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Abstract

A steady state conjugate conduction–convection investigation is performed on vertical plate fin in which a small heat source is
located. Heat from the fin surface is transferred to the surroundings by laminar natural convection. The governing equations for the
problem are the heat conduction equation for the fin and the boundary layer equations, which are continuity, momentum and energy
equations, for the fluid. A computer program is written by using the finite difference method in order to solve the governing equations
which are nonlinear and coupled. The best location of the heat source in the fin formaximumheat transfer rate depends on two parameters
which are the conduction–convection parameter and the Prandtl number. The obtained results have shown that for the fin with large
conduction–convection parameter, a heat source location for maximum heat transfer rate exists.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Vertical plate fins are widely employed in natural convection in order to increase heat transfer rate. Simple theoretical
analysis related to this type of fin can be found in heat transfer textbooks but the temperature distribution along the fin is
obtained based on the average heat transfer coefficient. However, accurate results for the fin temperature and heat transfer
rate should be obtained by considering variation of the local heat transfer coefficient along the fin and variation of the fin
temperature in determination of the fluid temperature. The conjugate solution of the heat conduction equation for the fin
and continuity, momentum and energy equations for the flow provides an accurate solution for the natural convection fin
problem.

Among theoretical studies for a vertical plate fin, Sparrow and Acharya [1] were probably the first ones who performed
a conjugate conduction–convection analysis. They studied the interaction between local convective heat transfer and heat
conduction in the fin. In their problem, the upper end of the fin is attached to a heat source whose temperature is different
from the ambient temperature. They compared the numerical results of the conjugate solutions with the results of
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Nomenclature

g Acceleration of gravity
GrL Grash of number based on fin length
h Heat transfer coefficient
ĥ Dimensionless heat transfer coefficient
kf Fin thermal conductivity
k Fluid thermal conductivity
L Fin length
Ncc Conduction–convection parameter
Pr Prandtl number
q Heat flux
q̂ Dimensionless heat flux
Q⌢ Dimensionless heat transfer rate
T Temperature
t Fin thickness
u, v Velocity components in x and y directions, respectively
U, V Dimensionless velocity components in X and Y directions, respectively
x, y Coordinates
X, Y Dimensionless coordinates

Greek Symbols
β Thermal expansion coefficient
ν Kinematic viscosity
θ Dimensionless temperature
ξ Dimensionless heat source location

Subscripts
o Heat source
f Fin
∞ Ambient
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conventional fin theories. Sunden has extended the studies of Sparrow and Acharya, see Refs. [2,3]. He performed two
studies for this type of fin for laminar and/or turbulent convection andmixed convection heat transfer. Pop and Hossain [4]
have carried out a conjugate study of natural convection flow along a vertical plate fin embedded in a porous medium
saturated either pure or saline water. In their study, an implicit finite difference scheme with the Keller box method was
employed to solve the boundary layer equations which were written in terms of stream function. They investigated the
effect of the conduction–convection parameters on temperature field, heat transfer coefficient and heat flux from the fin.
Mobedi et al. [5] have solved a conjugate conduction–natural convection heat transfer problem for a rectangular fin
attached to a partially heated horizontal base. They carried out their study for air when the flow is laminar and steady.
Recently, Trevino et al. [6] have performed a conjugate conduction–free convection study on a rectangular vertical fin
which is heated from above. They studied the thermal penetration length over which the temperature of a fin decreases
from its maximum value at the top of the fin to the ambient temperature.

2. Problem under consideration

In this study, the analyzed fin is a vertical plate fin with thickness t and length L as illustrated in Fig. 1. A heat
source, whose temperature To, exceeds the ambient temperature T∞, is placed in the fin. The diffused heat



Fig. 1. A schematic view of the considered vertical plate fin with a heat source.
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throughout the fin is transferred to the surroundings only by laminar natural convection. The thickness of the fin is
small, thus, the heat conduction throughout the fin is considered one-dimensional. The height of the heat source is
assumed negligible; however its thickness is the same as the fin thickness. The heat transfer from the tip and end of
the fin is omitted. The study is performed for air with Pr=0.7.

3. Governing equations

With the Boussinsq approximation, the dimensionless form of the conservation equations for the flow can bewritten as:

AU
AX

þ AV
AY

¼ 0 ð1Þ

U
AU
AX

þ V
AU
AY

¼ A2U
AY 2

þ h ð2Þ

U
Ah
AX

þ V
Ah
AY

¼ 1
Pr

A2h
AY 2

ð3Þ

The above equations are nondimensionlized by employing the following dimensionless parameters:

X ¼ x=L; Y ¼ ðy=LÞGr1=4L ;U ¼ u=ðgbðT0−TlÞLÞ1=2;V ¼ m=ðgbðT0−TlÞm2=LÞ1=4;

h ¼ ðT−TlÞ=ðT0−TlÞ GrL ¼ gbðT0−TlÞL3=m2
ð4Þ

The dimensionless form of the heat conduction equation for the fin can be obtained as:

d2hf
dX 2

¼ Ncch ̂hf ð5Þ

where θf, Ncc and ĥ are dimensionless fin temperature, dimensionless conduction–convection parameter and
dimensionless local convection heat transfer coefficient, respectively and they are defined as:

hf ¼ ðTf−TlÞ=ðT0−TlÞ: ð6Þ
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Ncc ¼ kL
kf t

Gr1=4L ð7Þ

h ̂ ¼ hL

kGr1=4L

¼ −
Ah
AY

=h

� �
Y¼0

ð8Þ

In the present investigation, the following boundary conditions are used for the boundary layer equations:

Y ¼ 0 U ¼ V ¼ 0; h ¼ hf ðX Þ ð9Þ

YYl U ¼ 0; h ¼ 0 ð10Þ

X ¼ 0 U ¼ 0; h ¼ 0 ð11Þ

The boundary conditions for the fin heat conduction equation, Eq. (6), are:

X ¼ 0
dhf
dX

¼ 0 ð12Þ

n ¼ L0=L hf ¼ 1 ð13Þ

X ¼ 1
dhf
dX

¼ 0 ð14Þ

As it can be seen from the dimensionless form of the governing equations and boundary conditions, the
results of the problem depend on three dimensionless parameters, namely Pr, Ncc and ξ. The variation of Pr
number is not considered since the study is performed only for air with Prandtl number Pr=0.7. Therefore, for
the present study the number of effective parameters is reduced to two which are Ncc and ξ. Based on
dimensionless variables which are presented in Eq. (4), the dimensionless local heat flux along the fin can be
determined by the following relation:

q̂ ¼ qL

kðT0−TlÞGr1=4L

¼ −
Ah
AY jY¼0

ð15Þ

The dimensionless total heat transfer rate from both sides of the fin can be calculated by integrating the local heat
flux along the fin:

Q̂ ¼ 2
Z X¼1

X¼0
−
Ah
AY jY¼0

Þdx�
ð16Þ

4. Numerical solution procedure

The continuity, momentum and energy equations are solved by using the finite difference method which is
explained in Ref. [7]. The nonlinearities of the momentum and energy equations are removed by adopting U
and V values of the previous iteration step. A first order upwind scheme is employed to obtain the finite
difference form of the convective terms in the momentum and energy equations. The set of numerical equations
for momentum and energy equations is solved by the Thomas Algorithm method line by line in Y direction and
marching in the X direction. A successive under-relaxation value is adapted to control the speed of propagation
of U and θ in the computational domain. The value of SUR (successive under relaxation) is kept around 0.1–
0.3. The heat conduction equation of the fin is solved by finite differences using Gauss–Seidel iteration
method.

The convergence of the solution procedure involves the convergence of inner iteration (for the solution of
boundary layer equations and fin conduction equation) and outer iteration which is the convergence of the whole
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procedure. For the convergence of the boundary layer equations, the following convergence criterion is
employed;

j h ̂nþ1−h ̂n

h ̂
n
max
j

max

V10−10 ð17Þ

while the convergence criterion for the heat conduction equation is set as;

j hnþ1
f −hnf
hnfmax
j

max

V10−10 ð18Þ

For the outer iteration, the solution of the whole procedure is said to be converged when the relative rate of changes
of normalized dimensionless temperature at each node inside the fin does not exceed 10−7, i.e.

j hnþ1
f −hnf
hnfmax jmax

V10−7 ð19Þ

The numerical tests for the location of the open boundary (Y→∞) have shown that, 7L is a sufficient distance
for the location of the open boundary from the fin. A non-uniform mesh is used for the fin and boundary layer
domains. The grid sizes are taken fine around the fin and expanded continuously towards the far boundary. The
grid sizes also expanded from the leading edge to the top of fin. The size of the grids at the leading edge has an
important effect on the accuracy of the results. Due to the high temperature gradient around the heat source,
smaller grid sizes are also used around the heat source. Numerical tests have shown that 500 nodes along fin and
300 nodes in the Y direction are sufficient to obtain the accurate computational results. For all runs which are
performed in this investigation, the minimum and maximum grid sizes in the boundary layer domain and fin are
ΔXmin=1.08×10

−8 and ΔXmax=2×10
−2 for the X direction and ΔYmin=10

−3 and ΔYmax=0.15 for the Y
direction. A finite difference program which is written in Fortran language is used to solve the set of the
governing equations. In order to evaluate the dimensionless local heat transfer coefficient and heat flux along the
fin, a second order finite difference approximation is used to calculate the temperature gradient for the fluid
adjacent to the fin.

5. Results

For establishing the accuracy of the employed solution method and computer program, calculations for the isothermal
vertical plate (Ncc=0) were carried out and the results were compared with the results of the similarity solution reported in the
literature. The value of dimensionless parameter Nux/Grx

1 / 4 for the different nodes along the fin is obtained as 0.357 which is
the same as the value reported in Ref. [8]. The problem which has been handled by Sparrow and Acharya [1] was also solved.
A good agreement between the results obtained by the present study and the results reported by Sparrow and Acharya [1] was
observed.

Based on obtained results for temperature distribution along the fin for different heat source locations, it is observed that for
the fins with the value of Ncc close to zero, the fin temperature is almost constant and the fin can be considered as an isothermal
plate as can be seen from Fig. 2 in which the variation of dimensionless fin temperature for ξ=0.75 heat source location and
different Ncc value are shown. Mathematically, the decrease of Ncc value reduces the influence of the right-hand side of Eq. (5)
in the solution. Because the adiabatic boundary conditions are applied to the tip and end of the fin, the solution of Eq. (5)
approaches a constant value which is the temperature of the heat source. The expected result for the fin with large Ncc value is a
considerable temperature variation along the fin. For fins with large Ncc values, the fin temperature monotonically decreases
from the heat source location towards the tip and end of the fin. At the heat source location, the maximum fin temperature
prevails (Fig. 2).

The distribution of the dimensionless local heat transfer coefficient along the same fin of Fig. 2 is shown in Fig. 3. For
small Ncc values, the distribution of ĥ is very similar to the distribution of the local heat transfer coefficient for an isothermal
plate, because the fin temperature is almost constant. It is observed that for fins with small Ncc values, changes in the location



Fig. 2. The dimensionless temperature distribution along the fin with the heat source location at ξ=0.75 for four different Ncc values.
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of the heat source do not affect the local heat transfer coefficient. For large Ncc values, the distribution of the local heat transfer
coefficient becomes different. It deceases monotonically from the tip of the fin, reaches a minimum and then starts to increase
to its value at the heat source location. Beyond the maximum at the heat source location, it monotonically decreases towards
the fin end. This variation of the local heat transfer coefficient can be explained by considering fin temperature distribution.
For large Ncc values, the non-uniform wall temperature distribution causes enhancement of the buoyancy force and increase of
the local heat transfer coefficient at the heat source location.

The variation of heat flux along the fin is very similar to the local heat transfer coefficient variation, because for fins with
small Ncc, the fin temperature is constant, the heat flux distribution does not vary by changing the location of the heat source. For
fins with large Ncc values, due to enhancement of the buoyancy force at the heat source location, the distribution of the heat flux
is affected by changing the location of the heat source. By increasing the Ncc value and particularly for the cases that the heat
source is located after the middle of the fin, a sharp drop of the heat flux at the region near the leading edge of the fin attracts
Fig. 3. The distributions of dimensionless local heat transfer coefficient along the fin with heat source location at ξ=0.75 for four different Ncc values.



Fig. 4. The distribution of dimensionless heat flux along the fin with heat source location at ξ=0.75 for four different Ncc values.
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attention as it is seen from Fig. 4. Both the decrease of the wall temperature from the heat source location towards the fin tip and
the decrease of the local heat transfer coefficient at the fin tip region cause the heat flux at the region near the leading edge to
drop steeply.

Fig. 5 shows the variation of the total heat transfer rate from both sides of the fin with the location of the heat source for
different Ncc values. For a small conduction–convection parameter, the heat transfer rate is not influenced by changing the
location of the heat source. This is an expected result for fins with small Ncc because the fin temperature is very uniform. The
maximum heat transfer rate and consequently the maximum fin performance always occur for the fins with small Ncc values,
because the fin temperature is almost equal to that of the heat source. For large Ncc values, by changing the location of the
heat source from the tip toward the end of the fin, a heat source location for maximum heat transfer rate appears. The
distribution of the heat flux through the fin causes this behavior of the heat transfer rate versus the heat source location. When
the heat source is located at the leading edge, the heat flux decreases monotonically towards the fin end. By changing the
place of the heat source and moving it to the middle of the fin, increases of the heat flux from the tip of the fin towards the
heat source location occur due to the increase of the temperature. This can be seen from Fig. 6 where the variations of the
heat flux along a fin with Ncc=6 for different heat source locations are shown. However, after middle of the fin as the heat
source comes close to the fin end, the downward slope of the heat flux at the leading edge region becomes steeper. This has a
Fig. 5. Variation of dimensionless heat transfer rate with location of the heat source for different conduction–convection parameter.



Fig. 6. Variation of the dimensionless heat flux with heat source location for a fin with Ncc=6.
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negative effect on the increasing trend of heat transfer rate and consequently the heat transfer rate decreases at the region near
the fin end. Based on various numerical results, which are obtained for different heat source locations and different Ncc

values, the maximum heat transfer rate and fin performance are obtained when the heat source is approximately located at
ξ=0.54.

6. Conclusion

A conjugate conduction–convection study was performed on a vertical plate fin in which a small heat source
was located. For a small conduction–convection parameter, the fin behaves like an isothermal vertical plate and the
heat transfer rate from the fin does not vary by changing the location of the heat source. However, for fins with
large values of the conduction–convection parameter, the heat transfer rate is influenced by the location of heat
source. By changing the location of the heat source from tip towards the end of the fin, a location for maximum
heat transfer rate was found. The obtained numerical results showed that for fins with large conduction–convection
parameter ξ=0.54 is approximately the best location for the heat source because it provides maximum heat transfer
from the fin.
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