

MULTIMEDIA PLAYER IMPLEMENTATION ON
EMBEDDED SYSTEMS

A Thesis Submitted to
the Department of Electrical and Electronics Engineering of

Đzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Electrical and Electronics Engineering

by
Yusuf Engin TETIK

December 2008
ĐZMĐR

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324141523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We approve the thesis of Yusuf Engin TETĐK

Asst. Prof. Dr. Şevket GÜMÜŞTEK ĐN
Supervisor

Asst. Prof. Dr. Mustafa A. ALTINKAYA
Committee Member

Asst. Prof. Dr. Tolga AYAV
Committee Member

 1 December 2008

Prof. Dr. M. Barı ş ÖZERDEM Prof. Dr. Hasan BÖKE
Head of the Electrical & Electronics Dean of the Graduate School of
Engineering Department Engineering and Sciences

ACKNOWLEDGMENT

 First of all, I would like to express my gratitude to Dr. Şevket Gümüştekin and

Dr. Orhan Coşkun for their valuable suggestions, support, guidance and assistance in

preparation of this thesis. Besides, I would like to state my appreciation to my

colleagues, Ahmet Şahin and Yusuf Selçuk Ateşkan, for their valuable suggestions and

support.

 I would like to dedicate this thesis to my family.

iv

ABSTRACT

MULTIMEDIA PLAYER IMPLEMENTATION ON EMBEDDED

SYSTEMS

 There has been a surge in the number of digital audio and video content in recent

years. Advances in the compression and storage technologies and improvements in the

speed of internet connection have enabled widespread use of multimedia content. A

wide variety of devices have been introduced to decode and play these media contents.

Initially designed as a mere voice communication device, the mobile phones nowadays

come equipped with a variety of multimedia capabilities including media players

despite their limited system resources.

 Nowadays, huge servers host dramatically increased audio and video contents.

Users prefer to watch these contents while streaming rather than downloading them

first. So, streaming media players are responsible to present multimedia contents

without annoying interrupts.

 This thesis firstly introduces challenges in design and implementation of a

streaming media player and then proposes solutions. Main challenges are keeping

audio-video synchronization and server-client synchronization and detecting stream

type, handling of multithreaded operations and buffer management. Audio-video

synchronization problem is solved by using audio as master stream. Server-client

synchronization problem is solved by designing a playback mechanism that keeps

synchronization with the server by tuning the playback rate of a streaming media

without losing lip-sync between audio and video. The proposed streaming player also

has a feature of identifying the type of a media stream very rapidly without using a

discrete stream inspector module. The presented design is heavily multithreaded which

is implemented on Linux platform, moreover it is also convenient for and

implementable on any multithreaded platform.

v

ÖZET

GÖMÜLÜ SĐSTEMLERDE ÇOKLU ORTAM OYNATICI

GERÇEKLEŞTĐRĐMĐ

 Son yıllarda sayısal ses ve görüntü içeriğinin sayısı belirgin bir şekilde yükseldi.

Sıkıştırma ve saklama teknolojilerindeki ilerlemeler ve Internet bağlantı hızındaki

iyileşmeler çoklu ortam içeriğinin yaygın bir şekilde kullanılmasına imkan tanıdı. Bu

ortam içeriklerini çözebilen ve oynatabilen geniş bir yelpazede cihazlar tanıtıldı. Đlk

başta sadece ses iletişim cihazı olarak tasarlanan taşınabilir telefonlar, kısıtlı sistem

kaynaklarına rağmen, bugünlerde çeşitli çokluortam içerkilerini oynatabilme yeteneğine

sahip şekilde geliyorlar.

 Bugünlerde, büyük sunucular son derece hızlı bir şekilde artan ses ve görüntü

içeriğine sahiplik ediyorlar. Kullanıcılar, bu içerikleri cihazlarına tümüyle indirdikten

sonra izlemek yerine daha içerik cihazlarına akarken seyretmek istiyorlar. Dolayısıyla,

akan ortam oynatıcıları, çoklu ortam içeriklerini rahatsız edici kesilmeler olmadan

sunmak zorundalar.

 Bu tezde, ilk olarak akan ortam oynatıcı tasarlanmasında ve

gerçekleştirilmesinde karşılaşılan zorluklar ve daha sonra da bu zorlukları aşacak

çözümler öneriliyor. Temel zorluklar şu şekilde sıralanabilir; ses-görüntü eşlemesi ve

sunucu-istemci eşlemesini sağlamak, akan içeriğin türünün belirlenmesi, eş zamanlı

işlerin yönetimi ve bellek yönetimi. Ses-görüntü eşlemesi sorunu ses baz alınarak

çözüldü. Sunucu-istemci eşlemesi sorunu ıse akan ortam içeriğinin oynatılma hızını ses-

görüntü eşlemesi bozulmayacak şekilde ayarlayabilen bir çalma mekanizması

tasarlanarak çözüldü. Önerilen tasarım, akan ortam oynatıcısının ortam türünü ayrı bir

ortam türü tanıyıcı modüle ihtiyaç duymadan çok çabuk bir şekilde tanımasına da

olanak veriyor. Ağırlıklı olarak eş zamanlı işlerden oluşan önerilen tasarım Linux

üzerinde gerçekleştirilmi ş, bununla birlikte eş zamanlı iş koşturabilen henhangi bir

platform için uygun ve böyle bir platformda gerçekleştirilebilir.

vi

TABLE OF CONTENTS

LIST OF FIGURES ………………………………………………………………….... ix

LIST OF TABLES ……………………………………………………………….…… xi

CHAPTER 1. INTRODUCTION …………………………………………………….... 1

CHAPTER 2. VIDEO DE/CODING ……………………………………………...….... 5

 2.1. Structure of Digital Images …......………………………………......... 6

 2.2. Video Compression Techniques …………………………………….. 10

 2.2.1. Pre-Processing …………………………………………………... 12

 2.2.1.1. Pre-Process Filter Example ………………………….…… 13

 2.2.2. Intra Frame Coding (Eliminating Spatial Redundancy).……........ 14

 2.2.2.1. Step by Step Intra Frame Coding (Encoding) …………..... 15

 2.2.2.1.1. Divide Frame Into Macroblocks ………………….. 15

 2.2.2.1.2. Discrete Cosine Transformation (DCT) ………….. 16

 2.2.2.1.3. Quantization ……………………………………….17

 2.2.2.1.4. Zig-Zag Scanning ……………………………........ 18

 2.2.2.1.5. Run-Length Coding ………………………………. 19

 2.2.2.1.6. Variable-Length Coding (VLC) ………………….. 20

 2.2.2.1.7. A New VLC Method …………...………………… 21

 2.2.3. Inter Frame Encoding (Eliminating Temporal Redundancy) …… 22

 2.2.3.1. Motion Compensation (Motion Prediction) ………………. 24

 2.2.3.2. Motion Search Algorithms ……………………………….. 24

 2.2.3.2.1. Three Step Search ………………………………… 26

 2.2.3.2.2. One At a Time Search ……………………………. 27

 2.2.3.2.3. Logarithmic Search ………………………............. 28

 2.2.3.3. A New DCT Based Motion Search Criteria ……………… 29

 2.3. The Structure of Media Streams …………………………………….. 30

 2.3.1. Container Formats ………………………………………………. 32

 2.3.1.1. MPEG-2 Containers ……………………………………..... 33

 2.3.1.1.1. MPEG Program Stream …………………………... 34

vii

 2.3.1.1.2. MPEG Transport Stream …………………………. 36

 2.3.1.2. Audio Video Interleaved (AVI) …………………………... 37

CHAPTER 3. THE PROPOSED MEDIA PLAYER ...………………………………. 38

 3.1. The Design of the Player ……………………………………………. 38

 3.1.1. Multithreaded Design ………………………………………….... 38

 3.1.2. Modules …………………………………………………………. 39

 3.1.3. Circular Buffers …………………………………………………. 40

 3.1.4. Thread Synchronization on Circular Buffers …………………… 40

 3.2. How the Player Works? ……………………………………………... 43

 3.2.1. Deciding Appropriate Reader Module ………………………….. 43

 3.2.2. Inspecting Stream Type …………………………………………. 44

 3.2.3. Demultiplexing ………………………………………………….. 48

 3.2.4. Decoding ………………………………………………………... 48

 3.2.5. Rendering ……………………………………………………….. 51

 3.3. Synchronization ……………………………………………………... 52

 3.3.1. Audio-Video Synchronization ………………………………..…. 52

 3.3.2. Server-Client Synchronization ………………………………….. 58

CHAPTER 4. THE IMPLEMENTATION ..…………………………………………. 62

 4.1. The Implementation Modules .………………………………………. 63

 4.1.1. The UI Module ……………...………………………………..…. 64

 4.1.2. The Vesplayer Module ………………………………………….. 67

 4.1.3. The Buffer Module ………….………………………………..…. 70

 4.1.4. The Resource Reader Module .………………………………….. 73

 4.1.5. The Demuxer Module ……….………………………………..….75

 4.1.6. The Video Decoder Module …………………………………….. 76

 4.1.7. The Audio Decoder Module ...………………………………..…. 78

 4.1.8. The Video Renderer Module ...………………………………….. 80

 4.1.9. The Audio Renderer Module ..………………………………..…. 82

 4.1.10. The Audio-Video Synchronizer Module ...…………………….. 83

CHAPTER 5. CONCLUSION ……………………………………………………….. 84

viii

REFERENCES ……………………………………………………………………….. 85

APPENDICES

APPENDIX A. RELATED PATENTS ………………………………………………. 89

 A.1. US 5,583,652 ………………………………………………………. 89

 A.2. US 5,664,044 ………………………………………………………. 89

 A.3. US 6,665,751 ………………………………………………………. 90

ix

LIST OF FIGURES

Figure Page

Figure 1.1. Embedded OS sourcing trends ……………………………………………... 2

Figure 2.1. Aliasing in video films ……………………………………………………... 6

Figure 2.2. Structure of a grayscale image ……………………………………………... 7

Figure 2.3. Forming a colorfull digital image ………………………………………….. 8

Figure 2.4. The structure of YUV 420 color encoding format ………………………… 9

Figure 2.5. Composing colorfull image from YUV 420 frame ………………………... 9

Figure 2.6. A video frame divided by macroblocks …………………………………... 11

Figure 2.7. Slice and Fields in MPEG2 ……………………………………………….. 11

Figure 2.8. MPEG2 Video Stream data hierarchy …………………………………..... 12

Figure 2.9. Filtering a 4x4 block with the proposed method ……………………….... 13

Figure 2.10. Reconstruction of a 4x4 block after the proposed filter is applied ……... 14

Figure 2.11. Reconstruction of the picture by using blocks of YUV420 frames .……. 15

Figure 2.12. 8x8 DCT of a block ……………………………………………………... 17

Figure 2.13. Quantization of a 8x8 block …….………………………………………. 18

Figure 2.14. Zig-Zag scanning of quantized DCT block ……………………………... 19

Figure 2.15. Run-length coding ………………………………………………………. 19

Figure 2.16. Variable length coding (Huffman coding) ……………………………… 20

Figure 2.17. Intra frame encoding ……………………………………………………. 21

Figure 2.18. Coding of a part of DCTized block ……………………………………... 22

Figure 2.19. Difference of consecutive video frames ………………………………… 23

Figure 2.20. Intra(I) and Inter(B and P)frames ……………………………………….. 23

Figure 2.21. Motion search for predicted block ……………………………………… 24

Figure 2.22. Full motion search ………………………………………………………. 25

Figure 2.23. Three-step search ……………………………………………………….. 26

Figure 2.24. One at a time search …………………………………………………….. 27

Figure 2.25. Logarithmic search ……………………………………………………… 28

Figure 2.26. Full motion search with DCT based matching criteria …………………. 29

Figure 2.27. Media Player as a black box …………………………………………….. 30

Figure 2.28. The encoding system that generates media bitstream …………………... 31

x

Figure 2.29. The layers of the media bitstream ………………………………………. 32

Figure 2.30. Graphical representation of AVI container format ……………………... 37

Figure 3.1. The design of the media player …………………………………………... 38

Figure 3.2. Threads and circular buffers of the proposed streaming media player ….. 39

Figure 3.3. Producer – Consumer problem for circular buffers …………………….... 41

Figure 3.4. Core reader module and plug-in reader modules ……………………….... 44

Figure 3.5. Stream inspection as the media stream flows through modules …………. 47

Figure 3.6. Synchronization of audio and video in case of separate channels ………. 53

Figure 3.7. Synchronization of audio and video in case of single channel …………... 54

Figure 3.8. Relation between players’ clock and audio timestamps …………………. 56

Figure 3.9. Prior art: conventional streaming media player and streaming server ..…. 59

Figure 3.10. Proposed streaming media player ………………………………………. 60

xi

LIST OF TABLES

Table Page

Table 2.1. Parts of the MPEG-2 (ISO/IEC 13818) ….………………………………... 33

Table 2.2. Syntax of pack header ……………………………………………………... 34

Table 2.3. Demultiplexing Program Stream ………………………………………….. 35

Table 2.4. Syntax of a Transport Stream packet …………………………………....... 36

Table 3.1. The pseudo code for producer consumer problem ………………………... 41

Table 3.2. The interaction between the core and the plug-in video decoder modules .. 50

Table 4.1. The implementation modules ……………………………………………... 63

Table 4.2. The UI module: player’s main function …………………………………... 64

Table 4.3. The stream structure …………………...………………………………….. 65

Table 4.4. The Audio_Stream and Video_Stream structures ………………………… 66

Table 4.5. Vesplayer: playback control interface ….……….………………………… 67

Table 4.6. The playback thread …………………………….……………………….… 68

Table 4.7. Checking end of playback …..…………….………………….…………… 69

Table 4.8. Initialization of circular buffer …………….…………………….………… 70

Table 4.9. Read and Write functions of the circular buffers .……………….………… 72

Table 4.10. The resource reader module’s thread function .……………….……….… 73

Table 4.11. The initialization of the resource reader module ...…………….………… 74

Table 4.12. The thread function of the demuxer module ……..…………….………… 75

Table 4.13. The thread function of the video decoder module .…………….………… 77

Table 4.14. The thread function of the audio decoder module .…………….………… 79

Table 4.15. The thread function of the video renderer module .…………….……….. 81

Table 4.16. The thread function of the audio renderer module …………….………… 82

Table 4.17. The audio-video synchronizer module …………………..…….………… 83

1

CHAPTER 1

INTRODUCTION

Media players have the most important role for any kind of digital entertainment

systems such as DVD players, DVB set-top boxes, IPTV set-top boxes, PCs and even

for handheld devices like cellular phones. The number of digital audio and video

content on Internet increased dramatically in recent years. The advances in IP

technology and infrastructure such as fibre optic technology make Internet appropriate

for audio and video streaming which require high bandwidths (Conklin, et al. 2001). For

instance, IPTV enables watching TV channels through Internet with high quality. User

generated content, such as YouTube’s videos, is also another important reason of

increasing multi media data. The increasing multimedia contents are enjoyable only

with the presence of a well done media player. So, a media player which will not

degrade QoS (Quality of Service) or QoE (Quality of user Experience) is more

important than it has been even before.

The player described in this thesis is a multimedia player which is capable of

playing various media formats. It is a streaming media player which plays contents

streamed over a channel by a server. Capability of playing various formats is a

challanging task, because an abstraction layer or in other words an interface is needed

by the player to access and use various formats (Sethuraman, et al. 2005). For instance,

various video codecs such as MPEG-2, MPEG-4 (Liu 2001) and H.264 must be

accessable over a common interface, and designing this interface requires at least a

basic understanding of video coding. Furthermore a deep investigation of video codecs

is required if hardware decoding blocks will be designed for the target embedded

system. Because, video decoding requires high computation power, hence using a

software video decoder for embedded systems is not an efficient way. Instead,

programmable DSP blocks or hardware accelerators are used for video decoding on

embedded systems (Sethuraman, et al. 2005).

Digital multimedia streaming (Dapeng, et al. 2001), especially video and voice

streaming over IP has been one of the most popular issues for recent years. There are

two types of digital media streaming (Suarez, et al. 2005) according to the origin of data

2

to be streamed: live streaming and streaming of previously processed and stored

multimedia data. First one requires realtime encoding and processing schemes at server

side and generally streamed as broadcasts. The latter one does not have encoding time

limits, so better quality at lower bitrates can be achieved by giving video encoders more

time. Video on Demand (VoD) streaming is a good example for the latter one.

The proposed media player design is implemented on Linux which is widely used

on many embedded devices. According to (COTS Journal Online 2004) Linux is not

designed for embedded systems and using Linux in embedded system may have risks

such as interrupt latency, thread response time and device drivers. However, the

number of embedded devices that host Linux as operating systems continues to increase

year by year as seen in the Figure 1.1.

Figure 1.1 Embedded OS sourcing trends

(Source: Linux Devices 2007)

Some of the top reasons behind the popularity of Linux on embedded devices

according to the survey by (Linux Devices 2001) are as the following:

• Source code is available and free

• No runtime royalties

• Robustness and reliability

3

• Linux has excellent networking support

• There are more drivers and tools available

• Lots of programmers are familiar with Linux

• It’s not from Microsoft

Although Linux is used for the implementation of the streaming multimedia

player proposed in this thesis, it is also possible to use another multithreaded operating

system since the proposed player architecture has no dependency on Linux.

The support for common container formats such as avi, program stream, transport

stream, mov, asf; common audio codecs such as mp3, musicam, ac3 and common video

codecs such as MPEG-2, MPEG-4, DivX, H.26x is critical for a multimedia player.

The proposed streaming multimedia player have the capability of playing from a

variety of sources via various protocols such as http, mms, rtp, rtsp, rtcp, (Liu 1999)

udp, etc.

The seamless playback of media streams which requires a tight synchronization

with streaming server is a very challenging task to accomplish. However this is a must

feature for a streaming media player, and proposed media player in this thesis uses a

patent pending solution for this problem.

The lip synchronization between audio and video is also very important in aspect

of QoE. The lip synchronization implies a perfect synchronization between audio and

video data. This is also called as intra synchronization.

The economic utilization of mostly limited system resources is very critical for

embedded systems. Hence, streaming media player must be designed in a way that

makes efficiently use of system resources possible.

Trick modes including seeking to a backward or forward position must be

supported by streaming media player. Implementing trick modes is also a very

challenging task. Because audio and video synchronization must be re-established after

trick mode operation is realized and so audio and video must be processed in a

synchronized way during trick mode to enable a smooth resume possible.

The proposed streaming media player design is heavily multithreaded, hence

requires a multithreading operating system. It involves a modular structure with each

module designed to realize a single task such as decoding the video, de-multiplexing the

media stream or playing audio, etc. Modular structure makes efficient implementation

of the features discussed above possible.

Audio and video synchronization is critical to multimedia systems (Georganas

4

1996). The proposed design will employ a precise audio and video synchronization

scheme. This scheme utilizes audio presentation time stamps to update player’s master

clock, resulting in a smoother and inter-synchronized playback.

Chapter-2 introduces the basic principles of the digital video coding (Conklin, et

al. 2001) and the structure of media streams. There is a strong relationship between the

structure of the media streams and the design of the streaming media player.

Chapter-3 explains the components and the logic behind the design of the

streaming media player. Chapter-3 also explains how the player works. How the

multithreaded operations and circular buffers are handled is explained in detailed. Steps

required to play an ordinary media stream is explained in detail. This chapter also

explains how the stream inspection is realized efficiently by the proposed design.

Chapter-3 also tries to explain one of the most challenging issues for streaming

media players, that is, audio-video synchronization problem. The proposed solution for

this problem offers using audio stream as master stream which will be explained in

detail in this chapter. Lastly, other most important issue in designing streaming media

players, that is, server-client synchronization is explained. A patent pending solution

(filed to European and US patent offices) for this problem is proposed.

Chapter-4 explains the details of the implementation. Main implementation

modules of the player are explained in detail. Pseudo codes written in C are used to

show the implementation details of the modules.

Chapter-5 explains the proposed iddias in brief and concludes the thesis.

5

CHAPTER 2

VIDEO DE/CODING

In recent decades video coding has been a popular research area in Electrical

Engineering and Computer Engineering, strongly because of developments in digital

signal processing and advances in computer technology.

A digital video is made up of the individual still images or "frames" that, when

played in sequence, are able to give the impression of movement. The impression of

motion and continuum is due to the limitations in the human visual system. Video

processing is tightly related to image processing, hence in fact, video is nothing else

than sequentially recorded images.

Video coding generally refers to digital video coding, because it is much more

efficient to process video signals after they are digitized from analog signals. Lossless

digitization of analog signals can be realized according to the Nyquist sampling

theorem which states that the sampling frequency should be at least twice the highest

frequency contained in the signal.

 fsampling ≥ 2 fhighest (2.1)

If analog signal is discretely sampled at a rate that is insufficient to capture

changes in the signal aliasing will arise. “The wagon wheel effect can be a good

example of aliasing for video films. This is because continuously varying images are

being discretely sampled at a rate of 24 frames/sec. The Nyquist sampling theorem tells

us that aliasing will occur if at any point in the image plane there are frequency

components, or light-dark transitions, that occur faster than fs / 2, which in this case is

12 frames/sec. But in many situations the light-dark transitions may be occurring faster

than this, such as a wagon wheel or propeller rotating at high speed (Olshausen 2000). ”

Consider a wagon wheel with eight spokes turning at a rate of 2.5 revolutions per

second in the clockwise direction. In this case, the wagon wheel will move by 83% of

the spoke spacing each frame, since;(Olshausen 2000)

((2.5 revs / sec) x (8 spokes /rev)) / (24 frames / sec) = 0.83 spoke / frame (2.2)

6

Figure 2.1. Aliasing in video films.

(Source: Olshausen 2000)

“The problem the brain faces in viewing these frames in rapid succession is that

there are two interpretations. One interpretation is that the wheel has moved by 83% of

the spoke interval in the clockwise direction. The alternative interpretation is that it has

moved by 17% of the spoke interval in the counter-clockwise direction. It turns out that

the brain prefers the latter interpretation, and so as a result you perceive the wheel

moving backwards (counter-clockwise) at a slower speed than it is actually moving.

(Olshausen 2000)”

2.1. Structure of Digital Images

 A video stream is composed of sequentially recorded digital images (Netravali

and Haskell 1988) and a digital image is represented by samples arranged in a two

dimensional array. Pixel is the name of each sample in this array, which refers to picture

element. So each pixel is located uniformly on a surface that is called as spatial domain.

It holds an integer value that represents the intensity of light or a color.

It is common to use 256 gray levels to represent an image in gray tones, in this

case each pixel will hold a single value between 0-255. The brightness step size 1/256 is

close to what a human eye can perceive, in other words the quality of an image

according to a human will not change significantly by using more than 256 gray levels.

The other reason of choosing the number of gray levels as 256 is related to computer

science. By this way, each pixel can be represented by a byte, that is 8 bits and can

represent 28 = 256 distinct values.

In Figure-2.2 a grayscale image of the planet Venus at 200x200 pixels resolution

is shown. “When this image was acquired, the value of each pixel corresponded to the

7

level of reflected microwave energy. A grayscale image is formed by assigning each of

the 0 to 255 values to varying shades of gray (Smith 1997) .”

Figure 2.2. Structure of a grayscale image

(Source: Smith 1997)

Color can be added to the digital image by various ways. One way is adding

chroma components to the grayscale image which is called as luma component. In this

way, a colorfull digital image is composed of three components; the Y component

determines the brightness of the color (referred to as luminance), while the Cb (blue

difference) and Cr (red difference) components determine the color itself (called as

chromas). In other words, each pixel will have 3 components, each component will

hold a single value between 0-255, that means each component has 256 level of

quantization and takes one byte from memory. As result, each pixel is represented by 3

bytes in memory. By using three components 256x256x256 = 16.8 million different

colors can be defined, hence a colorspace is formed, called as YCbrCr colorspace which

is a subspace of all colors of real life. The terms YCbCr and YUV are used

interchangeably, however the term YUV usuallu used as the analog correspondence of

YCbCr with scale factors.

8

Figure 2.3. Forming a colorfull digital image

 The other way of forming color images is using RGB colorspace. In this format

each pixel is composed of R (red), G (green) and B (blue) components. In other words,

each component represents the intensity of one of the three primary colors: red, green,

blue. The set of all possible colors that can be composed by mixing these three primary

colors is called as gamut. Conversion between RGB and YUV colorspaces is possible

by using following formulas;

 From RGB to YUV :

Y 0.299 0.587 0.114 R
U = -0.147 - 0.289 0.436 G (2.3)
V 0.615 - 0.515 - 0.100 B

It can also be represented as:

Y = 0.299R + 0.587G + 0.114B (2.4)
U = -0.147R - 0.289G + 0.436B (2.5)
V = 0.615R - 0.515G - 0.100B (2.6)

From YUV to RGB :

R 1 0 0.140 Y
G = 1 - 0.395 - 0.581 U (2.7)
B 1 2.032 0 V

It can also be represented as:

R = Y + 1.140V (2.8)
G = Y - 0.395U - 0.581V (2.9)
B = Y + 2.032U (2.10)

YUV colorspace is the standart color encoding system for analog television

system worldwide (NTSC, PAL). Main reason of this decision is historical, because the

early television sets were designed for black and white signals hence video cameras

9

were only capable of generating B&W signals until 1950s. After color signals were

developed, a method compatible with B&W TV infrastructure is needed. Y signals were

already being transmitted by the current system at that time, so engineers find out UV

signals as solution. U and V signals were color difference signals and can be calculated

from original RGB colorspace and the lumaY signals by using the formulas seen at

above.

Most of the image and video compression formats prefer YUV as the colorpace.

Because, the human eye is more responsive to brightness rather than color. Furthermore,

when the resolution of chroma frames are set as half of the resolution of luma, human

eye cannot perceive the difference. So, half of the bandwidth required to transmit or the

storage to save the image/video is saved. The most common color encoding format for

image/video encoders is YUV420 by which chromas’ resolution set half of the luma’s.

Y Frame U Frame V Frame
●Y1 ●Y2 ●Y3 ●Y4 ●U1 ●U2 ●V1 ●V2

●Y5 ●Y6 ●Y7 ●Y8 ●U3 ●U4 ●V3 ●V4

●Y9 ●Y10 ●Y11 ●Y12

●Y13 ●Y16 ●Y15 ●Y16

Figure 2.4. The structure of YUV420 color encoding format

The result colorfull frame, that is composed of the component frames at the

above will be as the following:

●Y1 U1 V1 ●Y2 U1 V1 ●Y3 U2 V2 ●Y4 U2 V2

●Y5 U1 V1 ●Y6 U1 V1 ●Y7 U2 V2 ●Y8 U2 V2

●Y9 U3 V3 ●Y10U3 V3 ●Y11U4 V4 ●Y12U4 V4

●Y13U3 V3 ●Y14U3 V3 ●Y15U4 V4 ●Y16U4 V4

Figure 2.5. Composing colorfull image from YUV420 rames

10

The structure of a raw (not compressed or encoded) YUV420 video bitstream

includes ordered sequence of frames, Y frame which is followed by U and V frames.

The YUV420 video streams are often stored in files with “.yuv” extension.

At the above in the Figure 2.5. each capital letter (Y,U,V) represents a byte,

hence holds a value between 0-255. The position of these bytes in the video bitstream

will be as the following;

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 U1 U2 U3 U4 V1 V2 V3 V4 eof

2.2. Video Compression Techniques

 Digital video compression has made it possible to store, stream and transport

large amounts of video content which was once impractical due to the excessive size of

the data files required to convey the necessary information. Digital video compression,

especially the MPEG (Gall 1991) formats and particularly the MPEG-2 format (Puri

1993) is widely used in devices ranging from DVD players to satellite and terrestrial set

top boxes to network video servers and receivers.

The amount of data require to transmit or store raw (not compressed) digital

video is far too much. For instance, for the majority of countries using PAL (including

Turkey), the number of frames (digital images/pictures) showed per second is 25. The

resolution of each frame is 720x576. Assume that the color encoding format of raw

frames are YUV420, then required bandwith to transmit this video signal can be

calculated as the following;

 25*((720*576) *1 + (360*288)*2) = 25*1.5*720*576 = 15,552,000 byte/sec (2.11)

 Y frame U and V frames = 14.8 Mbyte/sec

 Transmitting or storing video data without compressing is not an efficient way,

since video frames have spatial and temporal redundancy at remarkable amounts.

Video compression techniques aim to remove these redundancies to lower required

bandwidth to transmit video signals. The spatial redundancy is observed because of

the pixels that are replicated within a single frame of video. The temporal redundancy

11

arises when there similarites between consecutive frames which is the common case,

since there are only 40 milliseconds (1sec/25 fps) between successive frames.

 If a video frame is compressed by just removing spatial redundancies, then it is

called as intra-frame (intra coded frame), however if temporal redundancies are also

removed, then it is called as inter-frame (inter coded frame).

 Commonly used video codecs (MPEG-2, h.264) use a block based coding

scheme. That is, video images are divided into blocks (such as 8x8 blocks) before being

processed. For instance, MPEG-2 firstly divides an image into 16x16 squares which are

called as macroblock. Then, each macroblock is divided into 8x8 squares, called as

blocks.

Figure 2.6. A video frame divided by macroblocks

In MPEG-2, 16x8 blocks are also used when images are divided into fields

which are created by dividing the video image into two parts; odd rows of the image

compose the first part(or field), and even rows compose the second one.

Figure 2.7. Fields in MPEG-2

12

 The conventional coding schemes (such as MPEG 2) use a coding methodology

which can be called as “divide and compress”. So, firstly overall picture sequence is

divided into group of pictures. Then each picture is, divided into group of macroblocks

called as slice, and then each slice is divided into macroblocks and each macroblock is

divided into blocks. In other words, video stream is divided into parts according to a

hierarchy as showed in Figure 2.8.

Figure 2.8. MPEG-2 Video stream data hierarchy

(Source: Basith 1996)

2.2.1 Pre-processing

 Video images may contain noise which effects the compression of video in a

negative way, since commonly used compression techniques such as DCT (Discrete

Cosine Transform) are based on correlation of the pixels in an video image which is

degraded by the noise. So, filtering out noise have a great importance before

preprocessing.Filtering video images in a way to make them more suitable for

compression may also be very effective. It may be realized by filtering out non-essential

visual information from the video signal. Furthermore, some lossy operations or filters

may be used to make video images more compressable such as using blurring filters.

The quantization is commonly used in video codecs such as MPEG-2, h.264.

Actually quantization is not a pre-processing technique, and it is used after DCT

operation. In other words, after DCT operation is applied to a block, a new block at the

13

same size that holds DCT coefficients of input block is generated. The generated DCT

coefficients are integer values, and these coefficients are divided by a positive integer

(such as 2) to represent the coefficient with fewer bits. For instance, if an integer

number is divided by 2, the number of required bits to represent it will be one bit less.

However, this is a lossy operation because when we try to reconstruct the number by

multiplying the division by 2, if the divided number is odd then the result of multiplying

will be the original number minus one. This method is known as quantization

(reconstruction by multiplying is called as dequantization) and it is a very frequently

used method in image/video compression although some precision is sacrificed in order

to increase compression ratio.

Quantization is usually done after DCT. This is especially effective, if the used

numbers in these operations are floating or double numbers. Otherwise, if integer

numbers are used, quantizing before DCT may increase compression ratio, because after

quantizing increases correlation of pixels in a block. So, when DCT operation is applied

there will be fewer number of coefficients. So, any filter that increase the correlation of

pixels in the block will increase the compression ratio. Of course filtered signals must

be recoverable without loss or with acceptable loss. For example, the following

proposed method increases the correlation and it is possible to reconstruct the original

block after the filter is applied.

2.2.1.1 Pre-Process Filter Example

 This method aims to increase the correlation of the pixels in a block by

converging value of each pixel to a specific number. It is reasonable to select this target

number as the average of the pixel values in the block.

 10 25 20 40 The avg. value = 20,31 15 22 20 30
 Then, target value is 20
 30 40 10 15 FILTER 25 30 15 17

 20 10 5 30 Sum each pixel with 20 20 15 12 25

 and
 10 10 20 30 divide the result with 2 15 15 20 25

 Original Block(A) Filtered Block (B)

Figure 2.9. Filtering of a 4x4 block with the proposed method

14

 The proposed filter increases the correlation of the block, so after the DCT is

applied there remains fewer number of coefficients to transmit. In order to reconstruct

the original block, the target number used to generate new block is needed. However, it

is not necessary to transmit this number to the decoder, because the target can be

calculated by using filtered block. The average of the pixels in the block will give the

number used as the target value.

 15 22 20 30 The avg. value = 20,31 10 24 20 40
 Then, target value is 20
 25 30 15 17 RECONSTRUCT 30 40 10 14

 20 15 12 25 Multiply each pixel with 2 20 10 4 30

 and
 15 15 20 25 subtract 20 from the result 10 10 20 30

 Filtered Block(B) Reconstructed B lock(R)

 0 1 0 0

 0 0 0 1
 The Difference Block = (A) – (R) =
 0 1 0 0

 0 1 0 0

Figure 2.10. Reconstruction of 4x4 block after the proposed filter is applied

2.2.2 Intra Frame Coding (Eliminating Spatial Redundancy)

 Spatial redundancy represents redundant data within a single frame of video. So

intra frames are coded independently from other frames. Spatial redundancy occurs

because adjacent pixels in a single frame are often correlated. In MPEG terminology,

such frames are referred as I frames. An I frame may be thought of as a key frame or

reference video frame which acts as a point of comparison to other frames during

encoding, decoding and playback. Pictures between two I frames including first I frame

is called Group of Pictures (GOP) in MPEG terminology. For instance, in MPEG-2 a

GOP is generally composed of 12 or 24 pictures.

15

2.2.2.1 Step by Step Intra Frame Coding (Encoding)

Although each digital video compression format has its own particular

characteristics, a number of common features are also present. In the following, basic

methods used in intra coding will be given.

2.2.2.1.1 Divide Frame Into Macroblocks

A raw picture of video is composed of three frames: Y,U,V. If the resolution of

raw picture is CIF (352x288), then the resolution of Y frame will also be in CIF

resolution. The color encoding format is generally selected as YUV420, if so then U and

V frames will be in the half resolution QCIF (176x144) of the Y frame.

Then Y frame is divided into macroblocks (MBs), each macroblock is a 16x16

pixels square. The chroma frames (U and V) which are in the half resolution of the Y

frame are divided into blocks, with each block in 8x8 pixels resolution. So a

macroblock of Y frame corresponds to a block of U and a block V frame. In other

words, a macroblock of original picture is reconstructed by using the corresponding

macroblock of Y frame, and corresponding blocks of U and V frame as shown in the

Figure 2.11.

Figure 2.11. Reconstruction of the picture by using blocks of YUV420 frames

16

In order to reconstruct the original picture, chroma (U and V) frames must be

upscaled to the size of Y frame. This is generally accomplished by replicating each

pixel of a chroma frame as shown at the below of the Figure 2.11. Although, it is

possible to use any other interpolation method to upscale chroma frames. The effect of

using better algorithms to upscale chroma frames will not be perceivable by human

eyes. This is the reason of the idea behind using YUV420 frames instead of YUV422

frames (each component frame is in the same size of the composed picture).

2.2.2.1.2 Discrete Cosine Transformation (DCT)

DCT is the most common transformation method used in video compression.

Video codecs such as MPEG1-2-3-4 and H261-262-263-264 all use compression

provided by the nature of DCT. “DCT is an orthogonal mathematical transform that is

used to remove spatial redundancy by concentrating the signal energy into only a few

coefficients (Mikaeli and Ying 2004)” The mathematical expression of DCT is given in

(2.12).

The DCT is applied to each block of YUV frames, in other words 8x8 DCT

operation takes each block as input and generates a new 8x8 block which is composed

of DCT coefficients as seen in the Figure 2.12. “Each DCT coefficient indicates the

amount of a particular horizontal or vertical frequeny within the block. DCT coefficient

at the position (0,0) is the DC coefficient that represents average sample value (Jack

2005).” Since DC value conveys much more information than any other DCT

coefficient, it has great importance and is treated specially while packeting to transport.

“Since natural images tend to vary only slightly from sample to sample, low frequency

coefficients are typically larger values and high frequency coefficients are typically

 7 7

F(u,v) = 0.25 C(u) C(v) ∑ ∑ ƒ(x,y) cos(((2x + 1)uπ)/16) cos(((2y + 1)uπ)/16) (2.12)

 x = 0 y = 0

u, v, x, y = 0, 1, 2, … 7
(x, y) are spatial coordinates in the sample domain
(u, v) are coordinates in the transform domain
C(w) = 1 / √2 for w = 0,
C(w) = 1 for w > 0

17

smaller values (Jack 2005).” So, non-zero DCT coefficients are seem to be occur near

DC value. In other words, the probability of occurring of a non-zero DCT coefficient

reduces as its distance to DC value increases.

Figure 2.12. 8x8 DCT of a block
(Source: Mikaeli and Ying 2004)

2.2.2.1.3 Quantization

The quantization is a commonly used video compression technique (Viscito and

Gonzales 1991). Actually, quantization is a lossy compression technique which is

generally used after DCT operation. In other words, after DCT operation is applied to a

block, a new block at the same size that holds DCT coefficients of input block is

generated. The generated DCT coefficients are integer values, and these coefficients are

divided by a positive integer (such as 2) to represent the coefficient with fewer bits. For

instance, if an integer number is divided by 2, the number of required bits to represent it

will be one bit less. However, this is a lossy operation because when we try to

18

reconstruct the number by multiplying the division by 2, if the divided number is odd

then the result of multiplying will be the original number minus one. This method is

known as quantization (reconstruction by multiplying is called as dequantization) and it

is a very frequently used method in image/video compression although some precision

is sacrificed in order to increase compression ratio.

Each coefficient of 8x8 DCTized block is not quantized with the same value.

Because the most significant low frequency coefficients are grouped around the DC

coefficient, and farther from the DC value both the amplitude and the significance of the

DCT coefficients decreases. “So, higher frequencies (which are farther from DC value)

are quantized more coarsely than lower frequencies, due to visual perception of

quantization error. This results in many DCT coefficients being zero, especially at the

higher frequencies (Jack 2005).” In order to quantize each coefficient with a different

value, a quantization matrix is used. This is a 8x8 matrice which is already known by

decoders or sent to decoders within encoded stream. The quantization matrix used for

intra frames by MPEG2 is showed in the Figure 2.13.

Figure 2.13. Quantization of a 8x8 block

2.2.2.1.4 Zig-Zag Scanning

After a block is DCTized and then quantized, non-zero DCT coefficients are

grouped around the DC coefficient as seen in the Figure 2.13. In the next step, the

quantized block will be coded by using run-length coding. However, before run length

coding, the DCT coefficients are moved from 8x8 matrice to a one dimensional array by

scanning matrice in a zig-zag order. The reason of scanning in zig-zag order is to

19

produce long runs of zero coefficients and to make the array more proper for run-length

coding. Since DC value stores the most of information, it is treated specially and

transmitted independently.

Figure 2.14. Zig-Zag scanning of quantized DCT block

2.2.2.1.5 Run-Length Coding

One-dimensional array, which is generated by zig-zag scanning of quantized

DCT block as shown in Figure 2.14, is coded by a technique called run-length coding.

Run-length coding aims to represent the one-dimensional array with fewer number of

elements. This is accomplished by using run-length pairs; run indicates the number of

zero coefficients that a leading a non-zero coefficient which is called as length.

Figure 2.15. Run-Length coding

20

So, the zero coefficients at the end of the array are not represented by a run-

length pair, since there is no non-zero coefficient that ends the run. The run-length

coding of one-dimensional array in the Figure 2.14 is showed in the following Figure

2.15.

2.2.2.1.6 Variable Length Coding (VLC)

Run-Length pairs which are generated by using zig-zag scanned array are coded

with a lossless compression technique before transmission. This technique assigns a

binary code to each run-length pair according to the pair’s occurance probability. For

instance, if a run-length pair is frequently occurred, so it has high probability of

occurance, then the length of assigned binary code to this pair will be shorter. So, the

length of assigned binary code is determined according to pair’s occurance probability.

Hence, run-length pairs will be represented by binary codes that have variable lengths.

That is why this technique is called as variable length coding.

Figure 2.16. Variable length coding (Huffman Coding)
(Source: Mikaeli and Ying 2004)

21

This technique can also be called as statistical coding, or entropy coding.

Entropy coding benefits from the fact that, “sometimes certain values are used more

often than others, so a coding system can be designed to transmit the high-occurance

values with a short(few bit) code, meanwhile, less frequently occurring values can use

longer bit codes. In this way, we can achieve a significant improvement in the

transmission efficiency. The Morse code of Telegrapchy system uses this principle.

Huffman coding is the most common method for statistical coding and it’s widely used

in video compression algorithms.”

2.2.2.1.7 A New VLC Method

In intra frame encoding, encoders divides the frames into n x n (8 x 8 for MPEG-

2) square blocks. These blocks are then DCT transformed, quantized and variable

length encoded. There are fixed variable length code tables for most of the encoding

schemes such as MPEG-1 and MPEG-2. These tables are designed particularly for 8x8

blocks considering the probability of the runs and levels that may come from such a

block.

The design of these tables affects the degree of compression. These tables must

be able to cover all possible run and the level pairs. Even the least probable run and

level pair must be able to be represented. This restricts the efficiency of such tables.

Figure 2.17. Intra frame encoding

22

When an nxn (8x8) block from a natural image is DCT transformed, the most

significant low frequency coefficients are grouped around the DC coefficient. Farther

from the DC value both the amplitude and the significance of the DCT coefficients

decreases. In the proposed method, instead of using a vlc table for the whole nxn (8x8)

block a special vlc table is designed for a smaller m x m (m < n) block around the DC

value. This way the efficiency of the new vlc table is increased. That is, smaller variable

code lengths are used to encode the most significant DCT coefficients. Designing such a

special vlc table for a smaller block size will result in more compression than using the

standart tables for the larger nxn block for the same quality level. The less significant

DCT coefficients lying outside the smaller (mxm) block are eliminated resulting in

further compression. The size of the inner block can be variable depending on the

particular application and target rate and distortion.

Figure 2.18. Coding of a part of DCTized block

2.2.3 Inter Frame Encoding (Eliminating Temporal Redundancy)

The temporal redundancy arises because of the similarites between the

consecutive frames. The frames that are compressed by eliminating the redundant data,

as shown in Figure 2.19., between itself and a reference frame are called inter frames.

23

Figure 2.19. Difference of consecutive video frames

(Source: Compression 2002)

In video encoding particularly in MPEG encoding (Haskell, et al. 1997) , there

are three types of frames; I, P and B frames. I frames are intra frames which are used as

reference frames for the subsequent B and P frames. I frames do not refer to other

frames to be decoded. P frames refer to the I frames through motion vectors to be

decoded. B frames refer to the I or P frames or both to be decoded through motion

vectors. Therefore B and P frames are called the predicted frames and I frames are

called the reference frames.

Figure 2.20. Intra (I) and Inter (B and P) frames

(Source: ISO/IEC 13818-2 1995)

24

2.2.3.1 Motion Compensation (Motion Prediction)

Motion compensation method aims to find similar blocks between consecutive

frames by searching each block of inter frame (predicted frame) in the reference frame

(Stiller and Konrad 1999).

Encoders search for predicted frame blocks in reference frame that results in the

closest match, then subtracts the found reference block from the one in the predicted

frame for which the search is done. This is called block-based motion compensation.

The block size is generally constant (16x16 in MPEG-2), however it is also possible to

use variable block sizes to define an object more accurately (Chan, et al. 1990).

 When the closest match found, the motion vector is calculated and the

difference block is transformed and coded. The aim is to code least amount of

information for the predicted frame in order to achieve least possible bit-rate for the

encoding. Motion vectors are two dimensional vectors that point to the block in the

reference frame which is closest to the current block in the predicted frame.

Figure 2.21. Motion search for predicted block

2.2.3.2 Motion Search Algorithms

Motion search algorithms (Jamkar, et al. 2002) use one of different possible

matching criterions such as SAD (Sum Absolute Differences), MAD (Mean Absolute

Difference) or MSE (Mean Square Error) to find the best match. Among various

25

criterias, SAD is the most popular one. For a block size of 16x16, the criterias

mentioned can be defined as;

 (2.13)

 (2.14)

 (2.15)

Firstly, an arbitrary block is selected from search area at the reference block

according to a searching algorithm. Comparing all possible candidate blocks in the

search area is known as full motion search. If the search area is the reference frame,

that is all blocks in the reference frame will be tested to find the best matched one, then

it is called as global motion search.

 Figure 2.22. Full motion search

 16 16

SAD = ∑∑│ Bpred(i , j) – Bref(i , j) │

 i j

 16 16

MAD = (1/256)∑∑│ Bpred(i , j) – Bref(i , j) │

 i j

 16 16

MSE = (1/256)∑∑(Bpred(i , j) – Bref(i , j))
2

 i j

26

Generally all of candidate blocks in the search area are not tested, since it is not

a very efficient. Most motion search algorithms compare only a part of all possible

blocks in the search area. Generally the size of the search area is selected as 32 x 32

pixels. In MPEG-1-2, motion search is realized by using macroblocks(16x16) of luma

frame(Y). A separate motion search for chroma frames(U and V) is not computed.

Instead, the same vector that is computed for luma macroblock is used for

corresponding U and V macroblocks. If color encoding format is YUV420, the

coordinates of motion vector found for Y macroblock is divided by 2 to find the motion

vectors of corresponding U and V blocks. In the following motion search algorithms

(Turaga and Alkanhal 1998), for demonstration purposes it is assumed that searched

block size 8x8 and search area is 16x16.

2.2.3.2.1 Three Step Search

Three step search is a very widely used search algorithm since its simplicity and

performance. Firstly, a step size is set such as 8 pixels. This step size shows the distance

of firstly selected candidate blocks to the center of search area.

Figure 2.23. Three-step search (initial step size : 4)

At each step, SADs (Sum of Absolute Differences) for 9 candidate blocks (one

is at center and others are at the main and inter-main directions) are computed, and the

27

block with the minimum SAD is selected as the center position for the next step and the

step size is halved. This step is repeated until the step size becomes smaller than 1. The

selected block with the minimum SAD at the last step is the matched block.

2.2.3.2.2 One At a Time Search

 One at a time algorithm, as the name implies, picks one candidate block at each

comparison step. This is a very simple and effective block based motion search

technique.

Figure 2.24. One at a time search

This algorithm tries to find the block with minimum SAD on the horizontal

direction at first. So, three blocks on the horizontal direction about the center of the

search window is selected as first candidates. If the block with the smallest SAD is at

the center then the vertical search begins.

Otherwise, the search continues in the direction of the block with smallest SAD

while the next candidate block in this direction has a smaller SAD than the current

block. So, going on the same direction if the next candidate block has a larger SAD,

then horizontal search is ended and vertical search begins from this point.

28

Vertical search works in the same manner with horizontal search, so the firstly it

is decided to go upward or downward according to the SADs. And after one of either

directions is selected, the search in this direction continues until a block with larger

SAD is found.

2.2.3.2.3 Logarithmic Search

This algorithm is very similar to TSS (Three Step Search) and was introduced at

the same time with TSS. Although this algorithm requires more steps than the TSS, it

can be more accurate especially when the search window is large (Turaga and Alkanhal

1998).

Figure 2.25. Logarithmic search

Firsty a step size is initiated as in TSS. At each step, SADs (Sum of Absolute

Differences) for 5 candidate blocks (one is at center and others are at the main

directions at the distance of selected step size) are computed, and the block with the

minimum SAD is selected as the center position for the next step. If the positon of best

match is at the center, then the step size is halved. This step is repeated until the step

size becomes equal to 1. When the step size becomes 1, all the nine block around the

29

center are chosen for comparison and the best among them is picked as the required

block (Turaga and Alkanhal 1998).

2.2.3.3 A New DCT Based Motion Search Criteria

 Classical motion search algorithms, as discussed above, uses SAD (Sum

Absolute Differences) or MSE (Mean Square Error) criteria to find the best match.

However, both of these methods do not automatically guarantee the least coefficient

count for the currrent block. There is no direct relation between the SAD or MSE

metrics and the number of DCT coefficients to be coded.

Figure 2.26. Full motion search with DCT based matching criteria

Instead, the proposed method directly uses the number of quantized dct

coefficients as a measure of block matching. This method guarantees the least count of

30

DCT coefficients to be VLC encoded. Each time the current block in the predicted

frame is compared with a block in reference frame, the number of quantized DCT

cofficients are found by subtracting both blocks taking DCT of the result and applyıng

the quantization. The block in the reference frame that gives the least number of

quantized DCT coefficients is selected and its motion vector is calculated

2.3. The Structure of Media Streams

What a media player does is roughly saying converting media bit stream into real

life audio and video signals. So, understanding how a media bitstream is generated has a

critical importance before starting to design a media player. And for the same reason the

aim of this section is to introduce the structure of media streams briefly.

Figure 2.27. Media player as a black box

A media bitstream contains one or more elementary streams of video and audio,

as well as other data. A typical media stream is generated by multiplexing audio and

video bitstreams into one single bitstream. The player reads media bitstream as input

and generates audio and video from that bitstream. Before going on to the design of

media player, analyzing the structure of the media bitstreams will provide better

understanding.

Media bitstream is generated by an encoding system which is composed of one or

more encoders and a multiplexer as seen in the Figure 2.28. Raw (as they are captured)

audio and video streams go through the audio and video encoders respectively. The

encoder encodes raw stream and feeds the encoded stream to the multiplexer. Each

feeded bitstream to the multiplexer can be called as “elementary stream” as in MPEG

standard. Then, elementary streams are packetized and a packet header is generated for

31

each packet. The packet header shows the characteristic of each packet, such as the type

(video, audio, etc), presentation or decoding time of elementary stream unit that the said

packet conveys (Shibata, et al. 1995). In other words, each elementary stream is

packetized with specific headers to the elementary stream and to the packet itself.

Multiplexer combines these packets into one single bitstream and also adds information

such as how many elementary streams are multiplexed, multiplexing rate, maximum

required buffer size after de-multiplexing, type of the elementary streams or the clock

reference.

Figure 2.28. The encoding system that generates media bitstream

Data packs that convey the information related with the multiplexing can be

thought as a layer which can be called as system layer as in MPEG streams (Hemy, et

al. 1999). Elementary stream packets compose a different layer, called compression

layer, which lies beneath the system layer as seen in the Figure 2.29.

System layer and multiplexing method describes container format of the media

stream. Container formats aim to multiplex one or more elementary streams into one

single bitstream. For instance, assume that there are two elementary streams, one is

audio and the other is video that is the most common case. Firstly, audio and video data

are captured by distinct devices, and then encoded by separate encoders as seen in the

Figure 2.28. If it would possible to capture and record audio and video as a single

signal, obviously, multiplexing will be unnecessary.

An other important point is the difference between recording way of the audio and

the video, that is, video is not very coarsely sampled compared to audio. Video data is

32

composed of sequential pictures which are captured 25-30 times per second, hence

gives an impression of continuity. So while playing video stream, each picture stays on

screen about 30-40 milliseconds. However these sequential pictures seems like

continuous to us because of sampling rate of our eyes and incredible interpolating

capability of our brains. Pictures, can also be called as frames, are the key units for the

video recording process. Audio signals are recorded much shorter intervals producing

audio frames. Either audio or video encoders work in a frame based manner.

Figure 2.29. The layers media bitstream

 The most challenging issue in multiplexing is how to maintain synchronization

between audio and video streams (Blakowski and Steinmets 1996). Audio and video

synchronization is achieved by injecting timing information such as presentation time,

reference clock, and time interval between sequential frames into multiplexed stream

(Tryfonas and Varma 1999). The details of audio and video synchronization will be

given in the further sections.

2.3.1. Container Formats

Container formats are designed to contain and convey various types of multimedia

elementary streams, generally compressed by standardized encoders.

33

There are various container formats some of which are more suitable for

streaming of media and some of which are more suitable for trick modes and local

storage. Container formats add an overhead to file size. So same content in different

containers may have different file sizes.

 Generally container formats suitable for streaming adds more overhead because

they are designed to be more error resilient. Container formats have the capability to

hold many type of audio and video streams, as well as other media streams. However,

some container formats may be dedicated only for one type of stream such as audio

stream containers like WAV (short for Waveform), AIFF (Audio Interchange File

Format) or XMF (Extensible Music Format).

2.3.1.1. MPEG-2 Containers

ISO/IEC 13818 which is also known as MPEG-2 coding standard has 11 parts

(Table 2.1) currently. First part, ISO/IEC 13818-1, also known as system part, describes

MPEG-2 container which explains synchronization and multiplexing of one or more

elementary streams such as audio and video, or other data into one single stream (Gall

1991). Although, containers described in MPEG-2 part 1 (ISO/IEC 13818-1 1994)

typically convey MPEG coded video or MPEG coded audio streams, it is also possible

to multiplex elementary streams coded with other common encoders such as h264, ac3

by using MPEG-2 containers.

Table 2.1. Parts of the MPEG-2

(Source: ISO/IEC 13818-1 1994)

ISO/IEC 13818-1 Systems
ISO/IEC 13818-2 MPEG-2 Video
ISO/IEC 13818-3 MPEG-2 Audio
ISO/IEC 13818-4 Conformance testing
ISO/IEC 13818-5 Software simulation
ISO/IEC 13818-6 Extensions for DSM-CC
ISO/IEC 13818-7 Advanced Audio Coding (AAC)
ISO/IEC 13818-8 Video, extension to 10-bit input symbols
ISO/IEC 13818-9 Extension for real time interface for system decoders

ISO/IEC 13818-10
Conformance extensions for Digital Storage Media Command

and Control (DSM-CC)
ISO/IEC 13818-11 Intellectual Property Management and Protection (IPMP)

34

The burden of program stream headers to overall bitrate is minimal, however it is

not enough error resilient for communication purposes. Hence, it is used as a container

format for storage purposes such as in DVDs. The program stream is also more suitable

for realization of trick modes than transport streams.

2.3.1.1.1. MPEG-2 Program Stream

MPEG-2 program stream is a very commonly used container format. The name of

an ordinary MPEG program stream file ends with the .mpg, .mpeg or .vob extension.

ISO/IEC 13818-1 describes program stream as “a stream definition which is tailored for

communicating or storing one program of coded data and other data in environments

where errors are unlikely, and where processing of system coding, e.g. by software, is a

major consideration (ISO/IEC 13818-1 1994).” Program stream is as stated before

more suitable for storage purposes, since not error resilient for communication.

Table 2.2. Syntax of pack header

(Source: ISO/IEC 13818-1 1994)

Syntax Number of
bits

pack_start_code 0x000001BA 32
‘01’ 2

system_clock_reference_base [32..30] 3
marker_bit 1

system_clock_reference_base [29..15] 15
market_bit 1

system_clock_reference_base [14..0] 15
marker_bit 1

system_clock_reference_extension 9
marker_bit 1

program_mux_rate 22
marker_bit 1
marker_bit 1
Reserved 5

pack_stuffing_length 3
for(i=0;i<pack_stuffing_length; i++){
stuffing_byte }

8

35

MPEG-2 program stream is composed of packs and packets. Packs convey

packets in their payloads. In order to demultiplex program streams as shown in Table

2.2, firstly a pack header must be found. Each pack header starts with a 32 bit pack start

code 0x000001BA which is used to identify a pack header Table 2.1. The pack size is

variable and the size of the pack is written in the pack header. In VOB files each pack is

2048 bytes. “Program streams may be either fixed or variable bitrate. (ISO/IEC 13818-1

1994)” Bitrate of program stream can be calculated by using multiplexing rate and

system clock reference (SCR) values in pack header.

Packets, which are conveyed in the payloads of packs, are generated by

packetizing encoded elementary streams. Hence packets that are described in MPEG-2

specification are known as Packetized Elementary Stream (PES) packets. “Transport

streams and program streams are each logically constructed from PES packets”, so PES

packets can be used as basic units while converting Transport Stream to Program

Stream or vice versa. Each PES packet consists of only one type of elementary stream.

PES packet header gives information about the elementary stream such as whether it is

audio or video and its encoding type, presentation and decoding timestamps, etc.

Table 2.3. Demultiplexing Program Stream

(Source: ISO/IEC 13818-1 1994)

Syntax Number of
bits

MPEG2_program_stream(){
 do{ pack() }
 MPEG_program_end_code}

32

pack(){
 pack_header()
 while (nextbits() = = pack_start_code_prefix)
 {
 PES_packet();
 }
}

Variable
Length

After packet header is readed according to the Table 2.2, then payload or in other

words, bytes until the next pack header are stored as PES packet content. Then, PES

packet header is read and payload of PES packet is feed to the appropriate decoder.

36

2.3.1.1.2. MPEG-2 Transport Stream

MPEG-2 transport stream container is also described in ISO/IEC 13818-1 system

part and is designed to be convenient for transport purposes, hence used in broadcast

applications such as DVB and ATSC.

PES packets are key structures for both of MPEG containers. So, converting

transport stream to program stream or vice versa can be done by using PES packets.

Transport streams are composed of packets which are 188 bytes in length and has a 13-

bit packet id (PID) number that identifies the packet as shown in Table 2.3. Transport

Stream can convey one or more program contents as multiplexed in a single bitstream.

Table 2.4. Syntax of a Transport Stream packet

(Source: ISO/IEC 13818-1 1994)

Syntax Number of
bits

sync byte 0x47 8
transport_error_indicator 1

payload_unit_start_indicator 1
transport_priority 1

PID 13
transport_scrambling_control 2

adaptation_field_control 2
continuity counter 4

if (adaptation_field_control = = ‘10’ ||
 adaptation_field_control = = ‘11’){
 adaptation_field()
}

Variable
Length

if (adaptation_field_control = = ‘01’ ||
 adaptation_field_control = = ‘11’){
 for (i=0;i<N;i++){
 data_byte
 }
}

8

One program content is composed of one audio and one video elementary stream

in general. However there can be other elementary streams such as audio for

37

multilanguage support or subtitles, etc. in a single program. Each elementary stream has

a unique PID, so an elementary stream is extracted by obtaining the packets with this

unique PID.

The Program Map Table (PMT) is also one 188 byte transport stream packet that

shows the PIDs of the elementary streams for a specific program. PMT tables have also

unique PID numbers and these pid numbers can be extracted from Program Association

Table (PAT) packet. PID of a PAT packet is must be zero and is constant and same for

all transport streams, however PID of PMT tables and by the way PID of elementary

streams are not predefined and must be read from PAT and PMT tables.

2.3.1.2. Audio Video Interleaved (AVI)

The Microsoft Audio Video Interleaved (AVI) is another very common container

format (Zimmerman 2003), and actually it is a specialization of Resource Interchange

File Format (RIFF) which is composed of packets called lists or chunks. Chunks are the

simplest units and have a 4-byte identifier in human readable form such as “avih” or

“idx1” and 4 byte chunk size. Lists can be comprised of lists or chunks and start with

“LIST” characters and the 4 byte identifier and 4 the byte list size as seen in the Figure

2.30.

Figure 2.30. Graphical Representation of AVI container format

38

CHAPTER 3

THE PROPOSED MEDIA PLAYER

3.1. The Design of the Media Player

The presented player in this thesis has a modular and heavily multithreaded design

that makes it more maintainable and scalable. As seen in the Figure 3.1, a streaming

media player is composed of buffers which are shared via concurrent processes

(threads) and modules which are responsible to realize a specific task such as demuxing,

decoding, etc.

Figure 3.1. The design of the media player

3.1.1. Multithreaded Design

Playing a media stream requires implementation of tasks such as reading media

stream from network or a storage device, de-multiplexing read media stream into its

elementary streams, decoding de-multiplexed elementary streams and rendering

39

decoded elementary streams. As seen in the Figure 3.2 each task has its own thread,

therefore tasks are running continuously and independently. Each task reads input data

from a circular buffer and writes to another circular buffer after processing it. So,

implementation of a task can be done in any way if it is compatible with the read and

write interfaces of these circular buffers. This makes the abstract implementation of

tasks possible and the design gains modularity. Furthermore delay in a task can be

compensated by circular buffers between the said task and its dependent tasks.

Figure 3.2. Threads and circular buffers of the proposed streaming media player

Since playing audio is a continuous process, it must be done within a dedicated

thread. Audio driver of the system may implement this thread internally, so a dedicated

thread created by the application programmer may be unnecessary. Although, realizing

said tasks serially without using dedicated threads is possible, it requires a tight timing,

and therefore this design is more convenient for real time operating systems.

3.1.2. Modules

The presented player uses modules to realize the required tasks in order to play a

media stream. A module is implementation of a task such as decoding video, de-

40

multiplexing media stream, etc. Modules have predefined interfaces for input and output

parameters. Therefore modules can implement tasks in any ways according to these

interfaces. This hides details of implementation of the task by a module from the other

modules that uses the said module.

The modules can be divided into 2 parts as; core modules and plug-in modules.

Core modules use plug-in modules to realize a specific task such as mpeg decoding. For

instance video decoder module is a core module which uses mpeg decoder module to

decode mpeg coded streams. Therefore mpeg decoder module is a plug-in module

which will be linked to video decoder core module if the video is mpeg coded.

However, if the video is coded with another encoder such as h264, then h264 decoder

module will be linked to video decoder core module as a plug-in module.

3.1.3. Circular Buffers

There are five circular buffers used in the proposed architecture shown in Figure

3.2 which have the same functionality and structure:

• Input Buffer is between the reader and the de-multiplexer module. It conveys

read data from reader to the de-multiplexer.

• De-multiplexed video data buffer is between the de-multiplexer and the video

decoder thread. It conveys the de-multiplexed and encoded video data pack and a PTS

value assigned to this pack.

• De-multiplexed audio data buffer is between the de-multiplexer and the audio

decoder thread. It is used to store de-multiplexed and encoded audio packs with PTS

values attached.

• Decoded video data buffer is between the video decoder and the video renderer.

It holds the decoded video frame packs with PTS values.

• Decoded audio data buffer works between the audio decoder and the audio

renderer. It conveys the decoded audio frames and their PTS data.

3.1.4. Thread Synchronization on Circular Buffers

For each of the circular buffers, the same problem emerges; a thread produces and

adds data pack to the circular buffer and another thread consumes and gets data pack

41

from the circular buffer. Two different threads may access the same buffer at the same

time or the buffer may be completely full or empty. This problem is called “the

producer-consumer problem” or “bounded buffer problem”. One should avoid the

access of different threads at the same time, stop the producer thread when the buffer is

full or stop the consumer thread when the buffer is empty. Proposed design for

streaming media player requires sharing of data over circular buffers between

simultaneous tasks as graphically reprensented at Figure 3.3.

Figure 3.3. Producer - Consumer problem for circular buffers.

In presented player, this problem is solved by using two semaphores and a mutex

for each of circular buffers. Writing to and reading from same position at the same time

is prevented by using a mutex.

Table 3.1. The pseudo code for producer consumer problem

// initializations
#define PACK_CNT 10
full_smphr = init_smphr(PACK_CNT, PACK_CNT);
empty_smphr = init_smphr(0, PACK_CNT);
data_mutex = init_mutex();
//producer
Wait_for_available_slot(full_smpr);
Get_mutex(data_mutex);
Add_pack();
Release_mutex(data_mutex);
Increment_available_slot(empty_smphr);
//consumer
Wait_for_available_slot(empty_smpr);
Get_mutex(data_mutex);
Get_pack();
Release_mutex(data_mutex);
Increment_available_slot(full_smphr);

42

 Assume that the function prototype to initialize a semaphore is

init_smphr(available_slot_num, max_slot_num), then the pseudo code in the Table 3.1

can be written as solution to producer-consumer problem.

Selecting reasonable sizes for the circular buffers is also an important issue. In the

computation of the size of the de-multiplexed video buffer one should make sure that

the total duration of de-multiplexing, decoding and presentation of a frame must not

exceed 1000 / fps milliseconds. For example, for a video stream with 25 frames per

second, sum of de-multiplexing, decoding and presentation must not exceed 1000 / 25 =

40 milliseconds.

de-multiplexing + decoding + presentation <= 1000/fps; (3.1)

Above inequality also enforces following inequality;

 decoding < 1000/fps; (3.2)

Assuming the worst case, in which decoding takes 1000/fps milliseconds, de-

multiplexing will continue to fill circular buffer. So, if bitrate of video stream is B kbps,

then FIFO buffer will be filled with B fps Kbits. This is the worst case, so we can

compute the size of de-multiplexed video FIFO buffer using the following formula:

dmxd_vid_cbuf_size = video_bitrate / fps; (3.3)

Size of the de-multiplexed audio circular buffer can be computed by applying the

same methodology. If playing an audio frame takes N milliseconds, then

 dmxd_aud_cbuf_size = audio_bitrate * N /1000; (3.4)

43

Most of the system memory is used by decoded video circular buffer, because a

pack in the decoded video circular buffer is composed of a decoded video frame and a

PTS value. The memory required to save a decoded video frame is very large when

compared to the decoded audio frame, encoded video or encoded audio frame.

Size of the memory to save a decoded frame (in YUV420 colorspace) is 1.5 *

frame_width * frame_height bytes. In order to use memory efficiently, the buffer

required to save a decoded frame pack is allocated before saving each decoded frame

and is de-allocated after the decoded frame is presented. So if there are no decoded

frames in the decoded video circular buffer, the decoded video circular buffer will not

take any memory.

Pack count for the decoded video and audio circular buffers can be set to unity;

since it is more reasonable to store audio or video frames in de-multiplexed circular

buffers before they are decoded.

3.2. How the Player Works

The media player processes media bitstream in order to generate audio and video

output. This process includes following steps;

• Firstly, reader module must be selected according to the stream source

• Secondly stream type must be identified.

• Thirdly stream must be demultiplexed with a proper demuxer.

• Demultiplexed elementary streams must be decoded by proper decoders.

• Lastly, decoded streams must be rendered with proper renderers without losing

lip-sync between audio and video outputs.

3.2.1. Deciding Appropriate Reader Module

The presented player aims to access a variety of sources such as lfs (local file

system), http, mms, udp, rtp, rtsp, rtcp, dvb, dvd, etc. Therefore, a distinct reader

module must be implemented for each protocol. Furthermore, each reader module must

be used via a predefined common interface; hence the other modules in the player will

be unaware of which reader module is selected actually.

44

For this reason, a core reader module is implemented which is the common

gateway to the reader modules. Selected reader module will be used via this core reader

module as seen in the Figure 3.4.

It is not necessary for a reader module to support all features written in common

interface. For instance, seek feature while reading will not be supported for dvb, udp or

rtp. Because these protocols are not suitable for seek operation.

Selection of the appropriate module can be done by parsing the filename or by a

parameter which is given by the user. For instance, if the filename is started with http://,

then http reader module will be selected. Additionally, user can enforce the player to

select a specific reader module via command line or graphical user interface.

Figure 3.4. Core reader module and plug-in reader modules

3.2.2. Inspecting Stream Type

In order to start playback of a media stream, the player must detect features of this

stream. At first container type must be detected. Although filename extension of a

media stream usually shows its container type such as avi, ts, mov, mpg, etc., deciding

container type by just according to the extension is not a proper way. So, it is also

required to scan stream to find unique symbols specific to the container type to be sure

that the stream’s container type is what the extension shows if there is a filename

extension. Otherwise, inspecting of the stream will continue until its container type is

45

detected. If the player cannot find container type of the stream, it will return that

playback is failed because of unknown container type.

For instance, transport streams are usually named with extension ts. or trp. after

they are recorded. So, if the extension of the name of a media file is ts or trp, it will be

rational to check stream if it is really a transport stream at first. For this reason, distinct

features of a transport stream from other container types must be known. That is a trans-

port stream is composed of packets with 188 bytes and each packet has a sync byte as

first byte which is equal to 71 in decimal, so a part of the stream can be scanned to

check if this policy is valid.

The amount of the stream required to detect container type is variable for different

container types. However, scanning more stream will give more accurate results in

general.

The container type is the first required data to inspect the media stream, after the

container type of the stream is found, it is possible to gather information like how many

elementary streams that media stream includes, or codec types of the elementary

streams. For this reason, according to the container type, headers that give information

about the elementary streams of that media stream must be found. The place and

structure of these headers is distinct for each container type. For instance, for avi format

this information can be found just at the start of the stream, however for mpeg streams it

may require to scan stream for a while to reach the required headers.

Encoding types of the elementary streams must be found at first to be able to

select appropriate decoder modules for decoding. In general, this information can be

found at the system layer, that is container type of the media stream, however it also

requires checking elementary stream is really encoded with the encoder that is written in

system layer.

 For this reason, the media stream must be de-multiplexed for a while until a part

of the elementary stream is extracted. It is attempted to decode the extracted elementary

stream by the decoder offered in the headers of container. If it is decodable then the

offered decoder is selected as decoder module, otherwise the other decoder modules

that-the player supports tried until the proper one is found. If an appropriate decoder

cannot found, the player returns that the playback is failed because of unknown codec

type.

If the media stream includes video elementary stream, it is also required to inspect

frame rate and frame size in width and height as well as its codec type. However, said

46

features of the video stream may not be found in the container headers. In that case, the

features of the video stream must be extracted from the video elementary stream which

requires de-multiplexing of the media stream to extract the video elementary stream.

The frame size is required to allocate decoded frame buffers and to initialize video

renderer module. Video rendering and video decoder module also requires frame rate of

the video stream which will be used when assigning or validating presentation

timestamps of the decoded video pictures to provide a smooth playback.

If the media stream includes audio elementary stream, it is also required to inspect

channel count, sampling frequency as well as its codec type. However, said features of

the audio stream may not be found in the headers of the container. In that case, the

features of the audio stream must be extracted from the audio elementary stream which

requires de-multiplexing of the media stream to extract the audio elementary stream.

In general, the media players include a stream inspector module which inspects

and gathers all of the required data before the start of playback. However, the presented

player does not include a discrete stream inspector module. Instead required information

is gathered as the media stream flows through the modules which makes inspection of

media stream rather faster and does not require a complex stream inspector module.

As discussed above, to gather information such as frame size for video or

sampling rate for audio may require de-multiplexing and decoding media stream for a

while in a discrete stream inspector module. Therefore, the stream inspector module

needs de-multiplex and decode capability for a variety of containers and codecs which

increases the complexity of the inspector module.

As seen in Figure 3.5, inspection and gathering all of required data is not realized

by a single module. When data reach to the de-multiplexer core module, it tries to find

out the container type of the media stream, since proper de-multiplexer plug-in module

will be selected according to the container.

 After container type is found, demultiplexer module begins to realizing its task

without need of any other information about the media stream. Video decoder core

module waits for buffer number 2, the de-multiplexer will extract elementary video

stream to this buffer. If stream reached to video decoder core module it first tries to

inspect stream to find out the codec type of the video stream.

 After codec type found, the video decoder core module calls the proper decoder

and decoding loop begins. After the decoding of the first frame we know the frame size,

47

and frame rate precisely. Therefore, we can initialize the video renderer after the

decoding of the first frame.

Features of the audio elementary stream are extracted at the audio decoder core

module with the same way. If media stream contains only one elementary stream, for in-

stance if there is no audio in the media stream, the buffer 3 will never be filled, so the

audio core decoder module will never be started for the said media stream.

So as seen in the Figure 3.5, the required data is inspected at where it can easily be

gathered which makes stream inspection simpler and faster.

Figure 3.5. Stream inspection as the media stream flows through modules.

48

3.2.3. Demultiplexing

As discussed in the previous section, the structure of the media streams, media

streams are composed of one or more multiplexed elementary streams.

The media streams are multiplexed in various ways which are defined by their

container type. The presented player aims to play various media formats such as avi, ts,

mpg, mp4, mov, etc. and each of these container formats require a distinct de-

multiplexer implementation. Furthermore, there must be a common interface for these

various container formats, so the demultiplexer core module can be linked to the proper

demultiplexer plug-in module which performs the demultiplexing for a specific

container format via this common interface. So, the other modules of the player will be

unaware of the actual demultiplexer plug-in module, and will interact only with the

demultiplexer core module which is already linked to the actual demultiplexer plug-in

module.

At first, demultiplexer core module tries to find appropriate demultiplexer plug-in

module by analyzing data that it takes as input. After the proper plug-in module is

selected, the core module starts a demultiplexing thread which has a demultiplexing

loop that calls get_new_packet() continuously. get_new_packet() returns new

demultiplexed packet and its features. (e.g. is it audio or video, does it have presentation

timestamp? etc.)

Demultiplexer core module has its own thread running and it continues to

demultiplex while one of demultiplexed output buffers (buffer 2 and 3 in the Figure 3.5)

is not full. Other-wise demultiplexer will wait for the relevant decoder to decode

demultiplexed packs. However this is not a desired condition in the case of live streams,

because it will cause overflow and hence data losses.

3.2.4. Decoding

There are various video and audio compression formats such as MPEG1/2 video,

H.264, DivX for video and MPEG audio, ac3 for audio. Each compression format, i.e.

encoding method, requires a distinct decoder. The presented player aims to support

various audio and video codecs. Therefore the presented player has decoder plug-in

modules, each of which implements a different codec. There are two decoder core

49

modules in the presented player, one is for audio and the other is for video. The decoder

core modules provide a common interface for decoder plug-in modules.

Decoder modules also have their own threads, and decoding continues while

relevant demultiplexed circular buffers (with the number 2 and 3 in the Figure 3.5) is

not empty or relevant decoded data circular buffers (with the number 4 and 5 in the

Figure 3.5.) is not full.

For instance, the video decoder module reads encoded video data and a PTS value

from demultiplexed video data buffer 2 in Figure 3.5. When the decoding of each frame

is completed, last read demultiplexed pack’s PTS value is assigned to this frame and the

frame is stored in the decoded video data buffer 4 in Figure 3.5. However, not all frames

have a PTS value read from the bitstream. For such frames, PTS value is computed

from the old pts values and frame rate using the following formula:

New_PTS = Old_PTS + 1000 / frame_per_seconds; (3.5)

Old_PTS = New_PTS; (3.6)

The video decoder core module, firstly tries to detect codec type of the

demultiplexed video stream that it reads from the circular buffer 2 in Figure 3.5. After

the codec type is detected, the proper video decoder plug-in module is selected

accordingly. Then, the video decoder core module starts a loop that calls

video_decoder_decode continuously. This function is the main decoding function that

must be implemented by each video decoder plug-in module. It hides most of the

complexity of decoding process and provides a simple and efficient interface to interact

with the decoder. It is required that the video decoder plug-in module operates on a

frame-by-frame basis to be compatible with the core decoder module.

For instance, the C like pseudo code in Table 3.2 shows the video decoder core

module that calls video decoder plugin module in a loop. VideoDecoderContext is the

structure that holds information about the decoded video stream such as hor_size,

ver_size or frame_rate. Except codec_id and private data, all of the members of this

structure must be set by the decoder plug-in module. Private data is a generic void

pointer argument. It is set to non-NULL only if the decoder in use needs a private

argument not specified by the other fields.Since encoders and hence decoders, work

50

with YUV frames VideoFrame is the structure that is defined to hold the luma and

chroma components of the decoded frame.

Table 3.2. The interaction between the core and the plug-in video decoder modules.

bool decode loop()

{

 unsigned char * demuxed_video_start;

 unsigned int demuxed_video_size;

 int got_video_frame;

 VideoFrame video_frame;

 VideoDecoderContext video_context;

 DmxVideoCircularBuffer_read(&demuxed_pack);

 demuxed_video_start = demuxed_pack.data;

 demuxed_video_size = demuxed_pack.size;

 while (demuxed_video_size > 0)

 {

 decode_byte_cnt = video_decoder_decode(&video_context,

 &video_frame,

 &got_video_frame,

 demuxed_video_start,

 demuxed_video_size);

 if (decoded_byte_cnt < 0)

 printf(“Error at video decoding.”);

 if (got_video_frame)

 {

 DecVideoCircularBuffer_write(video_frame);

 }

 demuxed_video_start += decoded_byte_cnt;

 demuxed_video_size -= decoded_byte_cnt;

 }

 return true;

}

51

Video decoder core module should transfer a new chunk of input data that is

buf_ptr in the following prototype, to the decoder by the video_decoder_decode

function as seen in Table 3.2. VideoDecoderContext may be updated by the de-coder

plug-in module, therefore transferred as a pointer. The size of the given coded data

chunk must be given to the decoder plug-in module side by using buf_size. Video

decoder plug-in module will continue to decode given input coded data until a frame is

decoded or end of buffer is reached. If decoder plug-in module achieves to decode a

frame with given buffer, decoded frame will be returned in structure named

VideoFrame, and got_video_frame will be set to true. Return parameter of this function

will show how many bytes consumed from the buf_ptr. If got_video_frame is true, i.e.

a frame is successfully decoded; the return value can be less than buf_size. Other-wise

it must be equal to buf_size which means all of given buffer chunk is consumed and no

frame is decoded.

 3.2.5. Rendering

Implementation of the video output is platform dependent. For instance, directX

library can be used on Windows, where directfb is used on Linux. Moreover, SDL can

be used for both of these OS. Furthermore, there may be many options to implement

video rendering on a single platform. Therefore, the presented player has video

rendering plug-in modules each of which uses a distinct rendering library that can be

accessed via a video renderer core module.

Implementation of the audio output will also be differing from platform to

platform. And there also be many ways to implement audio rendering on a single

platform such as ALSA and OSS on Linux. Therefore, audio renderer plug-in modules

can be implemented for distinct libraries. Each audio renderer plug-in module must be

implemented according to the common interface defined by the audio renderer core

module.

The Renderer core modules have their own threads run-ning. Audio renderer core

module has a great importance in providing inter synchronization, since it sets and

updates system clock according to the PTS values of audio frames and when writing

data to the audio driver’s buffer blocking IO method must be used.

52

Video renderer core module displays the video frames according to the frame rate

by using PTS values and the system clock which is updated by the audio renderer

periodically to maintain intra and inter synchronization.

In fact, the presentation of video frames by the video renderer may not always be

with a constant framerate, instead a fine adjustment in the frame rate can be done to

ensure synchronization between server and client applications with-out introducing a

perceptible distortion.

For example, for a video stream with 25 fps framerate, the presentation duration

of each frame must be 40 milliseconds. However in case of live streams, this value may

need to be greater or smaller than 40 milliseconds to provide synchronization between

server and client applications.

Furthermore, to keep video in sync with audio, some video frames may be

presented longer or shorter than normal. Generally, these adjustments need not be

applied very often, and the adjustment is done within a certain limit so that the

smoothness of video playback is not lost.

3.3 Synchronization

Synchronization problems can be divided into two category: audio-video

synchronization problems which is also called as intra synchronization and server-client

synchronization problems which is also known as inter synchronization.

3.3.1. Audio-Video Synchronization

Audio-video synchronization is one of the most challenging issues in media

player architecture design. This is due to the fact that audio and video data are captured

by distinct devices, and then encoded by separate encoders as seen in the Figure 3.6. If

it would possible to capture and record audio and video as a single signal, obviously,

there will be no synchronization problem.

If audio and video would be transferred through different channels without

multiplexed and delays because of en-coding or channel property are ignored, it would

be easier to play audio and video in synchronization. However, obviously total time for

encoding, decoding, transporting of audio and video streams will not be equal. As seen

53

in the Figure 3.6., if dA is the time difference between an audio frame is captured and

played, and dV is the time between a video frame is captured and showed, then

synchronization can be provided if and only if dA is equal to dV.

Figure 3.6. Synchronization of audio and video in case of separate channels.

However, if the audio and the video stream are multiplexed into one single

bitstream at encoder or server side as seen in the Figure 3.7, then multiplexed stream

will be send over one single channel to the client or decoder side where it will be

demultiplexed to the audio and the video streams. The channel between the encoder and

the decoder system can be thought as a storage device as well as any network link. The

encoding and the capturing duration of the audio and the video streams are not equal,

therefore the multiplexer must follow a strategy to make it possible for the player

system to play audio and video in synchronization.

There are two widely known strategies used in multiplexing for the sake of audio

video synchronization. First strategy is to note entering times of the video and the audio

frames to the recording system. Each of the audio and the video frame can be attached

with a timestamp that shows their capture time. Actually, the capture timestamps can be

thought as the presentation times of frames, hence called as presentation timestamps.

So, the presentation timestamps are assigned according to the recording system clock,

which is generally referred as the system clock. The position and order of the audio or

54

video frames on the multiplexed stream does not bear any timing information. Instead,

timing and synchronization is achieved through the use of time stamps inserted into the

multiplexed stream by the encoding system. These stamps (audio and video PTS) must

be correctly used to attain a perfectly synchronized presentation. The use of these PTS

values in a proper way is up to the media player.

Figure 3.7. Synchronization of audio and video in case of single channels.

The second strategy is simpler but not convenient for transporting over networks.

Since the frame rate is constant during the video sequence, the time interval is equal and

constant for two consecutive video frames. Audio sampling rate which shows how

many audio samples must be played in a second is also a constant value. So, instead of

attaching a presentation timestamp to each frame, the sampling rate of the audio stream

and the frame rate of the video stream can be inserted to the headers of the multiplexed

stream as in avi containers. The presentation time (in milliseconds) of each frame can be

calculated by using the frame rate and frame number as in the following:

 time interval = 1000 / frame rate (3.7)

 PTS of ith frame = start_offset + (i x time interval) (3.8)

55

First pts of audio or video can be a non-zero value. In other words, pts values of

the first audio and first video frame can be not equal. So, if the pts value of the first

frame is not zero, then this value can be used as start_offset in calculation of pts values

of later frames as in the above formula.

The presented player requires a pts value for each decoded (video and audio)

frame which can be obtained from multiplexed stream or can be calculated by using the

frame rate as in the above formula. The player also requires a master clock in

milliseconds resolution which will show the current time in player domain. The system

that the player works on must already have a clock that works at least at milliseconds

resolution. Therefore the rate of the system clock can be used as reference for the master

clock. So, there will be an offset between the master clock and the system clock. In

other words the master clock can be calculated any time by adding this offset to the

system clock.

Audio must be played continuously. Playing of audio is realized by feeding the

buffer of the audio driver. In the conventional methods, the audio frame is feeded to the

audio driver’s buffer if the audio frame’s pts value is equal to the player’s master clock.

Then the audio driver begins to play this buffer. There are critical problems which arise

mainly from playing audio due to the fact that audio driver, as well, has its own clock.

Thus, the time required to play an audio frame depends on the audio driver’s clock rate.

Assume that an audio frame begins to play on the right time according to its PTS value.

If audio driver’s clock rate is faster, the playing of the audio will be finished early, so

next audio frame will not be played just after previous audio frame. There will be

perceptible gaps (silence) between audio frames. Similarly, if the audio driver’s clock is

slower, then the audio frame will be played longer and again there will be perceptible

distortions. Because, the audio driver has its own clock and the clock rate of the

player’s audio driver’s clock may not be equal to the encoding system’s audio driver’s

clock. Conventional player’s solve this problem by dropping or duplicating audio frame

which causes perceptible defects.

However, there is another known solution of this problem. In this solution

method, audio driver’s buffer is feeded with the next audio frame when just after the

playing of current audio frame is completely finished. So, audio pts values are ignored.

Obviously this will prevent gaps or overwritings, however synchronization between

audio and video will be lost by the time. Because if the audio driver’s clock rate is

faster, audio will begin to playing before corresponding video frames. Otherwise audio

56

will be late for corresponding video. Therefore playing rate of video is must be updated

according to the playing rate of audio.

Audio driver’s buffer is set to blocking io access. So, audio driver will prevent

overwriting, and any write request will be waited until the driver’s buffer become

empty. If the audio driver’s buffer is empty next waiting audio frame is feed to the said

buffer, and pts value of this frame is assigned as master clock. As discussed above,

master clock is some offset plus system clock; therefore actually this offset will be

updated.

Audio driver’s buffer is set to blocking io access. So, audio driver will prevent

overwriting, and any write request will be waited until the driver’s buffer become

empty. If the audio driver’s buffer is empty next waiting audio frame is feed to the said

buffer, and pts value of this frame is as-signed as master clock. As discussed above,

master clock is some offset plus system clock; therefore this offset will be updated.

Indeed we have three independent clocks to reconcile before ensuring a seamless

playback, first the players system clock, second the encoders time stamps which are

assigned according to the encoder’s clock and third the audio drivers own internal clock.

Another problem with the audio is the delay which occurs just before playing an

audio frame because of the initialization of the audio buffer. Due to this delay, an audio

frame which is planned to start playing at time T, will be played after a delay, at time T

+ dt. So, this dt value that shows delay that must be taken into account to reach an

accurate synchronization.

t1, t2, …tn : nth audio frame start playing

PSC: Player’s System Clock.

Figure 3.8. Relation between players’ clock and audio timestamps

57

Figure 3.8. describes the relationship between the three clocks. The horizontal

axis is the player's clock PSC, the vertical axis is the PTS values received from the

stream. The points on the horizontal axis t1, t2, tn represent the times that the audio

driver asks for a new audio sample. The difference between the successive points (tn-tn-

1) is nearly constant. Instead of dealing with the audio drivers clock directly, it is more

useful to know the t values for our purpose. There is a first order relation between the

PTS values and the PSC.

PSC = ?*PTS + x (3.9)

 ? = (t1-t2) / (PTS2-PTS1) (3.10)

 x = offset (3.11)

From Figure 3.8, it is understood that the rate of increase in PTS values may not

necessarily follow the rate of increase in system clock, due to the obvious fact that the

player system and encoder system have two independent system clocks, that is, the

slope of the line in Figure 3.8 may not exactly be 1. Therefore, in calculating the offset

value x, this must be taken into account. Instead of accepting the initial offset value x =

t1 – PTS1, the exact offset value can dynamically be computed each time a new PTS

value is read from the stream by the equation (3.12);

 offset = x = t1 – (PTS1 * (t1 – t2)) / (PTS2 – PTS1) (3.12)

By using the equations above, we indeed couple the en-coders clock to our actual

player clock through a first order relation. Using this relation, we first convert the PTS

value of a frame to a new time value and if this value matches with the players clock we

present the frame. The coefficients in the above equations will be dynamically updated

each time a new PTS is received resulting in a more accurate synchronization as

playback continues.

There is another thing that the Figure 3.8 and the above relations hint. This is the

fact that audio drivers clock is the master since each time the audio driver asks for a

58

new sample, we feed it and all other things including video presentation follows this as

slaves. For instance, if the pts value of the just decoded video frame is equal to the

master clock it will be showed. Since master clock is updated by audio driver, and video

player uses master clock to compare video frame’s clock, audio and video will be

synchronized. This is natural because in a media playback system audio is most delicate

part to handle as it must be perfectly continuous.

3.3.2. Server-Client Synchronization

There is an increasing demand on the transmission of media streams over

networks, particularly on the Internet (Garner, et al. 2006). Streaming servers (Abdel-

Baki 2003) send the data at a prescribed average data rate. This average data rate is

maintained by scheduling algorithms (Jarmasz and Georganas 1997).

Early media players for decoding audio and video typically required that the entire

content be downloaded on the local computer before the player starts playing. Recent

players began to support streaming capabilities by buffering some data and starting to

play before the entire content has arrived. If the data rate of the incoming media stream

is not sufficient, the player pauses and continues to play when its buffer is filled again.

Buffering also compensates for jitter in the channel.

The main challenge is smooth playback of audio synchronized with video under

varying network conditions without buffer overflow or underflow. This is mainly

accomplished by adjusting the playback rate according to the server’s clock rate

(Garner, et al. 2006). The previous methods used to accomplish this task are given in the

Appendix A.

The presented streaming media player dynamically changes its playback rate

according to varying network conditions for continuous and smooth playback of

streaming media (Guo, et al. 2001). The player normally plays at an original data rate

defined by stream parameters. When input packets start to arrive faster or slower, the

player does not stop to rebuffer, generates a clock state based on the difference between

the server’s clock value and the player’s clock value, and adjusts the player’s clock

value based on the generated clock state. Audio pitch is unchanged as it is slowed and

video frame rate is slowed as necessary.

59

The proposed streaming media player varies the rate of output of the mentioned

media stream from the mentioned output device to ensure smooth playback of audio and

video together, based on the clock state value, wherein the speed change varies

according to the formula (3.13):

s = m (SC(t) – PC(t)) / (SC(t) – SC(t-1)) (3.13)

where s is the speed up or slow down ratio with respect to the original speed; m is the

maximum allowable slow down ratio with respect to the original speed; PC(t) is the

player’s clock value at sampling time t; and SC(t) is the server’s clock value at sampling

time t.

Figure 3.9. Prior art: conventional streaming media player and streaming server

Figure 3.9 describes the prior art, including a standard streaming server 101, a

network communication link 102, and a standard streaming media player 103.

In a standard streaming server 101, audio, video and other inputs are input to the

streaming server through the capture devices. In the Figure 3.10, audio capture device

104 and video capture device 105 are shown. The possible capture devices which may

be present in a streaming server may not be limited to audio and video. In this preferred

embodiment, only audio and video are shown but it can be generalized to other capture

60

devices as well. Audio data captured by 104 is sent to the audio encoder 106, and video

data captured by 105 is sent to video encoder 107 for encoding. Encoded media data

such as audio and video are multiplexed by the multiplexer device 108 which also gets

the server’s clock value from the server’s clock 109.

The multiplexed media stream output by 108 is sent over the network

communication link 102 to a streaming media player 103.

Figure 3.10. Proposed streaming media player

A standard media player buffers the media stream by the input buffer 110 and the

media is passed to the demultiplexer device 111. Demultiplexer device 111,

demultiplexes the different media streams and reads the server’s clock value. Two of the

outputs of the demultiplexer device 111, namely audio and video, are illustrated. The

demultiplexer updates the player’s clock 112 with the server’s clock value. Encoded

audio and video outputs of the demultiplexer device 111 are input into the audio

decoder device 113 and the video decoder device 114. Decoded audio is sent to the

audio renderer 115 and decoded video is sent to the video renderer 116.

Figure 3.10 describes the proposed method used in the streaming media player

103. 201 is the clocks comparator device which compares the server’s clock value and

the player’s clock value and generates a clock state value. The amount of data transfered

61

from audio decoder device 113 to the audio renderer 115 is controlled by the audio

speed controller 202. The amount of data transfered from video decoder device 114 to

the audio renderer 116 is controlled by the audio speed controller 203.

The clock state value generated by 201 is input to the audio speed controller 202

and the audio speed controller 202 updates the player’s clock 112. The video speed

controller 203 gets the updated player’s clock value as input.

The player’s clock speed will be varied according to the clock state generated by

the clocks comparator 201. Particularly, the player’s clock speed may be varied

according to the formula 3.14:

s = m (SC(t) – PC(t)) / (SC(t) – SC(t-1)) (3.14)

In the formula 3.14, s is the speed up or slow down ratio with respect to the

original speed; m is the maximum allowable slow down ratio with respect to the original

speed; PC(t) is the player’s clock value at sampling time t; and SC(t) is the server’s

clock value at sampling time t.

62

CHAPTER 4

THE IMPLEMENTATION

The presented player is implemented on Linux by using C language and compiled

with GCC-4.0 compiler. The presented player can be compiled on any Linux

distribution installed with required libraries. The required libraries are as the following;

 Ffmpeg is an open source codec library (or framework) which includes

libavcodec, libavformat, libavutil and libavdevice as sublibraries. This library is used

for decoding and demuxing purposes. It has numerous video and audio decoders, and as

well as container parsers. Most of the supported codecs by ffmpeg are licensed with

LGPL (Lesser General However Public License). However some codecs may require

GPL (General Public License). In order to use these codecs, the ffmpeg library must be

compiled with GPL licence option enabled. The main difference between GPL and

LPGL is with a LPGL licence it is not required to publish the code that uses library

unless it modifies the LPGL licenced code. However, the code that uses GPL licenced

library must be published even if the GPL licenced library is not modified.

SDL (Simple Direct Media Layer) is also an open source library designed to

access low level hardware such as audio, video, keyboard, mouse, etc. This library is

used to render and print-to-screen decoded video pictures.

ALSA (Advanced Linux Sound Architecture) provides audio functionality of

Linux operating system. This library is used to realize audio rendering and playing.

There are other libraries which can be used as well such as OSS for audio

rendering, V4L for video rendering, libmpeg2 for MPEG-2 video decoding, libnemesi

for RTP and RTSP reading, libcurl for HTTP reading, libmms for MMS reading

Modular structure of player makes it possible to use a library instead of other. So, for

demuxing, video decoding, audio decoding, video rendering and audio rendering

purposes it is possible to integrate any library to player with a little work. The required

interfaces that will be used for integration will be given in the further sections.

 In order to provide a graphical user interface it is possible to use GTK-2.0 or

WxWidgets. The presented player is suitable to use as a standalone application or as a

C library after making slight modifications to the original code.

63

4.1. Implementation Modules

 Implementation modules are implemented as separate C files designed to

accomplish some peculiar tasks. The implementation of most important modules will be

given in the further subsections. The complete list of modules is given in the Table 4.1.

Table 4.1. The implementation modules

Module Name Module’s Task

vesplayer.c provides access functions of the player.

ui.c provides a terminal shell as user interface

resource_reader.c hides details of reading from various resources.

demuxer.c hides details of parsing various containers

decoderv.c used for decoding encoded video elementary streams

decodera.c used for decoding encoded audio elementary streams

outv.h interface to print decoded pictures to screen

outa.h interface to play decoded audio samples

synchronizer.c provides audio-video synchronization

reader_file.c used by resource_reader to read media stream from file

buffer.c buffer’s common features implemented in this module

reader_http.c used by resource_reader to read media stream from http

reader_mms.c used by resource_reader to read media stream from mms

reader_rtsp.c used by resource_reader to read media stream from rtsp

outv_sdl.c accessed via outv to print decoded pictures with SDL library

outv_v4l.c accessed via outv to print decoded pictures with V4L library

outa_alsa.c accessed via outa to play decoded audio samples with ALSA

outa_oss.c accessed via outa to play decoded audio samples with OSS

decv_avc.c used by decoderv to decode encoded video streams by ffmpeg

deca_avc.c used by decodera to decode encoded audio streams by ffmpeg

buf_admx.c circular buffer between demuxer and audio decoder

buf_vdmx.c circular buffer between demuxer and video decoder

buf_adec.c circular buffer between audio decoder and audio renderer

buf_vdec.c circular buffer between video decoder and video renderer

64

4.1.1. The UI Module

Table 4.2. The UI module: player’s main function

01. int main(int argc, char *argv[])

02. {

03. vbool ret;

04.

05. // handle the cmd line arguments

06. ret = ui_handle_cmdline(argc, argv);

07. if (argc > 1 && ret == vfalse) return EXIT_FAILURE;

08.

09. if (!s_mediafile) {

10. printf("You must specify media filename via -f...\n");

11. return EXIT_FAILURE;

12. }

13.

14. ret = Vesplayer_init();

15. if (ret != vtrue) {

16. printf("Failed to initialize vesplayer!\n");

17. return EXIT_FAILURE;

18. }

19.

20. s_stream.pb_completed = s_handle_playback_finished; // callback of media-play completed

21. s_stream.pbc_args = NULL; // args

22. s_stream.filename = s_mediafile; // mediafile to play

23. s_stream.subtfile = s_subtfile; // optional subtitle file

24. s_stream.pipename = s_pipename; // optional pipename

25. s_stream.layout.x = s_x_loc; // xloc of screen

26. s_stream.layout.y = s_y_loc; // yloc of screen

27. s_stream.layout.w = s_width; // intended screen width

28. s_stream.layout.h = s_height; // intended screen height

29.

30. ret = Vesplayer_start_playback(&s_stream);

31. if (ret == vfalse) {

32. printf("Failed to play the media...\n");

33. Vesplayer_terminate();

34. return EXIT_FAILURE;

35. }

36. ui_init();

37. Vesplayer_wait_playback();

38. ui_finish();

39. return EXIT_SUCCESS; }

65

 The ui module is a simple implementation of user interface that allows user to

control player via a terminal or console. The main function of the application which is

implemented in the UI module is given at Table 4.2. Firstly command line arguments

are parsed, user specified options such as filename, screen position, etc. are initialized at

line 6.

 The player is initialized at line 14. Then the structure that holds stream’s features

is initialized at lines 20-28. The Stream structure holds all required information about

media bitstream during playback. The definition of this structure is given at Table 4.3.

Table 4.3. The stream structure

typedef struct

{

 vbool initialized;

 vbool include_audio;

 vbool include_video;

 vbool include_subtitles;

 vuint16 demuxer_id;

 vuint16 video_PID;

 vuint16 audio_PID;

 vuint32 duration;

 vsint32 extension;

 vsint32 trick_mode;

 vsint64 last_video_pts;

 Audio_Stream audio;

 Video_Stream video;

 Layout layout;

 char *filename; // media file

 char *subtfile; // optional subtitle file

 char *pipename; // optional pipename

 vplaycompleted pb_completed; // playback completed callback

 void *pbc_args; // and its arguments

} Stream;

The Stream structure holds Audio_Stream and Video_Stream structures which

hold features of the audio and video streams. The parameters defined in Audio Stream

and Video Stream structures are initialized when they are detected by the related

66

modules. For instance, the size of the decoded picture is set by the video decoder

module when the first picture is decoded. The definition of Audio_Stream and

Video_Stream structures are given at Table 4.4.

Table 4.4. The Audio_Stream and Video_Stream structures

typedef struct

{

 vbool fullscreen; // layout

 vuint32 xpos;

 vuint32 ypos;

 vuint32 width;

 vuint32 height;

} Layout;

typedef struct

{

 vuint8 layer;

 vuint8 channel_cnt;

 vsint32 codec_id;

 vuint32 sampling_freq;

 vuint32 size;

 vuint32 duration;

 vuint32 bitrate;

 vuint32 microsecs_per_frame;

 float timebase;

} Audio_Stream;

typedef struct

{

 double height;

 double width;

 vsint32 codec_id;

 vuint32 hor_size;

 vuint32 ver_size;

 vuint32 duration;

 vuint32 bitrate;

 vuint32 microsecs_per_frame;

 double timebase;

 Frame_Aspect_Ratio aspect_ratio;

} Video_Stream;

67

 In the main function of the player at Table 4.2, the playback is started in line 30.

“Vesplayer_start_playback(&s_stream);” function creates a playback thread as seen in

Table 4.6. User interface which allows user to input commands such as pause, resume,

stop, etc. is initialized in line 37 at Table 4.2. Then Vesplayer_wait_playback();

function in line 38 causes main function to wait for the termination of playback thread.

When the playback ends ui_finish() function is called and the application is finished.

4.1.2. The Vesplayer Module

 This module realizes the control mechanism of the player and provides an

interface to control player as seen in the Table 4.5.

Table 4.5. Vesplayer: playback control interface

vbool Vesplayer_init();

vbool Vesplayer_start_playback(Stream *a_stream);

void Vesplayer_stop_playback();

void Vesplayer_terminate();

void Vesplayer_slow_motion();

void Vesplayer_fast_motion();

void Vesplayer_fast_forward();

void Vesplayer_fast_backward();

void Vesplayer_normal_playback();

void Vesplayer_pause_playback();

void Vesplayer_seek(vsint32 a_seek_step);

void Vesplayer_seek_to_time(vsettotime seek_to_time);

vsint64 Vesplayer_get_current_playtime();

vbool Vesplayer_playback_completed();

vbool Vesplayer_wait_playback();

68

 Vesplayer_start_playback() function creates a playback thread and this thread

spawns other required threads in order to play stream such as demuxing thread, video

thread, audio thread as seen in the following Table 4.6.

Table 4.6. The playback thread

Vbool Vesplayer_start_playback(Stream *a_stream)
{
 pthread_create(&s_thr_playback, NULL, s_playback, a_stream);
 return vtrue;
}

static void* s_playback(void *args)
{
 vbool succeed = vfalse;
 s_stream = (Stream *) args;
 s_terminated = vfalse;

 // init the buffers
 succeed = Buf_Admx_init(); if (!succeed) return vfalse;
 succeed = Buf_Adec_init(); if (!succeed) return vfalse;
 succeed = Buf_Vdmx_init(); if (!succeed) return vfalse;
 succeed = Buf_Vdec_init(); if (!succeed) return vfalse;

 Demuxer_find_stream_info(s_stream);
 pthread_create(&s_thr_dmxer, NULL, Demuxer_demux, s_stream);

 if (s_stream->include_video){
 pthread_create(&s_thr_dec_vid, NULL, DecoderV_decode, s_stream);
 pthread_create(&s_thr_playerv, NULL, PlayerV_play, s_stream);
 }
 if (s_stream->include_audio) {
 pthread_create(&s_thr_dec_aud, NULL, DecoderA_decode, s_stream);
 pthread_create(&s_thr_playera, NULL, PlayerA_play, s_stream);
 }
 s_stream->initialized = vtrue;

 do{
 usleep(1000);
 succeed = Vesplayer_playback_completed();
 if (succeed == vtrue) break;

 } while (s_terminated == vfalse);

 s_finish_threads();
 s_stream->initialized = vfalse;

 RReader_free();
 Buf_Input_free();
 Buf_Adec_free();
 Buf_Admx_free();
 Buf_Vdec_free();
 Buf_Vdmx_free();

 // vplaycompleted callback function is called when playback is completed: only if not null!
 if (s_stream->pb_completed) {
 s_stream->pb_completed(s_stream->pbc_args);
 }
 return 0;
}

69

 As seen in the Table 4.6 s_playback is thread function which firstly initializes

circular buffers then starts demuxer, decoder and player (renderer) threads. After

initializations are completed successfully, the completion of playback is checked in loop

every 1 milisecond (1000 microseconds). Vesplayer_playback_completed() function

checks the end of playback as seen in the Table 4.7. When the playback is completed,

loop is breaked and then all threads are terminated and buffers are released.

Table 4.7. Checking end of playback

vbool Vesplayer_playback_completed()
{

 if (s_stream->include_video)
 {
 if (PlayerV_completed())
 {
 if(PlayerA_completed())
 printf("video and audio completed\n");
 else
 printf("video completed\n");

 return vtrue;
 }
 }

 if (s_stream->include_audio)
 {
 return PlayerA_completed();
 }

 // to be on the safe side
 return vfalse;

}

If the stream contains video, which is detected with the start of demuxing, then

whether the video player (renderer in other words) thread terminated or ended is

checked by PlayerV_completed() function as seen in the Table 4.7.

Vesplayer_playback_completed function returns true which means playback is

completed when audio or video renderer threads are completed. The renderer threads

70

can be completed because of two reasons; first one is termination of playback by user’s

stop playback command and the other is reaching to end of stream.

4.1.3. The Buffer Module

 The buffer module creates the circular buffers which are used to transfer data

from one thread to another. The buffer module has a generic implementation, so all

circular buffers use this same implementation with the different parameters. The circular

buffer is initialized as seen in the Table 4.8.

Table 4.8. Initialization of circular buffer

Vbool Buf_init(VBuffer *buf, vuint32 a_frame_count, vuint32 a_frame_size)
{
 // init flags
 buf->read_terminated = vfalse;
 buf->write_terminated = vfalse;
 buf->is_protected = vtrue;
 buf->frame_amount = a_frame_count;
 buf->frame_size = a_frame_size;
 buf->look_at_pos = 0;
 buf->frames = 0;

 // init the buffer controller
 buf->ctrl.rd_pos = 0;
 buf->ctrl.wr_pos = 0;
 buf->ctrl.item_cnt = 0;

 // init the buffer controller semaphores
 if (sem_init(&buf->ctrl.full, 0, 0) < 0) return vfalse;

 // initially all are empty, thus count is buf->frame_amount
 if (sem_init(&buf->ctrl.empty, 0, buf->frame_amount) < 0)
 {
 return vfalse;
 }

 // allocate buffers if wanted
 if (buf->frame_size > 0)
 {
 buf->frames = (char *) malloc(buf->frame_size * buf->frame_amount);

 if (buf->frames == 0) {
 VERR(("can't get memory for buf->frames\n"));
 return vfalse;
 }
 }

 return vtrue;
}

71

 Buf_Init function takes three parameters as input; buf parameter is the handler

for the buffer, frame count shows the item number that the buffer holds and frame size

shows the size of each item.

 Each buffer basicly has two ports: one for reading and the other for writing.

Because each circular buffer conveys data between two threads. In all cases one of these

two threads is producer and the other is consumer.

For instance if this circular buffer is between video decoder and video renderer

threads, video decoder thread works as producer and puts decoded video pictures to

circular buffer, and video renderer module works as consumer and gets the decoded

picture from circular buffer to print on screen.

 So, producer thread always writes to circular buffer and consumer thread always

read from it. Each circular buffer has two flags that shows the status of its producer and

consumer threads. The write_terminated flag of the buffer show if the producer thread

that write the data is still active or not. The read_terminated flag shows the status of the

reader thread.

These flags are very important in providing synchronization between threads.

Because, for example if the write_terminated flag is true, that means producer is ended

because of end of stream or an error and will not write to buffer anymore. So when the

all of items in the circular buffer is consumed by producer, it will check whether the

procuder thread is active by using write_terminated flag. If the writer thread is

terminated, then there is no need for the produced thread to wait anymore for the new

data and it can terminate itself.

 The threaded modules: demuxer thread, audio decoder thread, video decoder

thread, audio player thread and video player thread always read from one buffer and

write to another one. So, there is no direct communication between a thread and the

other. This provides abstraction between threads and it is possible to change a writer (or

reader) thread with another if it produces same kind of data.

 For instance, MPEG-2 video decoder thread is a writer thread for the decoded

pictures circular buffer and it can be changed with MPEG-4 video decoder thread

without need of any change. Because both decoders write same kind of data (decoded

pictures) to the decoded pictures circular buffer. And so for the video player thread

which reads from this circular buffer, the identity of the writer thread (video decoder) is

unimportant. The read and write functions of the buffer is given in Table 4.9.

72

Table 4.9. Read and Write functions of the circular buffers

Vbool Buf_read(VBuffer *buf, char *a_copy_to_mem, vuint32 a_size)
{

 // return false if the read buffer is terminated or (write buffer is terminated and it is empty)
 if (buf->read_terminated || (buf->write_terminated && buf->ctrl.item_cnt == 0))
 return vfalse;

 if (buf->is_protected)
 sem_wait(&buf->ctrl.full);

 // copy the data
 memcpy(a_copy_to_mem, buf->frames + (buf->ctrl.rd_pos * buf->frame_size), a_size);
 buf->len = buf->length[buf->ctrl.rd_pos];

 // update the buffer controller
 buf->ctrl.rd_pos++;
 buf->ctrl.rd_pos %= buf->frame_amount;
 buf->ctrl.item_cnt--;

 if (buf->is_protected)
 sem_post(&buf->ctrl.empty);

 return vtrue;

}

Vbool Buf_write(VBuffer *buf, char *a_write_this, vuint32 a_size)
{

 // if the read buffer is terminated, there is not need to write
 // so check both the read and write buffers if they are terminated
 if (buf->write_terminated || buf->read_terminated)
 return vfalse;

 if (buf->is_protected)
 sem_wait(&buf->ctrl.empty);

 // copy the data
 memcpy(buf->frames + (buf->ctrl.wr_pos * buf->frame_size), a_write_this, a_size);
 buf->length[buf->ctrl.wr_pos] = a_size;

 // update the buffer controller
 buf->ctrl.wr_pos++;
 buf->ctrl.wr_pos %= buf->frame_amount;
 buf->ctrl.item_cnt++;

 if (buf->is_protected)
 sem_post(&buf->ctrl.full);

 return vtrue;
}

73

4.1.4. The Resource Reader Module

The media stream can be stored on a local file system or it can be broadcasted

(or unicasted) over a private network or over Internet via protocols such as udp, rtp,

rtsp, http, mms, etc.

The resource reader module provides an abstraction between stream resource

and the rest of the player’s modules. For example, it reads from local file system by

using local file system reader module and puts read stream to input circular buffer. If the

stream is broadcasted over http, it reads stream by using http reader module, and puts

read data to the same input circular buffer. Demuxer module is the reader of the input

circular buffer. So, there is no need for demuxer module to know where the stream

comes from. The resource reader module is initialized as seen in the Table 4.11.

 The resource of the stream can be detected by parsing url, or it can be enforced

by using command line arguments. Function pointers are used to bind functions of

resource reader to the functions of the specific reader module such as rtsp reader

module, http reader module, etc. as seen in the Table 4.11.

The resource reader module is a threaded module, in other words it has its own

thread and reading continues in this thread function in a loop until the end of stream is

reached or playback is terminated as seen in the Table 4.10.

Table 4.10. The resource reader module’s thread function

void * RReader_loop(void *a_params)

{

 vbool succeed = vfalse;

 vuint32 len = 0;

 do {

 len = Reader_read((char *)s_pack.data, INPUT_SIZE);

 if (len > 0) {

 s_pack.size = len;

 Buf_Input_write(&s_pack);

 }

 } while (!s_terminated);

 return 0;

}

74

Table 4.11. The initialization of the resource reader module

vbool RReader_init(const char *a_name)

{

 if(strstr(a_name, "http://") != 0) {

 Reader_init = &ReaderH_init;

 Reader_free = &ReaderH_free;

 Reader_read = &ReaderH_read;

 Reader_rewind = &ReaderH_rewind;

 Reader_get_filesize = &ReaderH_get_filesize;

 Reader_seek = &ReaderH_seek;

 }

 else if(strstr(a_name, "mms://") != 0)

 {

 Reader_init = &ReaderM_init;

 Reader_free = &ReaderM_free;

 Reader_read = &ReaderM_read;

 Reader_rewind = &ReaderM_rewind;

 Reader_get_filesize = &ReaderM_get_filesize;

 Reader_seek = &ReaderM_seek;

 }

 else if(strstr(a_name, "rtsp://") != 0)

 {

 Reader_init = &ReaderR_init;

 Reader_free = &ReaderR_free;

 Reader_read = &ReaderR_read;

 Reader_rewind = &ReaderR_rewind;

 Reader_get_filesize = &ReaderR_get_filesize;

 Reader_seek = &ReaderR_seek;

 }

 else {

 Reader_init = &ReaderF_init;

 Reader_free = &ReaderF_free;

 Reader_read = &ReaderF_read;

 Reader_rewind = &ReaderF_rewind;

 Reader_get_filesize = &ReaderF_get_filesize;

 Reader_seek = &ReaderF_seek;

 }

 return Reader_init(a_name);

}

75

4.1.5. The Demuxer Module

The demuxer module is used to parse media stream container and extract

elementary audio and video streams. The extracted audio and video streams are written

to encoded audio and encoded video circular buffers. There are numerous container

types such avi, asf, MPEG program stream, MPEG transport stream, etc. So firstly

container type of the stream must be detected by searching specific patterns that defines

the container type. For example, each MPEG transport stream pack is 188 bytes in

length and start with the hex code 0x47. So, if this header is detected with 188 bytes

intervals, that means container type is MPEG transport stream.

When the container type is detected, the function pointers of the demuxer

module are binded to the functions of the demuxer of detected container type as in

Resource Reader Module.

The Demuxer Module has its own thread and demuxing continues in a loop until

the end of stream is reached as seen in the Table 4.12.

Table 4.12. The thread function of the demuxer module

void* Demuxer_demux()

{

 vsint32 ret = 0;

 vbool succeed = vfalse;

 Packet *pkt;

 do{

 ret = read_demuxed_packet(pkt);

 if (ret < 0) break;

 s_pack.pts = pkt->pts;

 s_pack.size = pkt->size;

 memcpy(s_pack.data, pkt->data, pkt->size);

 if (pkt->type == AUDIO_ELEMENTARY_STREAM)

 Buf_Admx_write(&s_pack);

 else if (pkt->type == VIDEO_ELEMENTARY_STREAM)

 Buf_Vdmx_write(&s_pack);

 } while(!end_of_buffer && !s_terminated);

}

76

4.1.6. The Video Decoder Module

The video decoder module is responsible for providing an interface to the

numerous video codecs. For instance, the video decoder library such as MPEG-2

decoder of the ffmpeg library is binded to this module when the codec type is detected

as MPEG-2. It is assumed that the video decoder library operates on a frame-by-frame

basis, which is the most common case, since this method simplifies the required

interaction between player and the video decoder library and improves the usability of

the library. The video decoder module must be initialized before decoding. So, firstly

the type of the video codec must be found. This information can be extracted during

parsing of the stream’s container type or it can be detected from the headers of the video

elementary stream.

The video decoder module has its own thread, and the decoding continues in a

loop until the end of the stream is reached or playback terminated as seen in the Table

4.13. Firstly, demuxed video data is read from the demuxed video circular buffer with

the function “Buf_Vdmx_read(&s_demuxed)” as seen in the line 14. The “s_demuxed” is

a structure that is composed of an one dimensionel unsigned char array which holds the

encoded video data just read from the circular buffer and an unsigned int variable that

shows the size of the array. The “demuxed_video_start” is an unsigned char pointer

that shows the start of the demuxed video data chunk as seen in the line 17. The size of

the demuxed video chunk is assigned to a temp variable “demuxed_video_size” as seen

in the line 18. Then in a loop actual video decoding is implemented as seen in the lines

18-28. This loop continues until all of the demuxed video data is consumed by the

decoder. Each demuxed video chunk does not hold a fixed number of encoded video

frame. For instance, when a demuxed video chunk is processed by the decoder, one or

more video frame can be decoded from that chunk.

The actual video decoding is realized by the function Dec_Video_decode as seen

in the line 24. It is a function pointer which is binded to the actual video decoder’s

decode function when the codec type is detected. The Dec_Video_decode takes the start

address of the demuxed video data and its size. Then process the demuxed data until a

video frame is totally decoded or all of the demuxed data chunk is consumed. If a video

frame is decoded, the “picture_out” is set as 1 by the actual video decoder and the

consumed size is returned.

77

Table 4.13. The thread function of the video decoder module

01. void* DecoderV_decode(void *a_params)

02. {

03. vbool succeed = vfalse;

04. vuint8 *demuxed_video_start = 0;

05. vuint32 demuxed_video_size = 0;

06. vuint32 size = 0;

07. vsint32 picture_out = 0;

08. Video_Frame s_decoded;

09.

10. do

11. {

12. // read data from the demuxed video buffer

13. succeed = Buf_Vdmx_read(&s_demuxed);

14. if (!succeed) break;

15.

16. size = 0;

17. demuxed_video_start = s_demuxed.data;

18. demuxed_video_size = s_demuxed.size;

19.

20. // decode the demuxed video data: demuxed_video_start and demuxed_video_size will be updated

21. while (demuxed_video_size > 0)

22. {

23. // actual decoding

24. size = Dec_Video_decode(&s_video_context, &s_decoded, &picture_out, demuxed_video_start,

demuxed_video_size);

25.

26. succeed = Buf_Vdec_write(&s_decoded);

27. if (!succeed) break;

28. }

29.

30. // update the demuxed video start and size

31. demuxed_video_start += size;

32. demuxed_video_size -= size;

33.

34. } // while

35.

36. } while (!s_terminated);

37.

38. s_free();

39. return 0;

40. }

78

4.1.7. The Audio Decoder Module

The audio decoder module is very similar to video decoder module. It is also

responsible for providing an interface to numerous codecs (in this case audio codecs).

For instance, the audio decoder library such as MPEG audio decoder of the ffmpeg

library is binded to this module when the codec type is detected as MPEG audio. It is

assumed that the audio decoder library operates on a frame-by-frame basis, which is the

most common case, since this method simplifies the required interaction between player

and the audio decoder library and improves the usability of the library. The audio

decoder module must be initialized before decoding. So, firstly the type of the audio

codec must be found. This information can be extracted during parsing of the stream’s

container type or it can be detected from the headers of the audio elementary stream.

The audio decoder module has its own thread, and the decoding continues in a

loop until the end of the stream is reached or playback terminated as seen in the Table

4.14. Firstly, demuxed video data is read from the demuxed video circular buffer with

the function “Buf_Admx_read(&s_demuxed)” as seen in the line 12. The “s_demuxed” is

a structure that is composed of an one dimensionel unsigned char array which holds the

encoded video data just read from the circular buffer and an unsigned int variable that

shows the size of the array. The “demuxed_audio_start” is an unsigned char pointer

that shows the start of the demuxed audio data chunk as seen in the line 17. The size of

the demuxed audio chunk is assigned to a temp variable “demuxed_audio_size” as seen

in the line 18. Then in a loop actual audio decoding is implemented as seen in the lines

21-37. This loop continues until all of the demuxed audio data is consumed by the

decoder. Each demuxed audio chunk does not hold a fixed number of encoded audio

frame. For instance, when a demuxed audio chunk is processed by the decoder, one or

more audio frame can be decoded from that chunk.

The actual audio decoding is realized by the function Dec_Audio_decode as

seen in the line 24. It is a function pointer which is binded to the actual audio decoder’s

decode function when the codec type is detected. The Dec_Audio_decode takes the start

address of the demuxed audio data and its size. Then process the demuxed data until an

audio frame is totally decoded or all of the demuxed data chunk is consumed. If a audio

frame is decoded, the “decoded_audio size” is set to the decoded audio frame’s size by

the actual audio decoder and the consumed size is returned.

79

Table 4.14. The thread function of the audio decoder module

01. void* DecoderA_decode()

02. {

03. vbool succeed = vfalse;

04. vsint32 decoded_audio_size ;

05. vsint32 size = 0;

06. vuint32 demuxed_audio_size = 0;

07. vuint8 *demuxed_audio_start = 0;

08.

09. do

10. {

11. // read data from the demuxed audio buffer

12. succeed = Buf_Admx_read(&s_demuxed);

13. if (!succeed) break;

14.

15. // init

16. size = 0;

17. demuxed_audio_start = s_demuxed.data;

18. demuxed_audio_size = s_demuxed.size;

19.

20. // decode the demuxed audio data: demuxed_audio_start and demuxed_audio_size will be updated

21. while (demuxed_audio_size > 0)

22. {

23. // actual decoding

24. size = Dec_Audio_decode(&s_audio_context, &s_decoded, &decoded_audio_size, demuxed_audio_start,

demuxed_audio_size);

25. if (size < 0) break;

26. if (decoded_audio_size > 0) {

27. s_decoded.size = decoded_audio_size;

28. // write data to the decoded audio buffer

29. succeed = Buf_Adec_write(&s_decoded);

30. if (!succeed) break;

31. }

32.

33. // update the demuxed audio start and size

34. demuxed_audio_start += size;

35. demuxed_audio_size -= size;

36. }

37. } while (!s_terminated);

38.

39. s_free();

40. return 0;

41. }

80

4.1.8. The Video Renderer Module

The video renderer module is used to print decoded frames to the screen via a

graphic library such as SDL, directfb, etc. It is also possible to integrate any graphic

library to video renderer module. Because video renderer module defines a common

interface to use video graphic libraries. So, writing a wrapper code to the graphic library

which is suitable with the video renderer module’s defined interface is enough.

Firstly, video renderer module must initialize the video output window. This is

accomplished by the “Video_init” pointer function which is binded to the actual graphic

library’s init function. This init function takes width, height, x and y positions of the

video output window as seen at the line 9 in the Table 4.15. The width and height of the

output window is set to the decoded video frame’s width and height unless user enforces

some other values. In the case of using enforced parameters, the video picture must be

scaled automatically by the graphic library to fit the picture to the output window. The x

and y positions show the coordinates of the upper left corner of the output window. If

there is no user defined parameters, the video output window is positioned to the center

of the screen.

The video renderer module is also a threaded module and it has a loop which

prints decoded pictures to the screen according to the presentation time stamps defined

by the encoder. The video rendering loop is as seen at the lines 15-38 in the Table 4.15

continues until the playback is terminated or there is no more decoded video pictures in

the circular buffer. Video rendering thread sleeps 1 milisecond at the start of each

iteration as seen in the line 17. Then if the boolean variable “s_get_new_frame” is true,

a decoded video frame is read from the circular buffer and s_get_new_frame is set as

false as seen in the lines 19-24. This boolean variable remains as false until the read

frame is printed to the screen. At each iteration, current time and the frame show time is

read from the synchronizer module as seen in the lines 26-27. If the current time passes

show time of the lastly read decoded video frame (line 29) then it is printed to the

screen with the function Video_show_picture() as seen in the line 36. And

s_get_new_frame is set as true to read new frame from circular buffer at next iteration.

The Video_show_picture function takes the “s_frame” structure as input which holds

the decoded YUV picture (as unsigned char buffers for Y, U and V components) and its

format(such as YUV420, YUV422 etc).

81

Table 4.15. The thread function of the video renderer module

01. void* PlayerV_play(void *a_params)

02. {

03. vbool succeed = vfalse;

04. vsint64 current_time;

05. vsint64 frame_show_time;

06. layout = (Layout *) a_params;

07.

08. // init the video library

09. if (!Video_init(layout->width, layout->height, layout->xpos, layout->ypos))

10. return 0;

11.

12. s_curr_playtime = 0;

13. s_get_new_frame = vtrue;

14. // start main loop

15. do

16. {

17. usleep(1000);

18.

19. if (s_get_new_frame) {

20. // get decoded video data

21. succeed = Buf_Vdec_read(&s_frame);

22. if (!succeed) s_terminated = vtrue;

23. s_get_new_frame = vfalse;

24. }

25.

26. current_time = Synchronizer_read_system_clock();

27. frame_show_time = Synchronizer_read_player_clock(s_frame.pts);

28.

29. if (current_time > frame_show_time)

30. {

31. Video_show_picture(&s_frame);

32. s_curr_playtime = s_frame.pts - s_initial_pts;

33. if (!s_initial_pts) {

34. s_initial_pts = s_frame.pts;

35. }

36. s_get_new_frame = vtrue;

37. }

38. } while (!s_terminated);

39.

40. s_free();

41. return 0;

42. }

82

4.1.9. The Audio Renderer Module

The audio renderer module is responsible for playing decoded audio frames by

using libraries such as OSS, ALSA, etc. to access audio drivers.

Firstly audio driver must be initialized according to the audio stream’s features

such as channel_cnt, sampling_frequency, etc. as seen in the Table 4.4. This

initialization is realized by the function “Audio_init” as seen in Table 4.16.

The Audio renderer module is also a threaded module and it has a loop which

reads decoded audio frame from circular buffer and writes it to the audio driver’s buffer

in blocking mode. The blocking mode does not allow writing new data to the audio

driver’s buffer until all of the current data in the buffer is consumed. Before audio frame

is written to the audio driver’s buffer, its presentation time stamp is used to set the

player’s master clock by the function “Synchronizer_update_master_clock” as seen in

the Table 4.16.

Table 4.16. The thread function of the audio renderer module

void* PlayerA_play(void *a_params)

{

 vbool succeed = vfalse;

 audio_params = (AudioStream *) a_params;

 // init the audio library

 if (!Audio_init(&audio_params))

 return 0;

 do

 {

 succeed = Buf_Adec_read(&s_frame);

 if (!succeed) break;

 Synchronizer_update_master_clock(s_frame.pts);

 Audio_write(s_frame.data, s_frame.size);

 } while (!s_terminated);

 s_free();

}

83

4.1.10. The Audio-Video Synchronizer Module

This module is responsible for providing audio-video synchronization according

to the proposed method explained in detail at chapter 3 and section 3.3.1. The proposed

method uses audio presentation time stamps to update player’s master clock. The audio

renderer module calls the function Synchronizer_update_master_clock to update the

master clock as seen in the Table 4.17.

The other elementary streams such as video, subtitle, etc. uses the updated master

clock to compare against their presentation time stamps. This is accomplished by the

function Synchronizer_read_player_clock as seen in the Table 4.17.

Table 4.17. The audio-video synchronizer module

void Synchronizer_update_master_clock(vsint64 a_pts)

{

 vsint64 current_time;

 struct timeval system_clock;

 gettimeofday(&system_clock, NULL);

 if (s_initial_pts_set){ // should set the initial or current time?

 current_time = system_clock.tv_sec * 1000000 + system_clock.tv_usec;

 s_alpha = (float)(current_time - s_initial_time) / (float)(a_pts - s_initial_pts); // set the current time

 s_current_time = current_time;

 s_current_pts = a_pts;

 } else{

 s_initial_time = system_clock.tv_sec * 1000000 + system_clock.tv_usec; // set the initial time

 s_initial_pts = a_pts;

 s_initial_pts_set = vtrue; // update the flag

 s_current_time = s_initial_time; // set the current time

 s_current_pts = s_initial_pts;

 s_alpha = 1;

 }

}

vsint64 Synchronizer_read_player_clock(vsint64 a_pts)

{

 vsint64 master_time;

 master_time = s_current_time + s_alpha * (float)(a_pts - s_current_pts);

 return master_time;

}

84

CHAPTER 5

CONCLUSION

Streaming media players have great importance for the most of digital

entertainment systems such as DVB, DVD players, various handheld devices or even

for PCs. So, quality of a streaming media player directly affects Quality of Service or

Quality of User Experience. Robustness, support for the most of stream formats, smooth

playback, scalability, economic usage of system resources and customizable user

interface are important features that define the quality of a streaming media player.

The proposed streaming media player in this thesis has a modular design which

makes it more scalable and maintainable. It is scalable, because new features can be

supported by adding new modules. And it is maintainable because abstraction that

comes with modularity makes it easier to find and fix any bugs or defects.

Smooth playback requires precise audio and video synchronization. The proposed

design employs a precise audio and video synchronization scheme. This scheme utilizes

audio presentation time stamps to update player’s master clock, resulting in a smoother

and inter-synchronized playback.

Server client synchronization is also important to provide a smooth playback. The

proposed player changes its playback rate by playing the audio stream with a proper

sampling rate. Because, the sampling rate shows how many audio samples must be

played in a second and hence defines the playback rate of audio stream whose

timestamps are used to update the master clock.

Rapidly inspection of stream type is also important, because it enables quicker

start of selected digital content so user will not wait too much after selected a stream to

open. Conventional media players comprises a dedicated stream inspector module and

when a stream is selected to play, firstly this module work once and gathers required

information to play the stream. The proposed media player does not include a separate

stream inspector module. Instead the type of stream is inspected as the stream goes

through the modules which makes stream inspection faster than using a separate

module.

85

REFERENCES

Abdel-Baki, N., E. Perez-Soler, B. Aumann, and H.P. Grossmann. 2003. A simplified

design and implementation of a multimedia streaming system. Telecommunications,

ICT 2003. 10th International Conference 2:1470 – 1474.

Basith, S. 1996. MPEG : standarts, technology and applications.

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol2/sab/article2.html (accessed

June 24, 2008).

Blakowski, G., and R. Steinmets. 1996. A media synchronization survey: reference

model, specifications, and case studies. IEEE Journal on Selected Areas in

Communications 14:5-35.

Chan, M., Y. Yu, and A. Constantinides. 1990. Variable size block matching motion

compensation with applications to video coding. IEE Proc. On Communication,

Speech and Vision. 70-89.

Compression. 2002. VirtualDub MSU Motion Compensation Filter

http://compression.ru/video/motion_estimation/index_en.html (accessed July 26,

2008)

Conklin, G.J., G.S. Greenbaum, K.O. Lillevold, A.F. Lippman, and Y.A. Reznik. 2001.

Video Coding for Streaming Media Delivery on the Internet. IEEE Trans. on

Circuits and Systems for Video Technology. 11:1.

Dapeng W., Y.T. Hou, W. Zhu, Y.Q. Zhang, and J.M. Peha. 2001. Streaming video over

the Internet: approaches and directions. Circuits and Systems for Video Technology,

IEEE Transactions on Publication 11:282-300.

Gall, D.L. 1991. MPEG: a video compression standart for multimedia applications.

Trans ACM.

86

Garner, G.M., F.F. Feng, E.H.S. Ryu, and K. den Hollander. 2006. Timing and

synchronization for audio/video applications in a converged residential ethernet

network. Consumer Communications and Networking Conference. 2:883 – 887

Georganas, N.D. 1996. Synchronization issues in multimedia presentational and

conversational applications. in Proc. Pacific Workshop on Distributed Multimedia

Systems (DMS’96).

Guo, Q., Q. Zhang, W. Zhu, and Y.Q. Zhang. 2001. Sender-adaptive and receiver-

driven video multicasting. IEEE International Symposium on Circuits and Systems,

Sydney, Australia.

Haskell, B.G., A. Puri, and A.N. Netravali. 1997. Digital video: an introduction to

MPEG-2. Chapman&Hall, ISBN 0-412-08411-2.

Hemy, M., U. Hengartner, P. Steenkiste, T. Gross. 1999. MPEG system streams in best-

effort networks. In Proc. IEEE Packet Video’99.

Jack, K. 2005. Video demystified: a handbook for the digital engineer. Newnes,

NewYork. 662-680.

Jamkar, S., S. Belhe, S. Dravid, and M.S. Sutaone. 2002. A comparison of block

matching search algorithms in motion estimation. Proceedings of the 15th

International Conference on Computer Communication. 730-739.

Jarmasz, J.P. and N.D. Georganas. 1997. Designing a distributed multimedia

synchronization scheduler. Proc. IEEE International Conference on Multimedia

Computing and Systems 451-457.

ISO, International Organization for Standarts. 1994. Generic coding of moving pictures

and associated audio: systems. Draft of:1540 ISO/IEC 13818-1.

87

Kleidermacher, D.N. 2004. Linux for embedded systems?

http://www.cotsjournalonline.com/home/article.php?id=100129 (accessed July 10,

2008).

Lehrbaum, R. 2001. What is so good about open source and Linux in embedded?

http://linuxdevices.com/articles/AT8151978006.html (accessed June 14, 2008).

Liu, C. 1999. Multimedia over IP: RSVP, RTP, RTCP, RTSP. Handbook of

Communication Technologies: The Next Decade 29-46.

Liu, C. 2001. Streaming video profile in MPEG-4. IEEE Trans. on Circuits and Systems

for Video Technology 11:1.

Linux Devices. 2007. Snapshots of embedded Linux market.

http://linuxdevices.com/articles/AT7065740528.html (accessed June 12, 2008).

Mikaeli, N. and W. Ying. 2004. QoS of digital video in mobile environment.

http://mikaeli.mikkeliamk.fi/mikaeli/info/tutkimukset/wang/ (accessed June 4,

2008).

Netravali, A.N. and B.G. Haskell. 1988. Digital pictures, representation and

compression. Plenum Press.

Olshausen, B. A. 2000. Aliasing. PSC 129 – Sensory Processes 3 – 4.

Puri, A. 1993. Video coding using the MPEG-2 compression standart. Proc SPIE Visual

Communications and Image Proc ’93.

Sethuraman, S., S. Parameswaran, D. Tamia, A. Kulkarni, and M. Singhal. 2005. Multi-

format media player/recorder software design methodology for programmable

processors with hardware accelerators. Consumer Electronics. ICCE. Digest of

Technical Papers. International Conference on Publication.137-138.

88

Shibata, Y., N. Seta, and S. Shimizu. 1995. Media synchronization protocols for packet

audio-video system on multimedia information networks. System Sciences Vol. II.

Proceedings of the Twenty-Eighth Hawaii International Conference 2: 594-601

Smith, S.W. 1997. The scientist and engineer’s guide to digital signal processing.

California Technical Publishing 373-377.

Stiller, C. and J. Konrad. 1999. Estimating motion in image sequences. IEEE Singal

Processing Magazine. 70-89.

Suárez, F.J., J.C. Granda, J. Molleda, and D.F. García. 2005. Linux based embedded

node for capturing, compression and streaming of digital audio and video. IEC

(Prague) pp. 403-408

Tryfonas, C., and A. Varma. 1999. Timestamping schemes for MPEG-2 systems layer

and their Effect on receiver clock recovery. Multimedia, IEEE Transactions 1 (3) :

251 – 263

Turaga, D. and M. Alkanhal. 1998. Search algorithms for block-matching in motion

estimation. http://www.ece.cmu.edu/~ee899 (accessed July 12, 2008).

Viscito, E. and C. Gonzales. 1991. A video compression algorithm with adaptive bit

allocation and quantization. Proc SPIE Visual Communications and Image .

Zimmermann, R. 2003. Streaming of DivX AVI movies. Proceedings of the 2003 ACM

symposium on Applied computing. Session: Multimedia and Visualization, 979 -982

89

APPENDIX A

 RELATED PATENTS

The previous methods used to provide server-client and audio-video

synchronization are given in the following US patents:

A.1. US 5,583,652

The title of this patent is “Synchronized, variable-speed playback of digitally

recorded audio and video.”

The abstract of it is: “Method and system for providing user-controlled,

continuous, synchronized variable-speed playback of a previously recorded digital

audio/video presentation. The user directly controls the rate of playback and the audio

and video remains synchronized. The audio is expanded or compressed using the time

domain harmonic scaling method so that the pitch of the audio remains undistorted.

Synchronization is maintained by allowing one clock to serve as the master time clock

for the system. The clocks which can serve as the master time clock include the audio

decoder clock, video decoder clock and the system clock. The invention is particularly

useful in multimedia display systems designed to display MPEG data.”

A.2. US 5664,044

The title of this patent is “Synchronized, variable-speed playback of digitally

recorded audio and video (continuation of US 5,583,652)”

The abstract is “Method and system for providing user-controlled, continuous,

synchronized variable-speed playback of a previously recorded digital audio/video

presentation. The user directly controls the rate of playback and the audio and video

remains synchronized. The audio is expanded or compressed using the time domain

harmonic scaling method so that the pitch of the audio remains undistorted.

Synchronization is maintained by allowing one clock to serve as the master time clock

90

for the system. The clocks which can serve as the master time clock include the audio

decoder clock, video decoder clock and the system clock. The invention is particularly

useful in multimedia display systems designed to display MPEG data.”

A.3. US 6,665,751

The title of this patent is “Streaming media player varying a play speed from an

original to a maximum allowable slowdown proportionally in accordance with a buffer

state.”

The abstract of it is: “A media player for playing streaming media is capable of

dynamically changing its play rate according to the network conditions, so as to

compensate for delay packets. The player nominally plays at the prescribed data rate.

When packets are delayed, instead of stopping to rebuffer, the player plays the stream

slower. Audio pitch is unchanged as it is slowed and video frame rate is slowed as

necessary. A threshold is set so that slowing down beyond the threshold is not allowed.

Should the buffer contents fall below a prescribed minimum, the player will then stop

and rebuffer.”

