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Abstract: This paper proposes an optimised model-free expectation 
maximisation method for automated clustering of high-dimensional datasets. 
The method is based on a recursive binary division strategy that successively 
divides an original dataset into distinct clusters. Each binary division is carried 
out using a model-free expectation maximisation scheme that exploits the 
posterior probability computation capability of the quasi-supervised learning 
algorithm subjected to a line-search optimisation over the reference set size 
parameter analogous to a simulated annealing approach. The divisions are 
continued until a division cost exceeds an adaptively determined limit. 
Experiment results on synthetic as well as real multi-colour flow cytometry 
datasets showed that the proposed method can accurately capture the prominent 
clusters without requiring any prior knowledge on the number of clusters or 
their distribution models.  
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This paper is a revised and expanded version of a paper entitled ‘Model-free 
expectation maximization for divisive hierarchical clustering of multicolor flow 
cytometry data’ presented at the ‘IEEE International Conference on 
Bioinformatics and Biomedicine (BIBM)’, Belfast, UK, 2–5 November 2014. 

 

1 Introduction 

Flow cytometry (FCM) is a powerful laser-based multi parametric analysis technique for 
characterising individual cells within a heterogeneous population. It measures the 
physical, chemical and biological characteristics of each cell and uses them for cell 
counting, sorting and biomarker detection. The measured properties include an individual 
particle’s relative size, relative granularity, internal complexity and relative fluorescence 
intensity (BD Biosciences, 2000; Parks et al., 1989). FCM is used in research applications 
to distinguish different cell types from each other as well as in clinical applications for 
disease diagnosis, especially blood cancers, and monitoring disease progression following 
therapy (Aghaeepour et al., 2013). 

In FCM experiments, cells are incubated with fluorochrome-conjugated antibodies. 
Fluorochromes are attached to an antibody that binds specifically to a target protein in or 
on the cell. Since each fluorochrome has a specific peak wavelength in its emission 
spectrum, the characteristics of the emitted light from the cells under laser excitation 
allows assessing the relative abundance of the targeted biomarkers. Several biomarkers 
can be investigated simultaneously in multi-colour flow cytometry experiments by 
increasing the number of fluorochrome-antibody pairs. Currently, the FCM technology 
allows investigating cells for the presence and abundance of up to 20 biomarkers (Lugli et 
al., 2010). However, increasing the number of parameters inevitably increases the dataset 
dimension and complexity, and creates new challenges in FCM data analysis. 

Identification of subpopulations using standard methods based on manual gating is 
laborious and time-consuming. Furthermore, obtaining matching results for the same flow 
data is difficult even by same expert (Lo et al., 2008). Consequently, there is a 
considerable demand for automated methods to address these challenges, particularly for 
multi-colour flow data analysis. 

Several methods for automated identification of cell subsets have been proposed in 
the literature by modelling cell population characteristics. For instance, Aghaeepour et al. 
(2013) developed an automated method for cell subtype identification in high 
dimensional FCM data based on k-means clustering, while Pyne et al. (2009) proposed a 
skew and heavy tailed distribution fitting approach. The FlowClust algorithm, proposed 
by Lo et al. (2008), aims to fit a t-mixture model to FCM data after the Box-Cox 
transformation. The FlowClust algorithm was later modified by Finak et al. (2009) by 
introducing a merging step to avoid unwarranted cluster divisions. Most of the clustering 
methods in FCM data analysis applications use one of Bayesian information criteria 
(BIC), Akaike information criteria (AIC) or entropy to determine the unknown number of 
distinct clusters. This means that the clustering algorithm is to be run several times for 
varying number of clusters and the clustering result that achieves the optimal separation 
according to the criterion of choice is to be taken as the final output. 
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In the literature, there are several supervised and unsupervised methods for automated 
gating of FCM data. Supervised algorithms (Lo et al., 2009; Quinn et al., 2007) are 
generally ill-suited for FCM data analysis because they need training datasets that must 
be created beforehand by an expert for a specific experiment configuration. This means 
that when system settings, including cytometer options as well as cell preparation 
protocols, change, the algorithm requires new training data representing the final 
configuration. Unsupervised techniques include variations of the mixture modelling 
approach (Boedigheimer and Ferbas, 2008; Wang and Huang, 2007), model-based 
clustering (Mucha et al., 2002; Demers et al., 1992) and density-based clustering (Pyne et 
al., 2009). Since unsupervised methods do not require training datasets, they offer greater 
applicability than the supervised methods. On the other hand, unsupervised methods tend 
to perform poorly when the assumed model does not match the actual distribution or 
when the adjustable parameters are not chosen correctly (Bashashati and Brinkman, 
2009). 

In this paper, we propose an optimised version of the model-free expectation 
maximisation division algorithm for FCM data presented earlier (Kokturk and Karacali, 
2014). The new method also starts by dividing the whole dataset into two groups, but this 
time, using an optimised implementation of the original expectation maximisation 
procedure that relies on a model-free calculation of the group posterior probabilities. The 
optimisation entails carrying out a line search procedure that is analogous to annealing for 
an energy functional evaluating the quality of the cluster separation. The method then 
continues to divide the cell subgroups obtained by previous divisions until a stopping 
condition that detects superfluous divisions is met, expressed through a non-parametric 
division cost. This allows cell subgroup identification without making any assumptions 
on the shape of the cell subtype distributions and by deducing the number of prevalent 
cell subgroups adaptively from the flow dataset. 

This paper is organised as follows. The mathematical description of the proposed 
method is presented in Section 2. The results of the proposed method on synthetic 
datasets as well as a comparative benchmark performance evaluation on real flow 
cytometry datasets are presented in Section 3. Concluding remarks are presented in 
Section 4. 

2 Methods 

In this section, we firstly describe the quasi-supervised learning algorithm that estimates 
the posterior probabilities of a given pair of clusters at each sample (Karaçalı, 2010). 
Then, we summarise the expectation-maximisation algorithm as described by  
Dempster et al. (1977) and Shafer (1976) followed by the proposed modification that 
replaces model-based posterior probabilities with model-free posterior probabilities 
estimated via the quasi-supervised learning algorithm. The section concludes with a 
detailed description of the proposed model-free automated cell population identification 
method for multi-colour flow cytometry datasets along with the introduced optimisation 
for cluster distinctness. 
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2.1 Posterior probability estimation using the quasi-supervised  
learning algorithm 

The quasi-supervised learning algorithm exploits an asymptotic property of nearest 
neighbour classification over randomly chosen reference sets. For an unknown sample 
x X , a nearest neighbour classifier ( ; )F x R  over a given reference set R is defined by  

*( ; ) =F x R y  (1) 

with *y  representing the class label of the point *x  satisfying  

*( , ) = min ( , )
x R

d x x d x x


  (2) 

and (.,.)d  representing the distance metric on the observation space X . Now, letting Rn 

denote the random variable of such reference sets containing n  points from each class 
governed by a probability density function ( )np RRn

, it can be shown that for sufficiently 

large n , the posterior probability 0( | )P C x  of the class 0C  at x  is approximately equal 

to the expected value of ( ; )nF x R  over nR ,  

0( | ) ( ( ; ) 0) ( )n n nRn

P C x F x R p R dR  Rn
1  (3) 

where the indicator function ( )1  returns 1 when its argument holds, and zero otherwise 

(Karaçalı, 2010). However, since ( )R nn
p R  is unknown, the integral in equation (3) 

cannot be carried out in practice, but can be approximated by calculating the average 
number of times x  is assigned to 0C  via ( ; )F x R  using all reference sets nR  that can be 

formed using the available data { , }i ix y , ix X , {0,1}iy   for = 1,2, ,i l .  

0 0
{ , }

1
( ) ( | ) ( ( | ) = 0)n

R x yn i i

f x P C x F x R
M 

   1  (4) 

where M  denotes the number of distinct reference sets. The posterior probability 

1( | )P C x  can also be written in a similar fashion as  

1 1
{ , }

1
( ) ( | ) ( ( | ) = 1)n

R x yn i i

f x P C x F x R
M 

   1  (5) 

The quasi-supervised learning algorithm computes the averages above using a practical 
approach that avoids carrying out M  separate nearest neighbour classifications for a 
given choice of n . Furthermore, the ratio of 0 ( )f x  and 1( )f x  taken to the natural 

logarithm approximates the log likelihood ratio of classes 0C  and 1C  at x  via  

0 0

1 1

( | ) ( )
( ) = log log

( | ) ( )

p C x f x
L x

p C x f x

   
   

   
 (6) 

 



   

 

   

   
 

   

   

 

   

   90 B.E. Köktürk and B. Karaçalı    
 

    
 
 

   

   
 

   

   

 

   

       
 

since the class priors are set at 0.5 in the calculation above by including an equal number 
of samples from 0C  and 1C  into nR . The optimal number of points optn  in the reference 

set for best learning is determined adaptively from the available data by minimising a cost 
function ( )E n  defined by  

0 1( ) = 4 ( )* ( ) 2i i
i

E n f x f x n  (7) 

that strikes a balance between good separation and generalisability, since large n  
produces overly flexible decision regions that decrease the algorithm accuracy (Karaçalı 
and Karim, 2003). 

2.2 Expectation-maximisation algorithm 

The conventional expectation maximisation algorithm aims to fit a mixture distribution 
model to a specified dataset (Shafer, 1976; Dempster et al., 1977; Moon, 1996). Let j  

be the parameter for the j-th component of the mixture for = 1, 2, ,j k . If the 

components are taken to be of the Gaussian form as is generally the case, j  can be 

defined as  

= ( , )j j j    (8) 

where j  and j  denote the means and the covariance matrices of the corresponding 

components. The objective, then, is to determine the distribution parameters j  to fit the 

available data 1 2, , ,x x x . The likelihood function for each j  can be expressed as  

1 2 1 2
=1

( ; , , , ) = ( , , , | ) = ( | )x j j i j
i

L x x x f x x x f x  


    (9) 

since the points are assumed to have been drawn independently. The maximum-
likelihood estimate of j  is then given by   that maximises the likelihood function 

above,  

= arg max ( )ML
j xL


   (10) 

or equivalently,  

= arg max log ( )ML
j xL


   (11) 

as the natural logarithm function is monotonically increasing and maximising the 
likelihood is equivalent to maximising the log-likelihood. 

At the expectation step, for each ix , the method calculates a responsibility value ,i jr  

defined by  

,

1

( , )
=

( | )

i j
i j k

i mm

p x
r

p x






 (12) 
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that expresses the likelihood of the i-th point to belong to the j-th component. The 
parameters θj are then revised in the subsequent maximisation step using a maximum 
likelihood procedure that takes the responsibility values into account. A notable  
distinction between different expectation maximisation procedures arises from the use of 
the responsibility values in the maximisation step: In one alternative, the responsibility 
values can be used to associate each xi with only one component by seeking the 
component achieving the maximum among {r(i, 1), r(i, 2),…, r(i, k)} for each i and using 
only these points to estimate the corresponding model parameter. In the other alternative, 
the model parameters θj are estimated in a way that uses all points simultaneously, but in 
a way to be influenced more by the points xi for which r(i, j) are greater and less by the 
others. 

2.3 Proposed divisive binary clustering method 

The proposed method begins with an initial random assignment of points into two 
clusters C0 and C1, followed by an expectation-maximisation cycle that begins with a 
large value for the reference set size parameter n and computes the posterior probability 
of C0 and C1 at each sample. The algorithm proceeds by re-assigning the points to the 
cluster whose posterior is larger and iterates until convergence. After convergence, the 
procedure is re-applied to the data starting with the latest cluster assignments using a 
smaller n. The optimal cluster assignments are selected by tracking the cost function in 
equation (7) as n decreases to 1, and identifying the level for which E(n) is minimal. The 
block diagram of the proposed method is shown in Figure 1. The modified expectation-
maximisation procedure that forms the basis of the proposed clustering method is 
summarised below: 

1:  for = : 1:1maxi n   do 

2:        Expectation Step: 
     Calculate 0( | )P C x  and 1( | )P C x  

3:        Maximisation Step: 
     Update class labels 
     0 0{ | ( ) 0.5}C x f x   

     1 1{ | ( ) < 0.5}C x f x    

Note that an analogy can be formed between the proposed clustering algorithm and a 
simulated annealing procedure, as simulated annealing aims to find the global minimum 
of a cost function by decreasing the energy level of a system gradually as it converges to 
the desired solution (Kirkpatrick et al., 1983). In the proposed method, n represents the 
system energy as large n produces a more flexible learning system, and E(n) measures the 
complexity of the clustering obtained for a given n. At the level where E(n) is minimal, 
the algorithm produces the best clustering result where the clusters exhibit the smallest 
overlap. 

Note also that the procedure above produces two distinct clusters starting with a 
single one, regardless of whether the resulting clusters are distinct enough to merit 
separation. In order to evaluate the distinctness of the resulting clusters, we have defined 
a division cost 0 1( , )c C C  by  

0 1 1 0
0 10 1

1 1
( , ) = ( ) ( )i i

x C x Ci i

c C C f x f x
N N 

   (13) 
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with N0 and N1 denoting the number of points assigned to clusters C0 and C1 respectively. 
In this paper, we have treated the division cost as the criterion for accepting or rejecting 
the obtained clustering, with the rejection acting as the stopping condition for any further 
division of the original cluster. To this end, we have compared the division cost c(C0, C1) 
with the division cost of the earlier clustering that produced the parent cluster 0 1C C : If 

the division cost exceeds the parent cluster original division cost by 0.03, the algorithm 
stops and rejects the division. This amount was determined empirically to provide good 
clustering results on a variety of datasets. 

As the last step once all the binary divisions are finalised, we have used a post-
processing operation to revert unwarranted cluster divisions by evaluating whether the 
union of any two of the resulting clusters forms a single coherent cluster. To this end, we 
have combined all resulting clusters in groups of two and calculated the division cost 
between all resulting cluster pairs; merging the clusters for which the division cost is 
larger than all previously accepted division costs of their parent clusters. 

Figure 1 Block diagram of the proposed method (see online version for colours) 
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3 Results 

The proposed method was applied to synthetically generated datasets as well as datasets 
acquired from real multi-colour flow cytometry experiments. The synthetic dataset 
contained three distinct clusters, each modelled using a two-dimensional Gaussian 
distribution with identity covariances but with different means, set at [4 8]T, [4 4]T and 
[8 4]T, respectively. The experiments consisted of generating a dataset of points drawn 
from this mixture with different priors and carrying out automated clustering using the 
proposed method as well as the earlier version that does not involve optimising with 
respect to n (Kokturk and Karacali, 2014) and the conventional expectation-maximisation 
routine for two-component Gaussian mixture fitting within the same binary division 
scheme for estimating the posterior probabilities from a model-based perspective. 

Illustrative results obtained by the proposed method for the above datasets with N1, 
N2, N3 number of points in the three clusters are presented in Figure 2 along with the 
associated cost functions E(n) and the division costs c(C0, C1) for each successive binary 
clustering. The behaviour of E(n) shows that as n decreases, the clustering becomes 
strained resulting in a gradual increase in E(n), and resolves to a more suitable 
configuration after n passes a critical level, resulting in a dramatic decrease. The optimal 
clusterings are observed following one such decrease. Note also that the cost of 
separation remains relatively high in the division shown in the second row compared to 
the valid divisions in the first and third rows. Different colours represent the two clusters 
achieved at the optimal separation, while the points of the original dataset not included in 
the division process are shown in grey. 

The accuracy of the clustering results for comparative evaluation purposes was 
measured using a confusion matrix-based approach by the fraction of the points along the 
main diagonal to the total number of points. The clustering results obtained for varying 
sample sizes using the proposed algorithm that involves carrying out the line-search 
optimisation with respect to n, along with the earlier version that uses a fixed n at 1 and 
the conventional expectation-maximisation routine are shown in Table 1. In general, the 
clustering performance of the proposed algorithm is greater than the other alternatives. 
Even more significantly, the proposed method compares equally or favourably against the 
implementation using the conventional expectation-maximisation method based on 
Gaussian model components that is expected to perform near-optimally due to the 
Gaussianity of the clusters in the actual data. 

Table 1 Comparative performance evaluation results on synthetic datasets for varying sample 
sizes in the three clusters. The numbers represent the average accuracies for the 
corresponding algorithms over 20 independent repeats 

N1 N2 N3 
Accuracy using 

iterative QSL (n=1) 
Accuracy using iterative 

QSL (optimised n) 
Accuracy using 

conventional EM 

500 500 1000 0.9637 0.9691 0.9640 

500 1000 2000 0.9473 0.9724 0.9526 

1000 500 1000 0.9623 0.9689 0.9537 

1000 1000 1000 0.9592 0.9424 0.9682 
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Figure 2 The data division is illustrated on the left column and respective E(n) functions are 
given in the right column. The data divided into two clusters (upper row) and division 
cost is decided. Then same procedure applied on daughter clusters (second and third 
row) (see online version for colours) 

 

After testing our proposed algorithm on synthetic datasets, we applied it to real multi-
colour flow cytometry (FCM) datasets. The FCM datasets used in these experiments were 
obtained from FlowCap-I Challenge intended to comparatively evaluate automated 
clustering methods for FCM datasets. From this collection, we have used a human dataset 
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of diffuse large B-cell lymphoma (DLBCL) (containing 12,369 samples divided in three 
clusters) which consists of lymph node biopsies from patients were histologically 
confirmed to have DLBCL and treated at the British Columbia Cancer Agency between 
2003 and 2008 and a mouse haematopoietic stem cell transplant dataset (HSCT) 
(containing 8914 samples divided in four clusters) derived from HSCT experiments done 
in the Terry Fox Laboratory. Suspensions were produced from bone marrow cells and 
they were depleted of erythroid precursors by immunomagnetic removal of biotin 
conjugated anti-Ter119-labeled cells using EasySep reagents (Aghaeepour et al., 2013). 
The true cluster assignments of both datasets were assigned via manual gating and 
provided along with the fluorescence data (FlowSite, 2014). The manual gating procedure 
used to label the cells involved creating two-dimensional scatter plots of all possible 
parameter (fluorochrome) pairs (FL1 vs. FL2, FL1 vs. FL3, FL1 vs. FL4, FL2 vs. FL3, 
FL2 vs. FL4, FL3 vs. FL4) and choosing the one in which the distinctions between the 
different clusters was most conspicuous and suitable for manual gating. We have 
evaluated the performance of our algorithm on these datasets by comparing the resulting 
cluster labels with the manual gated labels. In our experiments, we have used all 
fluorochromes to carry out clustering even though the resulting cluster assignments are 
shown on 2D scatter plots. 

The actual labels of the cells in the diffuse large B-cell lymphoma (DLBCL) datasets 
are presented in Figure 3a. The earlier method in Kokturk and Karacali (2014) had 
identified only two of three clusters while missing the other one which has only 25 
samples with an overall accuracy of 0.9045. The optimised model-free expectation 
maximisation algorithm proposed here also missed the third cluster again due to the 
absence of statistical significance of the small cluster, but it identified the other two 
clusters samples with an increased overall accuracy of 0.9959 (Figure 3b). 

The manually gated clusters of the mouse haematopoietic stem cell transplant (HSCT) 
dataset are shown in Figure 4a. As in the case of the earlier dataset, the proposed 
algorithm accurately identified three of the four clusters while missing the last one due 
again to its small sample size of 100. The overall accuracy of the earlier algorithm on this 
dataset was 0.8106. The proposed algorithm achieved a dramatic increase in accuracy, 
reaching a level of 0.9874 (Figure 4b). 

4 Conclusion 

We have proposed a recursive binary division algorithm for unsupervised clustering of 
vector-valued data that does not require any knowledge about the underlying data 
distribution such as the number of clusters, distribution models or model parameters. The 
method operates by dividing the original dataset into two daughter clusters using the 
posterior probability estimates provided by the quasi-supervised learning algorithm in an 
expectation-maximisation framework while optimising the reference set size parameter n. 
The same procedure is then applied to the daughter clusters themselves and their daughter 
clusters and so on, until the division cost of the daughter clusters exceeds the division 
cost of the parent cluster by a significant margin. As the procedure relies on model-free 
posterior probability estimation, the proposed method avoids the pitfalls associated with 
making incorrect or unsuitable assumptions on the underlying distributions of the 
unknown data components. 
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Figure 3 Clusters obtained from manual gating (a) and proposed method (b) on DLBCL dataset 
(see online version for colours) 
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Figure 4 Clusters obtained from manual gating (a) and proposed method (b) on HSCT dataset 
(see online version for colours) 
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In experiment results, the proposed method accurately identified the clusters of interest 
both on synthetic datasets as well as datasets collected from real multi-colour flow 
cytometry experiments. The experiments also showed that clusters with too few samples 
were at risk of being not recognised as separate clusters. This may be a general issue with 
the specific case of flow data clustering as such clusters are often determined by manual 
gating over cells that exhibit a specific combination of fluorochrome intensities that are 
known to be associated with a distinct cell type, regardless of the small number of cells 
that fit those characteristics. From a statistical standpoint, it is not surprising that such 
small clusters are missed due to insufficient representation within the overall dataset. 
However, work is currently under way to incorporate flow data-specific priors into the 
algorithm by defining a more suitable division cost function for improved sensitivity to 
detect small clusters. 

As the proposed method realises an expectation maximisation procedure for 
hierarchical clustering of datasets of unknown distribution characteristics, it can be 
applied to all clustering problems in which the conventional expectation maximisation 
procedure using Gaussian or other model components has offered good solutions. Even 
more significantly, as the quasi-supervised learning algorithm providing the model-free 
posterior probability estimates operates on distances between data points, the method 
does not require the data to be presented in vector-valued form to be applicable. This may 
particularly be useful for clustering datasets where distances between samples can be 
derived in the absence of a vector-space representation of the data via expectation-
maximisation such as genomic sequence datasets. This line of research is also currently 
under investigation. 
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