by 201 is inptlhéoaudio speed controller 202
and the audio speed controller 202 updates theeptaglock 112. The video speed
controller 203 gets the updated player’s clock gals input.

The player’s clock speed will be varied accordiaghe clock state generated by
the clocks comparator 201. Particularly, the playedock speed may be varied

according to the formula 3.14:

s =m (SC(t) — PC(t)) / (SC(t) — SC(t-1)) @1

In the formula 3.14, s is the speed up or slow roatio with respect to the
original speed; m is the maximum allowable slow daatio with respect to the original
speed; PC(t) is the player’'s clock value at sangptime t; and SC(t) is the server’'s
clock value at sampling time t.
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CHAPTER 4

THE IMPLEMENTATION

The presented player is implemented on Linux bpgi§t language and compiled
with GCC-4.0 compiler. The presented player can doenpiled on any Linux
distribution installed with required libraries. Theqquired libraries are as the following;

Ffmpeg is an open source codec library (or framework) clvhincludes
libavcodec, libavformat, libavutil and libavdevies sublibraries. This library is used
for decoding and demuxing purposes. It has numerige® and audio decoders, and as
well as container parsers. Most of the supportetec® by ffmpeg are licensed with
LGPL (Lesser General However Public License). Hamvesome codecs may require
GPL (General Public License). In order to use tresiecs, the ffmpeg library must be
compiled with GPL licence option enabled. The mdifierence between GPL and
LPGL is with a LPGL licence it is not required talgish the code that uses library
unless it modifies the LPGL licenced code. Howetee, code that uses GPL licenced
library must be published even if the GPL licentibrhry is not modified.

SDL (Simple Direct Media Layer) is also an open souibeary designed to
access low level hardware such as audio, videdydayl, mouse, etc. This library is
used to render and print-to-screen decoded vidsares.

ALSA (Advanced Linux Sound Architecture) provides audlimctionality of
Linux operating system. This library is used tdimaaudio rendering and playing.

There are other libraries which can be used as swth asOSS for audio
rendering,V4AL for video renderinglibmpeg?2 for MPEG-2 video decodindipbnemesi
for RTP and RTSP readingipcurl for HTTP reading,libomms for MMS reading
Modular structure of player makes it possible te adibrary instead of other. So, for
demuxing, video decoding, audio decoding, videodeeimg and audio rendering
purposes it is possible to integrate any librarpleyer with a little work. The required
interfaces that will be used for integration wil given in the further sections.

In order to provide a graphical user interfacésipossible to us&TK-2.0 or
WxWidgets. The presented player is suitable to use as aaltame application or as a
C library after making slight modifications to thaginal code.
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4.1. Implementation Modules

Implementation modules are implemented as sepd&tatiles designed to
accomplish some peculiar tasks. The implementationost important modules will be

given in the further subsections. The completedishodules is given in the Table 4.1.

Table 4.1. The implementation modules

Module Name Module’s Task

vesplayer.c provides access functions of the player

ui.c provides a terminal shell as user interface
resource_reader.c| hides details of reading fronouaresources.

demuxer.c hides details of parsing various containe

decoderv.c used for decoding encoded video elemesti@ams
decodera.c used for decoding encoded audio elergesttaams

outv.h interface to print decoded pictures to stree

outa.h interface to play decoded audio samples
synchronizer.c provides audio-video synchronization

reader_file.c used by resource_reader to read rsediam from file
buffer.c buffer's common features implemented is thodule
reader_http.c used by resource_reader to read reedam from http
reader_mms.c used by resource_reader to read steehan from mms
reader_rtsp.c used by resource_reader to read isteeigan from rtsp
outv_sdl.c accessed via outv to print decoded p@stwith SDL library
outv_v4l.c accessed via outv to print decoded pestwith VAL library
outa_alsa.c accessed via outa to play decoded sandtiples with ALSA
outa_0ss.c accessed via outa to play decoded santiples with OSS
decv_avc.c used by decoderv to decode encoded sideams by ffmpeg
deca_avc.c used by decodera to decode encodedstngdions by ffmpeg
buf_admx.c circular buffer between demuxer and@ddicoder
buf_vdmx.c circular buffer between demuxer and @idecoder
buf_adec.c circular buffer between audio decoddraaio renderer
buf_vdec.c circular buffer between video decoderddeo renderer
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4.1.1. The Ul Module

Table 4.2. The Ul module: player's main function

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

int main(int argc, char *argv[])

{

vbool ret;

/l handle the cmd line arguments
ret = ui_handle_cmdline(argc, argv);
if (argc > 1 && ret == vfalse) weh EXIT_FAILURE;

if (Is_mediafile) {
printf("You must specify media filena via -f...\n");
return EXIT_FAILURE;

ret = Vesplayer_init();

if (ret I=vtrue) {
printf("Failed to initialize vesplaya");
return EXIT_FAILURE;

s_stream.pb_completed = s_handle_playliiacshed; // callback of media-play completed

s_stream.pbc_args = NULL; /I args
s_stream.filename =s_mediafile; /l mediafile to play
s_stream.subtfile = s_subtfile; // optional subtitle file
S_sStream.pipename = s_pipename; // optional pipename
s_stream.layout.x =s_x_loc; /I xloc of screen
s_stream.layouty =s_y loc; I/ yloc of screen
s_stream.layoutw =s_width; // intended screen width
s_stream.layout.h =s_height; I/l intended screen height

ret = Vesplayer_start_playback(&s_stream)
if (ret == vfalse) {
printf("Failed to play the media.”)}n
Vesplayer_terminate();
return EXIT_FAILURE;
}
ui_init();
Vesplayer_wait_playback();
ui_finish();
return EXIT_SUCCESS; }
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The ui module is a simple implementation of usgerface that allows user to

control player via a terminal or console. The nfainction of the application which is

implemented in the Ul module is given at Table #2stly command line arguments

are parsed, user specified options such as filenaoneen position, etc. are initialized at

line 6.

The player is initialized at line 14. Then theusture that holds stream’s features

is initialized at lines 20-28. The Stream structhodds all required information about

media bitstream during playback. The definitiortro$ structure is given at Table 4.3.

Table 4.3. The stream structure

typedef struct

{
vbool initialized;
vbool include_audio;
vbool include_video;

} Stream;

vbool

vuint16 demuxer_id;
vuintl6 video_PID;
vuintl6 audio_PID;
vuint32 duration;
vsint32 extension;
vsint32 trick_mode;
vsint64 last_video_pts;
Audio_Stream audio;

Video_Stream video;

Layout layout;

char *filename;  // media file

char *subtfile;  // optional suthdifile
char *pipename; // optional pipere

vplaycompleted pb_completed; // playback catgul callback

void

include_subtitles;

*pbc_args; // and its argumtse

The Stream structure holds Audio_Stream and Vidgea8 structures which

hold features of the audio and video streams. Hrarpeters defined in Audio Stream

and Video Stream structures are initialized wheeytlare detected by the related
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modules. For instance, the size of the decodedingids set by the video decoder
module when the first picture is decoded. The d&fim of Audio_Stream and

Video_Stream structures are given at Table 4.4.

Table 4.4. The Audio_Stream and Video_Stream strast

typedef struct
{
vbool fullscreen; // layout
vuint32 xpos;
vuint32 ypos;
vuint32 width;
vuint32 height;
} Layout;

typedef struct

{
vuint8 layer;
vuint8 channel_cnt;
vsint32 codec_id;
vuint32 sampling_freq;
vuint32 size;
vuint32 duration;
vuint32 bitrate;
vuint32 microsecs_per_frame;
float timebase;

} Audio_Stream;

typedef struct
{
double height;
double width;
vsint32 codec_id;
vuint32 hor_size;
vuint32 ver_size;
vuint32 duration;
vuint32 bitrate;
vuint32 microsecs_per_frame;
double timebase;
Frame_Aspect_Ratio aspect_ratio;
} Video_Stream;
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In the main function of the player at Table 41 playback is started in line 30.
“Vesplayer_start_playback(&s_stream);” functionates a playback thread as seen in
Table 4.6. User interface which allows user to tngmmmands such as pause, resume,
stop, etc. is initialized in line 37 at Table 4.ZThen Vesplayer_ wait_playback();
function in line 38 causes main function to wait floe termination of playback thread.
When the playback ends ui_finish() function is edland the application is finished.

4.1.2. The Vesplayer Module

This module realizes the control mechanism of pleyer and provides an

interface to control player as seen in the Talde 4.

Table 4.5. Vesplayer: playback control interface

vbool Vesplayer_init();

vbool Vesplayer_start_playback(Stream *a_stream);
void Vesplayer_stop_playback();

void Vesplayer_terminate();

void Vesplayer_slow_motion();

void Vesplayer_fast_motion();

void Vesplayer_fast_forward();

void Vesplayer_fast_backward();

void Vesplayer_normal_playback();

void Vesplayer_pause_playback();

void Vesplayer_seek(vsint32 a_seek_step);

void Vesplayer_seek_to_time(vsettotime seek_to )time
vsint64 Vesplayer_get_current_playtime();

vbool Vesplayer_playback_completed();

vbool Vesplayer wait playback();
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Vesplayer_start_playback() function creates a makbthread and this thread
spawns other required threads in order to playastreuch as demuxing thread, video

thread, audio thread as seen in the following T4lge

Table 4.6. The playback thread

Vbool Vesplayer_start_playback(Stream *a_stream)

pthread_create(&s_thr_playback, NULL, s_playyac stream);
return vtrue;

}

static void* s_playback(void *args)
{
vbool succeed = vfalse;
s_stream = (Stream *) args;
s_terminated = vfalse;

[/ init the buffers

succeed = Buf_Admx_init(); if ('succeed) return vfalse;
succeed = Buf_Adec_init(); if ('succeed) return vfalse;
succeed = Buf_Vdmx_init(); if (lsucceed) return vfalse;
succeed = Buf_Vdec_init(); if (Isucceed) return vfalse;

Demuxer_find_stream_info(s_stream);
pthread_create(&s_thr_dmxer,  NULL, Demuxismux, s_stream);

if (s_stream->include_video){
pthread_create(&s_thr_dec_vid, NULL, Deadtielecode, s_stream);
pthread_create(&s_thr_playerv, NULL, Playeplay, s_stream);

}

if (s_stream->include_audio) {
pthread_create(&s_thr_dec_aud, NULL, DecAddecode, s_stream);
pthread_create(&s_thr_playera, NULL, Playgrlay, s_stream);

}

s_stream->initialized = vtrue;

do{
usleep(1000);
succeed = Vesplayer_playback_completed();
if (succeed == vtrue) break;

} while (s_terminated == vfalse);

s_finish_threads();
s_stream->initialized = vfalse;

RReader_free();
Buf_Input_free();
Buf_Adec_free();
Buf_Admx_free();
Buf_Vdec_free();
Buf_Vdmx_free();

I/l vplaycompleted callback function is calledem playback is completed: only if not null!
if (s_stream->pb_completed) {

s_stream->pb_completed(s_stream->pbc_args);
}

return O;
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As seen in the Table 4.6 s_playback is threadtiomavhich firstly initializes
circular buffers then starts demuxer, decoder alayep (renderer) threads. After
initializations are completed successfully, the ptetion of playback is checked in loop
every 1 milisecond (1000 microseconds). Vesplayayhack completed() function
checks the end of playback as seen in the Tablewheén the playback is completed,
loop is breaked and then all threads are termiratedbuffers are released.

Table 4.7. Checking end of playback

vbool Vesplayer_playback_completed()
{

if (s_stream->include_video)

{
if (PlayerV_completed())

if(PlayerA_completed())

printf("video and audio complet&g)
else

printf("video completed\n");

return vtrue;

}
}

if (s_stream->include_audio)

{
}

/I to be on the safe side
return vfalse;

return PlayerA_completed();

If the stream contains video, which is detectedhwlie start of demuxing, then
whether the video player (renderer in other worthsad terminated or ended is
checked by PlayerV_completed() function as seen time Table 4.7.
Vesplayer_playback_completed function returns tmwbich means playback is

completed when audio or video renderer threadsangpleted. The renderer threads
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can be completed because of two reasons; firstsotmination of playback by user’'s
stop playback command and the other is reachiegdoof stream.

4.1.3. The Buffer Module

The buffer module creates the circular buffersavhare used to transfer data
from one thread to another. The buffer module hagreric implementation, so all
circular buffers use this same implementation whendifferent parameters. The circular

buffer is initialized as seen in the Table 4.8.

Table 4.8. Initialization of circular buffer

Vbool Buf_init(VBuffer *buf, vuint32 a_frame_countuint32 a_frame_size)
{
[/ init flags
buf->read_terminated = vfalse;
buf->write_terminated = vfalse;
buf->is_protected = vtrue;
buf->frame_amount =a_frame_count;
buf->frame_size = a_frame_size;
buf->look_at pos =0;
buf->frames =0;

/I init the buffer controller
buf->ctrl.rd_pos =0;
buf->ctrl.wr_pos =0;
buf->ctrl.item_cnt = 0;

/I init the buffer controller semaphores
if (sem_init(&buf->ctrl.full, 0, 0) < 0) return vfalse;

/[ initially all are empty, thus count is buframe_amount
if (sem_init(&buf->ctrl.empty, 0, buf->frame_amnt) < 0)

{

return vfalse;

}

/I allocate buffers if wanted
if (buf->frame_size > 0)

buf->frames = (char *) malloc(buf->framezesi* buf->frame_amount);

if (buf->frames == 0)
VERR(("can't get memory for buf->frarkie3);
return vfalse;
}
}

return vtrue;
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Buf_Init function takes three parameters as inpuf; parameter is the handler
for the buffer, frame count shows the item numbet the buffer holds and frame size
shows the size of each item.

Each buffer basicly has two ports: one for readamgl the other for writing.
Because each circular buffer conveys data betweenhreads. In all cases one of these
two threads is producer and the other is consumer.

For instance if this circular buffer is betweeneaddecoder and video renderer
threads, video decoder thread works as producerpatsl decoded video pictures to
circular buffer, and video renderer module workscasasumer and gets the decoded
picture from circular buffer to print on screen.

So, producer thread always writes to circular @uéind consumer thread always
read from it. Each circular buffer has two flagattehows the status of its producer and
consumer threads. The write_terminated flag oftiéer show if the producer thread
that write the data is still active or not. Thedeerminated flag shows the status of the
reader thread.

These flags are very important in providing syndiwation between threads.
Because, for example if the write_terminated flagruie, that means producer is ended
because of end of stream or an error and will maewo buffer anymore. So when the
all of items in the circular buffer is consumed gypducer, it will check whether the
procuder thread is active by using write_terminafied). If the writer thread is
terminated, then there is no need for the prodtleezhd to wait anymore for the new
data and it can terminate itself.

The threaded modules: demuxer thread, audio dedbdead, video decoder
thread, audio player thread and video player thiedacys read from one buffer and
write to another one. So, there is no direct comoaiion between a thread and the
other. This provides abstraction between threadstda possible to change a writer (or
reader) thread with another if it produces samd kihdata.

For instance, MPEG-2 video decoder thread is éewthread for the decoded
pictures circular buffer and it can be changed WIREG-4 video decoder thread
without need of any change. Because both decodets same kind of data (decoded
pictures) to the decoded pictures circular buffend so for the video player thread
which reads from this circular buffer, the identitfithe writer thread (video decoder) is

unimportant. The read and write functions of th#dyus given in Table 4.9.
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Table 4.9. Read and Write functions of the circilaffers

Vbool Buf_read(VBuffer *buf, char *a_copy_to_menmuint32 a_size)

{

}

I return false if the read buffer is termirchte (write buffer is terminated and it is empty)
if (buf->read_terminated || (buf->write_terntiee && buf->ctrl.item_cnt == 0))
return vfalse;

if (buf->is_protected)
sem_wait(&buf->ctrl.full);

/I copy the data
memcpy(a_copy_to_mem, buf->frames + (buf->tripos * buf->frame_size), a_size);
buf->len = buf->length[buf->ctrl.rd_pos];

/[ update the buffer controller
buf->ctrl.rd_pos++;

buf->ctrl.rd_pos %= buf->frame_amount;
buf->ctrl.item_cnt--;

if (buf->is_protected)
sem_post(&buf->ctrl.empty);

return vtrue;

Vbool Buf_write(VBuffer *buf, char *a_write_this,unt32 a_size)

{

/I if the read buffer is terminated, there @ need to write
/I so check both the read and write buffethefy are terminated
if (buf->write_terminated || buf->read_termiedy

return vfalse;

if (buf->is_protected)
sem_wait(&buf->ctrl.empty);

/Il copy the data
memcpy(buf->frames + (buf->ctrl.wr_pos * bufraifine_size), a_write_this, a_size);
buf->length[buf->ctrl.wr_pos] = a_size;

I/l update the buffer controller
buf->ctrl.wr_pos++;

buf->ctrl.wr_pos %= buf->frame_amount;
buf->ctrl.item_cnt++;

if (buf->is_protected)
sem_post(&buf->ctrl.full);

return vtrue;
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4.1.4. The Resource Reader Module

The media stream can be stored on a local fileesysdr it can be broadcasted
(or unicasted) over a private network or over Imégrvia protocols such as udp, rtp,
rtsp, http, mms, etc.

The resource reader module provides an abstrabebmeen stream resource
and the rest of the player's modules. For exampleads from local file system by
using local file system reader module and puts st@im to input circular buffer. If the
stream is broadcasted over http, it reads streamsimg http reader module, and puts
read data to the same input circular buffer. Demuxedule is the reader of the input
circular buffer. So, there is no need for demuxeduaie to know where the stream
comes from. The resource reader module is inigdlias seen in the Table 4.11.

The resource of the stream can be detected bingard, or it can be enforced
by using command line arguments. Function pointees used to bind functions of
resource reader to the functions of the spec#i@der module such as rtsp reader
module, http reader module, etc. as seen in thieabl.

The resource reader module is a threaded moduteher words it has its own
thread and reading continues in this thread funatioa loop until the end of stream is
reached or playback is terminated as seen in theeBal0.

Table 4.10. The resource reader module’s threactifum

void * RReader_loop(void *a_params)
{
vbool succeed = vfalse;
vuint32 len =0;
do {
len = Reader_read( (char *)s_pack.dataUNPSIZE);
if (len > 0) {
s_pack.size = len;
Buf_Input_write(&s_pack);
}
} while (Is_terminated);

return O;
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Table 4.11. The initialization of the resource mrathodule

vbool RReader _init(const char *a_name)

{
if(strstr(a_name, "http://") 1=0) {

Reader _init = &ReaderH_init;
Reader_free = &ReaderH_free;
Reader_read = &ReaderH_read;
Reader_rewind = &ReaderH_rewind;
Reader_get filesize = &ReaderH_get filesize
Reader_seek = &ReaderH_seek;

}
else if(strstr(a_name, "mms://[") = 0)
{

Reader _init = &ReaderM_init;
Reader_free = &ReaderM_free;
Reader_read = &ReaderM_read;
Reader_rewind = &ReaderM_rewind;
Reader_get filesize = &ReaderM_get filesize
Reader_seek = &ReaderM_seek;

}
else if(strstr(a_name, "rtsp://*) I= 0)
{

Reader_init = &ReaderR_init;
Reader_free = &ReaderR_free;
Reader_read = &ReaderR_read;
Reader_rewind = &ReaderR_rewind;
Reader_get_filesize = &ReaderR_get_filesize
Reader_seek = &ReaderR_seek;

}
else {

Reader_init = &ReaderF_init;
Reader_free = &ReaderF_free;
Reader_read = &ReaderF_read;
Reader_rewind = &ReaderF_rewind;
Reader_get filesize = &ReaderF_get _filesize
Reader_seek = &ReaderF_seek;

}

return Reader_init(a_name);
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4.1.5. The Demuxer Module

The demuxer module is used to parse media strearainer and extract
elementary audio and video streams. The extraatdob @nd video streams are written
to encoded audio and encoded video circular buffEng@re are numerous container
types such avi, asf, MPEG program stream, MPEGspain stream, etc. So firstly
container type of the stream must be detected &ngclimg specific patterns that defines
the container type. For example, each MPEG tramsgiogam pack is 188 bytes in
length and start with the hex code 0x47. So,if treader is detected with 188 bytes
intervals, that means container type is MPEG trarisgiream.

When the container type is detected, the funcpomters of the demuxer
module are binded to the functions of the demuxedetected container type as in
Resource Reader Module.

The Demuxer Module has its own thread and demusamginues in a loop until
the end of stream is reached as seen in the T&lfte 4

Table 4.12. The thread function of the demuxer n®du

void* Demuxer_demux( )
{
vsint32 ret =0;
vbool succeed = vfalse;
Packet *pkt;
do{
ret = read_demuxed_packet(pkt);
if (ret < 0) break;
s_pack.pts = pkt->pts;
s_pack.size = pkt->size;
memcpy(s_pack.data, pkt->data, pkt->size);
if (pkt->type == AUDIO_ELEMENTARY_STREAM)
Buf_Admx_write(&s_pack);
else if (pkt->type == VIDEO_ELEMENTARY_SHAM)
Buf_Vdmx_write(&s_pack);

} while('end_of buffer && !s_terminated );
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4.1.6. The Video Decoder Module

The video decoder module is responsible for proggdan interface to the
numerous video codecs. For instance, the video d#éecbbrary such as MPEG-2
decoder of the ffmpeg library is binded to this miedwhen the codec type is detected
as MPEG-2. It is assumed that the video decodeariiboperates on a frame-by-frame
basis, which is the most common case, since thlethod simplifies the required
interaction between player and the video decodlenarly and improves the usability of
the library. The video decoder module must beah#ted before decoding. So, firstly
the type of the video codec must be found. Thisrmfation can be extracted during
parsing of the stream’s container type or it canldétected from the headers of the video
elementary stream.

The video decoder module has its own thread, aeadl#itoding continues in a
loop until the end of the stream is reached orlpdai terminated as seen in the Table
4.13. Firstly, demuxed video data is read fromdbeuxed video circular buffer with
the function Buf Vdmx_read(&s_demuxed)as seen in the line 14. The “s_demuxed” is
a structure that is composed of an one dimensiom&bned char array which holds the
encoded video data just read from the circulardyudind an unsigned int variable that
shows the size of the array. The “demuxed_videot’sis an unsigned char pointer
that shows the start of the demuxed video datalcharseen in the line 17. The size of
the demuxed video chunk is assigned to a temphtarfdemuxed_video_size” as seen
in the line 18. Then in a loop actual video dengds implemented as seen in the lines
18-28. This loop continues until all of the demuxadeo data is consumed by the
decoder. Each demuxed video chunk does not hoided humber of encoded video
frame. For instance, when a demuxed video chumkdsessed by the decoder, one or
more video frame can be decoded from that chunk.

The actual video decoding is realized by the fumcbec Video decode as seen
in the line 24. It is a function pointer which ignted to the actual video decoder’s
decode function when the codec type is detected.0dt_Video decode takes the start
address of the demuxed video data and its sizen pheress the demuxed data until a
video frame is totally decoded or all of the dendudata chunk is consumed. If a video
frame is decoded, the “picture_out” is set as 1th®y actual video decoder and the

consumed size is returned.
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Table 4.13. The thread function of the video decodedule

01. void* DecoderV_decode(void *a_params)
02. {

03. vbool succeed = vfalse;

04. wuint8  *demuxed_video_start = 0;
05. wuint32  demuxed_video_size =0;
06. wvuint32 size =0;

07. vsint32  picture_out =0;

08. Video_Frame s_decoded;

09.

10. do

11. {

12. /I read data from the demuxed videodyuff

13. succeed = Buf_Vdmx_read(&s_demuxed);

14. if (Isucceed) break;

15.

16. size =0;

17. demuxed_video_start =s_demuxed.data;

18. demuxed_video_size =s_demuxed.size;

19.

20. /I decode the demuxed video data: dethwideo_start and demuxed_video_size will be upbtlate
21. while (demuxed_video_size > 0)

22. {

23. /I actual decoding

24. size = Dec_Video_decode(&s_video_context, d&soded, &picture_out, demuxed_video_st

demuxed_video_size);

25.

26. succeed = Buf_Vdec_write(&s_dest)d
27. if (Isucceed) break;

28. }

29.

30. [/l update the demuxed video startsirel
31. demuxed_video_start += size;

32. demuxed_video_size -=size;

33.

34. } /7 while

35.

36. }while (!s_terminated);

37.

38. s_free();

39. return O;

40.}

art,

77



4.1.7. The Audio Decoder Module

The audio decoder module is very similar to videzatler module. It is also
responsible for providing an interface to numeroadecs (in this case audio codecs).
For instance, the audio decoder library such as GIREdio decoder of the ffmpeg
library is binded to this module when the codecetyg detected as MPEG audio. It is
assumed that the audio decoder library operatesfaame-by-frame basis, which is the
most common case, since this method simplifieseqaired interaction between player
and the audio decoder library and improves the ilisabf the library. The audio
decoder module must be initialized before decodBw. firstly the type of the audio
codec must be found. This information can be ete¢dhduring parsing of the stream’s
container type or it can be detected from the heagfethe audio elementary stream.

The audio decoder module has its own thread, amdi¢lcoding continues in a
loop until the end of the stream is reached orlpdai terminated as seen in the Table
4.14. Firstly, demuxed video data is read fromdbeuxed video circular buffer with
the function Buf Admx_read(&s_demuxed)as seen in the line 12. The “s_demuxed” is
a structure that is composed of an one dimensiom&bned char array which holds the
encoded video data just read from the circulardyudind an unsigned int variable that
shows the size of the array. The “demuxed_audst’ss an unsigned char pointer
that shows the start of the demuxed audio datakcharseen in the line 17. The size of
the demuxed audio chunk is assigned to a temphlaridemuxed_audio_size” as seen
in the line 18. Then in a loop actual audio dengds implemented as seen in the lines
21-37. This loop continues until all of the demuaaddio data is consumed by the
decoder. Each demuxed audio chunk does not hoixked humber of encoded audio
frame. For instance, when a demuxed audio chupkasessed by the decoder, one or
more audio frame can be decoded from that chunk.

The actual audio decoding is realized by the fmctDec_ Audio_decode as
seen in the line 24. It is a function pointer whistbinded to the actual audio decoder’s
decode function when the codec type is detected.Ddt_Audio_decode takes the start
address of the demuxed audio data and its sizen pioeess the demuxed data until an
audio frame is totally decoded or all of the demtliglata chunk is consumed. If a audio
frame is decoded, the “decoded_audio size” iscsdtdé decoded audio frame’s size by

the actual audio decoder and the consumed sizguised.
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Table 4.14. The thread function of the audio decoaadule

01. void* DecoderA_decode()

02. {
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,

vbool succeed = vfalse;
vsint32 decoded_audio_size ;
vsint32 size =0;

vuint32 demuxed_audio_size = 0;

vuint8 *demuxed_audio_start  =0;

do

{
/I read data from the demuxed audiogouff
succeed = Buf_Admx_read(&s_demuxed);

if (Isucceed)  break;

Il init
size =0;
demuxed_audio_start = s_demuxed.data;

demuxed_audio_size =s_demuxed.size;

/I decode the demuxed audio data: dedhawedio_start and demuxed_audio_size will be update

while (demuxed_audio_size > 0)

{

/l actual decoding

size = Dec_Audio_decode(&s_audio_cont&st,decoded, &decoded_audio_size, demuxed_audit,_|

demuxed_audio_size);

25.
26.
27.
28.
29.
30.
31.
32.
33.
34,
35.
36.
37.
38.
39.
40.
41.}

if (size <0) break;

if (decoded_audio_size > 0) {
s_decoded.size = decoded_auidie_s
/I write data to the decodediabaiffer
succeed = Buf_Adec_write(&s_deszt)d
if (Isucceed) break;

[/l update the demuxed audio staltsire
demuxed_audio_start += size;
demuxed_audio_size -= size;

}

} while (Is_terminated);

s_free();
return O;
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4.1.8. The Video Renderer Module

The video renderer module is used to print decddmues to the screen via a
graphic library such as SDL, directfb, etc. ltaiso possible to integrate any graphic
library to video renderer module. Because videaleeer module defines a common
interface to use video graphic libraries. So, wgta wrapper code to the graphic library
which is suitable with the video renderer modubtigéined interface is enough.

Firstly, video renderer module must initialize thedeo output window. This is
accomplished by the “Video_init” pointer functiorhigh is binded to the actual graphic
library’s init function. This init function takes idth, height, x and y positions of the
video output window as seen at the line 9 in thiel@4.15. The width and height of the
output window is set to the decoded video framatthvand height unless user enforces
some other values. In the case of using enforceahpeters, the video picture must be
scaled automatically by the graphic library talfi¢ picture to the output window. The x
and y positions show the coordinates of the upgiercbrner of the output window. If
there is no user defined parameters, the videcubwindow is positioned to the center
of the screen.

The video renderer module is also a threaded moaitkit has a loop which
prints decoded pictures to the screen accordintgagresentation time stamps defined
by the encoder. The video rendering loop is as sédéme lines 15-38 in the Table 4.15
continues until the playback is terminated or theneo more decoded video pictures in
the circular buffer. Video rendering thread sledpsnilisecond at the start of each
iteration as seen in the line 17. Then if the baoleariable “s_get new_frame” is true,
a decoded video frame is read from the circulafdouidnd s_get_new_frame is set as
false as seen in the lines 19-24. This boolearablriremains as false until the read
frame is printed to the screen. At each iteratcamrent time and the frame show time is
read from the synchronizer module as seen in tles [26-27. If the current time passes
show time of the lastly read decoded video franmee (R9) then it is printed to the
screen with the function Video show picture() asnsen the line 36. And
s_get_new_frame is set as true to read new frapme &ircular buffer at next iteration.
The Video_show_picture function takes the “s_framglcture as input which holds
the decoded YUV picture (as unsigned char buffersyf U and V components) and its
format( such as YUV420, YUV422 etc).
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Table 4.15. The thread function of the video readarodule

01. void* PlayerV_play(void *a_params)

02.{
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41,
42.}

vbool succeed = vfalse;
vsint64 current_time;
vsint64 frame_show_time;
layout = (Layout *) a_params;

/I init the video library
if (Video_init(layout->width, layout->hght, layout->xpos, layout->ypos) )

return O;

s_curr_playtime = 0;
s_get_new_frame = vtrue;
/I start main loop

do

{
usleep(1000);

if (s_get_new_frame) {
/I get decoded video data
succeed = Buf_Vdec_read(&s_frame
if (Isucceed) s_terminatedrue;

s_get_new_frame = vfalse;

current_time = Synchronizer_reagtem_clock();

frame_show_time = Synchronizer_reta/er_clock(s_frame.pts);

if (current_time > frame_show_time)

{
Video_show_picture(&s_frgme
s_curr_playtime = s_fran®s_initial_pts;
if (Is_initial_pts) {
s_initial_pts = s_frapts;
}
s_get_new_frame = vtrue;
}

} while (!s_terminated);

s_free();
return O;
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4.1.9. The Audio Renderer Module

The audio renderer module is responsible for ptayiecoded audio frames by
using libraries such as OSS, ALSA, etc. to accadsalrivers.

Firstly audio driver must be initialized accorditg the audio stream’s features
such as channel_cnt, sampling_frequency, etc. am $e the Table 4.4. This
initialization is realized by the function “Audimit” as seen in Table 4.16.

The Audio renderer module is also a threaded modntkit has a loop which
reads decoded audio frame from circular bufferarnites it to the audio driver’'s buffer
in blocking mode. The blocking mode does not alleviting new data to the audio
driver’s buffer until all of the current data iretibbuffer is consumed. Before audio frame
is written to the audio driver's buffer, its pretaion time stamp is used to set the
player's master clock by the function “Synchroniagrdate _master_clock” as seen in
the Table 4.16.

Table 4.16. The thread function of the audio reedmodule

void* PlayerA_play(void *a_params)
{
vbool succeed = vfalse;

audio_params = (AudioStream *) a_params;

[/ init the audio library
if (lAudio_init(&audio_params))
return O;
do
{
succeed = Buf_Adec_read(&s_frame);
if (Isucceed) break;
Synchronizer_update_master_clock(s_drpts);
Audio_write(s_frame.data, s_frame.size)

} while (Is_terminated);

s_free();
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4.1.10. The Audio-Video Synchronizer Module

This module is responsible for providing audio-wdg/nchronization according
to the proposed method explained in detail at @raptand section 3.3.1. The proposed
method uses audio presentation time stamps to epiyer's master clock. The audio
renderer module calls the function Synchronizeratgdmaster_clock to update the
master clock as seen in the Table 4.17.

The other elementary streams such as video, sJhditt. uses the updated master
clock to compare against their presentation tinaenps. This is accomplished by the

function Synchronizer_read_player_clock as segharable 4.17.

Table 4.17. The audio-video synchronizer module

void Synchronizer_update_master_clock(vsint64 3_pts
{
vsint64 current_time;
struct timeval system_clock;
gettimeofday(&system_clock, NULL);
if (s_initial_pts_set){ // should set thatial or current time?
current_time = system_clock.tv_sec * 100D® system_clock.tv_usec;
s_alpha = (float)(current_time -rstial_time) / (float)(a_pts - s_initial_pts); // set the current time
s_current_time = current_time;
s_current_pts = a_pts;
} elsef
s_initial_time = system_clock.tv_sec00D000 + system_clock.tv_usec; // set the initraét
s_initial_pts =a_pts;
s_initial_pts_set = vtrue; I/l updtte flag
s_current_time = s_initial_time;  sét the current time
s_current_pts = s_initial_pts;
s_alpha =1,
}
}
vsint64 Synchronizer_read_player_clock(vsint64 8) pt
{
vsint64 master_time;
master_time = s_current_time + s_alpha * (Ji@afpts - s_current_pts);
return master_time;
}
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CHAPTER 5

CONCLUSION

Streaming media players have great importance F@w most of digital
entertainment systems such as DVB, DVD playerspuarhandheld devices or even
for PCs. So, quality of a streaming media playeediy affects Quality of Service or
Quality of User Experience. Robustness, supportifermost of stream formats, smooth
playback, scalability, economic usage of systenoue®s and customizable user
interface are important features that define thaityuof a streaming media player.

The proposed streaming media player in this thiegssa modular design which
makes it more scalable and maintainable. It isafta) because new features can be
supported by adding new modules. And it is mairtie because abstraction that
comes with modularity makes it easier to find amdahy bugs or defects.

Smooth playback requires precise audio and vidaolsgnization. The proposed
design employs a precise audio and video synchatarz scheme. This scheme utilizes
audio presentation time stamps to update playeasten clock, resulting in a smoother
and inter-synchronized playback.

Server client synchronization is also importanptovide a smooth playback. The
proposed player changes its playback rate by plathe audio stream with a proper
sampling rate. Because, the sampling rate shows rhany audio samples must be
played in a second and hence defines the playbatk of audio stream whose
timestamps are used to update the master clock.

Rapidly inspection of stream type is also importdrgcause it enables quicker
start of selected digital content so user will wait too much after selected a stream to
open. Conventional media players comprises a dedicgtream inspector module and
when a stream is selected to play, firstly this oledvork once and gathers required
information to play the stream. The proposed methger does not include a separate
stream inspector module. Instead the type of stresamspected as the stream goes
through the modules which makes stream inspectastef than using a separate

module.
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APPENDIX A

RELATED PATENTS

The previous methods used to provide server-cliamd audio-video
synchronization are given in the following US pasen

A.1. US 5,583,652

The title of this patent is “Synchronized, variabfgeed playback of digitally
recorded audio and video.”

The abstract of it is: “Method and system for pdivg user-controlled,
continuous, synchronized variable-speed playbacka gireviously recorded digital
audio/video presentation. The user directly costtbk rate of playback and the audio
and video remains synchronized. The audio is exgmal compressed using the time
domain harmonic scaling method so that the pitchhef audio remains undistorted.
Synchronization is maintained by allowing one cléackserve as the master time clock
for the system. The clocks which can serve as tasten time clock include the audio
decoder clock, video decoder clock and the systeckcThe invention is particularly

useful in multimedia display systems designed spldy MPEG data.”

A.2. US 5664,044

The title of this patent is “Synchronized, variabjgeed playback of digitally
recorded audio and video (continuation of US 5,683)"

The abstract is “Method and system for providingrusontrolled, continuous,
synchronized variable-speed playback of a prewousktorded digital audio/video
presentation. The user directly controls the rdtplayback and the audio and video
remains synchronized. The audio is expanded or oesepd using the time domain
harmonic scaling method so that the pitch of thali@uremains undistorted.
Synchronization is maintained by allowing one cléakserve as the master time clock
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for the system. The clocks which can serve as tasten time clock include the audio
decoder clock, video decoder clock and the systeckcThe invention is particularly
useful in multimedia display systems designed spldy MPEG data.”

A.3. US 6,665,751

The title of this patent is “Streaming media playarying a play speed from an
original to a maximum allowable slowdown proportdiy in accordance with a buffer
state.”

The abstract of it is: “A media player for playisgeaming media is capable of
dynamically changing its play rate according to tmtwork conditions, so as to
compensate for delay packets. The player nomindiys at the prescribed data rate.
When packets are delayed, instead of stoppingldoffer, the player plays the stream
slower. Audio pitch is unchanged as it is slowed &mdeo frame rate is slowed as
necessary. A threshold is set so that slowing dogyond the threshold is not allowed.
Should the buffer contents fall below a prescrib@dimum, the player will then stop

and rebuffer.”
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