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Abstract

In the frequency estimation of sinusoidal signals observed in impulsive noise environments, techniques based on Gaussian
noise assumption are unsuccessful. One possible way to 6nd better estimates is to model the noise as an alpha-stable
process and to use the fractional lower order statistics (FLOS) of the data to estimate the signal parameters. In this
work, we propose a FLOS-based statistical average, the generalized covariation coe9cient (GCC). The GCCs of multiple
sinusoids for unity moment order in S�S noise attain the same form as the covariance expressions of multiple sinusoids in
white Gaussian noise. The subspace-based frequency estimators FLOS–multiple signal classi6cation (MUSIC) and FLOS–
Bartlett are applied to the GCC matrix of the data. On the other hand, we show that the multiple sinusoids in S�S noise can
also be modeled as a stable autoregressive moving average process approximated by a higher order stable autoregressive
(AR) process. Using the GCCs of the data, we obtain FLOS versions of Tufts–Kumaresan (TK) and minimum norm
(MN) estimators, which are based on the AR model. The simulation results show that techniques employing lower order
statistics are superior to their second-order statistics (SOS)-based counterparts, especially when the noise exhibits a strong
impulsive attitude. Among the estimators, FLOS–MUSIC shows a robust performance. It behaves comparably to MUSIC
in non-impulsive noise environments, and both in impulsive and non-impulsive high-resolution scenarios. Furthermore, it
o@ers a signi6cant advantage at relatively high levels of impulsive noise contamination for distantly located sinusoidal
frequencies.
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Most of the work on the frequency estimation problem assumes that the additive noise has Gaussian
distribution. This is partly because of the desirable properties that the Gaussian model possesses, which allow

� A preliminary version of this paper was presented in the 8th IEEE Signal Processing Workshop on Statistical Signal and Array
Processing, Corfu, Greece, June 24–26, 1996.

∗ Corresponding author.
E-mail addresses: altink@likya.iyte.edu.tr (M.A. Alt&nkaya), delic@boun.edu.tr (H. Deli+c), sankur@boun.edu.tr (B. Sankur),

anarim@boun.edu.tr (E. Anar&m).

0165-1684/02/$ - see front matter ? 2002 Elsevier Science B.V. All rights reserved.
PII: S 0165 -1684(02)00313 -4



1808 M.A. Alt5nkaya et al. / Signal Processing 82 (2002) 1807–1827

for simpli6cation of the theoretical work and decrease the computational complexity in signal parameter
estimation. As long as the acting noise distribution can 6t approximately to a Gaussian model, in particular
for the tails of the distribution, one can obtain good estimators with the Gaussian noise assumption. But if the
noise process belongs to a non-Gaussian, especially a heavy-tailed distribution class, or when the noise is of
impulsive nature, parameter estimators that are based on the Gaussian assumption break down. Applications
such as cellular telephony (due to atmospheric disturbances) and underwater acoustics (due to cracking ice),
for example, are known to take place in additive noise displaying impulsive behavior [10,12].

Impulsive noise processes can be modeled using stable distributions. If a signal can be thought of as the
sum of a large number of independent and identically distributed random variables, the limiting distribution is
in the class of stable distributions according to the generalized central limit theorem [12]. Stable distributions
cover the Gaussian distribution in the limit.

Parameter estimation in the presence of alpha-stable noise involves challenges that demand certain devi-
ations from classical signal processing. The optimal maximum likelihood solutions are nearly impossible to
implement [17]. Approximations to the likelihood function that utilize the estimates of the alpha-stable dis-
tribution parameters also result in complex structures. In [7], it is shown that the blind estimation of the
parameters of an autoregressive moving average (ARMA) model driven by an alpha-stable process is feasible.
However, the blind algorithm requires intensive computation and possible phase unwrapping, while consis-
tency is through convergence in probability [15]. Work on less complex, suboptimal alternatives includes the
parameter estimation of a deterministic signal by applying the M -estimate theory [3].

Other related work include Tsakalides and Nikias’ application of robust covariation-based multiple signal
classi6cation (ROC-MUSIC), which is a noise subspace method, to the direction of arrival estimation problem
[16]. More recently, Liu and Mendel [6] investigated the same problem for those signals that consist of
circular signals in symmetric alpha-stable (S�S) noise by just using the fractional lower order moments
(FLOMs).

The related problem of frequency estimation of sinusoids in impulsive noise as modeled by the alpha-stable
distributions has not been tackled in literature. Considering the potential issues accompanying blind schemes
(described in the previous paragraph), as a 6rst step, we evaluate the subspace-based frequency estimators in
this paper. The subspace techniques attain statistical performance close to the accurate non-linear least-squares
frequency estimator in Gaussian noise without the multidimensional search required by the latter [13]. More-
over, they provide very good separation between closely located tones [4,13].

In this work, we consider the particular problem of frequency estimation of multiple sinusoids in S�S noise.
In order to use the possible solutions adaptable from the vast amount of second-order statistics (SOS)-based
frequency estimation methods, we either model the S�S noise-contaminated signal as a stable ARMA process,
or just estimate the fractional lower order statistics (FLOS) of the data. For the former class of methods, we
utilize the fact that any sinusoidal signal in white noise can be modeled as an ARMA process with equal
autoregressive (AR) and moving average (MA) orders [4,11], and approximate this ARMA system with an
AR system of higher order.

For the methods exploiting the structure of the covariance matrix such as MUSIC or principal component-
Bartlett (PC-Bartlett), we apply them to the FLOS of data, similar to the approach adopted by Liu and Mendel
[6]. By applying the same expectation operation of the covariation coe9cient, we propose the generalized
covariation coe9cient (GCC) concept. Thus, we unify the FLOS estimation process for both type of the
methods. We show that the GCCs for the randomly phased sinusoids in S�S noise are composed of a sum of
cosinusoids and a noise term whose constant positive amplitudes depend non-linearly on the particular S�S
probability density function (pdf) and on the relative generalized signal-to-noise ratios (GSNR) for the unity
moment order. Motivated by the success of subspace methods in white Gaussian noise, we then proceed to
apply MUSIC, PC-Bartlett, Tufts–Kumaresan (TK) and minimum norm (MN) methods to FLOS of sinusoids
embedded in alpha-stable noise. Rigorous simulation studies indicate that the GCC-based frequency estimators
outperform the traditional estimators which work with SOS.
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In Section 2, the S�S distributions are briePy discussed. In Section 3, the application of FLOMs to frequency
estimation problem is presented. Section 4 covers the results of the simulation experiments. Finally, conclusions
are in Section 5.

Regarding the notation used in the paper, we adopt uppercase letters for random variables and corresponding
lowercase letters for the realizations of these random variables, respectively.

2. S�S distributions

An important subclass of stable distributions are S�S distributions. The characteristic function of S�S
variables is given by

�(!) = exp{j�!− �|!|�}; (1)

where � is the characteristic exponent (0¡�6 2) describing the thickness of the tails, � is the location
parameter (−∞¡�¡∞) de6ning the center of the distribution, and � is the dispersion (�¿ 0), which plays
an analogous role as the variance does for a second-order process and determines the scale of the distribution.
Gaussian and Cauchy distributions are members of the S�S family for �=2 and 1, respectively. Without loss
of generality, the location parameter � can be set to zero, leading to the characteristic function

�(!) = exp{−�|!|�}: (2)

For S�S processes, only the moments of order p¡� exist, and consequently, the estimation methods based
on SOS of the data cannot be applied. One solution is to utilize the FLOS of the process. The pth order
moment of a S�S random variable X is given by [10]

E(|X |p) = C(p; �)�p=�x ; 0¡p¡�; (3)

where �x is the dispersion of random variable X , and

C(p; �) =
2p+1�((p + 1)=2)�(−p=�)

�
√
��(−p=2)

: (4)

Note that C(p; �) does not depend on X . � is the usual gamma function de6ned as

�(x) =
∫ ∞

0
tx−1e−t dt: (5)

In the FLOS-based estimation methods, the so-called covariations [9] of two random variables can be utilized.
The covariation of two jointly S�S real random variables with dispersions �x and �y are given as

[X; Y ]� =
E[XY 〈p−1〉]
E[|Y |p]

�y; (6)

where �y = [Y; Y ]� is the dispersion of random variable Y and Y 〈p−1〉 = |Y |p−1signum(Y ) with

signum(Y ) =




1 for Y ¿ 0;

0 for Y = 0;

−1 for Y ¡ 0:

(7)
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The above de6nition of covariation is independent of p as long as 16p¡� [1]. Another useful FLOS is
the covariation coe9cient of those jointly S�S real random variables which is given as

�X;Y =
[X; Y ]�
[Y; Y ]�

=
E[XY 〈p−1〉]
E[|Y |p]

; 16p¡�: (8)

Notice that the covariation coe9cient �X;Y is equal to the covariation [X; Y ]� scaled by �y, which is a constant.

3. The frequency estimation problem

In the frequency estimation problem, the signal model considered consists of multiple sinusoids

sn =
K∑
k=1

Ak sin{!kn+ �k} (9)

observed in additive S�S noise

xn = sn + zn; n= 1; : : : ; N; (10)

where Ak is the amplitude, !k is the angular frequency, and �k is the phase of the kth real sinusoid. {Ak; k =
1; : : : ; K} and {!k; k = 1; : : : ; K} are unknown real constants, whereas {�k ; k = 1; : : : ; K} are assumed to
be realizations of random variables, distributed uniformly and independently over [0; 2�). K is the number
of sinusoids, and N is the sample size. xn and zn are realizations of the observation sequence Xn and the
independent and identically distributed S�S noise sequence Zn, respectively.

It is well known that sn obeys the following AR di@erence equation [5,14]:

B(q−1)sn = 0; (11)

where q−1 denotes the unit delay operator (q−1sn = sn−1) and B(q−1) is a polynomial of degree 2K given by

B(q−1) = 1 + b1q−1 + · · · + b2Kq−2K =
K∏

m=1

(1 − 2 cos!mq−1 + q−2): (12)

From Eqs. (9) and (12), one can deduce that xn obeys the following ARMA di@erence equation:

B(q−1)xn = B(q−1)zn: (13)

It is possible to approximate the above stable ARMA process with a stable AR process of order M where
M¿ 2K . Experiments with second-order AR processes in literature show that as model order increases, the
AR model approximation becomes better, which is a manifestation of the Kolmogorov theorem [4]. When the
noise dispersion is small, an AR model order of M = 2K might be appropriate but as the noise dispersion
increases, a higher M is required for satisfactory approximation.

Thus, the observation sequence can be modeled as a stable AR process

Xn = a1Xn−1 + · · · + aMXn−M + b0Zn; (14)

where the model order M of the AR model for the noisy signal should be selected higher than 2K in order to
allow for su9cient additional subspace dimension for the noise component as in the additive Gaussian noise
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case. This leads to the generalized Yule–Walker equation when Xn−m is given as [12]

E[Xn |Xn−m] = a1E[Xn−1 |Xn−m] + · · · + aME[Xn−M |Xn−m]; (15)

E[Xn+l|Xn] = �̃(l)Xn; (16)

where m=1; : : : ; M . If �̃(l) denotes the covariation coe9cient of Xn+l with Xn, one can 6nd the AR parameters
by solving the following linear set of equations:

C̃xa = [̃ (17)

with

C̃x =




�̃(0) �̃(−1) · · · �̃(1 −M)
�̃(1) �̃(0) · · · �̃(2 −M)

...
...

...
...

�̃(M − 1) �̃(M − 2) · · · �̃(0)


 ; a =



a1

a2
...
aM


 ; [̃=



�̃(1)
�̃(2)

...
�̃(M)


 :

The covariation coe9cient matrix C̃x de6ned in Eq. (17) for alpha-stable processes has the same meaning
as that of the covariance matrix for Gaussian processes [10]. As one performs eigen-decomposition of the
covariation coe9cient matrix, the larger eigenvalues will correspond to signal subspace eigenvectors and the
remaining eigenvectors will constitute the noise subspace. Thus, one can perform eigenanalysis on the covari-
ation coe9cient matrix, and then apply a suitable noise subspace or a signal subspace technique to estimate
the parameters. Note that the covariation coe9cient matrix is not symmetric. This makes the eigenanalysis
more complicated, and renders many of the subspace-based parameter estimation techniques developed for
Gaussian processes unsuitable for the general alpha-stable processes. One should also note that the mentioned
properties of the covariation coe9cient matrix are shared by the covariation matrix which is a scaled version
of the covariation coe9cient matrix.

3.1. GCC

In this subsection, we apply the FLOS-based expectation operation in Eq. (8) which is used to calculate the
covariation coe9cient, to our randomly phased sinusoids in S�S noise model de6ned in Eqs. (9) and (10).
Speci6cally, we de6ne

�Xn;Xl(p) =
E[XnX

〈p−1〉
l ]

E[|Xl|p]
; n; l= 1; : : : ; M; 0¡p¡�; (18)

as the GCC, where no assumptions are made on the pdf of the samples of the random process X . Inserting
Eqs. (9) and (10) into Eq. (18),

�Xn;Xl(p) = E



(

K∑
i=1

Ai sin{!in+(i} + Zn

)∣∣∣∣∣∣
K∑
j=1

Aj sin{!jl+(j} + Zl

∣∣∣∣∣∣
p−1

× signum


 K∑

j=1

Aj sin{!jl+(j} + Zl






E

∣∣∣∣∣∣
K∑
j=1

Aj sin{!jl+(j} + Zl

∣∣∣∣∣∣
p


−1

: (19)

Because of the non-linearity introduced by the second and third components in the expectation operation, it
is not possible to obtain a closed form solution for general p values. But the choice p= 1 brings interesting
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simpli6cations, and the equation reduces to

�Xn;Xl(p)|p=1 = E



(

K∑
i=1

Ai sin{!in+(i} + Zn

)
signum


 K∑

j=1

Aj sin{!jl+(j} + Zl






×

E

∣∣∣∣∣∣
K∑
j=1

Aj sin{!jl+(j} + Zl

∣∣∣∣∣∣



−1

: (20)

Utilizing the above de6nition, the GCCs of a randomly phased sinusoid observed in S�S noise are given as

�Xn;Xl(p)|p=1 = *1 cos{!1(n− l)} + P(1)
zl �nl; (21)

where *1 and P(1)
zl are positive real constants depending on the particular S�S pdf and �nl is the Kronecker

delta. (See Appendix A for the derivation of this equation.) The GCCs of two randomly phased sinusoids
observed in S�S noise are obtained in a similar form given by

�Xn;Xl(p)|p=1 =
2∑
i=1

,i cos{!i(n− l)} + P(2)
zl �nl; (22)

where ,1; ,2 and P(2)
zl are also positive real constants depending on the particular S�S pdf. (The derivation

of this equation is given in Appendix B.)
Using the method described in Appendices A and B, one can 6nd that for the moment order p = 1, the

GCCs of K randomly phased sinusoids observed in S�S noise can be expressed as

�Xn;Xl(p)|p=1 =
K∑
k=1

%k cos{!k(n− l)} + P(K)
zl �nl; (23)

where {%k ; k = 1; : : : ; K} are positive real constants depending non-linearly on the � of the particular S�S
noise contaminating the sinusoidal signals, and on the magnitudes of the sinusoids as demonstrated in the
Appendices for single- and two-sinusoid cases.

This is a signi6cant result since it shows that many techniques developed to exploit the eigenstructure of
the covariance matrix for the sinusoidal parameter estimation problems in Gaussian noise environments are
also applicable to the FLOS of the sinusoids embedded in S�S noise, at least for the case of p = 1. Note
that the {%k ; k = 1; : : : ; K} can be factored out to two components where one of them linearly depends on
the corresponding sinusoid and the other component depends non-linearly on all the sinusoidal signal powers
and � as described in Appendix B.

Eq. (23) is similar to the well-known SOS covariance equation of sinusoids observed in white Gaussian
noise, where the magnitudes of the cosinusoids and the noise component in the covariance expression are
linearly dependent on the powers of the sinusoids and the noise [11]. Thus, we can apply the same eigende-
composition procedure to our GCC matrix

C(1)
x = C(1)

s + P(K)
zl I; (24)

where

C(1)
s =

K∑
k=1

%k
2
{sksHk + s∗k s

T
k } (25)

with sk = [1 exp{j!k} · · · exp{j!k(M − 1)}]. The superscripts H , ∗ and T denote the conjugate transpose,
conjugate and the transpose operations, respectively, and I is the M ×M identity matrix. The rank of C(1)

s is
2K ¡M . But C(1)

x is full rank, since P(K)
zl I is full rank.
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3.2. FLOS–MUSIC and FLOS–Bartlett frequency estimators

The subspace techniques exploit the geometric properties of the measurement signal and noise characteristics
to estimate the desired parameters [4,8]. One of the most popular ones among these is the MUSIC algorithm.

The usual SOS-based MUSIC algorithm utilizes the sample covariance matrix given by

R̂(N;M) =
1

N −M + 1

N−M+1∑
k=1

xkxHk ; (26)

where

xk = [xk xk+1 · · · xk+M−1]T: (27)

One can obtain the frequency estimates of a FLOS-based MUSIC, which we shall call FLOS–MUSIC [16],

utilizing the sample GCC matrix Ĉ
(p)
x instead of the sample covariance matrix, where the (n; l)th element of

the Ĉ
(p)
x is given by

Ĉ
(p)
x = {�̂p(n; l); n; l= 1; : : : ; M}; 0¡p¡� (28)

with the sample GCCs

�̂p(n; l) = �̂Xn;Xl(p) =
∑N−M+1

i=1 Xn+i−1|Xl+i−1|p−1signum(Xl+i−1)∑N−M+1
i=1 |Xl+i−1|p

; n; l= 1; : : : ; M; (29)

de6ned for moment order p∈ (0; �). M denotes the number of columns of the square sample GCC matrix.
Note that the modi6ed FLOM (MFLOM) estimator for jointly S�S random variables has the same form of
Eq. (29) where MFLOM is de6ned for moment order p∈ (0:5; �) [16].

Performing the eigendecomposition of the sample GCC matrix, the FLOS–MUSIC frequency estimates are
found as the peaks of the spectrum given by

FLOS–MUSIC(!) =
1∑M

i=2K+1 |dH v̂i|2
; (30)

where d is the complex sinusoidal vector d=[1 exp{j!} · · · exp{j!(M −1)}]T, and {v̂i ; i=2K+1; : : : ; M} are
the estimated column noise subspace eigenvectors corresponding to the smallest M−2K estimated eigenvalues
of the sample GCC matrix.

As in the case of the MUSIC frequency estimator, the SOS-based PC-Bartlett [4] is adapted by using
the estimated eigenvectors of the sample GCC matrix instead of the sample covariance matrix. Then the
component frequencies are estimated by the peaks of the FLOS–Bartlett spectrum:

FLOS–Bartlett(!) =
1
M

2K∑
i=1

/̂i|dH v̂i|2; (31)

where /̂i and v̂i are estimates of the ordered eigenvalues such that /̂1¿ /̂2¿ · · ·¿ /̂M , and the corresponding
estimated eigenvectors of the MM sample GCC matrix, respectively.

3.3. FLOS-TK and FLOS-MN frequency estimators

The SOS-based TK frequency estimator [19] utilizes the principal component eigenvalues and eigenvectors
of the sample covariance matrix to 6nd the sinusoidal frequencies. This method can also be called as principal
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component autoregressive method of frequency estimation [4]. The AR coe9cients â are obtained
as [19]

â = R̂
#
(N−1;M)r̂(N−1;M) (32)

with

r̂(N−1;M) = − 1
N −M

N−M∑
k=1

xk+1x∗k (33)

and

R̂
#
(N−1;M) =

2K∑
i=1

1
/̂i
v̂i v̂

H
i : (34)

Here, /̂i and v̂i denote the ordered estimates of eigenvalues and the corresponding estimated eigenvectors,
respectively. The TK frequency estimates are obtained as the peaks of the spectrum given by

TK(!) =
1

|1 + dH â|2 : (35)

The FLOS–TK frequency estimates are obtained by utilizing the sample GCC matrix Ĉ
(p)
x and the sample

GCC vector [̂(p) = [�̂p(2; 1); �̂p(3; 2); : : : ; �̂p(M + 1; M)]T instead of the sample covariance matrix R̂(N−1;M)

and the sample correlation vector r̂(N−1;M), respectively.
In order to 6nd the MN frequency estimate, 6rst the eigen-decomposition of (M + 1) × (M + 1) sample

covariance matrix R̂(N;M+1) is performed.

Ĝ
′
s = [v̂1 v̂2 · · · v̂2K ] =


 ĝT

s
· · ·
Ĝs


 ; (36)

where ĝT
s is the 1 × 2K row vector constructed with the 6rst elements of the estimated signal subspace

eigenvectors and Ĝs is the M ×2K matrix having the estimated signal subspace eigenvectors except their 6rst
rows. Then, the AR coe9cients are found as

â = (1 − ĝHs ĝs)−1Ĝ
∗
s ĝs (37)

and the SOS-based MN frequency estimates are obtained as the peaks of the spectrum given by

MN(!) =
1

|1 + dH â|2 : (38)

The FLOS–MN frequency estimates are obtained by utilizing the (M +1)× (M +1) sample GCC matrix Ĉ
(p)
x

instead of the sample covariance matrix R̂(N;M+1).

4. Experimental results

We utilize the FLOS-based MUSIC, Bartlett, TK and MN methods to estimate the sinusoidal frequencies
in the single- and two-real sinusoid cases. We apply S�S noise sequences with varying � and � parameters.
Although the parameters of the alpha-stable process are assumed to be known, they can be estimated a
priori via, for instance, the algorithms in [18]. To generate the S�S noise process, we employ the method
described by Tsihrintzis and Nikias [17], which is a special case of a more general technique encompassing
the non-symmetric alpha-stable random variable generation prescribed by Chambers et al. [2]. The moment
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Fig. 1. Variance reduction of FLOS–Bartlett with respect to PC-Bartlett frequency estimator versus GSNR and fractional moment order,
averaged on the frequency axis (M = 20, N = 50, 100 noise and phase realizations).

frequency order p and the sample size N are equal to 1 and 50, respectively. The AR model order for MN-

and TK-type estimators is chosen to be 20 and the sample GCC matrix Ĉ
(p)
x is 20 × 20 in the simulations.

The generalized SNR [16], GSNR, is de6ned as: GSNR = 10 log{(∑N
n=1 |s(n)|2)=�N}.

4.1. Single real tone case

4.1.1. Dependence of variance reduction upon � and p
In Fig. 1, the variance reduction achieved by FLOS–Bartlett with respect to PC-Bartlett is plotted against

� and p. The number of Monte Carlo runs is 100, each with a di@erent noise and phase realization, and
GSNR = 10 dB. The gain surface shows that FLOS–Bartlett always demonstrates superior performance with
respect to the PC-Bartlett, excluding a small area where GSNR=0 dB and �=2, i.e., at very low GSNR values
and Gaussian noise conditions. As � decreases, the impulsiveness and hence the gain of the FLOS–Bartlett
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increases. The highest gain areas correspond to values of p � 1 and � � 1:3, which is higher than 22 dB.
This obvious superiority of the FLOS-based statistical estimator with respect to its SOS-based counterpart is
a consequence of the fact that the SOS of �-stable processes are not de6ned as mentioned in Section 2. It is
also worth noting that a surface de6ned by the choice of p = 1 crosses the highest gains for each � value,
which implies that p � 1 can be a good candidate for computing the GCCs. This behavior is anticipated
since the GCC matrix of multiple sinusoids in white noise for p = 1 attains the form in Eq. (24), which is
exploited by the subspace techniques such as FLOS–MUSIC and FLOS–Bartlett in the sinusoidal frequency
estimation problem. The deviation from this form caused by other choices for the p value deteriorates the
performance of these estimators. The behavior of FLOS–Bartlett is also shared by the noise subspace technique
FLOS–MUSIC. Hence, in the remaining simulations we 6xed the value of p to one.

4.1.2. Dependence of variance reduction upon � and GSNR
Fig. 2 depicts the variance reduction achieved by FLOS–Bartlett with respect to PC-Bartlett, versus � and

GSNR. The number of Monte Carlo runs is 100, each with a di@erent noise and phase realization. The smaller
the � value, the higher the gain. Those parts of the surface which exhibit the highest gain belong to �=1:001.
This gain is approximately more than 20 dB, when GSNR = 10 dB. The surface shows that a performance
drop occurs in FLOS–Bartlett with respect to PC-Bartlett, only for the limiting values of � → 2 and at low
GSNR levels. In other words, the FLOS-based subspace techniques can be said to be robust in that they
remain superior for a very wide range of � and GSNR values, and this behavior is also shared by the noise
subspace technique FLOS–MUSIC.

If the contours on the gain surface corresponding to a 6xed value of � is traced in the direction of
increasing GSNR, the superiority of the FLOS-based estimator begins at a low GSNR threshold where the
estimator becomes 6rstly e@ective. The increase in the gain continues along this contour until a peak value of
the gain is reached. This behavior of the gain is dominated by the variance performance of the FLOS–Bartlett
estimator shown in Fig. 4. Further increase in GSNR causes a reduction in the gain as the additive S�S
noise becomes gradually ine@ective. The reduction in the gain is a consequence of the increased ability of the
SOS-based estimator in modeling the process. Tracing a contour of gain surface for GSNR = 10 dB shows
that the gain increases in the direction of decreasing � which is caused by the fading ability of the SOS-based
methods as the impulsiveness increases.

4.1.3. Frequency dependence of bias and variance
The sample variance, and the bias of the MUSIC and FLOS–MUSIC frequency estimators are displayed

against the angular frequency for � = 1:001 and GSNR = 5 dB in Fig. 3. The number of Monte Carlo runs
is 1000, each with a di@erent noise and phase realization. The FLOS–MUSIC has approximately 5 dB lower
sample variance than the MUSIC.

The bias curves depict a symmetry around approximately !=1:57 rad=s. The FLOS–MUSIC performs much
better than the MUSIC. The di@erence of their bias value is more than 0:4 rad=s around ! = 0:2 rad=s.

4.1.4. Dependence of variance upon GSNR
We utilize FLOS-based MUSIC, Bartlett, TK and MN estimators in this subsection. All of these frequency

estimators have SOS-based versions whose variances change linearly and inversely in the signal-to-noise ratio
in Gaussian noise environments. Fig. 4 depicts the dependence of the variance of the FLOS-based estimators
upon GSNR for �=1:001. The curves rePect averages over di@erent frequencies. The variance level of −40 dB
observed around GSNR = 30 dB is maintained by the FLOS–TK and FLOS–MN frequency estimators even
when the GSNR is increased unboundedly. This fact is caused by the error Poor present in these frequency
estimators since they both have a FLOS quantity multiplied by another FLOS quantity. The error Poor for
the FLOS–Bartlett frequency estimator is at a level of −80 dB which is attained around GSNR = 50 dB. The
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Fig. 2. Variance reduction of FLOS–Bartlett with respect to PC-Bartlett frequency estimator versus GSNR and characteristic exponent of
alpha-stable noise, averaged on the frequency axis (M = 20, N = 50, 100 noise and phase realizations).

reason for this behavior is the deviation of the estimated signal-subspace eigenvalues from their theoretically
equal values. On the other hand, FLOS–MUSIC’s variance changes linearly and inversely in GSNR.

4.1.5. Dependence of bias upon �
The bias behavior of the estimators for ! = 0:76 rad=s as a function of the characteristic exponent � of

the noise is shown in Fig. 5. The 6gure indicates that the bias gets smaller as � increases. When � = 1:001,
the bias values are greater than 0:3 rad=s for PC-Bartlett, MUSIC and TK, whereas it is less than 0:1 rad=s
for their FLOS versions (except for FLOS–TK, which is slightly above 0:1 rad=s for 1:0016 �6 1:06). Note
that the bias of FLOS–TK decreases slowly and exceeds that of the TK estimator for �¿ 1:6, which is not
a phenomenon encountered with the other methods. The bias behavior of the FLOS–TK frequency estimator
can be explained by the fact that it is based on a product of two FLOS quantities. For the single tone case
as in our experiments, MUSIC and PC-Bartlett estimators show exactly the same performance. Similarly,
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Fig. 3. Sample variance and bias of MUSIC and FLOS–MUSIC frequency estimators versus normalized angular frequency: (a) MUSIC,
(b) FLOS–MUSIC (� = 1:001, p = 1. (FLOS–MUSIC), M = 20, GSNR = 5 dB, N = 50, 1000 noise and phase realizations).

FLOS–MUSIC and FLOS–Bartlett estimators exhibit the same performance just like their SOS-based versions,
at least for GSNR values smaller than 35 dB.

4.2. Two real tones case

In each Monte Carlo run, di@erent additive S�S noise and phase realizations are applied. The moment order
for the GCC estimate is chosen as 1, and the size of the GCC matrix is 20 × 20.

4.2.1. Dependence of resolution probability upon GSNR and �
The subspace techniques are favored in sinusoidal parameter estimation problems due to their high-resolution

probabilities that is their high ability to distinguish two signals closely spaced in frequency. An easy-to-obtain
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and good measure of the resolution probability is found using the resolution event given by the random
inequality [20]

0(f1; f2)
:= P(fm) − 1

2{P(f1) + P(f2)}¡ 0; (39)

where f1, f2 are the sinusoidal frequencies and fm = (f1 + f2)=2 denotes their mean. P(f) is the power
spectrum of the estimator, which means that the sinusoidal frequencies correspond to the peaks of P(f) and
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phase realizations).

0 is the decision statistics. The sinusoidal frequencies are resolved when the inequality holds. The resolution
probability is found as the ratio of the simulation runs when 0 is true and the total number of simulation runs.
In Fig. 6 the resolution probabilities of MUSIC and FLOS–MUSIC frequency estimators are plotted against
the GSNR. Also the resolution probability of the periodogram frequency estimator is shown in the 6gure
for comparison. It is well known that the resolution limit of Fourier methods is approximately an angular
frequency di@erence of 2�=N for sinusoidal signals observed in Gaussian noise [4,8]. In the simulation, we
use � = 1:001 and N = 50. Even though the gap of the sinusoidal frequencies is as much as four times the
Fourier resolution limit, the resolution probability of the periodogram method is worse than the resolution
probabilities of MUSIC and FLOS–MUSIC. At GSNR = 5 dB, FLOS–MUSIC resolves sinusoidal frequencies
nearly 95% of the time, whereas this chance is approximately 90% and 80% for the MUSIC and periodogram
estimators, respectively, which is also shown in Fig. 7. The relative advantage of FLOS–MUSIC with respect
to MUSIC is as much as 10% at GSNR = 0 dB.

In Fig. 7, the resolution probabilities of the FLOS–MUSIC, MUSIC and the periodogram estimators are
plotted against � for GSNR=5 dB. All of the estimators attain the resolution probability one at �=2 while their
performance get worse as � decreases. Although the performance of MUSIC is better than the periodogram
estimator, the relative advantage of FLOS–MUSIC with respect to MUSIC gets larger and 6nally reaches a
value of 5% at � = 1:001. Hence, FLOS-based estimators tolerate a higher degree of impulsiveness in noise
(represented by lower � values) compared to the MUSIC algorithm.

We also perform simulations with frequency di@erence less than the Fourier resolution limit. Both FLOS–
MUSIC and MUSIC attain nearly 100% resolution at high GSNR values, e.g. at GSNR =40 dB for �=1:001.
The superiority of FLOS–MUSIC over MUSIC disappears since the e@ect of noise becomes negligible at high
GSNR values. Although the resolution probability of FLOS–MUSIC is higher than the one of MUSIC in those
simulations performed at low GSNR values, the sinusoids are only resolved when their frequency di@erence
is greater than the Fourier resolution limit in Gaussian noise. One can thus deduce that FLOS-based methods
o@er a signi6cant advantage at relatively low GSNR values in non-high-resolution requiring scenarios.



M.A. Alt5nkaya et al. / Signal Processing 82 (2002) 1807–1827 1821

0.75

0.80

0.85

0.90

0.95

1.00

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

R
es

ol
ut

io
n 

Pr
ob

ab
ili

ty a

b

c

Characteristic Exponent

Fig. 7. Resolution probabilities of MUSIC, FLOS–MUSIC and periodogram frequency estimators versus the characteristic exponent of
alpha-stable noise: (a) MUSIC, (b) FLOS–MUSIC, and (c) periodogram (GSNR =5 dB, !1 =1:57 rad=s, !2 −!1 =0:503 rad=s, M =20,
N = 50, 10000 noise and phase realizations).

4.2.2. Frequency dependence of bias and variance
In Fig. 8, the sample variance and bias of the MUSIC and FLOS–MUSIC frequency estimators for the

varying sinusoidal frequency are plotted against the angular frequency di@erence between the tone frequencies
for � = 1:001 and GSNR = 2 dB. We 6x the angular frequency of one sinusoid at ! = �=2 rad=s. In this
experiment, the sample size is 1000 and the number of noise and phase realizations is 200. The FLOS–
MUSIC has approximately 3 dB less sample variance than the SOS-based MUSIC.

The bias curve shows symmetry around the angular frequency di@erence !2 − !1 = 0 rad=s. The FLOS–
MUSIC performs better than MUSIC. The di@erence of their bias value is approximately 0:3 rad=s around
!2 − !1 = 0:25 rad=s.

5. Conclusion

We have proposed a FLOS-based quantity, the GCC, where no assumptions are made on the pdf of the
random variables to which it is applied. For moment order p=1, the GCC matrix of multiple sinusoids in S�S
noise attains the same form as that of the covariance matrix of multiple sinusoids in additive white Gaussian
noise which results in the best performance of the FLOS-based subspace techniques considering other choices
for the p value. The obvious advantage of the GCC matrix with respect to the covariance matrix is that its
elements are bounded for data containing S�S components as long as p¡�. Thus, the FLOS-based versions
of the well-known MUSIC and PC-Bartlett frequency estimators can be applied in multiple sinusoids in S�S
noise scenarios.

When the GCC of two jointly S�S distributed random variables is formed, the GCC reduces to the covari-
ation coe9cient, hence the name generalized covariation coe9cient. We also showed that the GCCs can be
used when the multiple sinusoids in S�S noise are modeled as a stable ARMA process approximated by a
higher order stable AR process. The frequency estimators FLOS–TK and FLOS–MN are based on this model.

Rigorous simulations showed that when the additive noise in the frequency estimation problem can be
modeled as an alpha-stable process, the FLOS-based subspace techniques perform better than their SOS-based
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Fig. 8. Sample variance and bias of MUSIC and FLOS–MUSIC frequency estimators for the varying sinusoidal frequency versus
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M = 20, GSNR = 2 dB, N = 1000, 200 noise and phase realizations).

counterparts. This outcome is particularly true for the impulsive noise described by low � values when the
SOS-based subspace techniques lose their ability to model the system due to unbounded statistics.

In the case of a single sinusoidal signal both FLOS–MUSIC and FLOS–Bartlett not only demonstrate
superior performance over MUSIC and PC-Bartlett for low � values, but they are at the same time robust
enough to perform comparably with the SOS-based methods in the presence of non-impulsive noise. The TK
and MN estimators perform considerably better than their FLOS versions in non-impulsive noise, negating any
robustness claims. Thus, FLOS–MUSIC and FLOS–Bartlett must be favored if satisfactory results are desired
regardless of the noise distribution.

In the frequency estimation of multiple sinusoids, the estimators which demonstrate robust performance
irrespective of the characteristic exponent of the S�S noise in the experiments with a single sinusoid, namely
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FLOS–MUSIC and FLOS–Bartlett are investigated. In the case of multiple sinusoids, a very important issue
is whether the sinusoids are well resolved or not. Both FLOS–Bartlett and PC-Bartlett failed in the reso-
lution experiments. On the contrary FLOS–MUSIC and MUSIC were successful. While FLOS–MUSIC and
MUSIC showed comparable high-resolution capability at high GSNR values, FLOS–MUSIC o@ers a signi6cant
advantage at relatively low GSNR values in non-high-resolution requiring scenarios.

Still open issues include the development of implementable blind estimators, and techniques that function
in colored alpha-stable noise.

Appendix A. The GCCs of a single sinusoid in S�S noise

Assume that the observation sequence xn is given by Eq. (9) where K = 1. When p = 1 the GCC of Xn
with Xl is de6ned as

�Xn;Xl(p)|p=1 = E{(A1 sin{!1n+(1}+Zn)signum(A1 sin{!1l+(1}+Zl)}(E|A1 sin{!1l+(1}+Zl|)−1

=
NOM(1)

n−l

DENOM(1)
n−l

: (A.1)

The nominator in Eq. (A.1) can be written as

NOM(1)
n−l =

1
2�

∫ 2�

0

∫ +∞

−∞

∫ +∞

−∞
{(A1 sin{!1n+ �1} + zn)signum(A1 sin{!1l+ �1} + zl)

×fZn;Zl(zn; zl)} dzn dzl d�1; (A.2)

where fZn;Zl(zn; zl) is the joint pdf of the S�S noise samples Zn and Zl. With the change of variable �1 =
!1l+ �1, one obtains

NOM(1)
n−l =

1
2�

∫ 2�

0

∫ +∞

−∞

∫ +∞

−∞
{(A1 sin{!1(n− l) + �1} + zn)signum(A1 sin�1 + zl)

×fZn;Zl(zn; zl)} dzn dzl d�1: (A.3)

Since noise samples are zero-mean, independent and identically distributed, one can 6nd the expression in the
previous equation for n 
= l as

NOM(1)
n−l|n�=l =

1
2�

∫ 2�

0

∫ +∞

−∞
A1 sin{!1(n− l) + �1}signum(A1 sin�1 + zl)fZl(zl) dzl d�1: (A.4)

In order to evaluate this double integral we substitute

signum(A1 sin�1 + zl) =




1 for zl ¿− A1 sin�1;

0 for zl = −A1 sin�1;

−1 for zl ¡− A1 sin�1:

(A.5)
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Thus, we obtain

NOM(1)
n−l|n�=l =

1
2�

{∫ 2�

0
−A1 sin{!1(n− l) + �1}

∫ −A1 sin �1

−∞
fZl(zl) dzl d�1

+
∫ 2�

0
A1 sin{!1(n− l) + �1}

∫ +∞

−A1 sin �1

fZl(zl) dzl d�1

}
: (A.6)

Using trigonometric identities

NOM(1)
n−l|n�=l =

1
2�

[
−
(

cos{!1(n− l)}
∫ 2�

0
A1 sin�1FZl (−A1 sin�1) d�1 + sin{!1(n− l)}

×
∫ 2�

0
A1 cos�1FZl(−A1 sin�1) d�1

)

+

(
cos{!1(n− l)}

∫ 2�

0
A1 sin�1 [1 − FZl(−A1 sin�1)] d�1

+sin{!1(n− l)}
∫ 2�

0
A1 sin�1[1 − FZl(−A1 sin�1)] d�1

) ]
(A.7)

and this reduces to

NOM(1)
n−l|n�=l =

I1
�

cos{!1(n− l)}; (A.8)

where

I1 =
∫ 2�

0
−A1 sin�1FZl(−A1 sin�1) d�1 (A.9)

and FZl(·) is the cumulative density function (cdf) of the random variable Zl. It is easy to see that for any
symmetric pdf I1 is a positive constant whose value depends on the particular S�S pdf and on the magnitude
of the sinusoidal signal.

For the case of n= l, we can write the nominator in Eq. (A.1) as NOM(1)
n−l = (I1=�) + P

′(1)
zl where

P
′(1)
zl =

1
2�

∫ 2�

0

∫ +∞

−∞
zl signum(A1 sin�1 + zl)fZl(zl) dzl d�1

=
1
�

∫ 2�

0

∫ +∞

−A1 sin �1

zlfZl(zl) dzl d�1 (A.10)

denotes the term due to the additive S�S noise. P
′(1)
zl is a positive, 6nite quantity for any S�S pdf satisfying

1¡�6 2.
One can easily see that

DENOM(1)
n−l = E|A1 sin{!1l+(1} + Zl| (A.11)

is also a positive constant.
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Thus, for the unity moment order, the GCCs of a single sinusoid observed in S�S noise can be expressed
as

�Xn;Xl(p)|p=1 = *1 cos{!1(n− l)} + P(1)
zl �nl; (A.12)

where *1 is a positive real constant given as *1 = I1=(�DENOM(1)
n−l), P

(1)
zl is given as P(1)

zl = P
′(1)
zl =DENOM(1)

0
and �nl is the Kronecker delta.

Appendix B. The GCCs of two sinusoids in S�S noise

The GCCs of Xn with Xl described by Eq. (9) where K = 2 can be written for p = 1 as

�Xn;Xl(p)|p=1 = E



(

2∑
i=1

[Ai sin{!in+(i}] + Zn

)
signum


 2∑

j=1

[Aj sin{!jl+(j}] + Zl






×

E

∣∣∣∣∣∣
2∑

j=1

[Aj sin{!jl+(j} + Zl]

∣∣∣∣∣∣



−1

=
NOM(2)

n−l

DENOM(2)
n−l

: (B.1)

With a change of variables �i = !il+ �i for i = 1; 2, one obtains

NOM(2)
n−l =

(
1
2�

)2 ∫ 2�

0

∫ 2�

0

∫ +∞

−∞

∫ +∞

−∞

{(
2∑
i=1

[Ai sin{!i(n− l) + �i}] + zn

)

× signum


 2∑

j=1

[Aj sin{�j}] + zl


fZn;Zl(zn; zl)


 dzn dzl d�1 d�2: (B.2)

We partition this integral to two parts where the arguments of the signum(·) function are positive or negative.
Hence, the right-hand side of Eq. (B.2) for the case of n 
= l can be written as

NOM(2)
n−l|n�=l =

(
1
2�

)2
{(∫ 2�

0

∫ 2�

0
−

2∑
i=1

[Ai sin{!i(n− l) + �i}]
∫ −∑2

i=1 Ai sin �i

−∞
fZl(zl) dzl d�1 d�2

)

+
∫ 2�

0

∫ 2�

0

2∑
i=1

[A1 sin{!1(n− l) + �1}]
∫ +∞

−∑2
i=1 Ai sin �i

fZl(zl) dzl d�1 d�2

}
: (B.3)

Again using trigonometric identities and procedures similar to those followed in Appendix A, one obtains

NOM(2)
n−l|n�=l =

1
2�2 cos{!1(n− l)}

∫ 2�

0

∫ 2�

0
−A1 sin�1FZl

(
2∑
i=1

− Ai sin�i

)
d�2 d�1

+
1

2�2 cos{!2(n− l)}
∫ 2�

0

∫ 2�

0
−A2 sin�2FZl

(
2∑
i=1

− Ai sin�i

)
d�1 d�2: (B.4)
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Similar to the case of Appendix A, the double integrals in Eq. (B.4) are positive constants whose values
depend on the particular S�S pdf, fZl , and on the magnitudes of the two sinusoids.

For the case of n= l, the nominator of the right-hand side of Eq. (B.1), NOM(2)
n−l|n=l, becomes the sum of

two parts. The 6rst one which we can call as the signal part, is obtained by setting n = l in the right-hand
side of Eq. (B.4). The second part resulting from the S�S noise can be calculated as

P
′(2)
zl =

(
1
2�

)2 ∫ 2�

0

∫ 2�

0

∫ +∞

−∞
zl signum

(
2∑
i=1

[A1 sin�1] + zl

)
fZl(zl) dzl d�1 d�2

=
1

2�2

∫ 2�

0

∫ 2�

0

∫ +∞

−∑2
i=1 Ai sin �i

zlfZl(zl) dzl d�1 d�2 (B.5)

which is again a positive 6nite constant for any S�S pdf with 1¡�6 2.
The denominator of the right-hand side of Eq. (B.1) given by

DENOM(2)
n−l = E

∣∣∣∣∣∣
2∑

j=1

[Aj sin{!jl+(j}] + Zl

∣∣∣∣∣∣
is also a positive constant.

Thus, one can express the GCCs of two sinusoids in S�S noise for the moment order p = 1 as

�Xn;Xl(p)|p=1 =
2∑
i=1

,i cos{!i(n− l)} + P(2)
zl �nl; (B.6)

where ,1 and ,2 are positive real constants depending on the particular S�S pdf.
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