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Abstract
IRF6, a member of Interferon Regulatory Factors (IRF) family, is involved in orofacial and

epidermal development. In breast cancer cell lines ectopic expression of IRF6 reduces cell

numbers suggesting a role as negative regulator of cell cycle. IRF6 is a direct target of

canonical Notch signaling in keratinocyte differentiation. Notch is involved in luminal cell

fate determination and stem cell regulation in the normal breast and is implicated as an

oncogene in breast cancer. Notch activation is sufficient to induce proliferation and transfor-

mation in non-tumorigenic breast epithelial cell line, MCF10A. ΔNp63, which is downregu-

lated by Notch activation in the breast, regulates IRF6 expression in keratinocytes. In this

report, we investigate Notch-IRF6 and ΔNp63-IRF6 interactions in MCF10A and MDA MB

231 cells. We observed that in these cells, IRF6 expression is partially regulated by canoni-

cal Notch signaling and ΔNp63 downregulation. Furthermore, we demonstrate that IRF6

abrogation impairs Notch-induced proliferation and transformation in MCF10A cells. Thus,

we confirm the previous findings by showing a tissue independent regulation of IRF6 by

Notch signaling, and extend them by proposing a context dependent role for IRF6, which

acts as a positive regulator of proliferation and transformation in MCF10A cells downstream

of Notch signaling.

Introduction
IRF6 is a transcription factor that belongs to the interferon regulatory factors (IRF) family,
which is mainly involved in the regulation of immune response [1]. IRF6, on the other hand,
has not been associated with the immunity, but was shown to be a major player in orofacial
and epidermal development [2]. IRF6 mutations were initially identified in human congenital
disorders that are characterized by cleft lip and palate [3]. Mice null for IRF6 [4] or carrying
mutation in DNA binding domain [5] exhibited craniofacial developmental abnormalities and
hyperproliferative epidermis that failed to terminally differentiate. In the breast, IRF6 was
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initially shown to directly interact with maspin, a tumor suppressor, in an immortalized nor-
mal mammary epithelial cell line, 1436N1, and have a decreased expression in invasive breast
cancer cell lines and breast tumors [6]. Later, IRF6 was implicated as a negative regulator of
cell proliferation. Cell cycle arrest resulted in IRF6 accumulation in MCF10A cells, non-tumor-
igenic immortalized breast epithelial cell line, while ectopic expression with adenoviral vectors
in breast cancer cell lines MCF7 and MDAMB 231 led to decreased cell numbers [7].

Notch is an evolutionary conserved signaling pathway that controls a variety of cellular pro-
cesses in development and tumorigenesis of several tissues. Upon binding of transmembrane
ligands (Delta-like- 1 (DLL1), DLL3, DLL4, jagged1 (JAG1) and JAG2) to the Notch receptors
(NOTCH1, -2, -3, -4) on the surface of neighboring cells, two sequential cleavages are induced
that result in the release of notch intracellular domain (NICD). NICD translocates to the
nucleus and converts the transcriptional repressor complex CSL (RBPjκ) into activator recruit-
ing co-activators including mastermind-like-1 and initiates transcription of the target genes
[8]. In the normal breast tissue, Notch signaling regulates luminal cell fate decision [9–11] and
stem-cell self-renewal [12]. In the context of breast tumorigenesis, Notch signaling has been
widely investigated since its first detection as an integration site for mouse mammary tumor
virus, which results in constitutive expression of NICD and generation of mammary tumors
[13, 14]. High expression levels of Notch receptors and ligands were found to be correlated
with poor prognosis [15] while Numb, a negative regulator of Notch, was lost in a group of
breast tumors [16, 17]. Functional analysis provided evidence that Notch activation is sufficient
to transform the non-tumorigenic breast epithelial cell line MCF10A and required to maintain
the transformed phenotype of breast cancer cell lines MCF7 and MDAMB 231 [17]. Notch sig-
naling crosstalks with several developmental and oncogenic pathways including Wnt, Her2
and Ras [18], however its downstream mediators in breast tumorigenesis are not yet fully
understood.

Like IRF6, mice mutant for Notch ligand JAG2 exhibited cleft palate phenotype indicating
that the two molecules are involved in the regulation of similar developmental processes [19].
Analysis of transgenic mice carrying both IRF6 and JAG2 mutations later revealed that IRF6
and JAG2 signaling converge during palate adhesion but failed to show an interaction in
terms of transcriptional regulation [20]. Recently, evidence was provided that Notch signaling
and IRF6 directly interact in keratinocytes. It was shown that IRF6 is a direct Notch target
gene that is induced during keratinocyte differentiation through the canonical, CSL-depen-
dent, pathway. siRNA mediated knockdown of IRF6 counteracted Notch-induced differentia-
tion and tumor suppression indicating that IRF6 is an essential mediator of Notch function in
keratinocytes [21].

p63, similar to its homologs p53 and p73, is a transcription factor that has at least six differ-
ent forms expressed from two different transcription start sites, each of which has three differ-
ent variants at the C-terminal domain due to alternative splicing [22]. Similar to IRF6, p63
mutations were found in several human syndromes that exhibit cleft palate and lip formation
[23] and p63 null mice had abnormal ectodermal development including undifferentiated epi-
dermis [24, 25]. A direct link between ΔNp63, which has a shorter N-terminus that contains
the transcriptional activation domain, and IRF6 has been established in keratinocytes by pro-
viding evidence that ΔNp63 binds to elements distal or proximal to IRF6 transcription start
site and induces the expression of IRF6 [26, 27]. In return, IRF6 downregulates ΔNp63 via pro-
teasome mediated degradation [27]. In the breast tissue, ΔNp63 is involved in epithelial cell
fate decision and cell-matrix adhesion under the negative control of Notch signaling [11, 28].

Based on these findings, we investigated possible Notch-IRF6 and ΔNp63-IRF6 interactions
in breast epithelial cells. We provide data demonstrating that Notch signaling positively regu-
lates IRF6 expression, partially through canonical pathway, in breast epithelial cells. We show
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that downmodulation of IRF6 by shRNA impaired Notch-induced proliferation and transfor-
mation in MCF10A cells. Furthermore, we show that ΔNp63 downregulation may be involved
IRF6 upregulation as an alternative mechanism to canonical Notch signaling. However, IRF6
silencing did not affect ΔNp63 expression suggesting a tissue-specific feedback mechanism that
is functional in keratinocytes but not in breast epithelial cells.

Thus, in the present study, we confirm previous findings in keratinocytes by showing that
IRF6 regulation by Notch signaling and ΔNp63 is not tissue specific and extend them by pro-
posing a context dependent function for IRF6 in breast epithelial cells, in which it functions as
a positive regulator of cell proliferation and transformation downstream of Notch.

Materials and Methods

Cell culture and viral infection
MCF10A and MDAMB 231 cells were obtained from ATCC. Dulbecco's Modified Eagle's
Medium/Ham's F-12 Nutrient Mixture 1:1 growth medium including 25 mMHEPES
(Hyclone) supplemented with 5% horse serum (Biological Industries), 20 ng/ml epidermal
growth factor (Sigma), 500 ng/ml hydrocortisone (Sigma), 100 ng/ml cholera toxin (Sigma),
and 10 μg/ml insulin (Sigma) was used to grow MCF10A cells. MDAMB 231 cells were grown
in Dulbecco's Modified Eagle's Medium (Hyclone) supplemented with 10% fetal bovine serum
(Biological Industries). All cell lines were maintained in a humidified incubator with 5% CO2

at 37°C.
Notch signaling was activated by overexpression of Notch1 intracellular domain using

MSCV-NICD retrovirus [11]. Notch inhibition was managed either by overexpression of dom-
inant negative form of Notch co-activator Mastermind-like 1 (DNMM) using MSCV-DNMM
retrovirus or shRNA mediated silencing of canonical Notch mediator CSL using lentivirus.
ΔNp63 was silenced by shRNA expressed from plko based lentivirus [11]. Empty MSCV retro-
virus or lentivirus expressing shRNA against Green Fluorescent Protein (GFP) were used as
control for each infection. Virus containing supernatants were prepared as described [11].
Cells were plated to 6-well plates at 250.000 cells/well density the day before infection and incu-
bated with virus overnight. All assays and analyses were performed 48 hours after removal of
the virus.

RNA isolation and QRT-PCR
Total RNA was isolated using PureLink RNA Isolation Kit (Invitrogen), cDNA was synthesized
by random hexamer primers using RevertAid First Strand cDNA Synthesis Kit (Fermentas).
Semi-quantitative real-time RT-PCRs (QRT-PCR) was performed with Maxima SYBR Green/
Fluorescein qPCR Master Mix (Fermentas) on an iCycler real-time PCR detection system (Bio
Rad). Relative mRNA values represent the mean±S.D. of minimum of three independent
experiments. All expression data were normalized to endogenous control gene TATA box-
binding protein (TBP) expression. Each data was then normalized to control group within an
experiment. Two-tailed Student’s t-test was used to calculate statistical significance. Following
primer pairs were used: HEY1 5’-GGGAGGGGAACTATATTGAATTTT-3’, 5’-ATTTGTGA
ATTTGAGATCCGTGT-3’; HEY2 5’-AAGATGCTTCAGGCAACAGG-3’, 5’-GCACTCTCG
GAATCCTATGC-3’; IRF6 5’-GCTCTCTCCCAATGACTGACCTGGA-3’, 5’-CCATGACGT
CCAGCAGCTTGCTA-3’; TBP 5’-TAGAAGGCCTTGTGCTCACC-3’, 5’-TCTGCTCTGAC
TTTAGCACCTG-3’; ΔNp63 5’-ATGCCCAGACTCAATTTAGTGA-3’, 5’-TTCTGCGCGT
GGTCTGTGT-3’.
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Protein preparation and immunoblotting
Cells were lysed in RIPA buffer and homogenized with 26G syringe. Total protein (20–100 μg)
was subjected to SDS/PAGE followed by immunoblotting with rabbit polyclonal anti-IRF6
(1:400, ab58915, Abcam), and mouse monoclonal anti-p63 (1:200, sc8431, Santa Cruz). Mouse
monoclonal anti-γ-tubulin (1:10000, T6557, Sigma) was used for equal loading control. Quan-
tification of the western images were done by Gel Analysis tool of ImageJ [29]. All protein lev-
els were normalized to tubulin, and then each data was normalized to the control group within
the experiment. Two-tailed Student’s t-test was used to calculate statistical significance.

Cell proliferation and viability assays
Cells were plated to 6-well plates at 250.000 cells/well density and the infection was done as
explained above. 48 hours after infection, cells were incubated with 20 μM of BrdU for 4 hours
followed by flow cytometry analysis using APC BrdU Flow Kit (BD Pharmingen) on FACS-
Canto (BD). An unstained control, in which the cells were not incubated with BrdU but treated
with the APC BrdU Flow Kit along with the samples, was used to set up the gates. 10,000 cells
excluding debris and doublets (R1) were analyzed for BrdU-APC signal. R2 gate, that had no
positive events in unstained control, was set to analyze BrdU positive cell population. For MTT
assay, 48 hours after infection, wells were incubated with 0.5mg/ml MTT (Amresco) for 4
hours followed by dissolving of tetrazolium salts in DMSO and colorimetric measurement at
570nm with a background subtraction at 650nm. All values were normalized to control group.
BrdU positive cell percentages and MTT assay values represent the mean±S.D. of three inde-
pendent experiments. Two-tailed Student’s t-test was used to calculate statistical significance.

Soft agar assay
48 hours after infection, 3000 cells/well were added to 6-well plates in growth medium with
0.35% noble agar (BD Difco) on top of a solidified layer of 0.5% noble agar prepared in growth
medium. Cells were fed with fresh growth medium twice a week for 8 weeks, after which colo-
nies were stained with 0.005% crystal violet and analyzed under Olympus CKX41 microscope
using Olympus DP25 camera and DP2-BSW application software. For each condition, five
fields per well were analyzed. From each field, three images (each focused on a different layer)
were taken. Only the colonies that were in the focus and bigger than 30 μm in diameter were
counted. Total colony numbers were calculated from 15 images for each well. For each condi-
tion, average colony number per well, which was calculated from three independent experi-
ments, was plotted. Colony diameter was calculated using all of the counted colonies for each
condition. Colony number per well and diameter values represent the mean±S.D. of three inde-
pendent experiments. Two-tailed Student’s t-test was used to calculate statistical significance.

Results

IRF6 expression is induced by Notch activation in MCF10A cells
To assess whether Notch signaling regulates IRF6 expression in breast epithelial cells, we
used immortalized, non-tumorigenic breast epithelial cell line with near diploid karyotype,
MCF10A, which do not have detectable Notch activity [17, 30]. In MCF10A, we activated
Notch signaling by ectopic expression of Notch1 intracellular domain (NICD), which is the
active form of the receptor, via retroviral expression system. 48 hours after infection, mRNA
levels of Notch target genes HEY1 and HEY2 were upregulated by 3.7- and 142-fold, respec-
tively, in NICD infected cells compared to the cells infected with control virus, showing that
Notch signaling was activated successfully (Fig 1A). Upon Notch activation, IRF6 mRNA
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was upregulated by 3.1-fold (Fig 1B) and a 2.1 fold increase in IRF6 protein was observed
(Fig 1C). Thus, we provided evidence that IRF6 expression is induced by Notch activation in
MCF10A cells.

IRF6 is required for Notch-induced cell proliferation and transformation
in MCF10A cells
Notch activation increases proliferation in MCF10A cells [17]. Since, IRF6 was shown to act as
a negative regulator of cell proliferation in breast epithelial cells [7], we investigated whether its
upregulation by Notch is involved in regulation of Notch-induced cell proliferation and trans-
formation. For this purpose, we generated “NICD—Control” and “NICD—shIRF6”MCF10A
cells by double infection. In both, Notch signaling was successfully activated upon infection
with NICD virus as demonstrated by significant increase in Notch target gene HEY2 mRNA
(Fig 2A). Then, we showed that NICD induced IRF6 upregulation was reduced by 70% in
“NICD—shIRF6” group, which was also infected with virus encoding shRNA against IRF6

Fig 1. Notch activation induces IRF6 expression in MCF10A cells.Relative mRNA expression levels of (A) Notch target genes HEY1 and HEY2 and (B)
IRF6 48 hours after infection with control (grey bars) or NICD expressing (black bars) retrovirus. (C) IRF6 protein levels 48 hours after infection with control or
NICD expressing retrovirus (Left: representative western image, Right: Quantification of the protein bands). Values represent mean±S.D. of three
independent experiments. (p values: *: <0.05, **: <0.02, ***: <0.003).

doi:10.1371/journal.pone.0132757.g001
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Fig 2. IRF6 is required for Notch induced cell proliferation. (A) Relative mRNA expression levels of Notch target gene HEY2 and of IRF6 in MCF10A cells
infected with (i) two control viruses, (ii) control and IRF6 shRNA (shIRF6) expressing viruses, (iii) NICD and control shRNA expressing viruses or (iv) NICD
and shIRF6 expressing viruses. (B) Representative dot plots of BrdU FACS analysis. R1 population (upper panel) were analyzed for BrdU-APC signal. R2
population (lower panel) shows events positive for BrdU-APC signal. (C) BrdU positive cell percentage in MCF10A cells, infected as indicated above, after 4
hours of BrdU incorporation. (D) MTT assay values indicating cell viability of MCF10A cells infected as indicated above. Values represent mean±S.D. of three
independent experiments. (p values: *: < 0.05, **: <0.006).

doi:10.1371/journal.pone.0132757.g002

IRF6 Is a Mediator of Notch in MCF10A Cells

PLOS ONE | DOI:10.1371/journal.pone.0132757 July 10, 2015 6 / 15



(shIRF6) compared to the “NICD—Control” group, which was infected with the control
shRNA virus (Fig 2A).

Proliferation of the modulated cells was assessed by BrdU assay, in which MCF10A cells
were incubated with BrdU for 4 hours and analyzed by flow cytometry 48 hours after infection.
Notch activation increased the actively proliferating cell population, as expected [17], with an
increase in BrdU positive population from 4% in “Control—Control” group to 10% in “NICD
—Control” group (Fig 2C). When Notch cannot upregulate IRF6, the percentage of actively
proliferating cells dropped to 3%, compared to “NICD—Control” group. Silencing of IRF6
only, did not affect BrdU incorporation rate (Fig 2C). Cell viability was assessed by MTT assay,
in which the absorbance of formazan precipitate is correlated with the number of the alive cells
[31]. In response to IRF6 abrogation cell viability was reduced by 15% in Notch activated cells
(Fig 2D). Thus, IRF6 upregulation is required for Notch induced cell proliferation.

MCF10A cells, which lack the ability to grow in anchorage independent way [30] are trans-
formed by Notch activation, and form colonies in soft agar [17]. In order to test the role of
IRF6 in Notch-induced transformation, MCF10A cells, modulated as explained above, were
grown in soft agar for 8 weeks and number and size of the colonies were analyzed following
crystal violet staining (Fig 3A). Notch activation increased average colony number per well
from 13 in “Control—Control” group to 60 in “NICD—Control” group (Fig 3B). When IRF6

Fig 3. IRF6 is required for Notch induced transformation. (A) Photomicrographs of MCF10A cells infected with (i) two control viruses, (ii) control and IRF6
shRNA (shIRF6) expressing viruses, (iii) NICD and control shRNA expressing viruses or (iv) NICD and shIRF6 expressing viruses and grown in soft agar for
8 weeks. Arrows indicate representative colonies that are in focus and counted. Scale bar: 500 μm. Number of colonies (bigger than 30 μm in diameter) per
well (B) and average colony size (C) are shown for each condition. Values represent mean±S.D. of three independent experiments. (p values: *: <0.03, **:
<0.004).

doi:10.1371/journal.pone.0132757.g003
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was silenced in Notch active cells, colony number was significantly reduced to 27 in “NICD—
shIRF6” group (Fig 3B) indicating that IRF6 is required for Notch induced transformation of
MCF10A cells. Colony size, on the other hand, was increased by Notch activation but not
affected by IRF6 abrogation (Fig 3C), indicating that once transformed the number of cycles
proliferating cells underwent through was independent of IRF6. Silencing of IRF6 only, did not
affect neither number nor size of the colonies (Fig 3B and 3C).

Upon transformation, Notch active cells might have acquired alternative mechanisms to
compensate the inhibitory effects of IRF6 loss. Proliferation analysis were done 48 hours after
infection, however, transformation analysis were done 8 weeks after the infection, which gives
the transformed cells time to activate alternative pathways to promote proliferation. The cells
that acquired alternative mechanisms could have been selected over the others and compensate
for the initial decrease in the proliferation rate.

Based on these results, it can be concluded that IRF6 is an essential mediator of Notch sig-
naling in proliferation and transformation of MCF10A cells.

Notch inhibition in breast cancer cell line MDAMB 231 reduces IRF6
expression
To test whether Notch-IRF6 connection is also relevant in the context of endogenous tumori-
genic Notch activation, we switched to a breast cancer cell line with high Notch activity,
MDAMB 231 [17]. Notch signaling was inhibited by two different approaches; first, by over-
expression of dominant negative form of Notch co-activator Mastermind-like 1 (DNMM)
and second, by silencing the canonical Notch mediator CSL using shRNA. In DNMM overex-
pressing cells, HEY1 and HEY2 mRNA levels were reduced by 50% and 40%, respectively,
compared to control infected cells indicating that Notch inhibition was achieved (Fig 4A).
IRF6 mRNA was reduced by 35% in DNMM overexpressing cells compared to control
infected cells (Fig 4A). 20% reduction in IRF6 protein could be observed in response to
DNMM (Fig 4B). When specifically canonical Notch signaling was inhibited by shRNA
against CSL (shCSL), IRF6 was downregulated by 55% at mRNA level (Fig 4C) and 45% at
protein level (Fig 4D) compared to cells expressing control shRNA. 60% and 80% reduction
in HEY1 and HEY2 mRNA expression in shCSL infected cells indicates that Notch signaling
was successfully inhibited (Fig 4C). Overall, the data suggest that IRF6 expression in breast
cancer cell lines with active Notch signaling is, at least partially, dependent on canonical
Notch signaling.

IRF6 upregulation is partially regulated by ΔNp63 downregulation
ΔNp63, which is negatively regulated by Notch signaling in the breast tissue [11, 28], controls
IRF6 expression in keratinocytes [26, 27]. Thus, we wanted to assess whether ΔNp63 regula-
tion is involved in Notch induced IRF6 expression in breast epithelial cells in addition to
canonical Notch signaling. First, we ascertained that Notch induction downregulated the
expression of ΔNp63, dominant p63 isoform in breast epithelial cells [11, 32], mRNA (Fig
5A) and protein (Fig 5B) under our experimental conditions, in MCF10A cells. Then, we used
shRNA to downregulate ΔNp63 (shp63), which reduced mRNA expression by 60% (Fig 5C)
and protein expression by 65% (Fig 5D) compared to the cells infected with control shRNA
virus. Upon silencing of ΔNp63, IRF6 mRNA was increased by 1.9-fold (Fig 5C) and protein
was upregulated by 1.4 fold (Fig 5D). Thus, p63 downregulation is sufficient to upregulate
IRF6 expression, suggesting that Notch may induce IRF6 expression through downregulation
of ΔNp63.
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ΔNp63 expression is not regulated by IRF6
In keratinocytes, overexpression of IRF6 downregulated ΔNp63 via proteasome mediated deg-
radation [27]. To test, whether the same mechanism works in breast epithelial cells, we used
“NICD—Control” and “NICD—shIRF6” cells. In “NICD—Control” group IRF6 mRNA
expression was increased by 1.9-fold while ΔNp63 mRNA was decreased by 40% (Fig 6A) com-
pared to “Control- Control” group, showing that double viral infection did not interfere with
the effects of Notch activation on IRF6 and ΔNp63 expression. In “NICD—shIRF6” condition,
we managed to avert IRF6 upregulation by Notch as shown by 80% reduction in IRF6 mRNA
(Fig 6A) compared to “NICD—Control” cells. ΔNp63 mRNA (Fig 6A) and protein (Fig 6B)
expression remained downregulated in “NICD—shIRF6” cells and did not significantly change

Fig 4. Notch inhibition reduces IRF6 expression in MDAMB 231 cells.Notch signaling was inhibited via overexpression of dominant negative
mastermind (DNMM) (A and B) or silencing of Notch signaling mediator RBPjκ/CSL via shRNA (shCSL) (C and D). Relative mRNA expression levels of
Notch target genes HEY1 and HEY2 and of IRF6 (A) and protein levels of IRF6 (B) 48 hours after infection with control (grey bars) or DNMM (black bars)
expressing retrovirus (Left: representative western image, Right: Quantification of the protein bands). Relative mRNA expression levels of Notch target
genes HEY1 and HEY2 and of IRF6 (C) and protein levels of IRF6 (D) 48 hours after infection with control (grey bars) or shCSL (black bars) expressing
retrovirus (Left: representative western image, Right: Quantification of the protein bands). Values represent mean±S.D. of three independent experiments.
(p values: *: <0.05, **: <0.004, ***: <0.0003).

doi:10.1371/journal.pone.0132757.g004
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Fig 5. ΔNp63 silencing increases IRF6 expression.Relative mRNA (A) and protein (B) expression of ΔNp63 in MCF10A cells 48 hours after infection with
control (grey bars) or NICD expressing (black bars) retrovirus (Left: Quantification of the protein bands, Right: representative western image). Relative mRNA
(C) and protein (D) expression of ΔNp63 and IRF6 in MCF10A cells 48 hours after infection with lentivirus expressing control shRNA (grey bar) or shRNA
against ΔNp63 (shp63) (black bars) (Left: Quantification of the protein bands, Right: representative western image). Values represent mean±S.D. of three
independent experiments. (p values: *: <0.006, **: <0.02, ***: <0.05).

doi:10.1371/journal.pone.0132757.g005
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compared to “NICD—Control” group. Thus, we provided evidence that IRF6 upregulation by
Notch is not involved in ΔNp63 regulation neither at mRNA nor at protein level in breast epi-
thelial cells suggesting that this feedback mechanism is tissue specific.

Discussion
Notch signaling and IRF6 have long been implicated in similar developmental processes like
palate adhesion [5, 19] and keratinocyte differentiation [4, 5, 33]. However, only recently a
direct interaction between the two genes has been revealed in keratinocytes showing that IRF6

Fig 6. Notch induced downregulation ofΔNp63 is not mediated through IRF6.Relative mRNA expression levels of IRF6 and ΔNp63 (A) and protein
expression of IRF6 (B) in MCF10A cells infected with (i) two control viruses (grey bars), (ii) NICD and control shRNA expressing viruses (black bars) or (iii)
NICD and IRF6 shRNA (shIRF6) expressing viruses (light grey bars) (Left: representative western image, Right: Quantification of the protein bands). Values
represent mean±S.D. of three independent experiments. (In panel B, first lane was loaded on the same gel into a well that is not adjacent to the other two
wells.) (p values: *: <0.04, **: <0.007).

doi:10.1371/journal.pone.0132757.g006
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is a direct target of canonical Notch signaling and is a mediator of its pro-differentiation and
tumor suppressor function [21]. In line with the previous findings, we showed that IRF6
expression is regulated by Notch signaling in non-tumorigenic and tumorigenic breast epithe-
lial cells indicating a tissue independent control mechanism. Our data suggest that the regula-
tion is mediated by two different mechanisms; canonical Notch pathway and Notch induced
ΔNp63 downregulation.

Upstream regulators of IRF6 are not well documented. In addition to recently described
role of Notch; p63 and TGFβ signaling are known to directly regulate IRF6 expression. During
palate development, TGFβ signaling induces IRF6 expression upon binding of SMAD4 to
IRF6 promoter [34]. However, Notch signaling is known to repress TGFβ signaling in breast
[35, 36], making it a less likely mechanism to explain Notch induced IRF6 expression. Yet,
whether TGFβ regulates IRF6 expression in breast epithelial cells remains as an open question.
ΔNp63 is known to be downregulated by Notch activation in breast epithelial cells [11, 28].
ΔNp63 regulates IRF6 expression by binding to elements distal or proximal to IRF6 transcrip-
tion start site in keratinocytes [26, 27]. In contrast to positive regulation of IRF6 by ΔNp63 in
keratinocytes, in this study, we provided evidence that shRNA mediated downregulation of
ΔNp63 increased IRF6 expression. Thus, we propose an alternative model, in which Notch
indirectly induces IRF6 expression by downmodulating ΔNp63. Yet, why the removal of the
positive regulator, ΔNp63, increases target expression, IRF6, remains elusive. IRF6 positively
regulates its own expression by binding to three IRF6 responsive elements, two in the pro-
moter area and one in the distal region [37]. The binding site at the distal region exactly over-
laps with the ΔNp63 binding site [37], raising the possibility of a competition between the two
factors for binding to this site. In our system, removal of ΔNp63 upon Notch activation or
shRNA mediated downregulation may shift the balance towards IRF6 binding and that in turn
may induce its expression.

A reciprocal interaction was proposed between IRF6 and ΔNp63 in keratinocytes in the way
of IRF6 induced proteasome mediated ΔNp63 degradation [27]. In MCF10A, we did not
observe an effect of IRF6 depletion on ΔNp63 suggesting that Notch induced ΔNp63 downre-
gulation is not mediated by IRF6. However, it should be noted that IRF6 induced ΔNp63 degra-
dation was restricted to the differentiating keratinocytes and no effect was observed in
proliferating cells [27]. Together with our findings, this points to a tissue and cell-type specific
feedback mechanism between ΔNp63 and IRF6. In the normal breast tissue, IRF6 expression
reaches to its maximum levels in lobuloalveolar cells during lactation suggesting that IRF6 may
have a role in differentiation of breast epithelial cells [38]. We cannot ignore a scenario, where
IRF6 regulates p63 in different types of breast epithelial cells, such as luminal or luminal pro-
genitor, or at a different stage of differentiation, such as lactation. Thus, our current observa-
tion in MCF10A cells needs further investigation in different differentiation stages of breast
epithelial cells.

IRF6 was implicated as a tumor suppressor in squamous cell carcinoma (SCC). IRF6 expres-
sion was downmodulated in SCC tumors, where its overexpression in SCC cell lines reduced
colony formation, while its silencing induced matrigel invasion [21, 37]. In the breast, it was
shown that IRF6 expression was reduced in breast cancer cell lines and invasive tumors [6].
Furthermore, IRF6 was accumulated upon cell cycle arrest in MCF10A cells and its adenoviral
overexpression in breast cancer cell lines reduced cell numbers [6, 7], implicating IRF6 as a neg-
ative regulator of cell cycle. Here, we provided evidence that IRF6 might have an alternative role
downstream of Notch signaling in breast. We showed that silencing of IRF6 impaired Notch-
induced proliferation and transformation in MCF10A cells, suggesting a growth promoting
role. Dual role of IRF6 may be context dependent, where in combination with other Notch tar-
gets IRF6 might be involved in a program to activate cell proliferation and transformation,
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while in the absence of Notch signaling its accumulation might simply prevent cell cycle pro-
gression. In line with a context dependent function, we showed that silencing of IRF6 in the
absence of Notch activation did not affect proliferation or transformation of MCF10A cells. In
parallel, keratinocytes isolated from wild-type and IRF6 knockout embryos showed no differ-
ence in BrdU incorporation or cell cycle profile in short-term culture [39]. Only in the long-
term, 10–12 days in culture, IRF6 knockout cells reached to higher numbers [39], indicating
that IRF6 alone is not enough to regulate cell proliferation but needs the proper context to be
established.

IRF6 was shown to be phosphorylated, in response to mitogenic stimuli and subsequently
targeted for proteasomal degradation [6, 7]. It was suggested that phosphorylated and unpho-
sphorylated forms might have different functions. Phosphorylated IRF6 may facilitate exit
from G0 and entry into G1 prior to degradation suggesting a growth-stimulating role, while
unphosphorylated IRF6 accumulation may simply induce cell cycle arrest [7]. In our study, we
failed to detect phosphorylated form of IRF6 neither upon treatment with phosphatase inhibi-
tors nor in response to proteasome inhibition (data not shown). However, we cannot exclude
the scenario, where Notch activation not only increases IRF6 expression but also induces its
phosphorylation. Phosphorylated form might be the main form acting downstream of Notch
signaling to induce its proliferation inducing functions. Thus, IRF6 downstream of Notch may
be required for its growth promoting functions instead of steady state function that induces
cell cycle arrest.

Downstream targets that regulate IRF6 functions are not well known. Recently, two
groups revealed IRF6 targets in normal human keratinocytes and zebrafish periderm [37,
40]. Gene expression profiling and ChIP sequencing identified IRF6 upregulated genes
involved in proliferation, angiogenesis, cell adhesion, and interaction with extracellular
matrix [37]. Whether similar group of genes are also regulated by IRF6 in breast remains elu-
sive. Identification of downstream targets will be the key to understand context dependent
functions of IRF6 in the breast.

Acknowledgments
We thank Paolo Dotto for kindly providing shRNA vectors for IRF6 and CSL. We thank
“Izmir Institute of Technology, Biotechnology and Bioengineering Research and Application
Center" for infrastructural support. We thank Cathrin Brisken, Gulistan Mese and Engin Ozci-
vici for critical reading of the paper.

Author Contributions
Conceived and designed the experiments: OYO. Performed the experiments: TZ BE CK OYO.
Analyzed the data: TZ BE CK OYO. Wrote the paper: OYO.

References
1. Savitsky D, Tamura T, Yanai H, Taniguchi T. Regulation of immunity and oncogenesis by the IRF tran-

scription factor family. Cancer immunology, immunotherapy: CII. 2010; 59(4):489–510. doi: 10.1007/
s00262-009-0804-6 PMID: 20049431

2. Mangold E, Ludwig KU, Nothen MM. Breakthroughs in the genetics of orofacial clefting. Trends in
molecular medicine. 2011; 17(12):725–33. doi: 10.1016/j.molmed.2011.07.007 PMID: 21885341

3. Kondo S, Schutte BC, Richardson RJ, Bjork BC, Knight AS, Watanabe Y, et al. Mutations in IRF6
cause Van der Woude and popliteal pterygium syndromes. Nat Genet. 2002; 32(2):285–9. PMID:
12219090

4. IngrahamCR, Kinoshita A, Kondo S, Yang B, Sajan S, Trout KJ, et al. Abnormal skin, limb and craniofa-
cial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6). Nat Genet. 2006; 38
(11):1335–40. PMID: 17041601

IRF6 Is a Mediator of Notch in MCF10A Cells

PLOS ONE | DOI:10.1371/journal.pone.0132757 July 10, 2015 13 / 15

http://dx.doi.org/10.1007/s00262-009-0804-6
http://dx.doi.org/10.1007/s00262-009-0804-6
http://www.ncbi.nlm.nih.gov/pubmed/20049431
http://dx.doi.org/10.1016/j.molmed.2011.07.007
http://www.ncbi.nlm.nih.gov/pubmed/21885341
http://www.ncbi.nlm.nih.gov/pubmed/12219090
http://www.ncbi.nlm.nih.gov/pubmed/17041601


5. Richardson RJ, Dixon J, Malhotra S, Hardman MJ, Knowles L, Boot-Handford RP, et al. Irf6 is a key
determinant of the keratinocyte proliferation-differentiation switch. Nat Genet. 2006; 38(11):1329–34.
PMID: 17041603

6. Bailey CM, Khalkhali-Ellis Z, Kondo S, Margaryan NV, Seftor RE, Wheaton WW, et al. Mammary serine
protease inhibitor (Maspin) binds directly to interferon regulatory factor 6: identification of a novel serpin
partnership. J Biol Chem. 2005; 280(40):34210–7. PMID: 16049006

7. Bailey CM, Abbott DE, Margaryan NV, Khalkhali-Ellis Z, Hendrix MJ. Interferon regulatory factor 6 pro-
motes cell cycle arrest and is regulated by the proteasome in a cell cycle-dependent manner. Mol Cell
Biol. 2008; 28(7):2235–43. doi: 10.1128/MCB.01866-07 PMID: 18212048

8. Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything
but not all the time. Nat Rev Cancer. 2011; 11(5):338–51. doi: 10.1038/nrc3035 PMID: 21508972

9. Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, et al. Transcriptome analysis of the normal
human mammary cell commitment and differentiation process. Cell Stem Cell. 2008; 3(1):109–18. doi:
10.1016/j.stem.2008.05.018 PMID: 18593563

10. Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR, et al. Notch signaling regulates
mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell. 2008; 3(4):429–41. doi:
10.1016/j.stem.2008.08.001 PMID: 18940734

11. Yalcin-Ozuysal O, Fiche M, Guitierrez M, Wagner KU, Raffoul W, Brisken C. Antagonistic roles of
Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differ. 2010; 17(10):1600–12.
doi: 10.1038/cdd.2010.37 PMID: 20379195

12. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, AbdallahWM,Wicha MS. Role of Notch signal-
ing in cell-fate determination of humanmammary stem/progenitor cells. Breast Cancer Res. 2004; 6(6):
R605–15. PMID: 15535842

13. Gallahan D, Callahan R. Mammary tumorigenesis in feral mice: identification of a new int locus in
mouse mammary tumor virus (Czech II)-induced mammary tumors. J Virol. 1987; 61(1):66–74. PMID:
3023708

14. Gallahan D, Callahan R. The mouse mammary tumor associated gene INT3 is a unique member of the
NOTCH gene family (NOTCH4). Oncogene. 1997; 14(16):1883–90. PMID: 9150355

15. Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, et al. High-level coexpression of
JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival.
Cancer Res. 2005; 65(18):8530–7. PMID: 16166334

16. Pece S, Serresi M, Santolini E, Capra M, Hulleman E, Galimberti V, et al. Loss of negative regulation by
Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol. 2004; 167(2):215–21. PMID:
15492044

17. Stylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Can-
cer Res. 2006; 66(3):1517–25. PMID: 16452208

18. Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast can-
cer. Biochimica et biophysica acta. 2011; 1815(2):197–213. doi: 10.1016/j.bbcan.2010.12.002 PMID:
21193018

19. Jiang R, Lan Y, Chapman HD, Shawber C, Norton CR, Serreze DV, et al. Defects in limb, craniofacial,
and thymic development in Jagged2 mutant mice. Genes Dev. 1998; 12(7):1046–57. PMID: 9531541

20. Richardson RJ, Dixon J, Jiang R, Dixon MJ. Integration of IRF6 and Jagged2 signalling is essential for
controlling palatal adhesion and fusion competence. Human molecular genetics. 2009; 18(14):2632–
42. doi: 10.1093/hmg/ddp201 PMID: 19439425

21. Restivo G, Nguyen BC, Dziunycz P, Ristorcelli E, Ryan RJ, Ozuysal OY, et al. IRF6 is a mediator of
Notch pro-differentiation and tumour suppressive function in keratinocytes. EMBO J. 2011; 30
(22):4571–85. doi: 10.1038/emboj.2011.325 PMID: 21909072

22. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, et al. p63, a p53 homolog at 3q27-29,
encodes multiple products with transactivating, death-inducing, and dominant-negative activities.
Molecular cell. 1998; 2(3):305–16. PMID: 9774969

23. Rinne T, Brunner HG, van Bokhoven H. p63-associated disorders. Cell Cycle. 2007; 6(3):262–8. PMID:
17224651

24. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb
and epidermal morphogenesis. Nature. 1999; 398(6729):708–13. PMID: 10227293

25. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, et al. p63 is essential for regenerative
proliferation in limb, craniofacial and epithelial development. Nature. 1999; 398(6729):714–8. PMID:
10227294

IRF6 Is a Mediator of Notch in MCF10A Cells

PLOS ONE | DOI:10.1371/journal.pone.0132757 July 10, 2015 14 / 15

http://www.ncbi.nlm.nih.gov/pubmed/17041603
http://www.ncbi.nlm.nih.gov/pubmed/16049006
http://dx.doi.org/10.1128/MCB.01866-07
http://www.ncbi.nlm.nih.gov/pubmed/18212048
http://dx.doi.org/10.1038/nrc3035
http://www.ncbi.nlm.nih.gov/pubmed/21508972
http://dx.doi.org/10.1016/j.stem.2008.05.018
http://www.ncbi.nlm.nih.gov/pubmed/18593563
http://dx.doi.org/10.1016/j.stem.2008.08.001
http://www.ncbi.nlm.nih.gov/pubmed/18940734
http://dx.doi.org/10.1038/cdd.2010.37
http://www.ncbi.nlm.nih.gov/pubmed/20379195
http://www.ncbi.nlm.nih.gov/pubmed/15535842
http://www.ncbi.nlm.nih.gov/pubmed/3023708
http://www.ncbi.nlm.nih.gov/pubmed/9150355
http://www.ncbi.nlm.nih.gov/pubmed/16166334
http://www.ncbi.nlm.nih.gov/pubmed/15492044
http://www.ncbi.nlm.nih.gov/pubmed/16452208
http://dx.doi.org/10.1016/j.bbcan.2010.12.002
http://www.ncbi.nlm.nih.gov/pubmed/21193018
http://www.ncbi.nlm.nih.gov/pubmed/9531541
http://dx.doi.org/10.1093/hmg/ddp201
http://www.ncbi.nlm.nih.gov/pubmed/19439425
http://dx.doi.org/10.1038/emboj.2011.325
http://www.ncbi.nlm.nih.gov/pubmed/21909072
http://www.ncbi.nlm.nih.gov/pubmed/9774969
http://www.ncbi.nlm.nih.gov/pubmed/17224651
http://www.ncbi.nlm.nih.gov/pubmed/10227293
http://www.ncbi.nlm.nih.gov/pubmed/10227294


26. Thomason HA, Zhou H, Kouwenhoven EN, Dotto GP, Restivo G, Nguyen BC, et al. Cooperation
between the transcription factors p63 and IRF6 is essential to prevent cleft palate in mice. J Clin Invest.
2010; 120(5):1561–9. doi: 10.1172/JCI40266 PMID: 20424327

27. Moretti F, Marinari B, Lo Iacono N, Botti E, Giunta A, Spallone G, et al. A regulatory feedback loop
involving p63 and IRF6 links the pathogenesis of 2 genetically different human ectodermal dysplasias.
J Clin Invest. 2010; 120(5):1570–7. doi: 10.1172/JCI40267 PMID: 20424325

28. Mazzone M, Selfors LM, Albeck J, Overholtzer M, Sale S, Carroll DL, et al. Dose-dependent induction
of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proc Natl
Acad Sci U S A. 2010; 107(11):5012–7. doi: 10.1073/pnas.1000896107 PMID: 20194747

29. Schneider CA, RasbandWS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature
methods. 2012; 9(7):671–5. PMID: 22930834

30. Soule HD, Maloney TM, Wolman SR, PetersonWD Jr, Brenz R, McGrath CM, et al. Isolation and char-
acterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res.
1990; 50(18):6075–86. PMID: 1975513

31. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, et al. Feasibility of drug screen-
ing with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988; 48
(3):589–601. PMID: 3335022

32. Carroll DK, Carroll JS, Leong CO, Cheng F, Brown M, Mills AA, et al. p63 regulates an adhesion pro-
gramme and cell survival in epithelial cells. Nature cell biology. 2006; 8(6):551–61. PMID: 16715076

33. Dotto GP. Notch tumor suppressor function. Oncogene. 2008; 27(38):5115–23. doi: 10.1038/onc.2008.
225 PMID: 18758480

34. Iwata J, Suzuki A, Pelikan RC, Ho TV, Sanchez-Lara PA, Urata M, et al. Smad4-Irf6 genetic interaction
and TGFbeta-mediated IRF6 signaling cascade are crucial for palatal fusion in mice. Development.
2013; 140(6):1220–30. doi: 10.1242/dev.089615 PMID: 23406900

35. Sun Y, Lowther W, Kato K, Bianco C, Kenney N, Strizzi L, et al. Notch4 intracellular domain binding to
Smad3 and inhibition of the TGF-beta signaling. Oncogene. 2005; 24(34):5365–74. PMID: 16007227

36. Han L, Diehl A, Nguyen N, Korangath P, TeoW, Cho S, et al. The Notch pathway inhibits TGF-beta sig-
naling in breast cancer through HEYL-mediated crosstalk. Cancer Res. 2014.

37. Botti E, Spallone G, Moretti F, Marinari B, Pinetti V, Galanti S, et al. Developmental factor IRF6 exhibits
tumor suppressor activity in squamous cell carcinomas. Proc Natl Acad Sci U S A. 2011; 108
(33):13710–5. doi: 10.1073/pnas.1110931108 PMID: 21807998

38. Bailey CM, Margaryan NV, Abbott DE, Schutte BC, Yang B, Khalkhali-Ellis Z, et al. Temporal and spa-
tial expression patterns for the tumor suppressor Maspin and its binding partner interferon regulatory
factor 6 during breast development. Dev Growth Differ. 2009; 51(5):473–81. doi: 10.1111/j.1440-169X.
2009.01110.x PMID: 19527266

39. Biggs LC, Rhea L, Schutte BC, Dunnwald M. Interferon regulatory factor 6 is necessary, but not suffi-
cient, for keratinocyte differentiation. J Invest Dermatol. 2012; 132(1):50–8. doi: 10.1038/jid.2011.272
PMID: 21918538

40. de la Garza G, Schleiffarth JR, Dunnwald M, Mankad A, Weirather JL, Bonde G, et al. Interferon regula-
tory factor 6 promotes differentiation of the periderm by activating expression of Grainyhead-like 3. J
Invest Dermatol. 2013; 133(1):68–77. doi: 10.1038/jid.2012.269 PMID: 22931925

IRF6 Is a Mediator of Notch in MCF10A Cells

PLOS ONE | DOI:10.1371/journal.pone.0132757 July 10, 2015 15 / 15

http://dx.doi.org/10.1172/JCI40266
http://www.ncbi.nlm.nih.gov/pubmed/20424327
http://dx.doi.org/10.1172/JCI40267
http://www.ncbi.nlm.nih.gov/pubmed/20424325
http://dx.doi.org/10.1073/pnas.1000896107
http://www.ncbi.nlm.nih.gov/pubmed/20194747
http://www.ncbi.nlm.nih.gov/pubmed/22930834
http://www.ncbi.nlm.nih.gov/pubmed/1975513
http://www.ncbi.nlm.nih.gov/pubmed/3335022
http://www.ncbi.nlm.nih.gov/pubmed/16715076
http://dx.doi.org/10.1038/onc.2008.225
http://dx.doi.org/10.1038/onc.2008.225
http://www.ncbi.nlm.nih.gov/pubmed/18758480
http://dx.doi.org/10.1242/dev.089615
http://www.ncbi.nlm.nih.gov/pubmed/23406900
http://www.ncbi.nlm.nih.gov/pubmed/16007227
http://dx.doi.org/10.1073/pnas.1110931108
http://www.ncbi.nlm.nih.gov/pubmed/21807998
http://dx.doi.org/10.1111/j.1440-169X.2009.01110.x
http://dx.doi.org/10.1111/j.1440-169X.2009.01110.x
http://www.ncbi.nlm.nih.gov/pubmed/19527266
http://dx.doi.org/10.1038/jid.2011.272
http://www.ncbi.nlm.nih.gov/pubmed/21918538
http://dx.doi.org/10.1038/jid.2012.269
http://www.ncbi.nlm.nih.gov/pubmed/22931925

