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Özet: Son zamanlarda, veri akışlarını kümelemek uygulamalar daha fazla 

durdurulamaz veri akışı üretirken bilgi keşfi için inanılmaz derecede önemli bir 

araştırma alanı haline gelmiştir.Bu makalede, kümeleme, akışlar ve veri 

akışlarını kümeleme algoritmalarını en önemli akım kümeleme algoritmalarının 

irdelenmesini yapılarını da göz önünde bulundurarak tanıtıyoruz. Çalışmamızın 

ek bir katkısı ve akış kümeleme alanında yapılmış tetkit ve gözden geçirme 

makalelerinden farklı olarak en bilinen akış kümeleme algoritmalarının Pratik 

kısmını, yani: (i) CluStream; (ii) DenStream; (iii) D-Stream; and (iv) ClusTree, 

MOA Java çerçevesine bağlı olarak, her biri için bazı performans metriklerinin 

hesaplanmasıyla birlikte deney sonuçlarını göstererek sunuyoruz.     

Anahtar Kelimeler: Veri Madenciliği; Kümeleme; Veri Akışı Kümeleme; 

Yoğunluk-Tabanlı Algoritmalar. 
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Abstract. Recently, clustering data streams have become an incredibly 

important research area for knowledge discovery as applications produce more 

and more unstoppable streaming data. In this paper we introduce clustering, 

streams and data streaming clustering algorithms, as well as discussions of the 

most important stream clustering algorithms, considering their structure. As an 

additional contribution of our work and differently from review and survey 

papers in stream clustering, we offer the practical part of the most known 

stream clustering algorithms, namely: (i) CluStream; (ii) DenStream; (iii) D-

Stream; and (iv) ClusTree, showing their experimental results along with some 

performance metrics computation of for each, depending on MOA framework.                                              

Keywords: Data Mining; Clustering; Data Stream Clustering; Density-base 

Algorithms.  
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1   Introduction 

Clustering process is the most main and crucial part in the data mining field. And it 

passes through many levels of developments [1] especially in recent years. Every 

moment the wide, applicability of streaming data leads to an unlimited rate growing 

large amounts of data. So, we need non-stopped strategies for analyzing and 

clustering the non-stopped online coming stream objects in which there is always an 

up-to-date view of the objects seen and clustered so far. Stream data clustering faces 

additional challenges beyond those of the static data clustering faces. Some 

challenges streams bring are as follows: Single-pass processing the endless amounts 

of data streams, as well as maintaining all the necessary summary information which 

will be used in the clustering process. Limited time is needed for processing each 

record and it must be small. This ensures maintaining always such a current clustering 

model and keeping up with the stream speed. Limited memory that processing in the 

stream must be done without storing, buffering or revisiting data. Varying time 

allowances, that is the usual case for stream data is in in a bursty state. The 

continuously Evolving data over time [2] is so ubiquitous in today’s applications. 

Therefore, the clusters in some point of time may no longer still relevant in the future 

[3], which leads to record many interesting changes and characteristics in an evolving 

data stream for many business applications effective usage [4]. Concept drift, 

novelty, number and size of clusters and outlier detection should be considered as 

well. In addition to the scalability issue which considered the most important issue in 

stream clustering when the data sets are very large [5]. Data stream applications may 

need results at any time, so the model must be available at any time. 

Performance metrics. determine how good the obtained clustering reflect the data. 

We can classify the Cluster evaluation methods into two kinds: extrinsic methods and 

intrinsic methods.  

Extrinsic methods (supervised). when the ground truths are available, so we can 

assign like score to the clustering. In Extrinsic methods, the ground truth compared to 

a clustering results. Purity, Precision, and recall metrics are examples of extrinsic 

methods. Precision-Recall is used to measure the success of the prediction, especially 

in the very imbalanced classes case. In information retrieval, precision measures the 

output relevancy, but recall deals with the returned results and measures how many 

truly relevant from them. F1-Score is the harmonic mean or weighted average of 

recall and precision to evaluate an algorithm. The F1 score reaches the best score at 1 

and worst score at 0. Purity: is a measure of how extent clusters contain a single class 

[6]. The higher the purity is the better. A purity score of 1 is possible by putting each 

data point in its own class. SSQ: The sum of squared distances over all data points to 

their corresponding cluster centers. The smaller the SSQ is the better. 

Homogeneity: Each cluster contains only members of a single class. Completeness: 

we suppose that all members of some class are assigned to the one cluster. The 

Completeness and Homogeneity bounds are from 0 to 1. The higher is the better for 

both. 

Intrinsic methods (unsupervised). when the ground truths are unavailable. In 

Intrinsic methods, how compact the clusters are, how well the clusters are separated 

are evaluated, i.e.  Intrinsic methods are all about measuring the clustering goodness. 

Silhouette coefficient is an example of intrinsic methods. It is a metric used to 



compare how the point will fit in some cluster with the assigned one by computing 

both values. Silhouette Coefficient is a combination of Cohesion and Separation 

measures and its bounds are between 0 and 1. The higher the Silhouette Coefficient, 

the better. This survey research paper is organized as follows: in section 2, we will 

study in general variety of stream clustering methods. In section 3, 4, 5 and 6 we will 

study each of the following stream clustering methods; CluStream, DenStream, D-

Stream and ClusTree respectively. In section 7 we will compare by running between 

the above-mentioned algorithms. Finally, the conclusion will be in section 8. 

2   Stream Clustering Algorithms 

The old unsophisticated data stream algorithms suffer from many problems. One 

naive suggested solution refers to stream buffering for later handling, but this is 

impossible because the stream is endless. Some approaches lost a valuable 

information due to dropping some data to keep up with the stream speed. Other 

approaches are suggested to solve the stream speed adaptation, these approaches try to 

scale only for the fastest stream speed, which resulted in a poor-quality clustering. 

Clearly, these solutions mentioned above do not make the best use of the information 

that is contained in the stream and of the time available. The current stream clustering 

algorithms each try to solve some of the above-mentioned problems.  

Stream clustering can be categorized into three main categories; prototype 

methods, density methods, and model-based methods [7]. Example on prototype-

based algorithms K-Means [8], it aims to partition the objects of the dataset 

into k clusters or groups so that each object belongs to the cluster corresponds to the 

closest mean, and then refine these clusters iteratively. The density-based algorithms 

like DBSCAN [9], it groups the points that look close together, considering dense 

concentrated data points areas, and then these dense areas form the final clusters. 

Then the low-density areas are marks as outliers. Model-based algorithms, 

Expectation Maximization (EM) [10] is an example. In [11], there are many 

clustering methods have been spoken about that are designed for static not stream 

data. There are different clustering paradigms studied the data stream clustering. 

Earlier data stream clustering paradigms like [12] deal with data stream clustering as 

if static clustering but in a continuous version, they are single phase divide and 

conquer schemes based. These data stream algorithms divide the data streams into 

segments and based on a k-means algorithm to discover clusters in data streams. Such 

approaches don’t consider the evolving data due to that they treat the recent and the 

outdated data the same. To solve the evolving data problem, moving window 

techniques are proposed [13]. CluStream [14] uses a two-phase strategy. In the online 

phase, it analyzes the stream coming data and stores its summary statistics using 

micro-clusters. While in the offline phase, it uses these statistics along with other 

parameters to generate final clusters. Wang et al. [15], Clustering data streams on the 

Two-tier structure, is an online-offline framework. It based on CluStream, but in an 

improved offline phase. DenStream [16] presents the structures as core and outlier 

micro clusters to maintain and summarize clusters and distinguish the potential 

clusters and outliers. CobWeb [17] is an incremental system for hierarchical 



conceptual clustering data. It uses a classification tree in organizing observations. 

Density-based clustering method like D-Stream [18], is a natural and attractive basic 

data streams clustering strategy because it can find arbitrarily and interwoven shaped 

clusters and can detect and handle noises. BIRCH [19], maintained a hierarchical 

index for faster access in the very large databases. A mapping to a frequent item set 

for multidimensional streams is represented in [20]. Kernels based approach [21] is 

proposed to discover arbitrary shape clusters in stream data. Alternative graphs based 

is proposed in [22], and fractal dimensions grid based is proposed in [23], and [16], 

[24] proposed a density-based approach. None from the above approaches can adapt 

the clustering model size to keep up with the online stream speed nor capable of 

delivering such a result or can interrupt the process at any time moment. The anytime 

idea is a very active research field in data mining, there are variant algorithms in that 

field. ClusTree [25] is a free parameter any-time algorithm, it adapts itself to the 

stream speed automatically, in addition to its capability of detecting novelty, outliers, 

and concept drift in the stream. To maintain stream summaries, it uses a self-adaptive 

and compact index structure. 

 

3   CluStream Algorithm 

CluStream is an online-offline Algorithm adopts the idea of streaming over many 

time windows, that by streaming over many time windows gains more understanding 

about what is going on in clustering process and the clusters behaviors and evolving. 

CluStream algorithm stores data summary statistics in its online component, while 

uses these statistics along with other parameters in the offline component to achieve 

the final clustering results. CluStream algorithm uses the micro-clusters concept as 

well as the pyramidal time frame.  

3.1   CluStream Clustering Framework  

To understand the CluStream framework, it is important to clarify some points. 

Firstly, summary statistics in the online component are incrementally updated to cope 

with the offline clustering. Secondly, it is important to determine the time interval 

between the snapshots for storing the summary statistics. Thirdly, addressing how 

CluStream uses the online information benefits in gaining hints for the user in setting 

the time horizon and how to deal with the evolution. CluStream store the online 

statistics in a form of micro-clusters, for that it uses the feature vector [19] due to its 

natural properties of additive, subtraction, and multiplications. Algorithm stores these 

micro-clusters in periods of times following pyramidal pattern which provides such 

good and reasonable tradeoff between the ability to get the summary statistics stored 

in the micro-clusters from various time horizons and the storage requirements. 

Definition 1 in [14] facilitates understanding of the above-mentioned concepts. 



3.2   Online phase (Micro-Cluster Maintenance) 

CluStream using many points initially to produce the initial micro-clusters uses k-

means in its offline phase. Now and after the creation of these initial micro-clusters, 

CluStream starts the online process with every arriving data point to update the stored 

micro-clusters created previously. The new coming data point either it absorbs in the 

nearest one or it may create its new micro-cluster as own. When a new point arrives, 

the algorithm computes the distance between the new point and the nearest micro-

cluster center. If the choice is to merge the arriving data point, the algorithm merges 

this data point with the closest micro cluster. Otherwise, if the new point doesn’t be 

founded to be within the range of any micro-cluster regarding its radius parameter, the 

new data point may categorize as an outlier or as a new micro-cluster seed.  

 

3.3   Offline phase - Macro-Cluster Creating 

Micro-clusters are efficiently maintained to be as intermediate statistical 

representations using the stored micro-clusters summary statistics instead of the very 

large volume data stream. This process enables the user from flexibility exploring 

stream clusters over different horizons. The user provides two parameters; the first is 

the time-horizon h and this benefits in history determination in which to create higher 

level clusters. The second parameter is the higher-level clusters number k, and this to 

determine if we can find extra detailed clusters. Note that at each step of the 

algorithm, the current set of micro-clusters depend on the all the stream processing 

entire history since the very beginning of it. To find the clusters over a specific time 

horizon, we need to find the corresponding micro-clusters making use from the 

additive and subtractive properties which extended from [19].  

 

4   DenStream Algorithm 

In the data stream clustering, maintaining all the data is impossible. Therefore, it is 

important to discover algorithms with a single pass clustering, unknown parameters 

and evolving the changed data. Micro-cluster technique in stream clustering saves the 

necessary information of the data objects the stream, which compresses the data 

effectively. The following subsections will be about four well-known density-based 

data stream algorithms which extend micro-clustering technique, these are 

DenStream, C-DenStream, rDenStream, and SDStream. We will start illustrating 

DenStream algorithm with more details because the others based on it.  

4.1   Density Micro-Clustering Algorithms  

Adopting the density concept benefits in discovering the arbitrarily shaped clusters by 

distinguishing those dense areas from the scattered sparse areas. Due to memory 



limits, micro-cluster is a well-known strategy special for this purpose. Micro-clusters 

are the optimal representation for the summary statistics stored in the online 

component and to be used afterward for the offline component clustering. Fig.1 shows 

the framework of micro-clusters in density-based clustering. The p-micro-clusters and 

o-micro-clusters [16] are the potential and outlier clusters, which are mainly differ in 

their weights. In this section, we will show in brief the density-based micro-clustering 

[19] four stream algorithms, DenStream, SDStream, rDenstream and C-DenStream 

with their cons and pros. So, the user can choose the suitable algorithm according to 

his own preferences and what he is interested in. Like the speed, higher accuracy and 

so on. 

 

 

Fig. 1. a) Density based micro-clusters framework [26]. 

  

   The DenStream algorithm puts a weight for each data point. It is a fast algorithm 

due to its ability to delete those outdated data points and the outliers before merging. 

And because it doesn't merge data points into a micro-cluster and that facilitate 

exploring the outliers and save time. SDStream algorithm uses only the recent data 

stream objects, while other algorithms consider the data stream points whole. It stores 

the micro-clusters in the EHCF data structure form. So, SDStream save memory and 

it can process only with the most recent data points over the sliding window length, 

which means better addressing the clusters changes and evolutions. This algorithm is 

suitable when the applications interested more in the recent data streams. 

rDenStream algorithm based mainly on DenStream; however, rDenStrean emphasize 

on handling outliers, such that it chose not to remove the data in the outlier buffer and 

relearn from it which result in a higher accuracy compared to DenStream algorithm. 

But on the other hand, it is slower than DenStream and a memory usage as well. C-

DenStream is a real applicable algorithm. It adopts the constraint concept on micro-

clusters. In addition, to guide the clustering process, it uses a background knowledge. 

In this algorithm, the clusters can't have formed unless they conform with application 

semantics like geographical natural borders and objects. 
 



5   D-Stream 

D-Stream is a density-based framework for clustering stream data. It is an online-

offline algorithm. The online one continuously reads input data records and maps it 

into a density grid and the offline one computes the grid density, detect and removes 

sporadic grids from the grid-list and adjust the clustering. D-Stream algorithm 

exploits the complicated relationships between the decay factor, data density, and 

cluster structure [18]. In addition, it captures the dynamic changes by adopting a 

density decaying technique to a data stream to generate clusters of arbitrary shapes 

effectively and efficiently.  

  

5.1   D-Stream Components 

Grid inspection and gap determination. D-Stream algorithm progressively does 

adjust clustering process every gap time. But what is the optimal time length of the 

grid inspection? Note that if we choose this time interval to be too long, data streams 

dynamical changes will not be recognized well. On the other hand, that if we choose 

this time interval to be too small, then it will result in too much computation, which 

makes the work so heavy. D-Stream adopts the idea of setting the time interval to be 

the smallest of those two times intervals [18]. 

 

Sporadic grids removing. The very high number of grids is a critical big challenge 

D-Stream algorithm faces. But the most grids are either empty or don’t receive over 

and over data records. So, in processing and storing, only those not empty grids can 

be regarded, and the others are neglected. The sporadic grids who receive so little data 

can be deleted from the data space along with their characteristic vectors and reset 

their density to zero. It is experimentally proven that deleting this kind of grids 

doesn’t affect the clustering quality. While the sporadic grids with many data records 

but their densities became less than the threshold by the effect of decay factor have a 

hope to upgrade and to become dense or transitional grids, so it is wrong to delete 

these grids. 

 

D-Stream clustering algorithm. The algorithm continues reading from the flow 

stream of data records and computes all grids densities. Initial clustering process 

generates the initial clusters.  After the first gap then adjust-clustering method is 

executed repeatedly every time equal gap. Initial-clustering and adjust-clustering 

methods are described in detail supported by pseudo codes in [27]. 

6   ClusTree 

ClusTree is a parameter-free and any-time data stream algorithm, it finds solutions for 

a lot of challenges like limited memory and time, maintaining results in any point of 

time and adapting the clustering process according to the steam speed. In addition, 



ClusTree uses novel descent strategies for handling the slow streams, and it uses 

aggregation mechanisms for handling the fast streams. Also, ClusTree uses an 

exponential decay function to give more importance to the more recent data points. It 

is a self-adaptive data stream clustering algorithm as well as it is scalable to give any-

time clustering results. ClusTree' efficiency and effectivity are experimentally 

approved. 

6.1   Self adaptive and anytime data stream clustering 

ClusTree is a structure with an index stream clustering algorithm, it can store and 

maintain a compact view for any time the user seeks it. It is the first stream clustering 

algorithm for the anytime merit. ClusTree is a self-adaptive algorithm so that it can 

adapt to the coming data points stream speed automatically. 

 

Micro-clusters and anytime insert. Periodically, ClusTree algorithm computes the 

mean and variance of its micro-clusters. As stream data points flow, the cluster 

feature is updated incrementally, it can be considered as the true representation of the 

micro-clusters. So that, stream data points can be mapped to the true or the most 

similar micro-cluster. ClusTree algorithm hierarchy builds micro-clusters with a 

granularity at different levels [25]. So that, it adopts hierarchical indexing structures 

from R-tree family [17], [28], [29] which render preserving cluster features as well as 

locate a right place efficiently, that’s to insert any coming stream object into such a 

suitable micro-cluster. For the algorithm to determine leaf entry containing the most 

similar micro cluster to the new coming object, it descends the tree down until reach 

that leaf. If the similarity is enough, algorithm updates the micro-cluster tuple values. 

Otherwise, it creates a new micro-cluster and forms its cluster feature (CF) with its 

values. ClusTree has a buffer as a temporary place for storing either objects or 

aggregates that during insertion, due to the fast stream, can’t reach the leaf level. So 

that the cluster feature is stored in a suitable entry buffer when the insertion is 

interrupted and so that there is not enough time to descend the tree down to reach the 

leaf.  

 

Up-to-date clustering maintaining. ClusTree algorithm, to give the most recent 

objects more importance, it uses an exponential famous decay function that depends 

on time, ω (t) = β − λ*∆t, with the λ is the decay rate to control the objects weighs in 

such a way makes the algorithm can control the forgotten or maintaining objects more 

by playing with the decay rate value. As we increase the value of the decay factor, the 

old objects are forgotten becoming faster and so on. Every object has its arrival and 

last update timestamps which needed in computing the decay function. While the 

insertion process and descend the tree down to the leaf, all entries in the node are 

updated to the arrival timestamp. So that the node entries all have the same timestamp 

always. Every inner node in the tree structure summarizes its subtree. So, contacting 

the last update timestamp field in every node, besides using weighting formula, 



ensures capturing decay with time correctly. And to avoid splitting, the algorithm 

weighs with time. approved. 

6.2   Cluster shapes and cluster transitions 

There are several strategies suggested by details in [30], can process cluster 

transitions like outlier detection, concept drift detection, and novelty. ClusTree can 

apply any from these approaches to its output clusters. So, ClusTree algorithm can be 

used to detect arbitrary shape clusters, outlier detection, concept drift detection, 

novelty and time horizon. 

7   Experimental Results 

In experimental results, we adopt the Massive Online Analysis (MOA) framework 

[31] for online learning from data streams. MOA is so closely related to WEKA, 

implemented in Java and released under GPL. It includes a collection of online and 

offline components in addition to many tools for evaluating classification and 

clustering. It is easy to design and run experiments on MOA, and it is easy to extend it 

too. The experiments were done on Intel core(TM) i7-4510U CPU @ 2.60GHz, 

6.00GB RAM Lenovo. Fig. 2 shows the results from running four stream clustering 

algorithms, CluStream, DenStream, D-Stream and ClusTree based on synthetically 

Radial Basis Function (RBF) based on generated data. Synthetic data is easier in 

reproducing its storage and transmission costs are little [32]. 

 

 

Fig. 2. a) CluStream b) DenStream c) D-Stream d) ClusTree with 50000 points 

(Synthetic dataset). 

  

Fig. 3 shows the quality comparison between ClusTree with CluStream, D-Stream 

and DenStream algorithms using the sum of squared distance (SQQ). 

 



 

Fig. 3. SSQ for 50000 points. ClusTree in red, CluStream (left) and D-Stream 

(middle), DenStream (right) in blue. 

 

From the Fig. 3, it is shown that ClusTree has a quality with a virtually higher than 

the D-Stream algorithm, and at the same range as CluStream. ClusTree is also a little 

bit better than DenStream in SSQ and it is so clear from the results listed in Table 1 

below too.  

The separation (BSS) is the between clusters sum of squared distances. The higher 

the BSS, the better clustering quality. And it is shown in Fig. 4 (left) how much 

CluStream is better than ClusTree. CluStream is from two to five times BSS better 

than ClusTree. 

 

 

Fig. 4. BSS for 50000 points. ClusTree in red, CluStream (left) and DenStream 

(middle), D-Stream (right) in blue. 

 

In Fig. 4 (middle), it is a comparison between ClusTree and DenStream. DenStream is 

much better than ClusTree and it is corresponding to order of magnitude. 

  In terms of BSS metric, ClusTree is only better than D-Stream and this is shown 

clearly in Fig. 4 (right) and from Table 1 too. The values of BSS in clustering 50000 

stream data points are 72.62, 217.82, 6.49 and 22.93 for CluStream, DenStream, D-

Stream and ClusTree respectively. Note that the D-Stream BSS value is the least one 

so that it is the worse algorithm in terms of BSS performance metric. 

 

Table 1.  Stream Clustering Algorithms metric performance (Clustering 50000 points).  

 CluStream DenStream D-Stream ClusTree 

Separability 0.80 0.80 0.38 0.80 

Noise 0.84 0.84 1.00 0.84 

F1-P 0.72 0.60 0.33 0.74 

Purity 0.85 0.88 0.64 0.86 



Precision 1.00 1.00 1.00 1.00 

Recall 0.88 0.67 0.99 0.89 

Redundancy 0.06 0.00 0.00 0.04 

SSQ 8.93 11.51 3117.54 8.94 

BSS 72.62 217.82 6.49 22.93 

 

8   Conclusion 

In the introduction, it is indicated due to the unlimited rate growing large amounts of 

data how much the need for such non-stopped strategies for analyzing and clustering 

the non-stopped online coming stream objects especially in recent years becomes so 

important. So that a wide set of techniques and strategies have been proposed for 

analyzing and clustering stream. Also, in this paper additional challenges stream data 

clustering are mentioned. In addition to explaining the most important performance 

metrics used in comparing between clustering methods quality. Finally, experimental 

results of these streaming methods have also been displayed. 
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