

The Control Of A Manipulator Using

Cerebellar Model Articulation Controllers

By

Murat Darka

A Dissertation Submitted to the

Graduate School in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department: Mechanical Engineering

Major: Mechanical Engineering

Izmir Institute of Technology

Izmir, Turkey

December 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324140709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We approve the thesis of Murat DARKA

Date of Signature

………………………. 29.12.2003

Assist. Prof. Dr. Serhan ÖZDEMİR

Supervisor
Department of Mechanical Engineering

………………………. 29.12.2003

Assist. Prof. Dr. Gürsoy TURAN

Department of Civil Engineering

………………………. 29.12.2003

Prof. Dr. Rasim ALİZADE

Department of Mechanical Engineering

………………………. 29.12.2003

Assoc. Prof. Dr. Barış ÖZERDEM

Head of Department

Department of Mechanical Engineering

ABSTRACT

The emergence of the theory of artificial neural networks has made it possible to

develop neural learning schemes that can be used to obtain alternative solutions to complex

problems such as inverse kinematic control for robotic systems. The cerebellar model

articulation controller (CMAC) is a neural network topology commonly used in the field of

robotic control which was formulated in the 1970s by Albus. In this thesis, CMAC neural

networks are analyzed in detail. Optimum network parameters and training techniques are

discussed. The relationship between CMAC network parameters and training techniques are

presented. An appropriate CMAC network is designed for the inverse kinematic control of a

two-link robot manipulator.

ÖZ

Yapay sinir ağları teorisinin ortaya çıkmasıyla, robot ters kinematiği kontrolü gibi

karmaşık problemlerin çözümü için alternatif methodların gelişmesi mümkün olmuştur.

Serebelar Model Artikulasyon Kontrolör (CMAC) 1970 lerde Albus tarafından geliştirilen ve

genelde robot kontrolü alanında kullanılan bir yapay sinir ağı çeşididir. Tezde CMAC yapay

sinir ağları detaylı olarak analiz edilmiş, optimum ağ parametreleri sunulmuş ve CMAC

yapay sinir ağlarına has öğretme teknikleri karşılaştırılmıştır. İki serbestlik dereceli bir robot

kolunun ters kinematik kontrolü için CMAC yapay sinir ağı tasarlanmıştır ve bilgisayarda

CMAC yapay ağının performansı simule edilmiştir.

TABLE OF CONTENTS

 LIST OF FIGURES..v

LIST OF TABLES...viii

 Chapter 1. INTRODUCTION..1

 Thesis outline..3

 Chapter 2. NEURAL NETWORKS...4

 Neural Networks...5

 Learning Rules..8

 Learning Algorithms...9

 Types of Neural Networks..10

 Cerebellar Model Articulation Controller.................................11

 The Cerebellum...12

 The CMAC Network...13

 Chapter 3. CMAC PROGRAMMING...19

 The CMAC Mapping..19

 The CMAC Training...22

 Hash Coding..24

 Function Approximation with the CMAC................................26

 Chapter 4. ROBOTIC CONTROL WITH CMACs...49

 Robotic Control...49

 Inverse Kinematics for Position..54

 The Inverse Kinematics Control with CMAC..........................56

 The Hardware Implementation of a Two DOF

 Manipulator...64

 Step Motors...64

 Step Motor Driver Circuit...67

 Experimental Setup Description...................................67

 Chapter 5. Conclusions...70

REFERENCES..72

 APPENDIX MATLAB CMAC CODE SAMPLES......................................76

LIST OF FIGURES

Figure 2.1 A neural cell...5

Figure 2.2 A model neuron...6

Figure 2.3 Neural network layers..6

Figure 2.4 Exterior view of human brain..12

Figure 2.5 Neuron cells in cerebral cortex..12

Figure 2.6 A Theoretical model of the cerebellum...13

Figure 2.7 A schematic representation of CMAC...14

Figure 2.8 The learning architecture of CMAC..15

Figure 2.9 Block division of CMAC for a two-variable example................................17

Figure 3.1 An example for quantized layers of the input space....................................19

Figure 3.2 Single point mapping for one-dimensional CMAC.....................................20

Figure 3.3 An example for two-dimensional CMAC.. 21

Figure 3.4 Single point mapping for two-dimensional CMAC....................................21

Figure 3.5 Selection of training points for hashing in one-dimensional

CMAC ...25

Figure 3.6 Selection of training points for hashing in two-dimensional

CMAC ...25

Figure 3.7.1 Sine approximation...28

Figure 3.7.2 Memory Convergence..28

Figure 3.8.1 Sine approximation...28

Figure 3.8.2 Memory Convergence..28

Figure 3.9 Maximum error - total number of layers. (w=30).......................................29

Figure 3.10 Mean error - total layer number (w = 30)..30

Figure 3.11 Mean error - total number of layers (w = 18)..30

Figure 3.12.1 Sine approximation...31

Figure 3.12.2 Memory Convergence..31

Figure 3.13 Mean error - total number of layers, generalization width

training points (-180 : 30 :180)...32

Figure 3.14 Maximum error - total number of layers, generalization width

training points (-180 : 30 :180)...33

Figure 3.15.1 Sine approximation...34

Figure 3.15.2 Memory Convergence..32

Figure 3.17.1 Sine approximation..…....35

Figure 3.17.2 Memory Convergence..…..35

Figure 3.18.1 Sine approximation..….....36

Figure 3.18.2 Memory Convergence..36

Figure 3.19 Hash size - maximum error

One dimensional function approximation of CMAC

where training points set (-180 : 15 : 180) and L = 15, w = 15....................................37

Figure 3.20 Hash size - mean error

One dimensional function approximation of CMAC

 where training points set (-180 : 15 : 180) and L = 15, w = 15....................................38

Figure 3.21.1 Sine approximation..39

Figure 3.21.2 Memory Convergence..39

Figure 3.22 Mean error - total number of layers

w = 55, random training in 43 points ...40

Figure 3.23 Maximum error - total number of layers

random training in 43 points...41

Figure 3.24 Mean error - total number of layers

random training in 43 points...41

Figure 3.25.1 Sine approximation...42

Figure 3.25.2 Memory Convergence..42

Figure 3.26 CMAC output for approximation of the function z = sin (x) cos (y)

w = 30, L = 30 ...43

Figure 3.27 Memory convergence of two-dimensional CMAC...................................44

Figure 3.28 CMAC output for approximation of the function z = sin (x) cos (y)

w = 15, L = 15 ...44

Figure 3.29 Memory convergence of two-dimensional CMAC...................................45

Figure 3.30.1 Sine approximation...46

Figure 3.30.2 Memory Convergence..46

Figure 3.31.1 Sine approximation...46

Figure 3.31.2 Memory Convergence..46

Figure 3.32.1 Sine approximation...47

Figure 3.32.2 Memory Convergence..47

Figure 3.33.1 Sine approximation...48

Figure 3.33.2 Memory Convergence..48

Figure 4.1 Basic Blocks of Robotic System...50

Figure 4.2 Functional block diagram of a dynamic robot control system....................51

Figure 4.3 Neuro control in block...51

Figure 4.4 Open loop training scheme..52

Figure 4.5 Closed loop training methodology..52

Figure 4.6 The structure of the adaptive plant control system based on neural

networks..53

Figure 4.7 Plane geometry associated with a 2-link planar manipulator......................54

Figure 4.8 CMAC network for inverse kinematics of two-link manipulator................56

Figure 4.9 Block diagram for online learning of inverse kinematics of

two-DOF manipulator...58

Figure 4.10 Simulation of the actual positions of the end effector of the

two-linked robot..59

Figure 4.11 Joint angle trajectories of the two-linked robot...59

Figure 4.12 Random selected training data in the workspace of the

two-linked robot arm...60

Figure 4.13 Sequence training data in the workspace of the two-linked

robot arm...61

Figure 4.14 Polar symmetric training data in the workspace of the two-linked

robot arm...61

Figure 4.15 The output error for the random trained network......................................62

Figure 4.16 The output error for the sequentially trained network...............................63

Figure 4.17 The output error for the symmetric trained network.................................63

Figure 4.18 Variable Reluctance Motor..65

Figure 4.19 Permanent Magnet Motor..65

Figure 4.20 Hybrid motor...66

Figure 4.21 Step motor driver circuit ...67

Figure 4.22 Block diagram of the control system...68

Figure 4.23 Experimental hardware setup..69

Figure 4.24 Robot arm drawing……………………..69

LIST OF TABLES

 Table 3.1 CMAC parameters and sine approximation results......................................28

Table 3.2 CMAC parameters and sine approximation results......................................28

Table 3.3 CMAC parameters and sine approximation results......................................31

Table 3.4 CMAC parameters and sine approximation results......................................34

Table 3.5 CMAC parameters and sine approximation results......................................35

Table 3.6 CMAC parameters and sine approximation results......................................36

Table 3.7 CMAC parameters and sine approximation results......................................39

Table 3.8 CMAC parameters and sine approximation results......................................42

Table 3.9 CMAC parameters and sine approximation results......................................46

Table 3.10 CMAC parameters and sine approximation results....................................46

Table 3.11 CMAC parameters and sine approximation results....................................47

Table 3.12 CMAC parameters and sine approximation results....................................48

Table 4.1 Robot arm parts…………………………………….....................................68

CHAPTER 1

INTRODUCTION

Due to the theoretical development and application successes, the interests in

artificial neural networks have been growing in various fields of engineering. The

scientists proposed many mathematical models of neural networks based on human

brain and the function of biological neurons and their interconnections. The cerebellar

model articulation controller (CMAC) was inspired on the knowledge of the function of

the cerebellum of human brain. A theoretical model was used to explain the information

processing characteristics of the cerebellum. In Great Britain David Marr in 1969 and in

the US by James S. Albus in 1971 developed this model [1]. It was the model of the

structure and functionality of the various cells and fibers in the cerebellum. This model

makes Albus to propose a mathematical formalism for the cerebellum. CMAC is a

neural network architecture. Basically, a CMAC computes the desired output by taking

inputs as an address to refer to a memory where the weights are stored. CMACs

estimate a relationship between the input and output by supervised training techniques.

The problem of control of a robot arm consists of arranging the motor

commands at the joints so the end-effector follows a desired trajectory as precisely as

possible. The efficient solution of the control problem using conventional control

techniques would require a thorough knowledge of the system behavior, translated into

a very accurate nonlinear mathematical model, which is typically very hard to obtain

[8]. Neural network control schemes are suited to the robot control problem. In this case

the approximation ability and learning capabilities make neural networks good

alternatives. Instead of generating a complicated mathematical model of the robotic

system, a relationship between the input and the output of the system is evaluated by the

neural networks. The CMAC neural network has the advantage of much faster

convergence and online learning ability than the other networks [8].

In this thesis, CMAC neural networks are used for the inverse kinematic control

of a two-link robotic arm. The control problem is analyzed in two cases. First, three

desired reachable end-effector positions are specified in cartesian coordinates. A closed

loop, online control is achieved by using CMAC networks. Second, the CMAC network

is trained off-line. The translations of the inverse kinematics of the end-effector

positions to the joint angles are evaluated with this CMAC network. The step motors are

used as joint actuators. The PC interface is used for driving the step motors.

 The fast convergence property, online learning and adaptive abilities are the

main advantages of the cerebellar model articulation controller. Most studies in the

literature are focused on the development of the training algorithm of the CMAC or the

applications of the CMAC. The CMAC operation is explained in detail in this thesis.

The network parameters, the training techniques and the memory requirements are

expounded in detail in the following chapters.

Neural networks are used in many applications such as signal processing, image

processing, speech processing, modeling, control etc… Robotic control is one of these

implementations. Robotic control is based on either the task of the robotic system, the

control scheme or the control subject. Neural network controllers are applied for all

situations. CMAC neural networks are used as controllers for the dynamic control of

robotic systems. As a matter of fact, the emergence of CMAC is based on robotic

control problem. The non-linear equations of robot motion are hard to model

mathematically. The actual dynamics of the robot is full of non-linearities. The

conventional methods’ main principle is solving a differential equation of the rotation of

the joint actuators. Usually these equations consist of rotation, rotation rates, and

accelerations and inertial forces. The torque is computed and it is converted to the

voltage values in order to drive the individual joint actuators. This is not an exact

solution because the real world variables are neglected. The CMAC learns the system

dynamics with supervised training techniques and generates an input to output mapping

by using simple summation operation and memory mapping algorithms.

Another robotic control problem is independent of robot dynamics. The position of

the end-effector is calculated by using CMAC network in this study. The rotation rates

are constant and the main reason of using neural network approach is to generate the

inverse kinematics for desired end-effector coordinates.

1.1. Thesis outline

 This thesis could be categorized roughly in two sections. First, it consists of

information on neural networks and the CMAC neural networks. The CMAC neural

networks are investigated extensively. The memory and training problems are shown,

and the optimum network architecture is presented. Second the robot control problem is

defined. Robotic control and the meaning of robot control are defined. The CMAC

network is used for two robot learning.

Chapter two gives some background information on neural networks. This is

important for two reasons: first, the basic terms and definitions of neural networks are

defined, and second it is a brief summary of the CMAC networks.

Chapter three looks at the CMAC programming in MATLAB environment. The

effects of the CMAC parameters and training techniques to the desired performance

level are analyzed in detail.

Chapter four explains the robot control problems. It reiterates information on neural

controllers. The inverse kinematics control of the two-link robot is achieved with a

CMAC network. The simulation results are presented. A simple 2 DOF experimental

robotic arm is presented and the position control of the arm is achieved by using CMAC

network for inverse kinematics calculations.

Finally, in chapter five a discussion and suggestions for future work are presented,

and the main conclusions of the thesis are summarized. The MATLAB code samples of

CMAC are presented in the appendix.

CHAPTER 2

NEURAL NETWORKS

 This chapter describes the artificial neural networks and CMAC. Artificial

neural networks are modeled on the human brain and have a similarity to the biological

brain and tries to simulate its learning process. Like the human brain, an artificial neural

network also consists of neurons and connections between them. The neurons are

transporting incoming information on their outgoing connections to other neurons. In

artificial neural network terms these connections are called weights. Artificial neural

networks are being constructed to solve problems that can't be solved using

conventional algorithms. Such problems are usually optimization or classification

problems like pattern classification, image processing, speech analysis, optimization

problems, stock market forecasting. Artificial neural networks or shortly neural

networks are in the service of engineering for control applications. Neural networks do

not use the mathematical model of a system to obtain a solution but they use an input-

output relationship instead and the solution is obtained by learning the relationship.

Once a neural network is trained, it can determine the desired output, or solution to a

given input. Neural networks can generalize some trained relationship to other untrained

ones and therefore they can solve problems with limited training data. Robotic

manipulator control has been one of the application areas of neural networks. With high

non-linearity and modeling uncertainity, it is not easy or even possible to design a

controller by conventional approaches based on the mathematical modeling. So artificial

neural networks are good alternatives to conventional methods.

 There are many different neural network types with each having special

properties, so each problem has its own network type. Although neural networks are

able to find solutions for difficult problems the results can not be perfect or exactly

correct. They are just approximations of a desired solution and an error always remains.

But they are good alternatives for such difficult problems.

2.1 Neural Networks

A Neural Network is an interconnected assembly of simple elements whose

functionality is based on the animal neuron. The processing ability of the network is

stored in weights, obtained by learning from a set of training patterns. All natural

neurons have four basic components. These are dendrites, soma, axon, and synapses.

Basically, a biological neuron receives inputs from other sources, combines them in an

operation to output a final result. The figure 2.1 shows a simplified biological neuron

and the relationship of its four components. Dendrites accept inputs, soma process the

inputs and axon turns the processed inputs into outputs and synapses provide the

electrochemical contact between neurons.

Figure 2.1 A neural cell

The Artificial Neuron is the basic unit of neural networks. They carry out the

four basic functions of natural neurons. They accept inputs, and process the inputs, then

turn the processed inputs into outputs and then they contact between other neurons.

Figure 2.2 shows the basics of an artificial neuron.

Figure 2.2 A model neuron

The inputs to the network are represented by xn. Each of these inputs are

multiplied by a connection weight, these weights are represented by wn. Simply, these

products are summed, fed through a transfer function to generate an output.

Artificial neural networks are formed by the interconnection of the artificial

neurons. This occurs by creating layers that are then connected to one another.

Basically, all artificial neural networks have a similar structure of topology. Some of the

neurons interface the external environment to receive its inputs and other neurons

provide the external environment with the network’s outputs. All the rest of the neurons

are in the hidden form.

Figure 2.3 Neural network layers

Figure 2.3 shows how the neurons are grouped into layers. The input layer

consists of neurons that receive input from the external environment. The output layer

consists of neurons that communicate the output of the system to external environment.

There are usually a number of hidden layers between these two layers; Figure 2.3 shows

a simple structure with only one hidden layer. When the input layer receives the input,

its neurons produce output where it becomes input to the other layers of the system. The

process continues until a certain condition is satisfied.

Changing of neural networks' weights causes the network to learn the solution to

a problem. The system learns new knowledge by adjusting these weights. The learning

ability of a neural network is determined by its architecture and by the method chosen

for training. The training method usually consists of one of two schemes:

1. Supervised Learning:

A neural network is said to learn supervised, if the desired output is already known.

While learning, one of the input patterns is given to the net's input layer. This pattern is

propagated through the net to the net's output layer. The output layer generates an

output pattern which is then compared to the target pattern. Depending on the difference

between output and target, an error value is computed. This output error indicates the

network's learning effort. The greater the computed error value is, the more the weight

values will be changed.

2. Unsupervised Learning:

Neural networks that learn unsupervised have no such target outputs. It can't be

determined what the result of the learning process will look like. During the learning

process, weight values of such a neural net are "arranged" inside a certain range,

depending on given input values. The goal is to group similar units close together in

certain areas of the value range.

Also, learning methods can be grouped as off-line or on-line. When the system

uses input data to change its weights to learn the domain knowledge, the system could

be in training mode or learning mode. When the system is being used as a decision aid

to make recommendations, it is in the operation mode. In the off-line learning methods,

once the system enters into the operation mode, its weights are fixed and do not change

any more. In on-line or real time learning, when the system is in operating mode, it

continues to learn while being used as a decision tool.

2.1.1 Learning Rules

These laws are mathematical algorithms used to update the weights.

Hebb’s Rule:

If a neuron receives an input from another neuron, and if both are active

(mathematically have the same sign), the weight between the neurons should be

strengthened.

If “j” receives input from “k”, modify the weight wjk with:

 ∆ wj k = y j . y k (2.1)

where, y j is the output of neuron “j” and y k is the output of neuron “k”.

Hopfield Law:

This law is similar to Hebb’s Rule with the exception that it specifies the magnitude of

the strengthening or weakening. If the desired output and the input are both active or

both inactive, increment the connection weight by the learning rate, otherwise

decrement the weight by the learning rate.

 ∆ wj k = γ . y j . y k (2.2)

where γ is a positive constant representing the learning rate.

Delta Rule:

Another common rule uses not the actual activation of unit “k” but the difference

between the actual and desired activation for adjusting the weights.

 ∆ wj k = γ . y j . (d k – y k) (2.3)

where d k is the target. This is also known as the Widrow-Hoff Rule.

2.1.2 Learning Algorithms

Forwardpropagation:

Forwardpropagation is a supervised learning algorithm and describes the "flow

of information" through a neural network from its input layer to its output layer.

The algorithm works as follows:

1. Set all weights to random values ranging from -1.0 to +1.0

2. Set an input pattern (binary values) to the neurons of the net's input layer

3. Activate each neuron of the following layer:

4. Multiply the weight values of the connections leading to this neuron with the

output values of the preceding neurons

5. Add up these values

6. Pass the result to an activation function, which computes the output value of

this neuron

7. Repeat this until the output layer is reached

8. Compare the calculated output pattern to the desired target pattern and

compute an error value

9. Change all weights by adding the error value to the (old) weight values

10. Go to step 2

11. The algorithm ends, if all output patterns match their target patterns

Backpropagation:

Backpropagation is a supervised learning algorithm and is mainly used by Multi

Layer-Perceptrons to change the weights connected to the net's hidden neuron layer(s).

The backpropagation algorithm uses a computed output error to change the weight

values in backward direction.

To get this network error, a forwardpropagation phase must have been done before.

While propagating in forward direction, the neurons are being activated using the

sigmoid activation function.

The formulation of sigmoid activation is:

 inpute
xf

−+
=

1
1)(

(2.4)

The alg

e forwardpropagation phase for an input pattern and calculate the

. Change all weight values of each weight matrix using the formula

weight(new) = (n urons *

output(neurons i+1) * (1 - output(neurons i+1))

5. The algorithm ends, if all output patterns match their target patterns

2.1.3 T

ers, while feedback

neurons of the same layer.

1) Perc

licated logical operations (like the XOR

ron.

2) Mult

utput layers. It is mainly used in complex logical operations and pattern

3) Recu

and output neurons. The main

pplication is the storage and recognition of patterns.

orithm works as follows:

1. Perform th

output error

2

 weight(old) + learning rate * output error * output e i)

4. Go to step 1

ypes of Neural Networks

There are several types of neural networks exist. They can be distinguished by

their type or their structure and the learning algorithm they use. Feedforward neural

networks allow only neuron connections between two different lay

networks have also connections between

eptron (Single Layer Networks):

It is a very simple neural network type with two neuron layers that accepts only

binary input and output values (0 or 1). The learning process is supervised and the

network is able to solve basic logical operations like “AND” or “OR”. It is also used for

pattern classification purposes. More comp

problem) can not be solved by a Percept

i Layer Feedforward Networks:

It is an extended Perceptron and has one ore more hidden neuron layers between

its input and o

classification.

rsive Networks:

They consist of a set of neurons, where each neuron is connected to every other

neuron. There is no differentiation between input

a

2.2 Cerebellar Model Articulation Controller

ing

 structure of the cerebellum is first outlined. Then the CMAC

etwork is described.

 The CMAC neural network, based on the cerebellar neuromuscular control, is

basicly a nonlinear lookup table technique which maps n-dimensional input to a

corresponding output. The CMAC was first proposed by Albus [1], [2], [3] and has

been modified and improved. These studies focused on development of algorithms [9],

[11], [13], improvements of CMAC structure, and applications [8], [10], [12], [15].

 Lin and Chiang described the CMAC technique with mathematical formulation

and use the formulation to study the CMAC convergence properties. Both information

retrieval and learning rules are described by algebraic equations in matrix form.

Convergence characteristics and learning behaviors for the CMAC with and without

hashing are investigated with the use of these equations [7]. Thompson and Kwon

studied the sequential neighborhood training and random training techniques for

CMACs. These techniques were used to generate mathematical functions. In the

neighborhood sequential training method, a strategy was devised for selecting points in

the input space which would train CMAC systems in the most rapid manner. The

random training method was found to converge on the training function with the

greatest precision, although it requires longer training periods than the neighborhood

sequential training method [6]. Commuri and Lewis developed novel weight update

laws that guarantee the stability of the closed loop system. The passivity properties of

the CMAC under the specified tuning laws are examined and the relationship betwen

passivity and closed-loop stability is derived [13]. Çetinkunt, Abdelhameed and Pinspon

showed that the CMAC based controller causes instability after a long period of real

time runs. They proposed a new learning algorithm. They used their controller for the

trajectory tracking control of a piezoelectric actuated tool post. The performance of the

proposed controller is compared with conventional controllers. The experimental results

showed that the performance of the CMAC based controller using proposed learn

algorithm is stable and more effective than that of the conventional controllers [10].

The CMAC is the simple model of the cerebellum. It is a mathematical formalism

developed by Albus to model the information processing characteristics of the

cerebellum. The brief

n

.2.1 The Cerebellum

tline of the structure and the function of the cerebellar cortex is

shown

otor outputs. Each of mossy fibers makes excitatory

(+) contact with granule cells [1].

2

This section explains how the information process is achieved in the cerebellum

of humans and other mammals. The cerebellum is attached to the midbrain and nestles

under the visual cortex as shown in Figure 2.4. It is involved with control of movements

of the body. Injury to the cerebellum results in movement disability such as overshoot in

reaching for objects and lack of coordination. During 1960s, the functional

interconnections between the principal components of in the cerebellar cortex are

identified. A brief ou

in Figure 2.5.

The principal input to the cerebellar cortex arrives by mossy fibers. Mossy fibers

carry information from different sources such as the vestibular system (balance), the

reticular information (alerting), the cerebral cortex (sensory motor activity), and sensor

organs that measure such quantities as position of joints, tension in tendons, velocity of

contraction of muscles, and pressure on skin. Mossy fibers can be categorized into two

classes based on their point of origin: those carrying information that may include

commands from higher levels in the motor system, and those carrying feedback

information about the results of m

 Figure 2.4 Exterior view of human brain [21]

 Figure 2.5 Neuron cells in cerebral cortex

Golgi cells sample the response of the granule cells by the parallel fibers and

suppress by inhibitory (-) contacts all but the most highly excited granule cells. Purkinje

cells are the output of the cerebellar cortex. They sum the excitatory (+) effect of

parallel fibers through weighted connections. They also receive inhibitory (-) input from

parallel fibers by basket cell inverters. The strengths of these weights determine the

transfer function of the cerebellar cortex. Climbing fibers are believed to adjust the

strength of these weights so as to train the cerebellum [1].

2.2.2 The CMAC Network

The detailed knowledge of the structure and the function of the various cell and

fiber types in cerebellum make it possible to form mathematical models to explain the

information processing characteristics of the cerebellum. The general outlines of CMAC

model are shown in Figure 2.6. Albus has produced the version illustrated in Figure 2.7

[1].

Figure 2.6 A Theoretical model of the cerebellum [1]

Figure 2.7 A schematic representation of CMAC [1]

The CMAC, as a controller, computes control values by referring to a memory

look-up table where those control values are stored [2]. Memory table basically stores

the relationship between input and output or the control function. In comparison to other

neural networks, CMAC has the advantage of very fast learning and it has the unique

property of quickly training certain areas of memory without affecting the whole

memory structure.

The network architecture of the CMAC is illustrated in Figure 2.8. The input

data of every state variable are quantized into discrete regions and mapped on to

different memory areas. Each indexed block memory called hypercube contains the

input data of one quantized discrete state. The association memory mapping is

implemented through hypercube to the actual memory as the mapping function of table

look-up model. In addition to the association memory mapping function, the CMAC

gives the feedback of the error of output to adjust the actual memory contents [1].

Figure 2.8 The learning architecture of CMAC

The output of this system is the summation of the contents of actual memory

that is mapped by effective hypercubes. The error caused by the difference between the

output summation and the desired output is processed as the feedback value for

adjusting the contents of actual memory. The learning efficiency of CMAC system

depends largely on the division of hypercube. Its technique can be explained with

Figure 2.9. This example has two state variables (s1 and s2) with each quantized into

four discrete regions, called blocks. For instance, s1 can be divided into A, B, C and D

and s2 can be divided into a, b, c and d. Areas formed by quantized regions, named as

Bb, Gg, Kk, Oo are called hypercubes in the input state of (s1, s2) = (7,7). If the

quantization for each variable is shifted by one element, different hypercubes will be

obtained. For example, E, F, G, H for s1 and e, f, g, h for s2 are shifted regions. Ee, Ff,

etc. are new hypercubes from the shifted regions. Each state is covered by N e different

hypercubes, where N e is the number of elements in a complete block. There are 64 (=

42 x 4) hypercubes in this example. Each hypercube is taken as the corresponding

address of actual memory element. And the data of each state will be distributively

stored in memory elements associated with hypercubes that cover this state. Assume a j

represents an association vector of j th input space (j = 1, 2,3 ... N s) where N s indicates

the total number of input states. 99 th input state (state (7, 7)) is used to explain the

actual memory how to be mapped by an association memory. Figure 2.9 shows the state

(7,7) is mapped by the hypercubes of Bb,Gg,Kk and Oo. If we give an index value for

each mapped actual memory unit, then the state (7,7) can be mapped to the memory

locations of 6,27,43 and 59. We can use an association vector shown as equation 2.6 to

represent the mapping information.

a 6 a 27 a 43 a 59

a 99 = [0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . .0] 1 x 64 (2.5)

Bb Gg Kk Oo

This is a 1×64 vector because there are 64 hypercubes needed (i.e. 64 actual

memory units are used) in this case. In this vector, four 1’s represent the mapped actual

memory units that are used under this input state, and other 0’s represent the mapped

actual memory units are not used. Therefore, the locations of 6,27,43 and 59 are

recorded as 1 and everything else is recorded as 0. The actual output y 99 of input state

(7,7) can be represented as:

 y 99 = a 99 . w (2.6)

where w indicates the weight vector of actual memory contents.

Figure 2.9 Block division of CMAC for a two-variable example

Since there are total of 169(=13x13) input states in this case, the association

memory matrix can be represented as a 64 x 169 matrix shown as A matrix in equation

2.7. If we consider all corresponding outputs of input states, then the actual outputs can

be represented as:

 y = A . W = (2.7)

116964

2

1

16464

2

1

64169169

2

1

...

xxx
y

y
y

W

W
W

a

a
a

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

where y indicates the vector of actual output, A indicates the association matrix and w

indicates the weight vector of actual memory. CMAC requires 10816 (= 169 x 64)

association memory units to record the information and requires 64 (= 64 x 1) actual

memory units to record the weight information on this case.

 Every step of CMAC operation is defined in Chapter 3. Chapter 3 is also a guide

for writing a CMAC code in MATLAB environment.

CHAPTER 3

CMAC PROGRAMMING

This chapter includes programming details of the CMAC in the MATLAB

environment and function approximation examples in order to analyze the effects of the

CMAC parameters to the learning and learning convergence. There are not so much

detailed explanations about CMAC programming in the literature. Authors who studied

CMAC, preferred to explain the network structure based on mathematical neural form.

From another point of view the CMAC is a look-up table as well. And during the

programming phase, this perspective is useful to better understand the inner mechanism

of this network

3.1. The CMAC Mapping

The input space is quantized into a number of intervals according to the

generalization width. The distance among the input dimension of each interval is equal

to the generalization width. Quantized region of the input space is called a layer. New

layers can be added by shifting the intervals as shown in Figure 3.1, which is an

example for one-dimensional CMAC.

.

Figure 3.1 An example for quantized layers of the input space

The input space is defined between –5 and 14, the generalization width is equal

to 5 and there are four layers. Each layer can be modeled as a vector by shifting such as;

Layer 1 L1 = [-5 0 5 10], Layer 3 L3 = [-5 -3 2 7 12],

Layer 2 L2 = [-5 -4 1 6 11], Layer 4 L4 = [-5 -2 3 8 13].

A, B, C ... are the hypercubes that contain the weights. The hypercubes are

numbered as, “A = 1, B = 2, C = 3, ... , T = 19” and the CMAC memory is formed from

19 memory locations. An address function is needed to map the input values into the

memory locations.

The function, MAX (FIND (L i ≥ x)) where “MAX” and “FIND” are the

MATLAB commands, gives the hypercube number in the ith layer. For example, for the

input x = 3, in the first layer, 3 ≥ -5 and 3 ≥ 0. The command, find (L1 ≥ 3) gives the

vector [1 2] and max ([1 2]) is equal to “2”. It means that the input x = 3, activates

the 2nd hypercube “B” in the first layer and similarly G, L and R in the other layers as

seen in Figure 3.2.

Figure 3.2 Single point mapping for one-dimensional CMAC.

The input (x = 3) is mapped on the memory locations of 2, 7, 12 and 17. The

output for the input x = 3 is equal to the arithmetic sum of the weights in the hypercubes

B, G, L and R. There is a two-dimensional mapping example shown in Figure 3.3.

Figure 3.3 An example for two-dimensional CMAC

The input ranges are quantized similarly in the previous example. The input

range is between 1 and 5 for both dimensions, and the hypercubes are;

Aa, Ab, Ba, Bb, Cc, Cd, Ce, Dc, Dd, ... , Ff, Fg, Gf, Gg. They are numbered as;

Aa = 1, Ab = 2, ... , Gg = 17.

Figure 3.4 Single point mapping for two-dimensional CMAC.

The input (x=2 and y = 4) is mapped on the memory locations of 2, 9 and 15.

Thus, the CMAC memory has 17 memory locations. For the input x = 2 and y = 4: the

weights in the hypercubes Ab, Dd and Fg are activated and it is displayed in Figure 3.4.

Briefly, CMAC mapping method is practiced in two steps. First, find out which

hypercubes are used in each layer and secondly give each hypercubes a number that is

its address index in the memory. The nth dimensional CMAC has the same mapping

algorithm. While writing a CMAC code it is useful to create a subroutine that maps the

input values to its memory locations. This subroutine may be a function where its inputs

are the input dimension, input ranges, generalization width and total layer number and

its outputs are the hypercube indexes or the memory address indexes.

3.2. The CMAC Training

CMAC training is the data storage of the memory. Initially all the memory

locations are empty, it is to say all of the weights are equal to zero. The output for the

desired point in the input space is the sum of the selected weights that are determined by

the mapping. And the training procedure is:

1. The function F will be computed by the CMAC. The desired value of the output

for each point in the input space is Y = F (X).

2. A point X is selected in the input space where Y is to be stored. The current

value of the function at that point (initially it equals to zero) y = f (X) is

computed.

3. ∆i is added to every weight to produce yi

L
yY ii

i
−

=∆ α (3.1)

where,

| L | is the total number of layers and α is the learning rate.

Working with matrices and vectors in the MATLAB programming language

facilitates the data storage operation. After the hypercube indexes are determined a

vector of address indexes of the memory is obtained.

For the ith training point, the output is Y(i) = sum (M (address (:))) where,

“M” is the memory vector and “address” is the vector of the address indexes and

 M (address (:)) = M (address (:)) + α (Y (i) – y (i)) / A.

After all the points in the input space are trained, this loop is repeated for the same

points until the memory elements converge.

There are three cases:

1. Memory elements change periodically after a cycle.

2. Memory elements remain constant after a cycle.

3. Instability.

Convergence is gained in two ways. The memory elements remain constant after a

certain cycle or the memory elements have the same values periodically. In which cycle,

the elements converge, depends on the CMAC parameters, selected training points and

the chosen size of the memory. If there are no learning interferences between the

training points and if hash coding is not used, the memory elements converge at the first

cycles. Very high learning rates may result in instability while very low learning results

cause long convergence time. By using adaptive learning algorithms, the instability

problem is solved [9].

 Here the CMAC operation is described by using the Figure 2.9. Figure 2.9

displays a two dimensional CMAC. For instance, the input pairs are s1 = 7 and s2 = 7

and the target value t = 4. The input pairs s1 and s2 will activate the weigths in the

hypercubes Bb, Gg, Kk and Oo. There are 64 hypercubes in this example and the index

numbers of Bb, Gg, Kk and Oo 6, 27, 43 and 59. After the first training the sum of these

four weights in the hypercubes Bb, Gg, Kk and Oo will be equal to 4. Initially all the

weights are equal to zero. So, each weight in these hypercubes will be equal to 1 in

order to give the output 4.

For example, after the first training, to calculate the output for the input pairs s1 = 7 and

s2 = 8 first the active weights must be found. These are Bc, Gg, Kk and Oo. The

memory index of Bc is 7. The weight value in Bc was not active in the training so it

remained zero. The output for s1 = 7 and s2 = 8 will be equal to the sum of the weights

in Bc, Gg, Kk and Oo. Gg, Kk and Oo are equal to 1 and Bc is equal to so the output is

equal to 3.

3.3. Hash Coding

 As the dimension of the CMAC network increases, the required size of the

CMAC memory increases exponentionally. After CMAC mapping, mapping the

indexes into a smaller memory rather than the CMAC memory is a solution for the case

of large memory requirements. Hash coding is used to solve this problem. The main

idea is:

 index CMAC MAPPING = MOD (index HASH MAPPING , hash size) (3.2)

Formulation 3.2 causes different data mapped in the same memory address. This

is called hash collisions. But usually, the errors due to the hash collisions are neglected

with respect to the overall CMAC error. And choosing an appropriate hash size is

important to minimize the errors due to the hash coding. One that gives smooth results

is formulated below:

 ∏
=

⎟
⎠
⎞

⎜
⎝
⎛ +=

n

i

i

w
I

ks
1

1 (3.3)

where,

s : hash size

I : input range

w : generalization width

n : input dimension

k = 1,2,3, …

Formulation 3.3 is used in the case of no learning interferences and it is

displayed in Figure 3.5 for one-dimensional and in Figure 3.6 for two-dimensional input

spaces. This basic sense can be applied for the n-dimensional input space. Here, the

distance between two consecutive training points is equal to the generalization width.

The training points are selected in this fashion.

Figure 3.5 Selection of training points for hashing in one-dimensional CMAC

 Linear hashing and uniform hashing are the other ways that can be applied to

overcome the memory problem. In linear hashing, collisions are resolved by trying the

next memory location in a linear sequence. In uniform hashing collisions are resolved

by trying a random memory address.

Figure 3.6 Selection of training points for hashing in two-dimensional CMAC

Hashing causes the memory to converge after a certain cycle, and the number of

cycles to reach convergence is proportional to the input dimension. Hashing is

necessary in the case of many degrees of freedom. In these situations, the required

memory with CMAC mapping may not be possible physically so hash coding is a must

to solve this problem. During this study the hardware implementation is performed with

the PC interface and the PC RAM is used for the CMAC memory. For the limited sized

memory devices such as micro controllers, the hash coding algorithms help to use the

memory capacity economically.

3.3. Function Approximation with the CMAC

CMAC is a good function approximator for both single and multi input

functions. Albus, proposed CMAC to determine the control function of a robotic

motion. Especially for the many degrees of freedom, it is hard to solve the analytic

equations and sometimes it is not possible to model the physical properties of

interactions like friction. Although all the terms of the equations of the motion are

exactly found, solving these equations may not be so practical. Rather than kinematic

solutions, referring to a table the output is calculated for the desired input values.

Actually, CMAC determines the same equations of the motion by learning in an

adaptive manner without any knowledge of the physical laws. That’s what the human

and the other mammals do while acting their motions. Some points in the input space is

trained during training but by using the generalization property of the CMAC, the

network gives output for every input point in the input range. This is the basic result of

the idea “the similar inputs give similar outputs”. Mathematically, generalization

property is suitable to approximate to the continuous functions like motion control

functions. If the generalization width is taken one, then the CMAC look- up table

becomes a simple look-up table and the outputs of the points rather than the trained

points remain zero. If the generalization width is too large, some overlaps will be

formed. This overlaps causes the network to converge after many cycles and finally

with an unacceptable error. If the generalization width is chosen approximately equal to

the distance between the training points of the input space, a function with an acceptable

error is obtained. Another parameter of the CMAC is the total number of layers. As the

number of layers increases, output becomes more precise because more weights are

used for output calculation since the number of weights is exactly equal to the number

of layers used. Networks with more layers need more memory locations. Generalization

width, number of layers, training point numbers are the key parameters for the function

approximation. There is no criteria or formulation to optimize these parameters. Some

examples are shown here to see how the approximation changes with the parameters.

These examples give an idea for the network architecture.

The sine function { y = sin (x), -180≤ x ≤ 180 } is used as an example for the

CMAC approximation. In the below tables, the output of the CMAC and the target

function are plotted in the first figure. Next figure represents the convergence of the

network.

The CMAC parameters like total layer number, generalization width, learning

rate and training points are stated. The maximum error and the mean error of the CMAC

output are calculated. Some graphs are introduced for optimum parameters.

In Table 3.1 total number of layers is equal to 10 and the generalization width is

equal to 30. {-180, -150, -120, -90, -60, -30, 0, 30, 60, 90, 180} are the training points.

130 memory locations are required and there is no hashing. The memory converges

after the second cycle as seen in Figure 3.7.2 and the memory elements take the same

values at every two cycles periodically. The learning rate is equal to 1 and remains

constant during learning. The maximum error is 0.3084 and the mean error is 0.0917.

Approximation results for this example are under the desired performance level.

The training points’ set, {-180, -150, -120, -90, -60, -30, 0, 30, 60, 90, 180} is

represented in a MATLAB vector form as (-180 : 30 : 180) . In the memory

convergence graph the vertical axis defines the sum of the memory elements. As it is

mentioned before in this chapter, the convergence is obtained in two ways: the memory

elements remain constant after a certain cycle or take the same values periodically after

a certain cycle. In Figure 3.7.2 it is seen that the memory convergence like in the second

way.

Figure 3.7.1 Sine approximation

Figure 3.7.2 Memory Convergence

L W α Training points Maximum Error Mean Error

10 30 1 (-180 : 30 : 180) 0.3084 0.0917

Required Memory Locations Hash Size Convergence

130 No hashing Periodical

Table 3.1 CMAC parameters and sine approximation results

Figure 3.8.1 Sine approximation

Figure 3.8.2 Memory Convergence

L W α Training points Maximum Error Mean Error

30 30 1 (-180 : 30 : 180) 0.0329 0.0146

Required Memory Locations Hash Size Convergence

390 No hashing Periodical

Table 3.2 CMAC parameters and sine approximation results

In Table 3.2 the total number of layers is increased from 10 to 30 so the required

memory locations are increased from 130 to 390. There is no hashing. The same points

in the input space are used for training (-180:30:180). The maximum error is decreased

from 0.3084 to 0.0329 and the mean error decreased from 0.0917 to 0.0146. After

convergence is obtained, the memory elements take the same values for every 10 cycles

periodically.

It is clear that the approximation is better than the previous one in Table 3.1.

While the training points and the generalization width are the same with the example in

Table 3.1, the total number of layers is increased from 10 to 30 and a better

approximation is gained. Also it is seen that more memory locations are needed as the

convergence characteristic of the memory is changed. So, the total number of layers

affects the approximation performance and it has a direct effect on the memory.

The total layer number and the maximum error relations are seen in Figure 3.9

and the total layer number and mean error relations are seen in Figure 3.10. Other

parameters are the same with the examples in Table 3.1 and Table 3.2. Training points

are (-180:30:180), without hashing. The generalization width is 30 and learning rate is

equal to 1.

Figure 3.9 Maximum error – total number of layers. (w=30)

Figure 3.10 Mean error – total layer number (w = 30)

Figure 3.11 Mean error – total number of layers (w = 18)

It is clear that for L < 30, error values are high and the minimum points are

periodically at 30, 60, 90, 120, 150, … that are the multiples of 30.

Approximately,

L ≈ k . w (3.4)

where, k = 1,2,3, ...

The maximum error and minimum error are similarly affected with the total

number of layers. In Figure 3.11 the same experiment was performed with 21 training

points with no learning interference and where generalization width equals to 18. Figure

3.11 displays the relation of the mean error and total number of layers. The minimum

error values are at points where total number of layers is equal to 18 and its multiples.

Choosing low L, is an advantage for less memory and fast computation and fast

convergence. How many training points are used and training point locations affect the

generalization width. And it is seen that the generalization width affects the total

number of layers. And taking total number of layers equal to generalization width seems

to be an optimum selection.

Figure 3.12.1 Sine approximation

Figure 3.12.2 Memory Convergence

L w α Training points Maximum Error Mean Error

36 36 1 (-180 : 30 : 180) 0.1263 0.0660

Required Memory Locations Hash Size Convergence

396 No hashing Constant

 Table 3.3 CMAC parameters and sine approximation results

 In table 3.3 the generalization width and the total number of layers are equal to

36. 396 memory locations are required and there is no hashing. The convergence is

obtained after 6 cycles and the memory elements remain at constant values as seen in

Figure 3.12.2. The maximum error is 0.1263 and the mean error is 0.0660. The same

training points (-180 : 30 : 180) are used for training and it is seen that the error values

are increased by increasing generalization width and total number of layers. In Table 3.3

by increasing the generalization width with constant training points, learning

interferences form. Also by increasing training data with constant generalization width

causes learning interferences. In Figure 3.12.1 it is seen that with increasing

generalization width the error values also increase. Figure 3.13 and 3.14 show the

relations between the error values and the generalization width. In these graphs the

generalization width values are equal to the total number of layers. Each error value is

calculated after convergence. Optimum results are obtained when w = 30. For w < 30

there are no learning interferences, but there are untrained gaps between two training

points so the learning is insufficient. w = 30 is a boundary for learning interference. The

mean error doesn’t change dramatically for w > 30 but it is clear to choose w = 30 if the

maximum error is taken into account.

Figure 3.13 Mean error – total number of layers, generalization width

training points (–180 : 30 :180)

Figure 3.14 Maximum error – total number of layers, generalization width

training points (–180 : 30 :180)

Two training techniques are discussed in the literature, neighborhood sequential

training and random training [6]. In neighborhood sequential training, there are no

learning interferences like in the examples in Table 3.1 and 3.2. The training points are

selected in a sequential fashion from –180 to180 and the distance between two neighbor

training points is equal to the generalization width. For the example in Table 3.3 the

training points are selected sequentially but the distance between two neighbor training

point is not equal to the generalization width so this type of training is not neighborhood

sequential training. The other type of training technique for CMAC is the random

training. The training points are selected randomly. The selection of the training points

affects the approximation performance. For uniformly distributed random numbers the

resulting CMAC performance is in the desired level. The use of this technique

minimizes the training errors [6].

Figure 3.15.1 Sine approximation

Figure 3.15.2 Memory Convergence

L w α Training points Maximum Error Mean Error

30 30 1 (-180 : 22.5 : 180) 0.1695 0.0705

Required Memory Locations Hash Size Convergence

390 No hashing Constant

Table 3.4 CMAC parameters and sine approximation results

 In Table 3.4 the generalization width and the total number of layers are equal to

30. 390 memory locations are required and there is no hashing. Maximum error is

0.1696 and mean error is 0.0705. The memory converges after 5 cycles and the memory

elements remain at constant values.

When a CMAC is trained, the contents of all memory elements whose input

points are in the same neighborhood of the training points are affected. If subsequent

training input points are chosen in the same neighborhood as any previous inputs, then

some memory elements are repeated and those that were adjusted by the previous

training sessions will be improperly altered. This is termed learning interference [6].

And in the example in Table 3.4 although the same parameters are used the error values

are increased with respect to the example in Table 3.2. The training points sequence

created learning interferences in Table 3.4.

In neighborhood sequential training technique that is devised to avoid learning

interference is to choose training input points that lie just outside of the neighborhood of

the previous training input point. No learning interference occurs in this training

technique like in the example in Table 3.2. In table 3.4 there are learning interferences

so the output is under desired performance level.

In Table 3.5 the sequential neighborhood training technique is used and the

output performance level is higher than the previous example. The generalization width

and the total number of layers are equal to 15. 375 memory locations are required and

there is no hashing. The memory converges after 2 cycles. The maximum error is

0.0084 and the mean error is 0.0036.

Figure 3.17.1 Sine approximation

Figure 3.17.2 Memory Convergence

L w α Training points Maximum Error Mean Error

15 15 1 (-180 : 15 : 180) 0.0084 0.0036

Required Memory Locations Hash Size Convergence

375 No hashing Periodical

Table 3.5 CMAC parameters and sine approximation results

 There are more training points in the example in Table 3.5 (-180 : 15 : 180) and

the approximation performance is higher than the example in Table 3.2 (-180 : 30 :

180).

Figure 3.18.1 Sine approximation

Figure 3.18.2 Memory Convergence

L W α Training points Maximum Error Mean Error

15 15 1 (-180 : 15 : 180) 0.0084 0.0036

Required Memory Locations Hash Size Convergence

375 25 Periodical

Table 3.6 CMAC parameters and sine approximation results

In table 3.6 the generalization width and the total number of layers are equal to

15. 375 memory locations are required. 375 memory locations are reduced to 25

memory locations by hash coding according to the formulation 3.3. Maximum error is

0.0084 and mean error is 0.0036. The memory converges. It is seen that all the

parameters except the memory size are same with the example in Table 3.5.

 The CMAC output error and hash size relation is seen in Figure 3.19 and 3.20.

Figure 3.19 shows the relation between hash size and maximum error of the CMAC

approximation. Figure 3.20 shows the relation between hash size and mean error of the

CMAC approximation. The CMAC parameters are taken from Table 3.5 in for the

graphs in Figure 3.19 and 3.20. It is seen that maximum error and the mean error

affected similarly with hash size. The example in Table 3.6 is trained in neighborhood

sequential training technique which is also illustrated in Figure 3.5 and Figure 3.6. In

the example in Table 3.6 the hash size is selected according to the formulation 3.3. The

graphs in Figure 3.19 and 3.20 prove formulation 3.3. This formulation gives high

performance results with neighborhood sequential training.

If the training points are selected according to the neighborhood sequential

training technique, the formulation 3.3 can be used to evaluate the hash size. It is seen in

the graphs in Figure 3.19 and 3.20 good results are obtained at 25 and its multiples. In

this example the required memory locations are reduced to 25 from 375 and the

performance of the approximation did not changed in sine approximation example. In

the case of multi-dimensional CMAC networks hashing is very useful to use less

memory space. But in this hashing algorithm the training points and hash size must be

selected very carefully else the error values increases as shown in the graphs in Figure

3.19 and 3.20. For instance if the hash size is 150 the mean error is approximately 0.004

while mean error is over 0.6 if the hash size is 188.

Figure 3.19 Hash size – maximum error

One dimensional function approximation of CMAC

 where training points set (-180 : 15 : 180) and L = 15, w = 15

Figure 3.20 Hash size – mean error

One dimensional function approximation of CMAC

 where training points set (-180 : 15 : 180) and L = 15, w = 15

In the example in Table 3.7 the training points are selected randomly at 43

points. Total number of layers and generalization width is 55. The learning rate is equal

to 1. 415 memory locations are required and there is no hashing. Memory converges

after 100 cycles and the memory elements remain at constant values. Maximum error is

0.0861 and mean error is 0.0189. It is seen that in graph in Figure 3.211 there are

untrained regions between points –135 and –90 and between 75 and 105. The training

point set for this example is {-143 -126 70 14 107 97 -114 129 -65 31 -175 -66 -127 85

7 -140 32 104 162 -116 -165 -128 -79 87 17 66 -73 -68 24 -12 -55 -39 -33 -10 -44 -3 -

94 111 30 -164 40 28 125}.

 In the random training technique the convergence is gained after more cycles

with respect to neighborhood sequential training technique. In the example in Table

3.20 the convergence is gained after 100 cycles while the convergence is gained in the

first cycle in neighborhood sequential training technique. But the training point

distribution is very important in random training technique. If there are no untrained

gaps in the input space by the help of generalization the learning errors are minimized

after cycles while in the neighborhood training technique the learning errors do not

change with cycles.

Figure 3.21.1 Sine approximation

Figure 3.21.2 Memory Convergence

L w α Training points Maximum Error Mean Error

55 55 1 Random 43 points 0.0861 0.0189

Required Memory Locations Hash Size Convergence

415 No hashing Constant

Table 3.7 CMAC parameters and sine approximation results

 Figure 3.22 shows the relation between the total number of layers and CMAC

output mean error. The CMAC parameters are equal to the parameters in the example in

Table 3.7. Figure 3.10 shows that the total number of layers is affected with the

generalization width. This relation is valid for neighborhood sequential training

technique. In random training technique there is no such relationship. But in Figure 3.22

it is seen that the error values are low where total number of layers are higher than 20.

 In Figure 3.23 and Figure 3.24 the generalization width changes with total

number of layers. It is seen that for very high and low values the maximum error is high

but the mean error does not change after a certain value where generalization width and

the total number of layers are equal to 60. But in Figure 3.23 the maximum error

increases with the increasing generalization width and total number of layers.

 According to the total number of layers and the CMAC performance graphs, low

total number of layers results in unacceptable approximations. On the other hand very

high values of total number of layers cause high maximum errors. As a result,

convergence is slowed down. As the number of layers increases there are more loops in

the program code so this makes slower learning and output calculation.

Figure 3.22 Mean error – total number of layers

w = 55, random training in 43 points

Figure 3.23 Maximum error – total number of layers

 random training in 43 points

Figure 3.24 Mean error – total number of layers

 random training in 43 points

 In Table 3.8 the generalization width and the total number of layers is 55. The

learning rate is equal to 1. The training points are randomly chosen and same with the

example in Table 3.7. 415 memory locations are required. It is reduced to 200 memory

locations by using hash coding. The maximum error is 0.0892 and mean error of the

output is 0.0211. Convergence is obtained after 250 cycles. The number of cycles to

reach the convergence is increased with hash coding. So it can be said that the random

training technique and hash coding cause the convergence to be reached after more

cycles than the situations with no hashing.

Generally, in neighborhood sequential training all memory elements are not

addressed during training because some memory elements are not modified and remain

zero. Hash size is reduced to very low values with respect to the required memory size

of CMAC. But there is no such a relationship in random training technique. And the

formulation 3.3 can not be used for estimating the hash size in the case of random

training. Other hashing algorithms rather than the one applied to neighborhood training

can be used for better approximation and low hash size values.

Figure 3.25.1 Sine approximation

Figure 3.25.2 Memory Convergence

L w Α Training points Maximum Error Mean Error

55 55 1 Random 43 points 0.0892 0.0211

Required Memory Locations Hash Size Convergence

415 200 Constant

Table 3.8 CMAC parameters and sine approximation results

Two-dimensional CMAC examples are seen in Figure 3.26 and Figure 3.28. (z =

sin (x) . cos (y)). In Figure 3.26 the CMAC parameters are;

w = 30, L = 30, α = 1, the sequential neighborhood training technique is used.

Results are:

Maximum Error = 0.0170, and mean error = 0.0056.

2510 memory locations are used.

Figure 3.26 the CMAC parameters are;

w = 15, L = 15, α = 1, the sequential neighborhood training technique is used.

Results are:

Maximum Error = 0.0669, and mean error = 0.0221.

1470 memory locations are hashed into 49 memory locations. The convergence

curves are seen in Figure 3.27 and 3.29. The hashing algorithm makes CMAC to

converge after a certain number of cycles. In case of no hashing like the example in

Figure 3.26 the memory elements convergence at the first cycle. But as it is seen in

Figure 3.29 the convergence is obtained after 250 cycles for the example in Figure 3.28.

But if the memory requirements are taken into account and the convergence speed is

less important than the memory capacity than hashing is very advantageous in that case.

Figure 3.26 CMAC output for approximation of the function z = sin (x) cos (y)

Figure 3.27 Memory convergence of two-dimensional CMAC

Figure 3.28 CMAC output for approximation of the function z = sin (x) cos (y)

Figure 3.29 Memory convergence of two-dimensional CMAC

In Table 3.9 the generalization width and the total number of layers are equal to

15. 375 memory locations are required and there is no hashing. The learning rate is

equal to 0.5. The maximum error equals to 0.0084 and mean error of the CMAC output

is equal to 0.0036 like in the example in Table 3.5. The only difference is the learning

rate between two examples in Table 3.5 and in Table 3.9. The convergence is obtained

at the second cycle in the example in Table 3.5 where the learning rate is 1. But in the

example in Table 3.9 the memory converges after 55 cycles as it is seen in Figure

3.30.2.

Another example is displayed in Table 3.10 with different learning parameters.

The generalization width and the total number of layers are equal to 27. The learning

rate is 0.1. 387 memory locations are required and hash coding is not used. The

maximum error is 0.0639 and the mean error is 0.0326. It is seen in Figure 3.31.2 that

the memory converges after 200 cycles.

Learning rate is a critical parameter for CMAC. While high learning rates causes

instability, very low learning rates delay convergence. CMAC has an advantage of fast

computation. Learning rate is the one of the parameters that affects convergence and

computation time.

Figure 3.30.1 Sine approximation

Figure 3.30.2 Memory Convergence

L W α Training points Maximum Error Mean Error

15 15 0.5 (-180 : 15 : 180) 0.0084 0.0036

Required Memory Locations Hash Size Convergence

375 No hashing Periodical

Table 3.9 CMAC parameters and sine approximation results

Figure 3.31.1 Sine approximation

Figure 3.31.2 Memory Convergence

L w α Training points Maximum Error Mean Error

27 27 0.1 (-180 : 15 : 180) 0.0639 0.0326

Required Memory Locations Hash Size Convergence

387 No hashing Constant

Table 3.10 CMAC parameters and sine approximation results

In Table 3.11 the generalization width and the total number of layers are equal to

15387 memory locations are required without hashing. The learning rate is equal to 2

and remains constant during the learning. But as it is seen in Figure 3.32.1 the output

performance of the CMAC approximation is very low. The high learning rate causes

this situation. And the Figure 3.32.2 displays that the memory elements do not converge

still after 2500 cycles. The output of the CMAC changes for every training cycle and

never reaches to desired performance level.

In Table 3.12 the same CMAC parameters are used with the example in Table

3.11 but the learning rate is reduces from two to zero for every cycle. Finally after 50

cycles the memory converges and approximation is in the desired performance level.

It is seen that high learning rates cause instability. The memory contents of a

CMAC with or without hash coding will converge, provided that the learning rate

values lies between two and zero. Table 3.12 is an example for this case.

Figure 3.32.1 Sine approximation

Figure 3.32.2 Memory Convergence

L w α Training points Max error Mean Error

15 15 2 (-180 : 15 : 180) Instability Instability

Required Memory Locations Hash Size Convergence

387 No hashing Doesn’t converge

Table 3.11 CMAC parameters and sine approximation results

Figure 3.31.1 Sine approximation

Figure 3.31.2 Memory Convergence

L w Α Training points Maximum Error Mean Error

15 15 2 → 0 (-180 : 15 : 180) 0.0084 0.0036

Required Memory Locations Hash Size Convergence

387 No hashing Periodical

Table 3.12 CMAC parameters and sine approximation results

CHAPTER 4

ROBOTIC CONTROL WITH CMACs

The artificial neural networks theory made it possible to develop adaptive

solutions to complex control problems, such as inverse kinematics control for robotic

systems. In this chapter a CMAC network is used for the inverse kinematics control of a

two degrees of freedom serial manipulator. In the first section general concepts of the

robotic control are outlined. The second section explains the inverse kinematics

problem for the serial manipulators. The CMAC network and the control architectures

are presented with the simulation results in the third section. A hardware

implementation of two degrees of freedom serial manipulator is seen in the fourth

section.

4.1. Robotic Control

 The task of the robotic control is separated into two groups as motion control

and force control. The motion control is a point to point control or continuous trajectory

control. The control scheme can be open loop or closed loop. Very few robots use

stepper motors or other actuators which can be controlled in an open fashion. Usually,

manipulators are powered by actuators which output a torque or a force at each joint

[20]. Figure 4.1 shows the basic idea of robotic control. Motion planning includes

trajectory generation and forward/inverse kinematics computation. A robot is composed

of joint motors, breaks, feedback sensors like position or velocity sensors or other

special sensors such as force or torque sensors. Controller type is one of the most

considerable factors of the robot control system. In present robot control systems,

simple independent joint PID controllers are widely used. Actually, the control problem

of robotic manipulators is non-linear but the nonlinearities of the system are cancelled

and the linear controllers are designed for the linear system. This is called the computed

torque method.

Controller Robot

Sensors

EnvironmentMotion Planning

Figure 4.1 Basic Blocks of Robotic System

Each joint is considered independent, and the inertia reaction of each actuator is

constant. For an n-DOF robot, the dynamics are described as:

 (4.1) τ=+++)(),(),()(
.....

qGqqFqqqCqqD

where,

q : vector of joint variables,

τ : control torque vector,

)(qD : inertia matrix,

),(
.
qqC : coriolis and centrifugal force vector,

)(qG : gravitational force vector.

 The dynamic control of such a robot system is seen in Figure 4.2. There are

some disadvantages of computed torque method. The dynamic model is not known

exactly. There are unmodelled dynamics such as friction, flexibility in the drive chain,

noise, etc…

.

dq
.
q

..

dq

dq

Controller

Robot

q

Figure 4.2 Functional block diagram of a dynamic robot control system

 Real physical plants like robots often exhibit these non-linearity and variations

due to the plant nature, noise or other factors. It is difficult to control such plants

practically and precisely. Neuro controllers are good alternatives to conventional

controllers. They have adaptation capabilities and also they can learn the real dynamics

of the robot system. There are three basic tasks that the neuro controller can perform:

(1) The neuro controller learns from a complex automatic controller.

(2) Making a system or plant follow a desired set point or follow a reference model.

(3) Optimization.

For a more general effective neural network control the plant’s input-output to be

controlled needs to be known [22].

 In supervised learning, a set of training inputs X(t) and targets Y*(t) for t =1 to t,

is given to the network. The task is to learn how to generate Y*(t) for any given value of

X(t). In neurocontrol, X(t) may be a set of sensor readings while the targets are a vector

of desired control actions, u*(t) shown in Figure 4.3.

 u*(t)

 X(t) u(t) = F(X(t))

F

Figure 4.3 Neuro control in block

 Neural networks based control systems may be open loop or closed loop. The

open loop training is seen in Figure 4.4 where Ud is the actual input, and U refers to the

output of the neural network approximation. The aim is to train the neural network so

that U approximates Ud, the desired signal, as closely as possible. A closed loop

training methodology with a controller can be used, shown in Figure 4.5. Here Ur is the

persistent excitation that is added to the control input from the probing signal Ud(t) to

the system. With the controller and the persistent excitation input, the closed loop

training methodology will ensure the collection of sufficiently rich training data. After

training the neural networks can be used as a series type neuro controller shown in

Figure 4.6. To consider the adaptive plant control scheme the neuro controller can be

structured as in Figure 4.7.

 +

 Ud U
Dynamically
Non-linear
System

Neural
Network

e

Figure 4.4 Open loop training scheme

qref Ur

+ + U

+
qref-

Controller
Dynamically
Non-linear
System

Neural
Networks

Figure 4.5 Closed loop training methodology

 qref

Neural Network
Controller

Plant

Neural
Networks

Figure 4.6 The structure of the adaptive plant control system based on neural networks

 The neuro control approach as described in the literature can be classified into

two categories:

(i) Indirect neuro control approach

(ii) Direct neuro control approach

 In the indirect neuro control approach, the parameters of the plant are estimated

at any instant and the parameters of the controller (weights) are adjusted assuming that

the estimated parameters of the plant represent true values. However this approach

requires a neural identifier and a neuro controller, thereby increasing the complexity of

the control scheme. On the other hand, in direct neuro controller approach, no neural

identifier for the plant is required. The neuro controller is connected in cascade with the

plant. During the process of learning and adaptation the neural controllers learn about

the behavior of the plant and adapts itself to achieve the desired control system

performance [24].

 The other perspective of robotic control is the inverse kinematics control

problem of the robotic systems. It is a complex problem due to the non-linear equations.

The desired position of the end point of the robot is specified in Cartesian Coordinates

while the motions are actually obtained from the multiple actuators connected at the

joints which decide the required joint angles. The transformation from Cartesian

Coordinates to joint angles is a sophisticated problem especially in the case of many

degrees of freedom.

4.2. Inverse kinematics for position

 The problem of inverse kinematics is to find the joint angles, for a given end-

effector position and orientation. In general, inverse kinematics is much harder than

forward kinematics. Sometimes no analytical solution is possible, and an iterative

search is required. Even with analytic solutions possible, multiple solutions arise from

which one must pick. In the case of redundant manipulators, there may be many

solutions. Another complication is that the workspace limits may be exceeded, the point

may be outside the reach of the manipulator, or joint limits are exceeded. Geometric

solution is one of the solutions for the inverse kinematics problem. In a geometric

approach the geometry of the arm is decomposed into several plane geometry problems.

Joint angles can be found by using the geometric formulas. The simplest manipulator to

study inverse kinematics is the planar two degrees of freedom manipulator. Since the

arm is planar, the plane geometry is applied to find a solution to the manipulator seen in

Figure 4.7.

Figure 4.7 Plane geometry associated with a 2-link planar manipulator

To solve θ2 law of cosines is applied:

 (4.2))180cos(2 221
2
2

2
1

22 θ+−+=+ LLLLyx

Since)cos()180cos(22 θθ −=+ , then

21

2
2

2
1

22

2 2
)cos(

LL
LLyx −−+

=θ

(4.3)

the

mmetric position for θ’2 = - θ2. The expressions for the angles β and ψ are found.

he value of angle β depends on the sign of x and y so two argument arctangent

 used:

Equation 4.3 is solved for θ2 between 0 and –180 degrees. The other solution is

sy

 T

is

),(2tan xyA=β (4.4)

he law of cosines is again applied to find ψ.

T

22
1

2
2

2
1

22

2
)cos(

yxL

LLyx

+

−++
=ψ (4.5)

 where 0 ≤ψ ≤180. Then:

 ψβθ ±=1 (4.6)

here the plus sign is used if θ2 < 0 and minus sign is used if θ2 > 0.

w

4.3. The inverse kinematic control with CMAC

 The inverse kinematic control problem is shortly finding each individual joint

angles as mentioned before. The angles are calculated by using the formulations 4.2,

4.3, 4.4, 4.5 and 4.6. Rather than using these formulations, CMAC is used here to

evaluate the angles. The task is motion control (point to point in the defined

workspace). The rate of the motion is constant. For the desired end-effector positions in

the workspace (x, y coordinates of the end effector), the angles θ1 and θ2 are calculated.

CMAC is trained in a supervised manner so, to find the training data set, the geometric

equations can be used. The CMAC network of the two-link manipulator is composed of

two CMACs. The coordinates of the desired end effector positions are the inputs to

both CMACs and each CMAC outputs the individual joint angles. The CMAC network

ith two inputs for the inverse kinematics is displayed in Figure 4.8.

 x θ1

 y θ2

Figure 4.8 CMAC network for inverse kinematics of two-link manipulator

w

CMAC II

CMAC I

 In the CMAC network architecture of the two-linked manipulator two CMACs

are used. The network inputs are x,y coordinates and the outputs are θ1 and θ2 joint

angles. Each output is related with both inputs. For estimating the θ1, x and y must be

taken into account so the network is designed as shown in Figure 4.8. θ1 and θ2 are

nonlinear because of the trigonometric functions and the squared terms. The problem

becomes much more complex as the number of links increases. The standard

methodology for calculating the inverse kinematics is training the neural network off-

line for possible data to obtain solutions. Because of the generalization property, neural

networks can learn the associated patterns and recall the learned patterns. The trained

network is then used to achieve the desired movements. This technique therefore

involves two steps of operation as training phase and performing phase. From another

poi o

networks have the ability of online learning and adaptive capabilities.

he desired x, y positions of the end effector are applied to the CMAC network. The

CMAC are:

 = 64

 layers = 64

learnin

-linked robotic system with CMAC can

ach any desired end-effector positions in the robot workspace. The desired xd and yd

d as:

d = [3

ons are applied to CMAC network. The x and y

ositions of the end effector are shown in Figure 4.10 and the corresponding joint angle

ajectories are shown in Figure 4.11.

nt f view the advantage of using neural network for control problems is that neural

 The inverse kinematics control scheme of the 2 DOF manipulator with CMAC is

seen in Figure 4.9.

T

network parameters of the

generalization width

total number of

g rate = 0.5

Initially, all the weigths are equal to zero. The output of the CMAC are the joint

angles θ1 and θ2 which are inputs to the robot's forward kinematics. The error signals

are calculated as the difference between the desired end-effector positions and the actual

end-effector positions. It is shown that the two

re

coordinates of the end effector are selecte

x 00 100 400], yd = [50 250 100].

 The desired end effector positi

p

tr

 User

θ1 x

2

Figure 4.9 Block diagram for online learning of inverse kinematics of two-DOF

manipulator

 xd

 θ y CMAC 2 DOF

yd network manipulator

x

y

End effector
position

coordinates &
specified

targets

CMAC
learning

algorithm

Σ

xe ye

+

+

+

Figure 4.10 Simulation of the actual positions of the end effector of the two-linked robot

Figure 4.11 Joint angle trajectories of the two-linked robot

 It is seen that 39 iterations are needed to reach the desired end-effector positions.

The CMAC can be a fast solution for the inverse kinematics problem in robotics. On the

other hand CMAC training is fast. Usually while it takes too much time for other

network topologies CMAC is trained quickly. As a second case the two-link robot arm

is trained offline and its performance figured out with graphics. The training data is

selected in three different ways. First the training data is selected in a random fashion.

The random training points are shown in Figure 4.12. Second the neighborhood

sequential training technique is used. The neighbor training points are seen in Figure

4.13. Finally, the training points are selected in symmetry of the workspace’s circle

center as shown in Figure 4.14. The workspace is a semi-circle where the radius is equal

to 440 mm. 165 points are trained in each technique.

Figure 4.12 Random selected training data in the workspace of the two-linked robot arm

Figure 4.13 Sequence training data in the workspace of the two-linked robot arm

Figure 4.14 Polar symmetric training data in the workspace of the two-linked robot arm

 Figure 4.15, Figure 4.16 and Figure 4.17 present the performance of each

mentioned training schemes. In Figure 4.15 the random training performance is seen.

Generalization width and total number of layers are equal to 164. Memory converges

after 10 cycles. In Figure 4.16 neighborhood sequential training method’s performance

is seen where the generalization width and the total number of layers are 44 and finally

in Figure 4.17 the output errors of the network whose training data set is selected as in

Figure 4.14 are seen. Here the generalization width and total number of layer are equal

to 96. The desired end-effector positions are as follows:

xd = [-331 -198 -239 -109 201 243 330 300 200 44 0 100 -300 440 2 120 -1 -200 -50

-300 354 20 375 -5 -440];

yd = [111 64 285 242 290 149 67 200 300 44 380 250 2 3 60 200 300 10

5 50 17 98 150 0];

Figure 4.15 The output error for the random trained network

Figure 4.16 The output error for the sequentially trained network

Figure 4.17 The output error for the symmetric trained network

 It is seen that sequentially trained network performance is higher than the other

two methods. Also it is a fast training method because the memory converges at first

cycle.

4.4. The hardware implementation of a two- DOF manipulator

 The manipulator realized physically in this study is a two degrees of freedom

robotic arm. Step motors are used as the joint actuators. The electronic circuit connected

to the PC parallel port drives each step motors. The control scheme is open loop.

CMAC is used for the inverse kinematics calculations. The training is performed in an

off-line fashion. The task of the robot is moving to the coordinates that are specified by

the user. In this section stepper motors are defined. Also the driver circuit of the

steppers and the physical view of the robotic arm are displayed.

4.4.1. Step Motors

 Step motors are the electrical motors that are driven by digital pulses rather than

applying a continuous voltage. Each pulse equals one rotary step which is a portion of

one complete rotation. Counting pulses can be applied to achieve a desired shaft

rotation of the motor. The count automatically represents how much movement has

been achieved, without feedback information like in the servo systems. So open loop

control is appropriate for this concept. Accuracy of the step motor is a result of the

mechanical precision of its parts and assembly and some other noises. But this error can

be negligible. The more steps cause greater precision. And also some step drivers divide

normal steps into half steps or micro steps.

 A step motor converts digital pulse inputs to shaft rotation. The rotation speed is

related to the frequency of the pulses. Between steps, the motor holds its position and its

load without any brake system in its mechanism. After the motion the stepper holds its

load when it stops. Mechanical motion, load and the speed are the criteria for selecting a

step motor.

 Variable reluctance, permanent magnet and hybrid are the basic types of the step

motors. They generally operate with step angles from 5 degrees to 15 degrees at high

step rates, and have no detent torque. Detent torque is the holding torque when no

current is flowing in the motor. In Figure 4.18, when phase A is energized, rotor teeth

line up with the stator teeth of phase A by magnetic attraction. The next step is taken

when A is turned off and phase B is energized. Continuing the sequence, C is turned on

and next and then A again. Reverse rotation is achieved when the phase order is

reversed. Permanent motors differ from variable reluctance motors by having permanent

magnet rotors with no teeth, and are magnetized perpendicular to the axis. In energizing

the four phases in sequence, the rotor rotates as it is attracted to the magnetic poles. The

motor shown in Figure 4.18 will take 90 degree steps as the windings are energized in

sequence A, B, C and D. Permanent magnet motors generally have steps 45 or 90

degrees and step at relatively low rates, but they exhibit high torque and good damping

characteristics.

Figure 4.18 Variable Reluctance Motor

Figure 4.19 Permanent Magnet Motor

 Hybrid types of step motors seen in Figure 4.20 combine the qualities of the

variable reluctance motors and permanent magnet motor. They have high detent torque

and excellent holding and dynamic torque, and they can operate at high speeds.

Normally, they exhibit step angles of 0.9 to 5 degrees. If the phases energized one at a

time, the rotor rotates in full step. This motor can also be driven two phases at a time to

yield more torque, or one then two then one phase, to produce half steps.

 The computer or programmable logic controller (PLC) sends commands to the

driver. The drivers determine amount, speed and rotation direction. They accept pulses

and direction signals and translate these signals into phase currents in the motor. A step

motor driver provides precisely speed and positioning. The motor increments a precise

step with each control pulse easily converting digital information to exact incremental

rotation without the need for feedback devices such as tachometers or encoders.

Because the system is open loop, the problems due to the feedback loop and instability

are eliminated.

Figure 4.20 Hybrid motor

4.1.2. Step Motor Driver Circuit

 NPN type transistors are used for the driver design seen in the circuit in Figure

4.21.

Figure 4.21 Step motor driver circuit

 Two step motors are driven in one driver circuit. P2, P3, … , P9 are the output

pins of the parallel port. S1-1, … , S1-4 are the phase connections of the first stepper

likewise S2-1, … , S2-4 are the phase connections of the second step motor. C1 and C2

are the common phases of the first and the second stepper.

4.1.3. Experimental setup description

 The hardware architecture block diagram of the real control system considered

here is shown in Figure 4.22. The picture of the setup including the control system is

shown in Figure 4.23. The experimental setup consists of a two-linked robot arm with

its actuators, and the driver circuits.

 The arm is designed as a plane redundant manipulator where each joints can

travel among 360 degrees. Two steppers drive the mechanism. The rotation of the step

motor is reduced with a gear. This gear rotates the shaft that is connected with the link.

The link lengths are 220 mm (distance between two rotating shafts’ axis).

….

Motors

Manipulator

Driver

Microprocessor

486DX 50 MHz

Figure 4.22 Block diagram of the control system

 The advantages of the mechanism are that is controlled without feedback. Each

step motors are hybrid type and rotates 7.5 degrees for full step. The step motors are

driven with half steps so each pulse causes 3.75 degrees rotation. The rotation is

reduced to 13 / 42 for the first step motor and 16 / 42 for the second step motor. The

resolution is about 1.1607 degrees per pulse for the first step motor and 1.4285 for the

second step motor. The motors are fed with +12 DC voltage. The control algorithm is

implemented on a 486 DX-50 MHz personal computer using MATLAB programming

language. The drawing of the robot arm is displayed in Figure 4.23 and the parts of the

arm are listed in Table 4.1.

1 First Gear Box’ Lower Plate 8 Bolt M3

2 First Gear Box’ Upper Plate 9 Second shaft

3 Bolt M4 10 Second link (220 mm)

4 First shaft 11 First Gear Box’ driver gear

5 First link (220 mm) 12 First Gear Box’ shaft gear

6 Second Gear Box’ Lower Plate 13 Second Gear Box’ driver gear

7 Second Gear Box’ Upper Plate 14 Second Gear Box’ shaft gear

Table 4.1 Robot arm parts

Figure 4.23 Experimental hardware setup

Figure 4.24 Robot arm drawing

CHAPTER 5

CONCLUSIONS

In this thesis, CMAC neural networks are studied. The CMAC operation is

defined with examples. The network parameters and their effects on the system

performance were analyzed in detail. Aim of the thesis is generating a two degrees of

freedom manipulator's inverse kinematics by using CMACs.

The learning techniques are divided into two groups as sequential neighborhood

training and random training. It is seen that sequential neighborhood training is a fast

and efficient method for the problem of inverse kinematics. The optimum results are

obtained when generalization width is equal to total number of layers. And if the

distance between two training points is equal to the generalization width the CMAC

approximates a smooth curve. Also the other advantage of sequential neighborhood

training is the less memory requirements. By using hash coding the required memory

decreases dramatically. As a result for inverse kinematics calculations, a sequentially

neighborhood trained CMAC network's performance is a good alternative. The main

advantage of CMAC to other neural networks is its fast computation. In this study only

a two degrees of freedom manipulator is discussed but in the case of many degrees of

freedom, the analytic solutions are more complicated and sometimes there are no

formulations for the inverse kinematics. In such situations some iteration methods take

place. But these solutions are very slow computations according to CMAC computation.

The thesis gives an idea for designing a CMAC network. Many engineering

problems are non-linear and in real life problems to propose an accurate mathematical

model is not possible for all situations.

During the analysis of CMAC network and hardware implementation,

MATLAB programming language is used on a PC. The simple nature of CMAC

operation is an advantage for the application areas.

The main disadvantage of CMAC is the large memory requirement. Hash coding

is a solution for the memory problem but it causes hash collisions. Furthermore specific

hashing algorithms for CMAC may overcome memory problems.

Stability is another subject for CMAC. Some adaptive algorithms are developed

for stability problems of CMAC [9]. These adaptive algorithms need to be researched.

CMAC has strong approximation ability and it has a fast computation. It is suitable for

intelligence applications.

REFERENCES

[1] Albus James S., Brains, Behavior, and Robotics, BYTE Publications

Inc., (1981).

[2] Albus James S., A New Approach to Manipulator Control: The

Cerebellar Model Articulation Controller, Journal of Dynamic Systems,

Measurement and Control, (1975), 220-227.

[3] Albus James S., Data Storage in the Cerebellar Model Articulation

Controller, Journal of Dynamic Systems, Measurement and Control,

(1975), 228-233.

[4] Albus James S., A Theory of Cerebellar Function, Mathemetical

Biosciences Volume 10, (1971), 25-61.

[5] Lin Chun-S., Kim H., Selection of Learning Parameters for CMAC-

Based Adaptive Critic Learning, IEEE Transactions On Neural

Networks, VOL. 6, NO. 3, (1995), 642-647.

[6] Thompson David E., Kwon S., Neighboorhood Sequential and Random

Training Techniques for CMAC, IEEE Transactions On Neural

Networks, VOL. 6, NO. 1, (1995), 196-202.

[7] Lin Chun-S., Chiang Ching-T., Learning Convergence of CMAC

Technique, IEEE Transactions On Neural Networks, VOL. 8, NO. 6,

(1997), 1281-1291.

[8] Cembrano G., Wells G., Sarda J., Ruggeri A., Dynamic Control of A

Robot Arm Using CMAC Neural Networks, Control Eng. Practice. Vol.

5, No. 4, (1997), 485-492.

[9] Abdelhameed Magdy M., Pinspon U., Çetinkunt S., Adaptive Learning

Algorithm For Cerebellar Model Articulation Controller, Mechatronics

12, (2002), 859-873.

[10] Larsen G. A., Çetinkunt S., Dönmez A., CMAC Neural Network Control

For High Precision Motion Control In The Presence OF Large Friction,

Journal of Dynamic Systems, Measurement, and Control Vol. 117,

(1995), 415-420.

[11] Hsu Yuan P., Hwang Kao. S. Wang jinn S., An Associative Architecture

of CMAC for Mobile Robot Motion Control, Journal of Information

Science and Engineering 18, (2002), 145-161.

[12] Kim Dong-H., Oh Ju-W., Lee In-W., Cerebellar Model Articulation

Controller for Suppression of Structural Vibration, Journal of Computing

in Civil Engineering, (October 2002), 291-297.

[13] Commuri S., Lewis F.L, CMAC Neural Networks for Control of

Nonlinear Dynamical Systems: Structure, Stability and Passivity,

Automatica Vol. 33 No. 4, (1997), 635-641.

[14] Zhu J.J., Xiao W.P., Intelligent Control of Time-Varying Dynamical

Systems Using CMAC Artificial Neural Network, Mathl. Comput.

Modelling Vol. 21 No. 1/2, (1995), 89-107.

[15] Pan G., Xu H., Kwan C.M., Liang C., Haynes L., Geng Z., Modelling

And Intelligent Chatter Control Strategies For A Lathe Machine, Control

Eng. Practice Vol. 4 No. 12, (1996), 1647-1658.

[16] Jang J. O., Implementation Of Indirect Neuro-Control For A Nonlinear

Two-Robot MIMO System, Control Engineering Practice 9, (2001), 89-

95.

[17] Chan H.L., Rad A.B., Real-Time Flow Control Using Neural Networks,

ISA Transactions 39, (2000), 93-101.

[18] Deshpande N. A., Gupta M.M., Inverse Kinematic Neuro-Control Of

Robotic Systems, Engineering Applications Of Artificial Intelligence 11,

(1998), 55-66.

[19] Page G.F, Gomm J.B, Williams D., Application Of Neural Networks To

Modelling and Control, Liverpool John Moores University, (1995).

[20] Craig J.J., Robotics, Mechanics & Control, Addison-Wesley Publishing

Co., Inc.,(1986).

[21] Smith R.L., Intelligent Motion Control With An Artificial Cerebellum,

Phd Thesis, The Department of Electrical and Electronic Engineering,

University of Auckland, New Zealand, (1998).

[22] Baharin L.B., Hasan Md.M., A Neural Networks Software For the

Control Engineers, Elsevier, (1995), 191-198.

[23] Deshpande N.A., Gupta M.M., Inverse Kinematic Neuro-Control of

Robotic Systems, Engineering Applications of Artificial Intelligience,

(1998), 55-66.

[24] Lee E.S., Algorithms and Data Structures In Computer Engineering,

Jones and Barlette Publishers, Inc., Boston (1992)

APPENDIX

MATLAB CMAC CODE SAMPLES

% ##

% CMAC 1 INPUT ~ 1 OUTPUT FUNCTION APPROXIMATION

% ##

% --

% initialization

% --

 layer_num = 55;

 min_ip_val = -180;

 max_ip_val = 180;

 w = 55; % generalization width

 lr = 1; % learning rate

 ip_val = max_ip_val - min_ip_val + 1;

% --

% total memory location calculation

% --

 sayi=0;

 for i = 1 : layer_num;

 sayi = sayi + ceil((ip_val - mod((i-1),w)) /w)+ sign(i-1)*1;

 end

 twn = sayi; % total memory location number

% --

% input & target values

% --

 xx = -180:180;

 rx = randperm(361);

 trp_num = 43;

 ix = rx(1:trp_num);

 x = xx(ix(:));

for i = 1 : trp_num;

 t(i) = sin(x(i)*pi/180); % target matrix

end

% --

% CMAC memory parameters

% --

hash_size = 200; % hash_size = twn for no hashing

Mem = zeros(1,hash_size);

% --

% training

% --

for sayac = 1 : 250;

for j = 1 : trp_num;

% map hypercube address

 for i = 1 : layer_num

 s(i) = ceil((ip_val - mod((i-1),w)) /w)+ sign(i-1)*1;

 ddizin = min_ip_val+(mod((i-1),w)) : w : max_ip_val;

 if ddizin(1) == min_ip_val

 dizin = ddizin;

 else

 dizin = [min_ip_val ddizin];

 end

% hypercube no in that layer

 hypcube(i) = max(find(dizin<=x(j)));

% hypercube index no

 if i == 1;

 hyp_no(i) = hypcube(i);

 if hyp_no(i) > hash_size

 hyp_no(i) = mod(hyp_no(i), hash_size);

 if hyp_no(i) == 0;

 hyp_no(i) = 1;

 end

 end

 else

 hyp_no(i) = sum(s(1:(i-1))) + hypcube(i);

 if hyp_no(i) > hash_size

 hyp_no(i) = mod(hyp_no(i), hash_size);

 if hyp_no(i) == 0;

 hyp_no(i) = 1;

 end

 end

 end

 end

OP(j) = sum(Mem(hyp_no(:)));

Mem(hyp_no(:)) = Mem(hyp_no(:)) + lr * (t(j) - OP(j)) / layer_num;

end

convergence(sayac) = sum(Mem);

end

% --

% OUTPUT

% --

for s_x = min_ip_val:max_ip_val;

 for i = 1 : layer_num

 s(i) = ceil((ip_val - mod((i-1),w)) /w)+ sign(i-1)*1;

 ddizin = min_ip_val+(mod((i-1),w)) : w : max_ip_val;

 if ddizin(1) == min_ip_val

 dizin = ddizin;

 else

 dizin = [min_ip_val ddizin];

 end

% hypercube no in that layer

 hypcube(i) = max(find(dizin<=s_x));

% hypercube index no

% hypercube index no

 if i == 1;

 hyp_no(i) = hypcube(i);

 if hyp_no(i) > hash_size

 hyp_no(i) = mod(hyp_no(i), hash_size);

 if hyp_no(i) == 0;

 hyp_no(i) = 1;

 end

 end

 else

 hyp_no(i) = sum(s(1:(i-1))) + hypcube(i);

 if hyp_no(i) > hash_size

 hyp_no(i) = mod(hyp_no(i), hash_size);

 if hyp_no(i) == 0;

 hyp_no(i) = 1;

 end

 end

 end

 end

OUTPUT(s_x+abs(min_ip_val)+1) = sum(Mem(hyp_no(:)));

end

% --

% PLOT

% --

 m = min_ip_val : max_ip_val;

 n = sin(m * pi / 180);

plot(m,n,'b', m,OUTPUT,'r')

grid on

dif = n-OUTPUT;

%figure (2)

%plot(ind,dif,'g')

max_error = max(abs(dif))

mean_error = sum(abs(dif))/ip_val

% --

% ##

% ##

% CMAC 2 INPUT ~ 1 OUTPUT FUNCTION APPROXIMATION

% ##

% --

% initialization

% --

 layer_num = 15;

 min_ip_val = 1;

 max_ip_val = 181;

 w = 15; % generalization width

 lr = 1; % learning rate

 ip_val = max_ip_val - min_ip_val + 1;

% --

% total memory location calculation

% --

 sayi = 0;

 ssayi = 0;

 for i = 1 : layer_num;

 sayi = ceil((ip_val - mod((i-1),w)) /w)+ sign(i-1)*1;

 ssayi = ssayi + sayi^2;

 end

 twn = ssayi; % total memory location number

% --

% input & target values

% --

 trp_num_ = 12; % training point number in one axis

 xx = min_ip_val : ((max_ip_val - min_ip_val)/(trp_num_)) : max_ip_val;

 lexx = length(xx);

 x = repmat(xx, 1, lexx); % x-component

 for i = 1 : lexx

 yy = repmat(xx(i), 1, lexx);

 y(((i-1)*lexx+1) : (i*lexx)) = yy;

 end

 trp_num = length(x);

 for i = 1 : trp_num;

 t(i) = sin(x(i)*pi/180) * cos(y(i)*pi/180);

 end

% --

% CMAC memory parameters

% --

hash_size = twn; % hash_size = twn for no hashing

Mem = zeros(1,hash_size);

% --

% training

% --

for sayac = 1 : 250;

 for j = 1 : trp_num;

% map hypercube address

 for i = 1 : layer_num

 s(i) = ceil((ip_val - mod((i-1),w)) /w)+ sign(i-1)*1;

 ss(i) = s(i)^2;

 ddizin = min_ip_val+(mod((i-1),w)) : w : max_ip_val;

 if ddizin(1) == min_ip_val

 dizin = ddizin;

 else

 dizin = [min_ip_val ddizin];

 end

% hypercube no in that layer

 hypcube_x(i) = max(find(dizin<=x(j))); % x component

 hypcube_y(i) = max(find(dizin<=y(j))); % y component

% hypercube index no

 if i == 1;

 hyp_no(i) = s(i) * (hypcube_x(i)-1) + hypcube_y(i);

 if hyp_no(i) > hash_size

 hyp_no(i) = mod(hyp_no(i), hash_size);

 end

 if hyp_no(i) == 0;

 hyp_no(i) = 1;

 end

 else

 hyp_no(i) = sum(ss(1:(i-1))) + s(i) * (hypcube_x(i)-1) + hypcube_y(i);

 if hyp_no(i) > hash_size

 hyp_no(i) = mod(hyp_no(i), hash_size);

 end

 if hyp_no(i) == 0;

 hyp_no(i) = 1;

 end

 end

 end

OP(j) = sum(Mem(hyp_no(:)));

Mem(hyp_no(:)) = Mem(hyp_no(:)) + lr * (t(j) - OP(j)) / layer_num;

end

convergence(sayac) = sum(Mem);

sayac

end

% --

% OUTPUT

% --

for s_x = min_ip_val : max_ip_val;

 for s_y = min_ip_val : max_ip_val;

 for i = 1 : layer_num

 s(i) = ceil((ip_val - mod((i-1),w)) /w)+ sign(i-1)*1;

 ss(i) = s(i)^2;

 ddizin = min_ip_val+(mod((i-1),w)) : w : max_ip_val;

 if ddizin(1) == min_ip_val

 dizin = ddizin;

 else

 dizin = [min_ip_val ddizin];

 end

% hypercube no in that layer

 hypcube_x(i) = max(find(dizin<=s_x)); % x component

 hypcube_y(i) = max(find(dizin<=s_y)); % y component

% hypercube index no

 if i == 1;

 hyp_no(i) = s(i) * (hypcube_x(i)-1) + hypcube_y(i);

 if hyp_no(i) > hash_size

 hyp_no(i) = mod(hyp_no(i), hash_size);

 end

 if hyp_no(i) == 0;

 hyp_no(i) = 1;

 end

 else

 hyp_no(i) = sum(ss(1:(i-1))) + s(i) * (hypcube_x(i)-1) + hypcube_y(i);

 if hyp_no(i) > hash_size

 hyp_no(i) = mod(hyp_no(i), hash_size);

 end

 if hyp_no(i) == 0;

 hyp_no(i) = 1;

 end

 end

 end

%OUTPUT((s_x+abs(min_ip_val)+1), (s_y+abs(min_ip_val)+1)) =

sum(Mem(hyp_no(:)));

OUTPUT(s_x,s_y) = sum(Mem(hyp_no(:)));

 end

end

for n = 1 : 181

 for m = 1 : 181

 z(n,m) = sin(n*pi/180)*cos(m*pi/180);

 end

end

D = z - OUTPUT;

% ##

% CONTROL OF 2 DOF MANIPULATOR BY CMAC

% ##

% --

% system parameters

% --

 l1 = 220;

 l2 = 220;

 r = l1 + l2;

 layer = 44;

 min_ip = -(l1+l2);

 max_ip = (l1+l2);

 width = 44; % generalization width

 lr = 1; % learning rate

 ip = max_ip - min_ip + 1;

 tnow = memreq(layer,width,ip);

hash_size = tnow; % hash_size = twn for no hashing

 Mem1 = zeros(1,hash_size);

 Mem2 = zeros(1,hash_size);

 % ---

 % Input & target pairs

 % ---

xt = [-440 -396 -352 -308 -264 -220 -176 -132 -88 -44

 0 44 88 132 176 220 264 308 352 396

 440 ...

 -396 -352 -308 -264 -220 -176 -132 -88 -44 0

 44 88 132 176 220 264 308 352 396 ...

 -396 -352 -308 -264 -220 -176 -132 -88 -44 0

 44 88 132 176 220 264 308 352 396 ...

 -396 -352 -308 -264 -220 -176 -132 -88 -44 0

 44 88 132 176 220 264 308 352 396 ...

 -396 -352 -308 -264 -220 -176 -132 -88 -44 0

 44 88 132 176 220 264 308 352 396 ...

 -352 -308 -264 -220 -176 -132 -88 -44 0 44

 88 132 176 220 264 308 352 ...

 -308 -264 -220 -176 -132 -88 -44 0 44 88

 132 176 220 264 308 ...

 -308 -264 -220 -176 -132 -88 -44 0 44 88

 132 176 220 264 308 ...

 -220 -176 -132 -88 -44 0 44 88 132 176

 220 ...

 -176 -132 -88 -44 0 44 88 132 176 ...

 440];

yt = [0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 ...

 44 44 44 44 44 44 44 44 44 44

 44 44 44 44 44 44 44 44 44 ...

 88 88 88 88 88 88 88 88 88 88

 88 88 88 88 88 88 88 88 88 ...

 132 132 132 132 132 132 132 132 132 132

 132 132 132 132 132 132 132 132 132 ...

 176 176 176 176 176 176 176 176 176 176

 176 176 176 176 176 176 176 176 176 ...

 220 220 220 220 220 220 220 220 220 220

 220 220 220 220 220 220 220 ...

 264 264 264 264 264 264 264 264 264 264

 264 264 264 264 264 ...

 308 308 308 308 308 308 308 308 308 308

 308 308 308 308 308 ...

 352 352 352 352 352 352 352 352 352 352

 352 ...

 396 396 396 396 396 396 396 396 396 ...

 0];

 for i = 1 : length(xt);

if xt(i) == 0 & yt(i) == 0

 theta1_d(i) = 0;

 theta2_d(i) = 0;

else

 theta = ikt(xt(i), yt(i), l1, l2);

 theta1_d(i) = theta(1);

 theta2_d(i) = theta(2);

 end

end

 % ---

 % start

 % ---

for k = 1 : 1;

 for j = 1 : length(xt)

 adres = hypno(layer,width,min_ip,max_ip,hash_size,xt(j),yt(j));

 OP1 = sum(Mem1(adres(:)));

 Mem1(adres(:)) = Mem1(adres(:)) + lr * (theta1_d(j) - OP1) / layer;

 OP2 = sum(Mem2(adres(:)));

 Mem2(adres(:)) = Mem2(adres(:)) + lr * (theta2_d(j) - OP2) / layer;

c(k) = sum(Mem1);

 end

end

xd = [-331 -198 -239 -109 201 243 330];

yd = [111 64 285 242 290 149 67];

for i = 1 : length(xd)

adres = hypno(layer,width,min_ip,max_ip,hash_size,xd(i),yd(i));

t1a(i) = sum(Mem1(adres(:)));

t2a(i) = sum(Mem2(adres(:)));

xa(i) = dkx(t1a(i), t2a(i), l1, l2);

ya(i) = dky(t1a(i), t2a(i), l1, l2);

err_x(i) = xd(i) - xa(i);

err_y(i) = yd(i) - ya(i);

end

Matlab Functions

% inverse kinematics

% INPUTS : x : end-effector’s x coordinate

% y : end-effector’s y coordinate

% OUTPUTS : THETA(1) : first joint angle

% THETA(2) : second joint angle

function THETA = ikt(x,y,l1,l2);

theta2 = acos((x^2 + y^2 - l1^2 - l2^2) / (2 * l1 * l2)) * 180 / pi;

 beta = atan2(y, x) * 180 / pi;

 ci = acos((x^2 + y^2 + l1^2 - l2^2) / (2 * l1 * sqrt(x^2 + y^2))) * 180 /

pi;

 if theta2 < 0

 theta1 = beta + ci;

 else

 theta1 = beta - ci;

 end

THETA(1) = theta1;

THETA(2) = theta2;

% forward kinematics

% INPUTS : theta1 : first joint angle

% theta2 : second joint angle

% OUTPUTS : x : x coordinate of the end-effector

function x = dkx(theta1, theta2, l1, l2);

x = l1 * cos (theta1 * pi / 180) + l2 * cos ((theta1 + theta2) * pi / 180);

% INPUTS : theta1 : first joint angle

% theta2 : second joint angle

% OUTPUTS : y : y coordinate of the end-effector

function y = dky(theta1, theta2, l1, l2);

y = l1 * sin (theta1 * pi / 180) + l2 * sin ((theta1 + theta2) * pi / 180);

 % hypercube index finder

% INPUTS : layer_num : total number of layers

% w : generalization width

% min_ip_val : minimum input value

% max_ip_val : maximum input value

% hash_size : total number of hashed memory locations

% x_a : x component of the input

% y_a : y component of the input

% OUTPUT : h : hypercubes index no

% OUTPUTS : x : x coordinate of the end-effector

function h = hypno(layer_num, w, min_ip_val, max_ip_val, hash_size, x_a,

y_a)

ip_val = max_ip_val - min_ip_val + 1;

for i = 1 : layer_num

 s(i) = ceil((ip_val - mod((i-1),w)) /w)+ sign(i-1)*1;

 ss(i) = s(i)^2;

 ddizin = min_ip_val+(mod((i-1),w)) : w : max_ip_val;

 if ddizin(1) == min_ip_val

 dizin = ddizin;

 else

 dizin = [min_ip_val ddizin];

 end

% hypercube no in that layer

 hypcube_x(i) = max(find(dizin<=x_a)); % x component

 hypcube_y(i) = max(find(dizin<=y_a)); % y component

% hypercube index no

 if i == 1;

 hyp_no(i) = s(i) * (hypcube_x(i)-1) + hypcube_y(i);

 if hyp_no(i) > hash_size

 hyp_no(i) = mod(hyp_no(i), hash_size);

 end

 if hyp_no(i) == 0;

 hyp_no(i) = 1;

 end

 else

 hyp_no(i) = sum(ss(1:(i-1))) + s(i) * (hypcube_x(i)-1) + hypcube_y(i);

 if hyp_no(i) > hash_size

 hyp_no(i) = mod(hyp_no(i), hash_size);

 end

 if hyp_no(i) == 0;

 hyp_no(i) = 1;

 end

 end

 end

 h = hyp_no;

% step motor driver

% half step per each pulse

% INPUTS : loop : rotation loop

% t : pulse period

% direction : rotation direction (cw, ccw)

 % OUTPUT : angle1 : angle traveled after command

% parallel port’s 2nd-3rd-4th-5th pins are used.

function angle1 = semistep1(loop, t, direction) % valid for matlab version 6.5

dio=digitalio('parallel','lpt1');

Port0=addline(dio,0:7,0,'out'); %Pin 2-9

if direction = = 1;

for k = 1 : loop;

putvalue(Port0,8);

pause(t);

putvalue(Port0,12);

pause(t);

putvalue(Port0,4);

pause(t);

putvalue(Port0,6);

pause(t);

putvalue(Port0,2);

pause(t);

putvalue(Port0,3);

pause(t);

putvalue(Port0,1);

pause(t);

putvalue(Port0,9);

pause(t);

 end

else

 for k = 1 : loop;

 putvalue(Port0,9);

pause(t);

putvalue(Port0,1);

pause(t);

putvalue(Port0,3);

pause(t);

putvalue(Port0,2);

pause(t);

putvalue(Port0,6);

pause(t);

putvalue(Port0,4);

pause(t);

putvalue(Port0,12);

pause(t);

putvalue(Port0,8);

pause(t);

end

end

	The Control Of A Manipulator Using
	Cerebellar Model Articulation Controllers
	By
	Assist. Prof. Dr. Serhan ÖZDEMİR
	Head of Department

	ÖZ
	TABLE OF CONTENTS
	LIST OF TABLES..

	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 2
	NEURAL NETWORKS

	1. Supervised Learning:
	2. Unsupervised Learning:
	Forwardpropagation:
	Backpropagation:
	1) Perceptron (Single Layer Networks):
	2) Multi Layer Feedforward Networks:
	3) Recursive Networks:

	2.2.1 The Cerebellum
	CHAPTER 3
	REFERENCES
	Matlab Functions

