
Tetkik: Akan Veri Kümeleme

Algoritmalarını Çalıştırma ve Karşılaştırma

Rowanda D. Ahmed1, Gökhan Dalkılıç2, Murat Erten3

Izmir Institute of Technology1,3, Dokuz Eylül University2

Computer Engineering Department, İzmir, Turkey

rowandaahmed@iyte.edu.tr, dalkilic@cs.deu.edu.tr, muraterten@iyte.edu.tr

Özet: Son zamanlarda, veri akışlarını kümelemek uygulamalar daha fazla

durdurulamaz veri akışı üretirken bilgi keşfi için inanılmaz derecede önemli bir

araştırma alanı haline gelmiştir.Bu makalede, kümeleme, akışlar ve veri

akışlarını kümeleme algoritmalarını en önemli akım kümeleme algoritmalarının

irdelenmesini yapılarını da göz önünde bulundurarak tanıtıyoruz. Çalışmamızın

ek bir katkısı ve akış kümeleme alanında yapılmış tetkit ve gözden geçirme

makalelerinden farklı olarak en bilinen akış kümeleme algoritmalarının Pratik

kısmını, yani: (i) CluStream; (ii) DenStream; (iii) D-Stream; and (iv) ClusTree,

MOA Java çerçevesine bağlı olarak, her biri için bazı performans metriklerinin

hesaplanmasıyla birlikte deney sonuçlarını göstererek sunuyoruz.

Anahtar Kelimeler: Veri Madenciliği; Kümeleme; Veri Akışı Kümeleme;

Yoğunluk-Tabanlı Algoritmalar.

Survey: Running and Comparing Stream Clustering

Algorithms

Rowanda D. Ahmed1, Gökhan Dalkılıç2, Murat Erten3

Izmir Institute of Technology1,3, Dokuz Eylül University2

Computer Engineering Department, İzmir, Turkey

rowandaahmed@iyte.edu.tr, dalkilic@cs.deu.edu.tr, muraterten@iyte.edu.tr

Abstract. Recently, clustering data streams have become an incredibly

important research area for knowledge discovery as applications produce more

and more unstoppable streaming data. In this paper we introduce clustering,

streams and data streaming clustering algorithms, as well as discussions of the

most important stream clustering algorithms, considering their structure. As an

additional contribution of our work and differently from review and survey

papers in stream clustering, we offer the practical part of the most known

stream clustering algorithms, namely: (i) CluStream; (ii) DenStream; (iii) D-

Stream; and (iv) ClusTree, showing their experimental results along with some

performance metrics computation of for each, depending on MOA framework.

Keywords: Data Mining; Clustering; Data Stream Clustering; Density-base

Algorithms.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324141278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rowandaahmed@iyte.edu.tr
mailto:dalkilic@cs.deu.edu.tr
mailto:rowandaahmed@iyte.edu.tr
mailto:dalkilic@cs.deu.edu.tr

1 Introduction

Clustering process is the most main and crucial part in the data mining field. And it

passes through many levels of developments [1] especially in recent years. Every

moment the wide, applicability of streaming data leads to an unlimited rate growing

large amounts of data. So, we need non-stopped strategies for analyzing and

clustering the non-stopped online coming stream objects in which there is always an

up-to-date view of the objects seen and clustered so far. Stream data clustering faces

additional challenges beyond those of the static data clustering faces. Some

challenges streams bring are as follows: Single-pass processing the endless amounts

of data streams, as well as maintaining all the necessary summary information which

will be used in the clustering process. Limited time is needed for processing each

record and it must be small. This ensures maintaining always such a current clustering

model and keeping up with the stream speed. Limited memory that processing in the

stream must be done without storing, buffering or revisiting data. Varying time

allowances, that is the usual case for stream data is in in a bursty state. The

continuously Evolving data over time [2] is so ubiquitous in today’s applications.

Therefore, the clusters in some point of time may no longer still relevant in the future

[3], which leads to record many interesting changes and characteristics in an evolving

data stream for many business applications effective usage [4]. Concept drift,

novelty, number and size of clusters and outlier detection should be considered as

well. In addition to the scalability issue which considered the most important issue in

stream clustering when the data sets are very large [5]. Data stream applications may

need results at any time, so the model must be available at any time.

Performance metrics. determine how good the obtained clustering reflect the data.

We can classify the Cluster evaluation methods into two kinds: extrinsic methods and

intrinsic methods.

Extrinsic methods (supervised). when the ground truths are available, so we can

assign like score to the clustering. In Extrinsic methods, the ground truth compared to

a clustering results. Purity, Precision, and recall metrics are examples of extrinsic

methods. Precision-Recall is used to measure the success of the prediction, especially

in the very imbalanced classes case. In information retrieval, precision measures the

output relevancy, but recall deals with the returned results and measures how many

truly relevant from them. F1-Score is the harmonic mean or weighted average of

recall and precision to evaluate an algorithm. The F1 score reaches the best score at 1

and worst score at 0. Purity: is a measure of how extent clusters contain a single class

[6]. The higher the purity is the better. A purity score of 1 is possible by putting each

data point in its own class. SSQ: The sum of squared distances over all data points to

their corresponding cluster centers. The smaller the SSQ is the better.

Homogeneity: Each cluster contains only members of a single class. Completeness:

we suppose that all members of some class are assigned to the one cluster. The

Completeness and Homogeneity bounds are from 0 to 1. The higher is the better for

both.

Intrinsic methods (unsupervised). when the ground truths are unavailable. In

Intrinsic methods, how compact the clusters are, how well the clusters are separated

are evaluated, i.e. Intrinsic methods are all about measuring the clustering goodness.

Silhouette coefficient is an example of intrinsic methods. It is a metric used to

compare how the point will fit in some cluster with the assigned one by computing

both values. Silhouette Coefficient is a combination of Cohesion and Separation

measures and its bounds are between 0 and 1. The higher the Silhouette Coefficient,

the better. This survey research paper is organized as follows: in section 2, we will

study in general variety of stream clustering methods. In section 3, 4, 5 and 6 we will

study each of the following stream clustering methods; CluStream, DenStream, D-

Stream and ClusTree respectively. In section 7 we will compare by running between

the above-mentioned algorithms. Finally, the conclusion will be in section 8.

2 Stream Clustering Algorithms

The old unsophisticated data stream algorithms suffer from many problems. One

naive suggested solution refers to stream buffering for later handling, but this is

impossible because the stream is endless. Some approaches lost a valuable

information due to dropping some data to keep up with the stream speed. Other

approaches are suggested to solve the stream speed adaptation, these approaches try to

scale only for the fastest stream speed, which resulted in a poor-quality clustering.

Clearly, these solutions mentioned above do not make the best use of the information

that is contained in the stream and of the time available. The current stream clustering

algorithms each try to solve some of the above-mentioned problems.

Stream clustering can be categorized into three main categories; prototype

methods, density methods, and model-based methods [7]. Example on prototype-

based algorithms K-Means [8], it aims to partition the objects of the dataset

into k clusters or groups so that each object belongs to the cluster corresponds to the

closest mean, and then refine these clusters iteratively. The density-based algorithms

like DBSCAN [9], it groups the points that look close together, considering dense

concentrated data points areas, and then these dense areas form the final clusters.

Then the low-density areas are marks as outliers. Model-based algorithms,

Expectation Maximization (EM) [10] is an example. In [11], there are many

clustering methods have been spoken about that are designed for static not stream

data. There are different clustering paradigms studied the data stream clustering.

Earlier data stream clustering paradigms like [12] deal with data stream clustering as

if static clustering but in a continuous version, they are single phase divide and

conquer schemes based. These data stream algorithms divide the data streams into

segments and based on a k-means algorithm to discover clusters in data streams. Such

approaches don’t consider the evolving data due to that they treat the recent and the

outdated data the same. To solve the evolving data problem, moving window

techniques are proposed [13]. CluStream [14] uses a two-phase strategy. In the online

phase, it analyzes the stream coming data and stores its summary statistics using

micro-clusters. While in the offline phase, it uses these statistics along with other

parameters to generate final clusters. Wang et al. [15], Clustering data streams on the

Two-tier structure, is an online-offline framework. It based on CluStream, but in an

improved offline phase. DenStream [16] presents the structures as core and outlier

micro clusters to maintain and summarize clusters and distinguish the potential

clusters and outliers. CobWeb [17] is an incremental system for hierarchical

conceptual clustering data. It uses a classification tree in organizing observations.

Density-based clustering method like D-Stream [18], is a natural and attractive basic

data streams clustering strategy because it can find arbitrarily and interwoven shaped

clusters and can detect and handle noises. BIRCH [19], maintained a hierarchical

index for faster access in the very large databases. A mapping to a frequent item set

for multidimensional streams is represented in [20]. Kernels based approach [21] is

proposed to discover arbitrary shape clusters in stream data. Alternative graphs based

is proposed in [22], and fractal dimensions grid based is proposed in [23], and [16],

[24] proposed a density-based approach. None from the above approaches can adapt

the clustering model size to keep up with the online stream speed nor capable of

delivering such a result or can interrupt the process at any time moment. The anytime

idea is a very active research field in data mining, there are variant algorithms in that

field. ClusTree [25] is a free parameter any-time algorithm, it adapts itself to the

stream speed automatically, in addition to its capability of detecting novelty, outliers,

and concept drift in the stream. To maintain stream summaries, it uses a self-adaptive

and compact index structure.

3 CluStream Algorithm

CluStream is an online-offline Algorithm adopts the idea of streaming over many

time windows, that by streaming over many time windows gains more understanding

about what is going on in clustering process and the clusters behaviors and evolving.

CluStream algorithm stores data summary statistics in its online component, while

uses these statistics along with other parameters in the offline component to achieve

the final clustering results. CluStream algorithm uses the micro-clusters concept as

well as the pyramidal time frame.

3.1 CluStream Clustering Framework

To understand the CluStream framework, it is important to clarify some points.

Firstly, summary statistics in the online component are incrementally updated to cope

with the offline clustering. Secondly, it is important to determine the time interval

between the snapshots for storing the summary statistics. Thirdly, addressing how

CluStream uses the online information benefits in gaining hints for the user in setting

the time horizon and how to deal with the evolution. CluStream store the online

statistics in a form of micro-clusters, for that it uses the feature vector [19] due to its

natural properties of additive, subtraction, and multiplications. Algorithm stores these

micro-clusters in periods of times following pyramidal pattern which provides such

good and reasonable tradeoff between the ability to get the summary statistics stored

in the micro-clusters from various time horizons and the storage requirements.

Definition 1 in [14] facilitates understanding of the above-mentioned concepts.

3.2 Online phase (Micro-Cluster Maintenance)

CluStream using many points initially to produce the initial micro-clusters uses k-

means in its offline phase. Now and after the creation of these initial micro-clusters,

CluStream starts the online process with every arriving data point to update the stored

micro-clusters created previously. The new coming data point either it absorbs in the

nearest one or it may create its new micro-cluster as own. When a new point arrives,

the algorithm computes the distance between the new point and the nearest micro-

cluster center. If the choice is to merge the arriving data point, the algorithm merges

this data point with the closest micro cluster. Otherwise, if the new point doesn’t be

founded to be within the range of any micro-cluster regarding its radius parameter, the

new data point may categorize as an outlier or as a new micro-cluster seed.

3.3 Offline phase - Macro-Cluster Creating

Micro-clusters are efficiently maintained to be as intermediate statistical

representations using the stored micro-clusters summary statistics instead of the very

large volume data stream. This process enables the user from flexibility exploring

stream clusters over different horizons. The user provides two parameters; the first is

the time-horizon h and this benefits in history determination in which to create higher

level clusters. The second parameter is the higher-level clusters number k, and this to

determine if we can find extra detailed clusters. Note that at each step of the

algorithm, the current set of micro-clusters depend on the all the stream processing

entire history since the very beginning of it. To find the clusters over a specific time

horizon, we need to find the corresponding micro-clusters making use from the

additive and subtractive properties which extended from [19].

4 DenStream Algorithm

In the data stream clustering, maintaining all the data is impossible. Therefore, it is

important to discover algorithms with a single pass clustering, unknown parameters

and evolving the changed data. Micro-cluster technique in stream clustering saves the

necessary information of the data objects the stream, which compresses the data

effectively. The following subsections will be about four well-known density-based

data stream algorithms which extend micro-clustering technique, these are

DenStream, C-DenStream, rDenStream, and SDStream. We will start illustrating

DenStream algorithm with more details because the others based on it.

4.1 Density Micro-Clustering Algorithms

Adopting the density concept benefits in discovering the arbitrarily shaped clusters by

distinguishing those dense areas from the scattered sparse areas. Due to memory

limits, micro-cluster is a well-known strategy special for this purpose. Micro-clusters

are the optimal representation for the summary statistics stored in the online

component and to be used afterward for the offline component clustering. Fig.1 shows

the framework of micro-clusters in density-based clustering. The p-micro-clusters and

o-micro-clusters [16] are the potential and outlier clusters, which are mainly differ in

their weights. In this section, we will show in brief the density-based micro-clustering

[19] four stream algorithms, DenStream, SDStream, rDenstream and C-DenStream

with their cons and pros. So, the user can choose the suitable algorithm according to

his own preferences and what he is interested in. Like the speed, higher accuracy and

so on.

Fig. 1. a) Density based micro-clusters framework [26].

 The DenStream algorithm puts a weight for each data point. It is a fast algorithm

due to its ability to delete those outdated data points and the outliers before merging.

And because it doesn't merge data points into a micro-cluster and that facilitate

exploring the outliers and save time. SDStream algorithm uses only the recent data

stream objects, while other algorithms consider the data stream points whole. It stores

the micro-clusters in the EHCF data structure form. So, SDStream save memory and

it can process only with the most recent data points over the sliding window length,

which means better addressing the clusters changes and evolutions. This algorithm is

suitable when the applications interested more in the recent data streams.

rDenStream algorithm based mainly on DenStream; however, rDenStrean emphasize

on handling outliers, such that it chose not to remove the data in the outlier buffer and

relearn from it which result in a higher accuracy compared to DenStream algorithm.

But on the other hand, it is slower than DenStream and a memory usage as well. C-

DenStream is a real applicable algorithm. It adopts the constraint concept on micro-

clusters. In addition, to guide the clustering process, it uses a background knowledge.

In this algorithm, the clusters can't have formed unless they conform with application

semantics like geographical natural borders and objects.

5 D-Stream

D-Stream is a density-based framework for clustering stream data. It is an online-

offline algorithm. The online one continuously reads input data records and maps it

into a density grid and the offline one computes the grid density, detect and removes

sporadic grids from the grid-list and adjust the clustering. D-Stream algorithm

exploits the complicated relationships between the decay factor, data density, and

cluster structure [18]. In addition, it captures the dynamic changes by adopting a

density decaying technique to a data stream to generate clusters of arbitrary shapes

effectively and efficiently.

5.1 D-Stream Components

Grid inspection and gap determination. D-Stream algorithm progressively does

adjust clustering process every gap time. But what is the optimal time length of the

grid inspection? Note that if we choose this time interval to be too long, data streams

dynamical changes will not be recognized well. On the other hand, that if we choose

this time interval to be too small, then it will result in too much computation, which

makes the work so heavy. D-Stream adopts the idea of setting the time interval to be

the smallest of those two times intervals [18].

Sporadic grids removing. The very high number of grids is a critical big challenge

D-Stream algorithm faces. But the most grids are either empty or don’t receive over

and over data records. So, in processing and storing, only those not empty grids can

be regarded, and the others are neglected. The sporadic grids who receive so little data

can be deleted from the data space along with their characteristic vectors and reset

their density to zero. It is experimentally proven that deleting this kind of grids

doesn’t affect the clustering quality. While the sporadic grids with many data records

but their densities became less than the threshold by the effect of decay factor have a

hope to upgrade and to become dense or transitional grids, so it is wrong to delete

these grids.

D-Stream clustering algorithm. The algorithm continues reading from the flow

stream of data records and computes all grids densities. Initial clustering process

generates the initial clusters. After the first gap then adjust-clustering method is

executed repeatedly every time equal gap. Initial-clustering and adjust-clustering

methods are described in detail supported by pseudo codes in [27].

6 ClusTree

ClusTree is a parameter-free and any-time data stream algorithm, it finds solutions for

a lot of challenges like limited memory and time, maintaining results in any point of

time and adapting the clustering process according to the steam speed. In addition,

ClusTree uses novel descent strategies for handling the slow streams, and it uses

aggregation mechanisms for handling the fast streams. Also, ClusTree uses an

exponential decay function to give more importance to the more recent data points. It

is a self-adaptive data stream clustering algorithm as well as it is scalable to give any-

time clustering results. ClusTree' efficiency and effectivity are experimentally

approved.

6.1 Self adaptive and anytime data stream clustering

ClusTree is a structure with an index stream clustering algorithm, it can store and

maintain a compact view for any time the user seeks it. It is the first stream clustering

algorithm for the anytime merit. ClusTree is a self-adaptive algorithm so that it can

adapt to the coming data points stream speed automatically.

Micro-clusters and anytime insert. Periodically, ClusTree algorithm computes the

mean and variance of its micro-clusters. As stream data points flow, the cluster

feature is updated incrementally, it can be considered as the true representation of the

micro-clusters. So that, stream data points can be mapped to the true or the most

similar micro-cluster. ClusTree algorithm hierarchy builds micro-clusters with a

granularity at different levels [25]. So that, it adopts hierarchical indexing structures

from R-tree family [17], [28], [29] which render preserving cluster features as well as

locate a right place efficiently, that’s to insert any coming stream object into such a

suitable micro-cluster. For the algorithm to determine leaf entry containing the most

similar micro cluster to the new coming object, it descends the tree down until reach

that leaf. If the similarity is enough, algorithm updates the micro-cluster tuple values.

Otherwise, it creates a new micro-cluster and forms its cluster feature (CF) with its

values. ClusTree has a buffer as a temporary place for storing either objects or

aggregates that during insertion, due to the fast stream, can’t reach the leaf level. So

that the cluster feature is stored in a suitable entry buffer when the insertion is

interrupted and so that there is not enough time to descend the tree down to reach the

leaf.

Up-to-date clustering maintaining. ClusTree algorithm, to give the most recent

objects more importance, it uses an exponential famous decay function that depends

on time, ω (t) = β − λ*∆t, with the λ is the decay rate to control the objects weighs in

such a way makes the algorithm can control the forgotten or maintaining objects more

by playing with the decay rate value. As we increase the value of the decay factor, the

old objects are forgotten becoming faster and so on. Every object has its arrival and

last update timestamps which needed in computing the decay function. While the

insertion process and descend the tree down to the leaf, all entries in the node are

updated to the arrival timestamp. So that the node entries all have the same timestamp

always. Every inner node in the tree structure summarizes its subtree. So, contacting

the last update timestamp field in every node, besides using weighting formula,

ensures capturing decay with time correctly. And to avoid splitting, the algorithm

weighs with time. approved.

6.2 Cluster shapes and cluster transitions

There are several strategies suggested by details in [30], can process cluster

transitions like outlier detection, concept drift detection, and novelty. ClusTree can

apply any from these approaches to its output clusters. So, ClusTree algorithm can be

used to detect arbitrary shape clusters, outlier detection, concept drift detection,

novelty and time horizon.

7 Experimental Results

In experimental results, we adopt the Massive Online Analysis (MOA) framework

[31] for online learning from data streams. MOA is so closely related to WEKA,

implemented in Java and released under GPL. It includes a collection of online and

offline components in addition to many tools for evaluating classification and

clustering. It is easy to design and run experiments on MOA, and it is easy to extend it

too. The experiments were done on Intel core(TM) i7-4510U CPU @ 2.60GHz,

6.00GB RAM Lenovo. Fig. 2 shows the results from running four stream clustering

algorithms, CluStream, DenStream, D-Stream and ClusTree based on synthetically

Radial Basis Function (RBF) based on generated data. Synthetic data is easier in

reproducing its storage and transmission costs are little [32].

Fig. 2. a) CluStream b) DenStream c) D-Stream d) ClusTree with 50000 points

(Synthetic dataset).

Fig. 3 shows the quality comparison between ClusTree with CluStream, D-Stream

and DenStream algorithms using the sum of squared distance (SQQ).

Fig. 3. SSQ for 50000 points. ClusTree in red, CluStream (left) and D-Stream

(middle), DenStream (right) in blue.

From the Fig. 3, it is shown that ClusTree has a quality with a virtually higher than

the D-Stream algorithm, and at the same range as CluStream. ClusTree is also a little

bit better than DenStream in SSQ and it is so clear from the results listed in Table 1

below too.

The separation (BSS) is the between clusters sum of squared distances. The higher

the BSS, the better clustering quality. And it is shown in Fig. 4 (left) how much

CluStream is better than ClusTree. CluStream is from two to five times BSS better

than ClusTree.

Fig. 4. BSS for 50000 points. ClusTree in red, CluStream (left) and DenStream

(middle), D-Stream (right) in blue.

In Fig. 4 (middle), it is a comparison between ClusTree and DenStream. DenStream is

much better than ClusTree and it is corresponding to order of magnitude.

 In terms of BSS metric, ClusTree is only better than D-Stream and this is shown

clearly in Fig. 4 (right) and from Table 1 too. The values of BSS in clustering 50000

stream data points are 72.62, 217.82, 6.49 and 22.93 for CluStream, DenStream, D-

Stream and ClusTree respectively. Note that the D-Stream BSS value is the least one

so that it is the worse algorithm in terms of BSS performance metric.

Table 1. Stream Clustering Algorithms metric performance (Clustering 50000 points).

 CluStream DenStream D-Stream ClusTree

Separability 0.80 0.80 0.38 0.80

Noise 0.84 0.84 1.00 0.84

F1-P 0.72 0.60 0.33 0.74

Purity 0.85 0.88 0.64 0.86

Precision 1.00 1.00 1.00 1.00

Recall 0.88 0.67 0.99 0.89

Redundancy 0.06 0.00 0.00 0.04

SSQ 8.93 11.51 3117.54 8.94

BSS 72.62 217.82 6.49 22.93

8 Conclusion

In the introduction, it is indicated due to the unlimited rate growing large amounts of

data how much the need for such non-stopped strategies for analyzing and clustering

the non-stopped online coming stream objects especially in recent years becomes so

important. So that a wide set of techniques and strategies have been proposed for

analyzing and clustering stream. Also, in this paper additional challenges stream data

clustering are mentioned. In addition to explaining the most important performance

metrics used in comparing between clustering methods quality. Finally, experimental

results of these streaming methods have also been displayed.

References

1. R. D. Ahmed, M. Alhanjouri,: New Density-Based Clustering Technique: GMDBSCAN-UR,

Islamic university of Gaza, International Journal of Advanced Research in Computer

Science, No. 1, Jan-Feb 2012.

2. Huachun Liu, Xiangning Hou and Zhong Yang,: Design of Intrusion Detection System

Based on Improved K - means Algorithm[J], Computer Technology and Development,

2016(01): 101-105.

3. C. C. Aggarwal,: A Survey of Stream Clustering Algorithms, Chapter 10, IBM T. J. Watson

Research Center, Yorktown Heights, NY 10598

4. C. C. Aggarwal.: A Framework for Diagnosing Changes in Evolving Data Streams. ACM

SIG- MOD Conference, 2003.

5. F. Faranstorm, J. Lewis, and C. Elkan.: Scalability for Clustering Algorithms Revisited.

ACM SIGKDD Explorations, 2(1): pp.51-57, 2000

6. Manning, Christopher D.; Raghavan, Prabhakar; Schütze, Hinrich.: Introduction to

Information Retrieval. Cambridge University Press. ISBN 978-0-521-86571-5.

7. A. Al Abd Alazeez, S. Jassim, and H. Du,: EINCKM: An Enhanced Prototype-based Method

for Clustering Evolving Data Streams in Big Data, Proc. 6th Int. Conf. Pattern Recognit.

Appl. Methods, no. Icpram, pp. 173–183, 2017.

8. J. MacQueen,: Some Methods for classification and Analysis of Multivariate Observations,”

5th Berkeley Symp. Math. Stat. Probab. 1967, vol. 1, no. 233, pp. 281–297, 1967.

9. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu,: A Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise, 2nd Int. Conf. Know- ledge Discov. Data

Min., vol. 2, pp. 226–231, 1996.

10. A. P. Dempster, N. M. Laird, and D. B. Rubin,: Maximum Likelihood from Incomplete

Data via the EM Algorithm, J. R. Stat. Soc. Ser. B (Methodological), vol. 39, no. 1, pp. 1–

38, 1977.

https://eu0.proxysite.com/process.php?d=KgEyABaJ4CyTk3AKdgN8r03R68g%2BpSWTZya0Z0u5aCYLfAeFzoWrHAne3IeyoS2HtyXgDogoveZtfb%2BP&b=1
https://eu0.proxysite.com/process.php?d=KgEyABaJ4CyTk3AKdgN8r03R68g%2BpSWTZyaueVq%2FcykGMiyFz4%2BULC%2FY3oyl72bU0Eq%2FTNZFwr44Ke%2FKs%2BBB&b=1

11. Jain A, Zhang Z, Chang EY (2006).: Adaptive non-linear clustering in data streams, CIKM,

pp 122–131

12. S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan.: Clustering data

streams: Theory and practice. Trans. Know. Eng., 15(3):515–528, 2003.

13. D. Barbar´a.: Requirements for clustering data streams. SIGKDD Explorations Newsletter,

3(2):23–27, 2002.

14. Aggarwal CC, Han J, Wang J, Yu PS (2003).: A framework for clustering evolving data

streams. VLDB, Berlin, pp 81–92.

15. Z. Wang, B. Wang, C. Zhou, and X. Xu.: Clustering Data streams on the Two-tier structure.

Advanced Web Technologies and Applications, pages 416–425, 2004.

16. F. Cao, M. Ester, W. Qian, and A. Zhou.: Density-based clustering over an evolving data

stream with noise, in SIAM Conference on Data Mining, 2006, pp. 328–339.

17. V.Kanageswari, Dr.A.Pethalakshmi.: A Novel Approach of Clustering Using COBWEB

Department of Computer Science, M.V.Muthiah Government Arts College for Women,

Dindigul Tamil Nadu – India.

18. Y. Chen, and L. Tu.: Density-based clustering for real time stream data, ACM KDD

Conference, 2007.

19. Zhang T, Ramakrishnan R, Livny M (1996).: BIRCH: an efficient data clustering method

for very large databases. SIGMOD, NY, USA.

20. Assent I, Krieger R, Glavic B, Seidl T (2008).: Clustering multidimensional sequences in

spatial and temporal databases. Knowl Inf Syst 16(1):29–51

21. Jain A, Zhang Z, Chang EY (2006).: Adaptive non-linear clustering in data streams, CIKM,

pp 122–131

22. Lühr S, Lazarescu M (2009).: Incremental clustering of dynamic data streams using

connectivity based representative points. Data Knowl Eng 68(1):1–27.

23. Barbará D, Chen P (2000).: Using the fractal dimension to cluster datasets, KDD, pp 260–

264.

24. Chen Y, Tu L(2007).: Density-based clustering for real-time stream data, KDD, pp 133–

142.

25. P. Kranen, C. Baldauf, T. Seidl, I. Assent, The ClusTree: indexing micro-clusters for

anytime stream mining, RWTH Aachen University, Aachen, Germany, Aarhus University,

Aarhus, 2010.

26. D. K. Tasoulis, G. Ross, and N. M. Adams, “Visualising the cluster structure of data

streams,” in Proceedings of the 7th international conference on Intelligent data analysis, ser.

IDA’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 81–92.

27. David Arthur, Sergei Vassilvitskii.: k-means++: The Advantages of Careful Seeding.

28. A. Zhou, F. Cao, W. Qian, and C. Jin.: Tracking clusters in evolving data streams over

sliding windows, Knowledge and Information Systems, vol. 15, pp. 181–214, May 2008.

29. Guttman A (1984) R-trees: A Dynamic Index Structure for Spatial Searching. SIGMOD,

Boston, pp 47–57

30. Spiliopoulou M, Ntoutsi I, Theodoridis Y, Schult R (2006) Monic: Modeling and

Monitoring Cluster Transitions, KDD, pp 706–711.

31. A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, (2010), MOA: Massive Online Analysis;

Journal of Machine Learning Research 11: 1601-1604

32. A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer.: Data Stream Mining: A Practical Approach,

May 2011.

