
A Hierarchical Connected Dominating Set Based
Clustering Algorithm for Mobile Ad hoc Networks

Deniz Cokuslu
Department of Computer Engineering

Izmir Institute of Technology

Urla, Izmir 35340, Turkey

Email: denizcokuslu@iyte.edu.tr

Kayhan Erciyes
International Computer Institute

Ege University

Bornova, Izmir 35100, Turkey

Email: kayhan.erciyes@ege.edu.tr

Abstract— We propose a hierarchical Connected Dominating
Set (CDS) based algorithm for clustering in Mobile Ad hoc
Networks (MANETs). Our algorithm is an extension of our
previous Connected Dominating Set Based Clustering (CDSC)
Algorithm [1]. We extended the levels of the CDS to two levels
and improved functionality at each level by providing additional
rules to make sure that every node belongs to a single cluster. In
the first level of the algorithm, the elements of the CDS are
formed, based on CDSC Algorithm heuristics with improved
functionality. The second level of the algorithm is executed among
the CDS elements to find the second level CDS where each
element belonging to the set represents a group of CDS elements,
therefore a group of clusters. We show that this approach is more
scalable and simpler to implement than a single level algorithm
and that it also provides more balanced two level clusters due
to its distributed nature. We also show that the number of
levels of the algorithm can be extended to more than two layers
providing more populated clusters, therefore providing a level
of cluster and group membership structure within the MANET.
This hierarchical groups can be used for different application
needs at each level such as multi-cast communication or security
purposes in MANETs.

I. INTRODUCTION

Routing in MANETs is a very problematic issue because of

the dynamicity of the network. In dynamic networks such as

MANETs, routing tables should be updated very frequently.

Keeping the routing tables updated may consume a large

part of the wireless traffic in the network. This traffic might

sometimes be extremely dense which may possibly block the

circulation of the messages between the nodes. A virtually

structured network such as a connected dominating set can

be considered as a good solution to make message transfers

more efficient. However, even in the structured networks, a

routing protocol is required in order to deliver messages to

the destinations. CDS Flooding Algorithm is a flooding based

routing algorithm. We first construct connected dominating set

based clusters by using an efficient connected dominating set

based clustering algorithm, then implement a message flooding

mechanism which uses the cluster heads as the gateways of the

clusters. In CDS Flooding Algorithm, flooding process takes

place only between the cluster heads, therefore the algorithm

significantly reduces the number of flooded messages in the

network as the cluster heads consist of a small part of the

entire network.

II. BACKGROUND

A Dominating Set is a subset S of a graph G = (V, E) such

that every vertex in G is either in S or adjacent to a vertex in S.

Dominating sets can be classified into three main categories,

Independent Dominating Sets (IDS), Weakly Connected Dom-

inating Sets (WCDS) and Connected Dominating Sets (CDS).

Independent Dominating Set is a dominating set S of a graph

G in which there are no adjacent vertices. A Weakly Connected
Dominating Set (WCDS) is a weakly induced subgraph (S)

of a graph (G) which is connected and dominating [2] [3].

Han and Jia [24] [25] proposed efficient algorithms for con-

structing a WCDS in MANETs. Chen and Liestman [8] and

Alzoubi et al. [23] are other well known WCDS construction

algorithms. A Connected Dominating Set (CDS) is a subset

(S) of a graph (G) such that S forms a dominating set and is

connected. CDS based clustering is a fundamental approach in

MANETs to partition the network into a number of clusters.

CDSs have many advantages in network applications such

as ease of broadcasting and constructing virtual backbones

[22]. Various algorithms exist for clustering in dominating sets

but we are interested in CDS based clustering algorithms as

they provide a backbone between clusters. Guha and Khuller

[9] proposed two centralized greedy algorithms for finding

suboptimal connected dominating sets. Das and Bharghavan

[11] [12] provided the distributed implementations of Ghua

and Khuller’s algorithms [9]. Wu and Li [14], improved

Das and Bhraghavan’s distributed algorithm to a localized

distributed algorithm. Wu and Li’s algorithm works in two

phases, in the first phase a node marks itself as a cluster head

if any two of its neighbors are not connected to each other

directly. In the second phase, a marked vertex v changes its

mark to ordinary node if one of the pruning rules is met.

Nanuvala [26] has extended the Wu’s CDS Algorithm and

added a third pruning rule. Cokuslu, Erciyes and Dagdeviren

[1] added some extra heuristics to Wu and Li’s algorithm [14]

and provided more reliable results. They also added two more

pruning rules. Heuristics shorten the runtime of the algorithm

and total of four pruning rules results in a less redundant

cluster heads compared to Wu and Li’s algorithm. Li et al.

[27] proposed an algorithm to construct CDS with bounded

diameters, the algorithm first finds a maximal independent set

Proceedings of the Fifteenth IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS‘07)
978-1-4244-1854-1/08/$25.00 ©2008 IEEE

60

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324140799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and then selects some other nodes as clusterheads in order to

build a CDS at the end. Gao et al. [28] also proposed a CDS

algorithm which uses the maximal independent set as the basis

of construction of the CDS.

There are various recent algorithms existing for clustering

in MANETs using dominating sets [5], [6], [7], [15], [16],

[17], [18], [19], [20], [21], [29].

A. The Connected Dominating Set Based Clustering Algo-
rithm

The Connected Dominating Set Based Clustering Algo-

rithm (CDSC) finds a minimal connected dominating set in a

MANET in a distributed manner. We developed our algorithm

based on Wu’s CDS Algorithm [13] because it is very suitable

for our purposes. It finds a connected dominating set which

can be used as a backbone, it is totally distributed and it does

not require a predefined routing mechanism. In the CDSC

Algorithm [1], we added some extra heuristics to Wu and

Li’s algorithm [14] and provided more efficient results. We

also added two more cluster head pruning rules. The heuristics

shorten the runtime of the algorithm and a total of four pruning

rules results in less redundant cluster heads compared to Wu

and Li’s algorithm.

III. THE TWO LEVEL CONNECTED DOMINATING SET

BASED CLUSTERING ALGORITHM

We propose a distributed algorithm which finds two minimal

connected dominating sets in a MANET. We developed our

algorithm as an extension of our previous algorithm [1]. First,

we find a CDS on MANET using our CDS algorithm and call

the resulting subset of cluster heads as First Level CDS, then

we run the same clustering algorithm on the subset of First
Level CDS. At the end of the algorithm we get a two level

connected dominating set, First Level CDS which is composed

of Cluster Heads and Second Level CDS which is composed

of Super Cluster Heads. The two-Level clustering provides

more crowded clusters which are relatively better than our

first approach in which the size of the clusters are very small

compared to the number of nodes in the MANET.

A. Algorithm

We assume that the neighborhoods of the nodes remain

constant in a reasonable period of time in order to complete a

whole cycle in a single node. We also assume that the graph

is connected, each node has a unique node id and knows its

adjacent neighbors. Each node has a color indicating whether

the node is in the dominating set or not. The color is set to

BLACK if the node is in the dominating set, or WHITE if

the node is not in the dominating set. Color GRAY is used to

indicate that the node is marked after the first phase, but it

will change its color after the second phase to either WHITE
or BLACK. The first level messages are Period TOUT which

triggers the algorithm and is sent periodically by the node

itself, Neighbor REQ which requests a list of distance-2 neigh-

bors, Neighbor LST which includes a list of adjacent neighbors

of sending node, Color REQ which requests a node’s color

Cluster_RES,C11

Neighbor_LST_L2, C1

Neighbor_LST, C1

See state machine conditions for transition details

CHK_NODES

CHK_CH

LEVEL1

LEVEL1

CHK_DOM
LEVEL1

CHK_NODES

LEVEL2

LEVEL2

CHK_CH

CHK_DOM

LEVEL2

/ Cluster_REQ
Neighbor_LST,C2,C9

Color_RES,C2, C16 or

Neighbor_LST_L2,C2,C9 / Cluster_REQ_L2

Color_RES_L2,C2, C16 or

Color_RES,C1

C17 / Cluster_REQ_L2

C17 / Cluster_REQ

Color_RES,C2,C12 or C13 or C14 or C15
Neighbor_LST,C2,C4 or
C5 or C8

IDLE

BLACK
WAIT

/ Black_RES, C2

/ Neighbor_REQ_L2

Neighbor_LST_L2,C2,C4 or C5 or C8
Cluster_RES_L2,C11

Neighbor_LST_L2,C2,C10
/Color_REQ_L2

Color_RES_L2,C2,C18

Neighbor_LST_L2,C2,C3 or C6 or C7

Color_RES_L2,C

Color_RES,C2,C18,C21

/ Black_REQNeighbor_LST,C2,C10
/Color_REQ

/ Neighbor_REQ
Period_TOUT

Color_RES,C2,C18,C20
/ Neighbor_REQ_L2

Color_RES_L2,C2,C12 or C13
or C14 or C15

In any state: Neighbor_REQ / Neighbor_LST
Color_REQ / Color_RES
Cluster_REQ / Cluster_RES, C19

Neighbor_LST,C2,C21,C3 or
C6 or C7
/ Black_REQ

WHITE_
STATE

BLACK_

RED_

STATE

STATE

Fig. 1. Finite State Machine of the 2-Level Hierarchical Clustering Algorithm

after the first phase, Color RES holds the sender’s color,

Cluster REQ requests if a node is a First Level Cluster Head or

not and Cluster RES which informs target node that the sender

is a First Level Cluster Head or not. The second level messages

are Black REQ which requests GRAY nodes to send their

permanent color, Black RES includes the sender’s permanent

color, Neighbor REQ L2 requests a list of distance-2 BLACK
neighbors of BLACK nodes, Neighbor LST L2 includes a list

of BLACK neighbors of the sender node, Color REQ L2 re-

quests a node’s second level color, Color RES L2 delivers the

sender’s second level color, Cluster REQ L2 requests if a node

is a Second Level Cluster Head or not and Cluster RES L2
informs target node that the sender is a Second Level Cluster
Head or not. Every node in the network performs the same

local algorithm periodically. The finite state diagram for the

algorithm can be seen in Fig. 1. During the runtime of

the Two-Level CDS Algorithm some state machine transition

conditions are needed to be defined. The definition of CDS
Algorithm Finite State Machine Transition Conditions are

described below such that:

• C1. The responses to the multi-casted message do not

have been completely collected.

• C2. The responses to the multi-casted message are com-

pletely collected.

• C3. The node is isolated, its neighbor is isolated too and

node’s id is bigger than its neighbor’s id.

• C4. The node is isolated, its neighbor is isolated too and

the node’s id is smaller than its neighbor’s id.

• C5. The node is isolated and its neighbor is not isolated.

• C6. The node has at least one isolated neighbor.

• C7. The graph is complete and the node has the biggest

61

id in the graph.

• C8. The graph is complete and the node does not have

the biggest id.

• C9. Node’s neighbors are all connected and the graph is

not complete.

• C10. The node has at least two unconnected neighbors.

• C11. Cluster Head is set to the sender’s id.

• C12. CDS pruning rule 1 which is described below is

true.

• C13. CDS pruning rule 2 which is described below is

true.

• C14. CDS pruning rule 3 which is described below is

true and the node has at least one BLACK neighbor.

• C15. CDS pruning rule 4 which is described below is

true and the node has at least one BLACK neighbor.

• C16. CDS pruning rule 3 is true and the node doesn’t

have any BLACK neighbor.

• C17. CDS pruning rule 4 is true and the node doesn’t

have any BLACK neighbor.

• C18. Conditions C12 to C17 are all false.

• C19. Node’s color is currently BLACK.

• C20. Node’s neighbors completed the first level and

determined their first level color.

• C21. The node still have GRAY colored neighbors in its

color list.

• C22. The node does not have any neighbors.

Each node is in the IDLE state and colored as UNDE-
FINED COLOR initially. When the period is timed out, the

node sends a Period TOUT message to itself. This message

causes the node to switch its state to CHK NODES LEVEL1
and send a Neighbor REQ message to all of its adjacent

neighbors. Then the node waits for Neighbor LST messages

from all of its adjacent neighbors. When all Neighbor LST
messages are collected, the node checks the heuristics C3 to

C10 defined in the state machine transition conditions list to

determine their next state transition. If the node is suitable for

conditions C4, C5 or C8 it determines its First Level Color
and its Second Level Color to WHITE and changes its state to

WHITE STATE. Such a node completes the algorithm in this

step and becomes an Ordinary Node. If the node is suitable

for the conditions C3, C6 or C7, it changes its First Level
Color to BLACK and switches to state WAIT BLACK. This

type of node completes its First Level Clustering at this step

as a First Level Cluster Head, and starts to run Second Level
Clustering. If condition C9 is true for a node, it marks its First
Level Color to WHITE, switches its state to CHK CH LEVEL1
and multicasts a Cluster REQ message in order to learn which

neighbor became its cluster head until a Cluster RES message

is received. When the Cluster RES message is received the

node changes its state to WHITE STATE, sets its First and its

Second Level Color to WHITE and finishes the algorithm. If

the node is suitable for the condition C10, it is potentially

a cluster head candidate. In this case, the node switches its

state to CHK DOM LEVEL1, changes its First Level Color to

GRAY and multicasts a Color REQ message in order to collect

its neighbor’s colors. When the node switches its state to

CHK DOM LEVEL1, it waits for all its neighbors to send their

colors. When the node v collects all of the color information,

it starts to apply the CDS pruning rules which are described

below where u and w are the neighbor nodes of the node v:

1) ∃u ∈ N(v) which is marked BLACK such that N [v] ⊆
N [u];

2) ∃u,w ∈ N(v)which is marked BLACK such that

N(v) ⊆ N(u)
⋃

N(w);
3) ∃u ∈ N(v) which is marked GRAY such that N [v] ⊆

N [u] and degree(v) < degree(u) OR (degree(v) =
degree(u) AND id(v) < id(u));

4) ∃u,w ∈ N(v) which is marked GRAY OR

BLACK such that N(v) ⊆ N(u)
⋃

N(w) AND

degree(v) < min{degree(u), degree(w)} OR

degree(v) = min{degree(u), degree(w)} AND

id(v) < min{id(u), id(w)};

If one of these pruning rules is true then the node v
changes its First Level Color to WHITE. If the node is

suitable for conditions C12, C13, C14 or C15, it finishes

the algorithm and changes its state to WHITE STATE and its

colors to WHITE. If it is suitable for C16 or C17, it changes

its state to CHK CH LEVEL1 and then to WHITE STATE
to finish its execution. If none of the four pruning rules

is true, then the node is suitable for the condition C18, it

then marks itself as BLACK. If the node is also suitable for

the condition C21, it changes its state to WAIT BLACK and

multicasts a Black REQ message in order to wait its neighbors

to determine their permanent colors. If a node’s neighbors

have already determined their First Level Colors, then node

changes its state to CHK NODES LEVEL2 and multicast the

Neighbor REQ L2 message.

Nodes which reach to the WAIT BLACK or

CHK NODES LEVEL2 states end the First Level Clustering
and from this point, they start to execute the Second Level
Clustering. The algorithm which is used in the Second Level
Clustering is the same algorithm which is used during the

First Level Clustering. The only difference is the new set of

nodes used in Second Level Clustering are the nodes which

are BLACK colored after the First Level Clustering. We create

a subset S which is composed of First Level Cluster Heads,

and apply the CDS algorithm to the subset S. In the Second
Level Clustering, nodes which are not Level 2 Cluster Heads
end in the state BLACK STATE. Level 2 Cluster Heads end in

the state RED STATE. When the Two-Level CDS Algorithm
is finished, the nodes are in any of the WHITE STATE,

BLACK STATE or RED STATE. The cluster information for

a node is held locally, each node knows only its cluster head.

This makes our algorithm more flexible, thus it can be easily

extended to a k-level hierarchical clustering.

At any state, a node can receive request messages to

help other nodes run their algorithms. These messages are

Neighbor REQ, Cluster REQ, Color REQ, Neighbor REQ L2,

Cluster REQ L2, Color REQ L2 and Black REQ. In such a

case, the node prepares the required information requested in

62

WHITE
BLACK

10 8

11

14

1 4

2
13

12
17

18 15

16

3

95
6 7

Fig. 2. First Level Output of TLCDSC Algorithm in a Sample Graph

the received message and continues its current operation. No

state changes are performed in this case.

B. An Example Operation

We obtained the resulting connected dominating set in Fig. 3

by using our algorithm. This section explains the algorithm

step by step by in a sample graph. Execution of the algorithm

is explained phase by phase, for all nodes.

Execution of First Level Clustering: At the end of the first

phase of the First Level Clustering, nodes 6, 8, 10, 11, 14, 15,

16 and 18 determine their colors permanently. Node 6 satisfies

the condition C6, thus changes its First Level Color to BLACK
and finishes its First Level Clustering and changes its state to

WAIT BLACK. Nodes 8, 11, 14, 15, 16 and 18 satisfy condition

C9 and change their First Level Colors to WHITE. Nodes 8,

15, 16 and 18 change their states to CHK CH LEVEL1 in

order to set their cluster heads. Nodes 11 and 14 set their

cluster head as node 6 and finish their execution. Node 10 is

an isolated node, therefore it changes its First Level Color to

WHITE and sets its cluster head as node 6 and finishes its

execution. Other nodes become GRAY colored because all of

them satisfy the condition C10. In the second phase of the First
Level Clustering, the CDS algorithm checks the conditions

C12 to C18. At the end of this phase, nodes 1, 2, 4, 12, 13 and

17 determine their colors as WHITE because they are suitable

for one of the four pruning rules. Nodes 12 and 13 select node

6 as their cluster head and finish their First Level Clustering.

Nodes 1, 2, 4 and 17 change their states to CHK CH LEVEL1
in order to set their cluster heads. Nodes 3, 5, 7 and 9 change

their colors to BLACK as they satisfy condition the C18. At

the end of the First Level Clustering, the resulting CDS can

be seen in Fig. 2.

Execution of Second Level Clustering: The Second Level
Clustering uses the new subset of First Level Cluster Heads
as its domain, therefore the working set for the Second Level
Clustering is the nodes 3, 5, 6, 7 and 9. When the Second Level
Clustering starts its execution, nodes 3 and 9 determines their

Second Level Colors as WHITE because they are suitable for

the condition C5. Thus nodes 3 and 9 finishes their Second
Level Clustering by determining their Second Level Colors as

WHITE and their end states as BLACK STATE. Nodes 5 and 7

are suitable for the condition C6, thus they finish their Second
Level Clustering as Super Cluster Heads by determining their

WHITE
BLACK
RED

Level 1 Cluster
Level 2 Cluster

10 8

11

14

1 4

2
13

12
17

18 15

165
6 7

3

9

Fig. 3. Two-Level CDS Algorithm Resulting Graph

Second Level Colors as BLACK and their end states by

RED STATE. Node 6 is suitable for the condition C10, thus it

changes its state to CHK DOM LEVEL2. After collecting its

neighbor’s second level colors, it determines its Second Level
Color as BLACK and its final state as RED STATE, because

it is suitable for the condition C18. The overall result of the

Two-Level CDS Algorithm can be seen in Fig. 3.

C. Analysis

Theorem 1: Time complexity of the clustering algorithm is

O(10).
Proof: Every node executes the distributed algorithm by

the exchange of 10 messages. Since all these communication

occurs concurrently, at the end of the algorithm, the members

of the Two-Level CDS are determined, so the time complexity

of the algorithm is O(10).
Theorem 2: Message complexity of the clustering algo-

rithm is O(n2) where n is the number of nodes in the graph.

Proof: For every mark operation of a node, 10 messages

are required (Neighbor REQ, Neighbor LST, Color REQ,
Color RES, Black REQ, Black RES, Neighbor REQ L2,
Neighbor LST L2, Color REQ L2, Color RES L2). Assuming

every node has n-1 adjacent neighbors, total number of

messages sent is 10(n − 1). Since there are n nodes, total

number of messages in the system is n(10(n− 1)) Therefore

messaging complexity of our algorithm has an upperbound

of O(n2).

IV. RESULTS

We implemented TLCDSC Algorithm using C++ on top of

the network simulator ns2. We generated random scenarios for

static and dynamic graphs.

During the experiments, we used three parameters which are

the number of the nodes, mobility of the nodes and density of

the network. We determined 4 ”number of nodes scenarios”

which have 20, 30, 40 and 50 nodes. We used the degree of the

graph as the density parameter. As the surface area decreases

the density of the graph increases which means that the nodes

will have greater degrees. We set the surface area such that the

degree of our graph will be between 4 and 10. For the mobility

parameter, we generated three ”mobility scenarios” namely

static, low speed and high speed. In the static scenario tests,

63

Fig. 4. Runtime Test in a Static Network

Fig. 5. Runtime Test in a Low Speed Dynamic Network

nodes remain constant. In the low and high mobility scenarios,

respective node speeds are limited from 1 m/s to 5 m/s and

from 5 m/s to 10 m/s. The speed of the nodes is determined

randomly by the simulation environment within the specified

velocity limits. In the dynamic graph experiments, we take

into account only the experiments in which nodes are moving

but the neighborhoods of the nodes do not change.

The parameters which are described above generate 84

different test cases with the specified values. During the tests,

we collected an average of 60 test results for each of the

84 different test cases. Total of 5000 samples were collected

during the TLCDSC Algorithm tests.

Fig. 4 shows the runtime of the algorithm. We see that

runtime of the algorithm is below 20 seconds for the densities

below 6. We experimented for the unlikely cases of the number

of neighbors becoming larger than this value just to see the

response of the algorithm. In this case, we obtain very high

execution times, however, the execution time is linear. We also

observe that the runtime of the algorithm is nearly the same for

the nodes 20 to 50 for densities smaller than 5. This is because

the algorithm runs distributed in each node and is independent

from the size of the graph. In Fig. 5 and Fig. 6, we can see

that in three mobility scenarios, run times are similar to each

Fig. 6. Runtime Test in a High Speed Dynamic Network

Fig. 7. Number of Super Cluster Heads in a Static Network

other as long as the neighborhoods remain constant. The only

parameter that affects the runtime is the density of the graph

which determines the number of messages exchanged between

the neighbor nodes. For higher degrees, the message conflicts

increase dramatically, this results in a sudden increase in the

runtime of the algorithm. The message conflicts also result in

anomalies in the test results which make the observations less

meaningful.

Fig. 7 displays the number of super clusterheads formed

using TLCDSC Algorithm. We would expect to have less

clusterheads as density increases. We can see the decrease

in the clusterhead counts in the graph as the degree value

increases in the figure as we expected. We can see almost the

same amount of decrease in the three mobility scenarios in

Fig. 8 and Fig. 9.

The sizes of the formed clusters for varying parameters

are recorded in Fig. 10. Typically, as the density increases,

the number of clusterheads decreases. Therefore we expect

to have more populated clusters as the degree increases. We

can see this increase and also similar cluster sizes in the

experiment results. In the different mobility scenarios, size

of the clusters remain between the same range which are

limited between 4 and 7. This result shows that TLCDSC

64

Fig. 8. Number of Super Cluster Heads in a Low Speed Dynamic Network

Fig. 9. Number of Super Cluster Heads in a High Speed Dynamic Network

Fig. 10. Size of the Super Clusters in a Static Network

Fig. 11. Size of the Super Clusters in a Low Speed Dynamic Network

Fig. 12. Size of the Super Clusters in a High Speed Dynamic Network

Algorithm is independent from the size of the MANET in

terms of the cluster qualities. The results are also similar for

different mobility scenarios as can be seen in Fig. 11 and

Fig. 12, which means that the algorithm is independent from

the mobility too.

These results show us that the size of the resulting two

level clusters and the runtime of the TLCDSC Algorithm are

independent from the mobility and the size of the MANET.

The TLCDSC Algorithm builds in more crowded clusters than

CDSC Algorithm [1], in this terms the algorithm satisfies

the main objective. We can say that the algorithm can be

preferable in environments in which the density value does

not exceed the maximum degree of 6 as shown in the graphs.

V. CONCLUSIONS

We described, analyzed and showed the implementation

details of a two-level clustering algorithm for MANETs.

Theoretically and experimentally, the proposed TLCDSC Al-

gorithm has similar complexities for each phase which may be

interpreted as being scalable. We may thus extend TLCDSC

Algorithm further to, say n levels, resulting in multiple n
complexity of a single level. Although the proposed algorithm

runtime test results are similar to those in the CDSC Algorithm

65

[1], we observed that the resulting clusters are more crowded

compared to CDSC Algorithm, which was our primary goal

during the development of the TLCDSC Algorithm. There-

fore TLCDSC Algorithm can be preferable if more crowded

clusters are needed.

The local information kept at a node is minimal consisting

of its neighbors and its cluster head at the lowest level which

provides a high level of autonomous operation that can be

used efficiently in highly distributed but coordinated MANET

applications such as wide range rescue operations. One impor-

tant aspect of the TLCDSC Algorithm or its extended deriv-

atives to further levels is the co-existence of clusters at inter

levels. This co-existence may be used effectively to provide

simultaneous service to different application needs at each

level. For example, for the key exchange problem in Public
Key Cryptography in MANETs, clusters and therefore group

communication at level 2 can be used where the lowest and

least populated clusters can provide the basic communication

backbone via their cluster heads.

One difficulty which is encountered during the implemen-

tation of TLCDSC Algorithm is the seemingly slow execution

times in the ns2 simulator. According to the investigations of

the simulation results, we realized that this is not the result

of more than usual number of pruning rules and heuristics

but rather due to collisions of the messages at MAC level.

We are planning to provide MAC level support for TLCDSC

Algorithm in the near future. We are also planning to modify

TLCDSC Algorithm with energy considerations of nodes, to

be able to use this algorithm in wireless sensor networks for

communication backbone formation purposes.

REFERENCES

[1] D. Cokuslu, K. Erciyes, and O. Dagdeviren, ”A Dominating Set Based
Clustering Algorithm for Mobile Ad hoc Networks”, in Proc. ICCS2006,
LNCS 3991, 2006, pp. 571-578.

[2] Y. P. Chen and A. L. Liestman, ”Approximating Minimum Size Weakly-
Connected Dominating Sets for Clustering Mobile Ad Hoc Networks”,
in Proc. 3rd ACM Int. Symp. Mobile Ad Hoc Net. and Comp., 2002, pp.
165-172.

[3] Y. P. Chen, A. L. Liestman, and J. Liu, ”Clustering Algorithms for Ad
Hoc Wireless Networks”, Nova Science Publisher, 2004.

[4] D. Baker and A. Ephremides, ”The Architectural Organization of a
Mobile Radio Network via a Distributed Algorithm”, IEEE Trans. on
[legacy, pre - 1988], vol. 29, Issue 11, pp. 1694-1701, 1981.

[5] M. Gerla and J. T. C. Tsai, ”Multicluster, mobile, multimedia radio
network Wireless Networks”, ACM/Baltzer Journal of Wireless Networks.,
vol. 1, no. 3, pp. 255-265, 1995.

[6] G. Chen, F. G. Nocetti, J. S. Gonzalez and I. Stojmenovic, ”Connectivity
based k-hop clustering in wireless networks”, in Proc. of the 35th Annual
Hawaii International Conference, 2002, pp. 2450-2459.

[7] T. Ohta, S. Inoue and Y. Kakuda, ”An Adaptive Multihop Clustering
Scheme for Highly Mobile Ad Hoc Networks”, in Proc. 6th ISADS03,
2003.

[8] Y. P. Chen and A. L. Liestman, ”A Zonal Algorithm for Clustering
Ad Hoc Networks”, International Journal of Foundations of Computer
Science, pp. 305-322, 2003.

[9] S. Guha and S. Khuller, ”Approximation Algorithms for Connected
Dominating Sets”, in Proc. LLC, Springer-Verlag, 1998.

[10] I. Stojmenovic, M. Seddigh and J. Zunic, ”Dominating sets and neighbor
elimination-based broadcasting algorithms in wireless networks”, IEEE
Transactions on Parallel and Distributed Systems, vol.13, pp. 14-25, 2002.

[11] B. Das and V. Bharghavan, ”Routing in ad-hoc networks using minimum
connected dominating sets”, in Proc. ICC 97 ’Towards the Knowledge
Millennium’, IEEE International Conference on vol. 1, 1997, pp. 376-
380.

[12] B. Das, R. Sivakumar and V. Bhargavan, ”Routing in Ad Hoc Networks
Using a Spine”, in Proc. Sixth IEEE Int. Conf. Computers Comm. and
Networks, 1997, pp. 1-20.

[13] J. Wu and H. Li ”A Dominating-Set-Based Routing Scheme in Ad Hoc
Wireless Networks”, Springer Science and Business Media B.V., Formerly
Kluwer Academic Publishers B.V., 2001.

[14] J. Wu and H. Li, ”On Calculating Connected Dominating Sets for
Efficient Routing in Ad Hoc Wireless Networks”, in Proc. Third Int.
Workshop Discrete Algorithms and Methods for Mobile Computing and
Comm., 1999, pp. 7-14.

[15] F. Dai and J. Wu, ”An Extended Localized Algorithm for Connected
Dominating Set Formation in Ad Hoc Wireless Networks”, IEEE Trans-
actions On Parallel and Distributed Systems, vol. 15, no. 10, 2004.

[16] J. Wu, ”Extended Dominating-Set-Based Routing in Ad Hoc Wireless
Networks with Unidirectional Links”, IEEE Trans. Parallel and Distrib-
uted Systems, vol. 9, no. 3, pp. 189-200, 2002.

[17] X. Yan, Y. Sun and Y. Wang, ”A Heuristic Algorithm for Minimum Con-
nected Dominating Set with Maximal Weight in Ad Hoc Networks”, in
Proc. GCC2003, Grid and Cooperative Computing, Second International
Workshop, 2003, pp.719-722.

[18] P. J. Wan, K. M. Alzoubi and O. Frieder, ”Distributed Construction
of Connected Dominating Set in Wireless Ad Hoc Networks”, Springer
Science and Business Media B.V., Formerly Kluwer Academic Publishers
B.V., vol. 9, no. 2, pp. 141-149, 2002.

[19] H. Liu, Y. Pan and C. Jiannong, ”An Improved Distributed Algorithm for
Connected Dominating Sets in Wireless Ad Hoc Networks”, in Proc. of
ISPA 2004, Parallel and Distributed Processing and Applications, Second
International Symposium, 2004, p. 340.

[20] J. Wu and F. Dai, ”An extended localized algorithm for connected
dominating set formation in ad hoc wireless networks”, IEEE Trans.
Parallel and Distributed Systems, vol. 15, no. 10, 2004.

[21] T. N. Nguyen and D. T. Huynh, ”Connected D-Hop Dominating Sets
in Mobile Ad Hoc Networks”, in Proc. Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks, 2006, pp. 1-8.

[22] I. Stojmenovic, M. Seddigh and J. Zunic, ”Dominating sets and neighbor
elimination-based broadcasting algorithms in wireless networks”, IEEE
Transactions on Parallel and Distributed Systems, vol. 13, pp. 14-25,
2002.

[23] K. M. Alzoubi, P. J. Wan and O. Frieder, ”Maximal Independent Set,
Weakly Connected Dominating Set, and Induced Spanners for Mobile
Ad Hoc Networks”, International Journal of Foundations of Computer
Science, vol. 14, no. 2, pp. 287303, 2003.

[24] B. Han W. Jia, ”Efficient Construction of Weakly-Connected Dominating
Set for Clustering Wireless Ad Hoc Networks”, in Proc. IEEE Globecom,
2006.

[25] B. Han, and W. Jia, ”Clustering Wireless Ad Hoc Networks with
Weakly-Connected Dominating Set”, Journal of Parallel and Distributed
Computing, vol. 67, no.6, pp.727-737, 2007.

[26] N. Nanuvala, ”An Enhanced Algorithm to Find Dominating Set Nodes
in Ad Hoc Wireless Networks”, Master of Science Thesis in the College
of Arts and Science, Georgia State University, 2006.

[27] Y. Li, D. Kim, F. Zou and D-Z. Du, ”Constructing Connected Dom-
inating Sets with Bounded Diameters in Wireless Networks”, in Proc.
International Conference on Wireless Algorithms, Systems and Applica-
tions (WASA 2007), 2007, pp. 89-94.

[28] B. Gao, Y. Yang and D. Ma, ”A new distributed approximation algorithm
for constructing minimum connected dominating set in wireless ad hoc
networks”, International Journal of Communication Systems (IJCS), vol.
18, pp. 743762, 2005.

[29] W. Wu, H. Du, X. Jia, Y. Li and S. Huang, ”Minimum connected
dominating sets and maximal independent sets in unit disk graphs”,
Theoretical Computer Science, vol. 352, no. 1, pp. 1-7, 2006.

66

