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Abstract

A phenomenological multilayer adsorption model for a well-dispersed, homogeneous, nonporous adsorbent and a molecular adsorbate is pre-
sented. The model provides explicit kinetic expressions associating the adsorbed amounts to the fraction of the surface occupied and reduces to
the first- and second-order adsorption models for special cases. Parameters of the model are a pair of true rate constants related to the adsorbate–
adsorbent and adsorbate–surface adsorbate affinities. A general graphical procedure and analytical equations for special cases are provided to
estimate the rate constants from kinetic adsorption data. Data from the adsorption of sodium stearate onto α-alumina from water were used to
test the model. The predicted values of the rate constants suggested that the stearate was distributed homogeneously on the alumina surface and
essentially adsorbed as a monolayer before starting to form the second layer.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Modeling the kinetics of adsorption is important for simu-
lation, scaling-up, and control purposes. The film–pore model
[1], the branched-pore diffusion model [2], and the film–solid
model [3] are significant attempts that originate from first prin-
ciples, but their solutions are numerical in nature. Phenom-
enological models where the various parameters of the sys-
tem are lumped into empirical constants are another approach
to analyzing the adsorption data. The first-order model [4] is
the classical example and has been employed in numerous
systems [5–23]. The rate equation and its solution in terms
of fractional adsorbate concentration in solution are in the
form

(1)
dχ(t)

dt
= −K1χ(t) and χ(t) = e−K1t .
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The other widely used model is the second-order kinetic
model [24–27],

(2)
dχ(t)

dt
= −K2χ(t)2 and χ(t) = 1

1 + K2t
.

If a finite amount of adsorbate remains in solution at equi-
librium, Eqs. (1) and (2) need to be modified to include an
adsorption capacity term, χe. The Elovich equation [28], the
intraparticle diffusion model [24,27,29], and the modified first-
order model [30] are other examples.

The parameters of a phenomenological model are not known
in advance and must be estimated from experimental data by
graphing or curve-fitting procedures. They must maintain their
relationships to system variables under varying conditions to be
of any predictive value for scaling-up and control purposes. In
cases where they do not satisfy this requirement [31], the model
is modified to expand its applicability. Dividing the adsorption
process into various time segments [27,29,32] or redefining the
rate constants as functions of the adsorbed amounts [30] are
attempts of this kind.

The phenomenological model proposed in this paper is
based on the interactions of the solution adsorbate with the ad-
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sorbent or surface adsorbate species. The model yields kinetic
equations that associate the adsorbed amounts to the fraction of
the adsorbent surface occupied. In this paper, the parameters of
the model were defined for a molecular adsorbate dissolved in
liquid, but they can easily be modified for other dispersed sys-
tems. One good example is the adsorption of nanoparticles onto
colloidal surfaces from liquid or gas media.

The model was tested with the sodium stearate/water/α-
alumina system for the specific reasons that (i) α-alumina pro-
vides essentially a nonporous, homogeneous surface; (ii) the
stearate molecules produce multilayers on α-alumina [33–36];
(iii) adsorption takes place through both chemisorption (the
carboxylate–surface hydroxyl bonds) [36–38] and physisorp-
tion (the stearate–stearate hydrocarbon chain bonds) [35,36,38,
40–42].

2. Model

For a system containing νi dissolved adsorbate species and
a well-dispersed, homogeneous, nonporous adsorbent with αi

surface sites, disappearance of the adsorbate species from so-
lution can be given by the following rate equation if the
adsorbate–adsorbent and adsorbate–surface adsorbate affinities
have finite values:

(3)
dν(t)

dt
= −ksν(t)α(t) − kaν(t)

[
αi − α(t)

]
.

Similarly, the occupation of the adsorbent surface sites will fol-
low the rate equation

(4)
dα(t)

dt
= −ksν(t)α(t).

The rate constants ks and ka are the probabilities that the solu-
tion adsorbate species will successfully adsorb onto the free or
occupied surface sites, respectively. This definition of ks and ka
allows unsystematic desorption.

If νa and αa are the number concentrations of the surface
adsorbate and the occupied sites on the surface, mass balance
requires that νa(t) = νi(t) − ν(t) and αa(t) = αi(t) − α(t).
Though νa(t) is strictly equal to αa(t) for monolayer adsorp-
tion, the functional relation between the two is not known in the
case of multilayer adsorption. Obtaining such a relation would
provide important clues to the distribution of the adsorbate over
the surface.

For a molecular adsorbate, ν(t) = c(t)Nav/Mw and α(t) =
m(t)Sp/p, where c(t) and m(t) are the mass concentrations.
Defining dimensionless fractional concentrations such that
χ(t) = c(t)/ci and μ(t) = m(t)/mi , the above rate equations
become

(5)
dχ(t)

dt
= −κsχ(t)μ(t) − κaχ(t)

[
1 − μ(t)

]
and

(6)
dμ(t)

dt
= −λκsχ(t)μ(t),

or in combined form,

(7)
dχ(t) = λ

dμ(t) − κa
[
1 − μ(t)

]
χ(t).
dt dt
Here, κs and κa are true rate constants in reciprocal units of
time, χa = 1−χ(t), and μa = 1−μ(t). The dimensionless term
λ is an important system parameter that is equal to the ratio of
the monolayer surface area required by the initial amount of
the adsorbate (Navpci/Mw) to the surface area provided by the
adsorbent in the system (Spmi). It will be called “the Loading
Factor,” since it gives information on how heavily charged the
adsorbent initially is with respect to the adsorbate.

For dilute adsorbate systems where αi � νi , μ(t) is nearly
constant and unity during adsorption. In this case, the num-
ber of interactions between the adsorbate and adsorbent will be
much larger than that between the solution and surface adsor-
bate species. Similarly, for those systems where κs ≈ κa, there
is no distinction between free and occupied surface sites and
the adsorbate will adsorb unhindered. For both cases, Eq. (5)
can easily be shown to reduce to the first-order rate expression
(Eq. (1)).

The loading factor λ will approach unity if the initial number
of adsorbate species νi and the initial number of surface sites
αi become comparable. For monolayer adsorption where νi −
ν(t) = αi − α(t), this would also mean ν(t) = α(t). Hence, for
λ → 1 and κa → 0, χ(t) would always be equal to μ(t) during
adsorption and Eq. (5) becomes analogous to the second-order
rate expression (Eq. (3)) for this specific case. Thus, both the
first-order and second-order rate equations are special solutions
of the proposed model.

Dividing Eqs. (5) by (6) and dropping the time terms in
parentheses for clarity yields

(8)λ
dμ

dχ
= 1 + κa

κs

1 − μ

μ
.

The solution of this equation for μ(1) = 1 is given as

(9)μ = κa

κs − κa
W

[
κs − κa

κa
e(κs−κa)/κae−(κs/κa)λ(1−χ)

]
,

where the function W(a) is the Lambert’s W or the Product-
Log function such that W(aea) = a. Commercial mathematical
software packages such as Mathematica or MathCad have W(a)

as a built-in function just like sin(a) or log(a). Equation (9) is
an explicit relationship correlating the adsorbed amounts to the
fraction of the surface occupied. It is a kinetic equation because
each χ corresponds to a specific time of adsorption and pro-
vides an important tool for studying multilayer adsorption with
respect to the distribution of the adsorbate on the surface both
as a function of time and at equilibrium. Since χ can obtained
readily from a kinetic adsorption experiment and λ is a known
design parameter, evaluation of Eq. (9) requires only the esti-
mates of the rate constants κs and κa.

The average number of adsorbed layers over the entire sur-
face is linearly related to the solution adsorbate concentrations
by

(10)φs = νa = λ(1 − χ).

However, φs is only a surface-average quantity and offers no
information as to how the adsorbate is distributed over the sur-
face. When a relationship has been developed between χ and μ,
a more useful quantity φa can be defined for the average number
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Fig. 1. Numerical solutions of Eq. (7) for different κa/κs ratios: (a) fractional residual adsorbate concentrations, (b) fractional free surface site concentrations,
(c) average number of adsorbate layers on the entire surface, (d) average number of adsorbate layers over the occupied sites alone (λ = 2.25; κs = 0.1 min−1).
of adsorbed layers strictly over the occupied sites:

(11)φa = νa

αa
= λ(1 − χ)

1 − μ
.

Note that where as φs is bound between 0 and λ,φa is bound
between 1 and any arbitrarily large number, depending on the
respective values of χ and μ. These quantities together provide
important insights into the surface distribution of the adsorbate
species. For example, a large φa value for a large μ would mean
that the adsorbate species are piling up on each other to form
surface clusters rather than homogeneously spreading over the
surface.

Some example numerical solutions of Eq. (7) are given in
Fig. 1 to demonstrate how χ , μ, φs, and φa vary with time for
different κa/κs ratios. In these calculations, the number of ad-
sorbate molecules in the system is set to be 2.25 times more
than the number of surface sites (λ = 2.25).

Fig. 1a shows that a large amount of the adsorbate re-
mains unadsorbed in the case of monolayer adsorption. How-
ever, the adsorbate is completely consumed for high κa val-
ues since it can also adsorb onto the occupied sites. Despite
the larger amounts of adsorbate consumed, the fraction of the
free sites on the surface increases with increasing κa/κs ratio
(Fig. 1b). This means that isolated areas of multiple adsor-
bate layers start to form on the surface. This reasoning im-
plies that no adsorption on the surface will take place at some
high enough κa where the adsorbate species will prefer to ag-
gregate in solution rather than attaching onto the free surface
sites.

The average numbers adsorbed layers on the entire surface
and on the occupied sites alone are given in Figs. 1c and 1d, re-
spectively. For the monolayer case, φs varies between 0 and 1,
whereas φa is always 1 even for λ values as high as 2.25. For
increasing values of κa, φs becomes greater than 1 and always
approaches the λ value of 2.25 as adsorption proceeds. This
falsely implies that the surface will always end up having an av-
erage of 2.25 homogeneous layers at extended adsorption times,
irrespective of the κa/κs ratio. However, φa tends to become ar-
bitrarily larger with increasing κa. For a very high κa/κs ratio,
the adsorbate may produce a seven-layer-thick coverage on the
surface while 70% of the surface is still unoccupied (see also
Fig. 1b). Such vastly different pictures of the same physical sit-
uation demonstrate the merits of having knowledge of μ and φa

rather than χ and φs alone.
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Fig. 2. The graphical illustration of determining the rate constants κs and κa: (a) the ψ(χ) versus χ plots obtained from kinetic adsorption data, (b) ψλ values
obtained from the ψ(χ) versus χ plots.
2.1. Procedure for determination of κs and κa from kinetic
adsorption data

Replacing Eq. (9) in Eq. (5) gives

(12)
dχ

dt
= −ψ(χ)χ,

where

(13)ψ(χ) = κa

[
1 + W

(
κs − κa

κa
e(κs−κa)/κae−(κs/κa)λ(1−χ)

)]
.

It is immediately apparent that disappearance of the adsor-
bate follows a dynamic first-order rate equation with a variable
rate constant ψ(χ). Since W(aea) = a and W(0) = 0, Eq. (12)
reduces to the first-order rate equation with true rate constants
κs and κa. Expressed slightly differently, it takes the forms

(14)− 1

χ

dχ

dt
= d ln(χ)

dt
= κs, as λ → 0 and χ → 1,

(15)− 1

χ

dχ

dt
= d ln(χ)

dt
= κa, as λ → ∞ and χ → 0.

In practical terms, Eq. (14) arises because the adsorbent sur-
face is nearly free of any adsorbate molecules for diminishing
loading factors and early adsorption times and the interactions
between the adsorbate and adsorbent largely dominate the ad-
sorption process. Similarly, Eq. (15) will result at the other
extreme because the surface would be mostly occupied by the
adsorbate for high loading factors and late adsorption times and
the dominating interactions will be between the solution and
surface adsorbate species.

Fig. 2 depicts the above paragraph in graphical form. In
Fig. 2a, ψ(χ) is plotted as a function of χ for different values
of λ. Note that the ordinate ψ(χ) is equivalent to d ln(χ)/dt

(see Eqs. (12)–(14)). As predicted by Eq. (14), the ψ(χ) versus
χ curves approach a constant κs value for low λ and large χ of
the upper left-hand corner and a constant κa value for high λ

and low χ of the lower right-hand corner. This feature of the
model can be exploited to determine κs and κa accurately. It is
based on determining a characteristic ψλ value for each ψ(χ)

versus χ plot given in Fig. 2a and creating a ψλ versus λ plot.
The ψλ values should be chosen so that the selection moves
progressively from κs-dominated regions (large χ–small λ) to
κa-dominated regions (small χ–large λ) as λ increases. This
would mean moving diagonally from the upper left corner to
the lower right corner in Fig. 2a as shown with a dotted di-
agonal line for illustrative purposes. Such diagonal selection
of the ψ(χ) values also minimizes any instrumental resolution
difficulties in the analysis of the adsorbate at low λ values by
sliding the selection to higher χ values progressively. The char-
acteristic ψλ values that fall on the dotted dashed line (shown
with filled circles in Fig. 2a) are plotted as a function of λ in
Fig. 2b. It can be seen that the ψλ plot smoothly approaches κs
for λ → 0 and χ → 1 and κa for λ → ∞ and χ → 0.

Usually, a kinetic adsorption experiment is carried out us-
ing incremental time intervals. Expressing Eqs. (12) and (13)
in incremental terms would be helpful in clarifying the mean-
ing of the various terms in these equations and how they are
determined in an adsorption experiment:

1

χ̄

	χ

	t
= ψ(χ̄)

(16)

= −κa

[
1 + W

(
κs − κa

κa
e(κs−κa)/κae−(κs/κa)λ(1−χ̄ )

)]
.

Here, 	χ is simply the fractional amount adsorbed within time
interval 	t and is directly determined in an adsorption experi-
ment. The term χ̄ is the average residual adsorbate concentra-
tion within the same time interval and can be calculated readily
from knowledge of χi and 	χ . Therefore, a plot of ψ(χ̄) versus
χ̄ can easily be obtained from a kinetic adsorption experiment
to generate Figs. 2a and 2b. Since this procedure requires mul-
tiple kinetic adsorption experiments at different loading factors,
the estimated values of the rate constants should be reliable.
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By definition, κs and κa are true rate constants and should
not change with changes in the loading factor λ. However, for
a given volume of solution, a λ value of 0.1 may mean either
10 mg adsorbate per 0.1 g solids or 1000 mg adsorbate per 10 g
solids. Since the solution is much more dilute with respect to
the adsorbate–adsorbent species in the former case compared to
the latter, the probability of the adsorbate–adsorbent encounters
and, therefore, the values of κs and κa will be different. There-
fore, the adsorption tests should be carried out under constant
adsorbent mass concentration.

2.2. Approximate analytical solutions for determination of κs

and κd by curve fitting

Analytical solutions of Eq. (7) can be obtained for some
widely encountered special cases. The rate constants κs and κa

can then be estimated directly by curve fitting the analytical
equations to kinetic adsorption data.

2.2.1. Monolayer adsorption (κa = 0) case
If the affinity between the solution and surface adsorbate

species is diminishingly low, the adsorbate will adsorb as a
monolayer. In this case, Eq. (5) reduces to dχ(t)

dt
= −κsχμ.

Since αa(t) is always equal to νa(t) for monolayer adsorption, it
can be shown in fractional terms that μ = 1 − λ(1 − χ). There-
fore, Eq. (5) becomes

(17)
dχ

dt
= −κsχ

[
1 − λ(1 − χ)

]
.

The solution for χ(0) = 1 is equal to

(18)χ = λ − 1

λ − e−κs(λ−1)t
.

Equation (18) reduces to the first-order and second-order
rate equations at the limits λ → 0 and λ → 1, respectively. For
0 < λ � 1, the adsorbate would completely adsorbs onto the
adsorbent given enough time for adsorption. For λ > 1, some
adsorbate remains unadsorbed irrespective of the time of ad-
sorption. This amount can be seen to be equal to (λ − 1)/λ from
Eq. (18) as t → ∞ and is equivalent to the adsorption capacity
term χe mentioned earlier.

2.2.2. Stronger adsorbate–adsorbent affinities (κs � κa) case
If the adsorbate–adsorbent affinity is no less than the

adsorbate–surface adsorbate affinity, an approximate analyti-
cal solution of Eq. (7) can be obtained as

(19)χ(t) = (λ − 1)e−κat

λ − e−(κs−κa)(λ−1)t
.

Such a condition is satisfied for most adsorption systems. Math-
ematically, Eq. (19) becomes analogous to the first-order equa-
tion (Eq. (1)) for λ → 0, to the second-order equation (Eq. (2))
for λ → 1 and κa → 0, and to the monolayer adsorption equa-
tion (Eq. (18)) for κa → 0.
3. Experimental: testing of the model using an
α-alumina/sodium stearate system

3.1. Material

A commercial high-purity spherical α-Al2O3 powder
(99.99% purity; AKP-53 from Sumitomo Chemicals, Japan)
was used in this study (Fig. 3). The volume and number mean
diameters were 0.290 µm and 0.13 µm. A simple calculation
assuming spherical, nonporous particles gives a surface area of
about 12 m2/g. This value agrees well with the measured BET
surface area of 12.3 m2/g provided by the manufacturer, indi-
cating the nonporous structure of the powder.

Sodium stearate (99+ purity; Aldrich, USA) was used
without further purification. Its CMC was measured to be
1.7 × 10−3 M (0.55 g/L) at 25 ◦C and pH 9.2 by a Kruss
K10ST digital tensiometer employing the Wilhelmy plate
method. This is in close agreement with the literature value
of 1.8 × 10−3 M [43]. The surface tension–log concentration
data resulted in a well-defined straight line below the CMC
and a sharp turn very close to CMC, an indication that transi-
tion to micellar forms was in a narrow concentration range and
monomeric forms were dominant below CMC. The highest ini-
tial stearate concentration used in the experiments was always
well below the CMC to ensure an abundance of monomers in
solution. Double distilled water that was passed through a Barn-
stead EasyPure UV compact ultrapure water system (1.8 M
)
was used throughout the work.

The values of mi , ci , Sp, and p had to be known to the
loading factor λ. The initial solids concentration mi was kept
constant at 20 g/L in all test while the initial adsorbate con-
centration ci was varied. The solids concentration of 20 g/L
was selected to provide enough surface area for the stearate
molecules at the stearate concentrations used so that the λ val-
ues would cover a range between about 0.1 and 2. Stearic acid
was reported to have a parking area between 0.2 [34,43–45]
and 0.7 nm2 [46–49] depending on the orientation of the mole-
cule on the surface. A more recent work reported a parking area
of 0.47 nm2 [36] where the stearate molecule was proposed to
adsorb binuclearly onto two aluminum atoms through the car-
boxylate group. Using the latest value as the parking area, λ for

Fig. 3. The SEM picture of the α-Al2O3 powder used in the study.



598 M. Polat / Journal of Colloid and Interface Science 298 (2006) 593–601
the experimental system comes out to be 3.75 × 10−3ci , where
ci is the solution stearate concentration in mg/L, which was
varied between 30 and 500 mg/L in this study, giving a λ range
of 0.113 to 1.876.

3.2. Method

Adsorption experiments were carried out in 250-ml poly-
ethylene bottles under vigorous shaking. The pH was adjusted
to 9.2 to operate at the pzc of the powder where maximum
stearate adsorption was observed [39–42] and to prevent pre-
cipitation of sodium stearate. The solid concentration in each
bottle was adjusted to 20 g/L in all experiments. The bottles
were ultrasonified for 30 min to break any agglomerates and
were transferred to a shaker. A proper aliquot of the adsorbate
was added to each bottle from a stock solution to obtain the
desired ci and λ values. The moment of stearate addition was
taken as the zero time of adsorption and the shaking was ini-
tiated. The temperature was kept constant at 20 ◦C during all
the adsorption tests. The sampling times were 2, 4, 6, 8, 10, 15,
20, 25, 30, 35, 40, 45, 50, 60, and 120 min since majority of
the adsorbate was consumed within an hour. Each bottle was
used to obtain only a single sample to minimize accumulation
of experimental error. The Millipore Millex sterile syringe fil-
ters with average pore diameter 0.1 µm were used to acquire
the supernatant samples for analysis in a Shimadzu GC-2010
gas chromatograph–Py-2020iD pyrolyzer system using a capil-
lary column and an FID detector.

4. Results

The results of a series of kinetic adsorption tests carried
out at different loading factors (∼0.1 < λ < 2) are presented
in Fig. 4 as symbols. The test at λ = 0.938, which was re-
peated three times, showed good reproducibility (see the inset
graph figure). The solid lines in the figure were drawn for data-
smoothing purposes only, using an eight-parameter exponential
decay function f (t) = ∑4

i=1 p2i−1e
−p2i t .

Comparison of the data with the monolayer expression
(Eq. (18)) is presented in Fig. 5 as solid lines. The experimen-
tal data and Eq. (18) agreed quite well for the low λ values
of 0.113 and 0.375 where the κs values estimated by Eq. (18)
were both around 0.153 min−1. This was most probably due
to the fact that the stearate–alumina interactions dominated the
adsorption process at low λ values where the initial concen-
tration of the alumina sites was much higher than that of the
stearate species. However, Eq. (18) failed to represent the data
for higher λ values. The fact that the monolayer equation failed
for high λ values was an indication of multilayer adsorption.

The ψ(χ) versus χ plots that were calculated using the
smoothed lines in Fig. 4 by Eq. (16) are given in Fig. 6a for
each λ. It is immediately apparent that all the plots converge to-
wards the same ψ(χ) for all λ. This point, which corresponds to
0.15 min−1, is the rate constant κs for the system. Note that this
value is very close to the κs value predicted by the monolayer
equation in Fig. 5 at lower λ values. The ψλ values obtained
from the ψ(χ) versus χ plots are plotted in Fig. 6b as a func-
tion of λ. The ψλ curve in the figure gradually approaches two
Fig. 4. Residual stearate concentrations as a function of time (symbols) for
the α-alumina/water/sodium stearate system at various λ. (The solid lines were
drawn for data smoothing purposes only. The inset figure shows the three stan-
dard-deviation spread for the three repeat adsorption tests at λ = 0.938.)

Fig. 5. Comparison of the monolayer expression (Eq. (18)—solid lines) with
the experimental data from Fig. 4 (symbols).

limiting values λ → 0 and λ → ∞. These values are 0.150 and
0.011 min−1 and represent the magnitudes of the true rate con-
stants κs and κa for the alumina–stearate system. The value of
κa is much smaller than κs, implying that the stearate–alumina
interactions are much stronger that the interactions between the
solution and surface stearate molecules (the stearate molecules
adsorbed on the surface). This is in agreement with the literature
which have suggested that the stearate adsorption is multilayer
in nature and that the initial layer adsorbs strongly by chemical
bonding followed by additional weakly bonded layers [36–42].

The fraction of the occupied sites (μa) and the thickness of
the adsorbed layers on occupied sites (φa) calculated for the es-
timated values of κa and κs are presented in Fig. 7 for selected λ.
Figs. 7a–7c, which correspond to loading factors below 1, show
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Fig. 6. Estimation of the rate constants κa and κs for the α-alumina/water/sodium stearate system: (a) ψ(χ) versus χ plots obtained from experimental data in Fig. 4,
(b) ψλ values obtained from the ψ(χ) versus χ plots.

Fig. 7. The average number of adsorbed stearate layers on the entire alumina surface (φs) and on the occupied alumina sites alone (φa) as a function of χa for
selected λ.
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Fig. 8. Comparison of the analytical κs � κa expression (Eq. (19)—solid lines)
with the experimental data from Fig. 4 (symbols). (The parameter values in the
inset boxes are the best-fit estimates of the curve fitting procedure.)

that φa never exceeds 1.0. The fact that it stays very close to 1 at
all times, even at λ = 0.938, suggests strongly that the stearate
species prefer to adsorb onto the alumina surface rather than
creating a secondary layer. Fig. 7d shows that the φa value at
λ = 1.876 is well below 2, indicating that the stearate species
do not produce a third adsorbed layer within the concentration
range studied, which was below the CMC. This agrees with the
reported behavior that the stearate forms surface hemimicelles
of double molecules by hydrophobic bonding below the CMC.
All the plots in Fig. 7 show that φs and φa curves approach
each other as χ and λ becomes larger. This indicates a homo-
geneous distribution of the adsorbate where the stearate species
essentially complete a monolayer before starting to adsorb as a
second layer.

A comparison of Eq. (19) with the experimental data is pre-
sented in Fig. 8 as solid lines. The values of κa and κs estimated
by Eq. (19) are given in the boxes above the graph for each λ.
The figure demonstrates not only that Eq. (19), which is valid
for κs � κa, represents the data extremely well for the entire
concentration range, but also that the predicted rate parameters
are quite consistent for all λ values and very close to those de-
termined in Fig. 6 by the graphical procedure.

5. Conclusions

A phenomenological kinetic multilayer adsorption model
that is based on interactions of the solution adsorbate species
with the adsorbent or the surface adsorbate species is proposed
in this paper. The model assumes that the adsorption system
consists of a well-dispersed, nonporous, homogeneous adsor-
bent and a molecular adsorbate below the aggregation concen-
trations. The widely used first- and second-order models are
special solutions of the model.

One of the main parameters of the model is a dimensionless
constant λ, which was called “the loading factor” in this pa-
per. It is the ratio of the monolayer surface area required by the
adsorbate to the surface area of the adsorbent. The other para-
meters are true rate constants related to the adsorbate–adsorbent
(κs) and adsorbate–surface adsorbate affinities (κa).

While the loading factor is known for well-defined systems,
the rate constants must be determined from kinetic adsorption
data. A robust general graphical procedure was outlined for
determination of the rate constants from multiple adsorption
data carried out at different λ and should be statistically reli-
able. Analytical expressions for the monolayer adsorption and
stronger adsorbate–adsorbent interactions were also provided
to estimate the model parameters by curve fitting.

The model yields analytical equations that explicitly asso-
ciate the adsorbed amounts to the fraction of the surface cov-
ered. These equations should be important tools for studying
the distribution of the adsorbate on the adsorbent in multilayer
adsorption.

The model represented the adsorption of sodium stearate
onto α-alumina from water extremely well. The rate constants
estimated by the model agreed with the reported behavior of the
stearate/water/α-alumina system. The rate parameter κs was an
order of magnitude larger than κa, suggesting that the stearate–
alumina were much stronger than the stearate–surface stearate
interactions. From the analysis of the fractional surface cover-
age it was deduced that the stearate molecules were distributed
homogeneously on the alumina surface, essentially adsorbing
as a monolayer before proceeding to the second layer.

Appendix A. Nomenclature

ci initial adsorbate concentration [g/L]
c(t) concentration of adsorbate in solution at time t [g/L]
ks the rate constant related to the probability that en-

counter of a solution adsorbate with adsorbent pro-
duces adsorption [L/s]

ka the rate constant related to the probability that en-
counter of a solution adsorbate with a surface adsor-
bate produces adsorption [L/s]

K1 rate constant for the first-order model [1/s]
K2 rate constant for the second-order model [1/s]
mi initial adsorbent mass concentration [g/L]
m(t) mass concentration of the free adsorbent surface at

time t [g/L]; νa(t) = νi − ν(t)

Mw molecular weight of the adsorbate [g/mol]
Nav Avogadro’s number, 6.02 × 1023 [molecule/mol]
p parking area of the adsorbate molecule [m2/molecule]
Sp specific surface area of the adsorbent [m2/g]
αi initial number concentration of adsorbent surface sites

[1/L]
α(t) number concentration of free adsorbent surface sites at

time t [1/L]
αa(t) number concentration of occupied adsorbent surface

sites at time t [1/L];
κs reduced form of the rate constant ks [1/s]; κs =

ksSpmi/p

κa reduced form of the rate constant ka [1/s]; κa =
kaSpmi/p
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λ the dimensionless loading factor that gives the ratio
of the monolayer surface area required by the initial
adsorbate concentration to the surface area provided
by the adsorbent; λ = (Navpci/Mw)/(Spmi)

μ(t) or μ fractional concentration of free adsorbent surface at
time t [g/g]; m(t)/mi

μi initial fractional concentration of adsorbent [g/g];
μi = 1

μa(t) or μa fractional concentration of occupied adsorbent at
time t [g/g]; μa(t) = 1 − μ

νi initial number concentration of adsorbate species in
solution [1/L]

ν(t) number concentration of solution adsorbate species at
time t [1/L]

νa(t) number concentration of adsorbate species adsorbed
on the surface at time t [1/L]; νa(t) = νi − ν(t)

φs(t) average number of adsorbed layers over entire adsor-
bent surface; φs = λ[1 − χ]

φa(t) average number of adsorbed layers over occupied sur-
face alone; φa = λ(1 − χ)/(1 − μ)

χ(t) or χ fractional solution adsorbate concentration at time t

[g/g]; c(t)/ci

χi initial fractional adsorbate concentration [g/g]; χi = 1
χa(t) or χa fractional adsorbed adsorbate concentration at time

t [g/g]; χa = 1 − χ

χe adsorption capacity [g/g]
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