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ABSTRACT 
 

 

The emergence of the theory of artificial neural networks has made it possible to 

develop neural learning schemes that can be used to obtain alternative solutions to complex 

problems such as inverse kinematic control for robotic systems. The cerebellar model 

articulation controller (CMAC) is a neural network topology commonly used in the field of 

robotic control which was formulated in the 1970s by Albus. In this thesis, CMAC neural 

networks are analyzed in detail. Optimum network parameters and training techniques are 

discussed. The relationship between CMAC network parameters and training techniques are 

presented. An appropriate CMAC network is designed for the inverse kinematic control of a 

two-link robot manipulator.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
ÖZ 

 
Yapay sinir ağları teorisinin ortaya çıkmasıyla, robot ters kinematiği kontrolü gibi 

karmaşık problemlerin çözümü için alternatif methodların gelişmesi mümkün olmuştur. 

Serebelar Model Artikulasyon Kontrolör (CMAC) 1970 lerde Albus tarafından geliştirilen ve 

genelde robot kontrolü alanında kullanılan bir yapay sinir ağı çeşididir. Tezde CMAC yapay 

sinir ağları detaylı olarak analiz edilmiş, optimum ağ parametreleri sunulmuş ve CMAC 

yapay sinir ağlarına has öğretme teknikleri karşılaştırılmıştır. İki serbestlik dereceli bir robot 

kolunun ters kinematik kontrolü için CMAC yapay sinir ağı tasarlanmıştır ve bilgisayarda 

CMAC yapay ağının performansı simule edilmiştir. 
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CHAPTER 1 
 

 

 

INTRODUCTION 
 

 

 

Due to the theoretical development and application successes, the interests in 

artificial neural networks have been growing in various fields of engineering. The 

scientists proposed many mathematical models of neural networks based on human 

brain and the function of biological neurons and their interconnections. The cerebellar 

model articulation controller (CMAC) was inspired on the knowledge of the function of 

the cerebellum of human brain. A theoretical model was used to explain the information 

processing characteristics of the cerebellum. In Great Britain David Marr in 1969 and in 

the US by James S. Albus in 1971 developed this model [1].  It was the model of the 

structure and functionality of the various cells and fibers in the cerebellum. This model 

makes Albus to propose a mathematical formalism for the cerebellum. CMAC is a 

neural network architecture. Basically, a CMAC computes the desired output by taking 

inputs as an address to refer to a memory where the weights are stored. CMACs 

estimate a relationship between the input and output by supervised training techniques. 

The problem of control of a robot arm consists of arranging the motor 

commands at the joints so the end-effector follows a desired trajectory as precisely as 

possible. The efficient solution of the control problem using conventional control 

techniques would require a thorough knowledge of the system behavior, translated into 

a very accurate nonlinear mathematical model, which is typically very hard to obtain 

[8]. Neural network control schemes are suited to the robot control problem. In this case 

the approximation ability and learning capabilities make neural networks good 

alternatives. Instead of generating a complicated mathematical model of the robotic 

system, a relationship between the input and the output of the system is evaluated by the 

  



neural networks. The CMAC neural network has the advantage of much faster 

convergence and online learning ability than the other networks [8].  

In this thesis, CMAC neural networks are used for the inverse kinematic control 

of a two-link robotic arm. The control problem is analyzed in two cases. First, three 

desired reachable end-effector positions are specified in cartesian coordinates. A closed 

loop, online control is achieved by using CMAC networks. Second, the CMAC network 

is trained off-line. The translations of the inverse kinematics of the end-effector 

positions to the joint angles are evaluated with this CMAC network. The step motors are 

used as joint actuators. The PC interface is used for driving the step motors.  

 The fast convergence property, online learning and adaptive abilities are the 

main advantages of the cerebellar model articulation controller. Most studies in the 

literature are focused on the development of the training algorithm of the CMAC or the 

applications of the CMAC. The CMAC operation is explained in detail in this thesis. 

The network parameters, the training techniques and the memory requirements are 

expounded in detail in the following chapters.  

Neural networks are used in many applications such as signal processing, image 

processing, speech processing, modeling, control etc… Robotic control is one of these 

implementations. Robotic control is based on either the task of the robotic system, the 

control scheme or the control subject. Neural network controllers are applied for all 

situations. CMAC neural networks are used as controllers for the dynamic control of 

robotic systems. As a matter of fact, the emergence of CMAC is based on robotic 

control problem. The non-linear equations of robot motion are hard to model 

mathematically. The actual dynamics of the robot is full of non-linearities. The 

conventional methods’ main principle is solving a differential equation of the rotation of 

the joint actuators. Usually these equations consist of rotation, rotation rates, and 

accelerations and inertial forces. The torque is computed and it is converted to the 

voltage values in order to drive the individual joint actuators. This is not an exact 

solution because the real world variables are neglected. The CMAC learns the system 

dynamics with supervised training techniques and generates an input to output mapping 

by using simple summation operation and memory mapping algorithms.  

Another robotic control problem is independent of robot dynamics. The position of 

the end-effector is calculated by using CMAC network in this study. The rotation rates 

are constant and the main reason of using neural network approach is to generate the 

inverse kinematics for desired end-effector coordinates. 

  



 

1.1. Thesis outline 

 This thesis could be categorized roughly in two sections. First, it consists of 

information on neural networks and the CMAC neural networks. The CMAC neural 

networks are investigated extensively. The memory and training problems are shown, 

and the optimum network architecture is presented. Second the robot control problem is 

defined. Robotic control and the meaning of robot control are defined. The CMAC 

network is used for two robot learning. 

Chapter two gives some background information on neural networks. This is 

important for two reasons: first, the basic terms and definitions of neural networks are 

defined, and second it is a brief summary of the CMAC networks.  

Chapter three looks at the CMAC programming in MATLAB environment. The 

effects of the CMAC parameters and training techniques to the desired performance 

level are analyzed in detail. 

Chapter four explains the robot control problems. It reiterates information on neural 

controllers. The inverse kinematics control of the two-link robot is achieved with a 

CMAC network. The simulation results are presented. A simple 2 DOF experimental 

robotic arm is presented and the position control of the arm is achieved by using CMAC 

network for inverse kinematics calculations. 

Finally, in chapter five a discussion and suggestions for future work are presented, 

and the main conclusions of the thesis are summarized. The MATLAB code samples of 

CMAC are presented in the appendix. 

 

 

 

 

 

 

 

 
 
 
 
 

  



 

 

CHAPTER 2 
 
 
 

NEURAL NETWORKS 
 
 
  

 This chapter describes the artificial neural networks and CMAC. Artificial 

neural networks are modeled on the human brain and have a similarity to the biological 

brain and tries to simulate its learning process. Like the human brain, an artificial neural 

network also consists of neurons and connections between them. The neurons are 

transporting incoming information on their outgoing connections to other neurons. In 

artificial neural network terms these connections are called weights. Artificial neural 

networks are being constructed to solve problems that can't be solved using 

conventional algorithms. Such problems are usually optimization or classification 

problems like pattern classification, image processing, speech analysis, optimization 

problems, stock market forecasting. Artificial neural networks or shortly neural 

networks are in the service of engineering for control applications. Neural networks do 

not use the mathematical model of a system to obtain a solution but they use an input-

output relationship instead and the solution is obtained by learning the relationship. 

Once a neural network is trained, it can determine the desired output, or solution to a 

given input. Neural networks can generalize some trained relationship to other untrained 

ones and therefore they can solve problems with limited training data. Robotic 

manipulator control has been one of the application areas of neural networks. With high 

non-linearity and modeling uncertainity, it is not easy or even possible to design a 

controller by conventional approaches based on the mathematical modeling. So artificial 

neural networks are good alternatives to conventional methods.  

 There are many different neural network types with each having special 

properties, so each problem has its own network type. Although neural networks are 

able to find solutions for difficult problems the results can not be perfect or exactly 

correct. They are just approximations of a desired solution and an error always remains. 

But they are good alternatives for such difficult problems. 

  



 

2.1 Neural Networks 

A Neural Network is an interconnected assembly of simple elements whose 

functionality is based on the animal neuron. The processing ability of the network is 

stored in weights, obtained by learning from a set of training patterns. All natural 

neurons have four basic components. These are dendrites, soma, axon, and synapses. 

Basically, a biological neuron receives inputs from other sources, combines them in an 

operation to output a final result. The figure 2.1 shows a simplified biological neuron 

and the relationship of its four components. Dendrites accept inputs, soma process the 

inputs and axon turns the processed inputs into outputs and synapses provide the 

electrochemical contact between neurons. 

 
 

Figure 2.1 A neural cell 
 
 

The Artificial Neuron is the basic unit of neural networks. They carry out the 

four basic functions of natural neurons. They accept inputs, and process the inputs, then 

  



turn the processed inputs into outputs and then they contact between other neurons. 

Figure 2.2 shows the basics of an artificial neuron. 

 

 
 
 

Figure 2.2 A model neuron 
 

 
The inputs to the network are represented by xn. Each of these inputs are 

multiplied by a connection weight, these weights are represented by wn. Simply, these 

products are summed, fed through a transfer function to generate an output. 

Artificial neural networks are formed by the interconnection of the artificial 

neurons. This occurs by creating layers that are then connected to one another. 

Basically, all artificial neural networks have a similar structure of topology. Some of the 

neurons interface the external environment to receive its inputs and other neurons 

provide the external environment with the network’s outputs. All the rest of the neurons 

are in the hidden form. 

 

 
Figure 2.3 Neural network layers 

 
 

 

  



Figure 2.3 shows how the neurons are grouped into layers. The input layer 

consists of neurons that receive input from the external environment. The output layer 

consists of neurons that communicate the output of the system to external environment. 

There are usually a number of hidden layers between these two layers; Figure 2.3 shows 

a simple structure with only one hidden layer. When the input layer receives the input, 

its neurons produce output where it becomes input to the other layers of the system. The 

process continues until a certain condition is satisfied. 

Changing of neural networks' weights causes the network to learn the solution to 

a problem. The system learns new knowledge by adjusting these weights. The learning 

ability of a neural network is determined by its architecture and by the method chosen 

for training. The training method usually consists of one of two schemes: 

1. Supervised Learning: 

A neural network is said to learn supervised, if the desired output is already known. 

While learning, one of the input patterns is given to the net's input layer. This pattern is 

propagated through the net to the net's output layer. The output layer generates an 

output pattern which is then compared to the target pattern. Depending on the difference 

between output and target, an error value is computed. This output error indicates the 

network's learning effort. The greater the computed error value is, the more the weight 

values will be changed. 

2. Unsupervised Learning: 

Neural networks that learn unsupervised have no such target outputs. It can't be 

determined what the result of the learning process will look like. During the learning 

process, weight values of such a neural net are "arranged" inside a certain range, 

depending on given input values. The goal is to group similar units close together in 

certain areas of the value range. 

Also, learning methods can be grouped as off-line or on-line. When the system 

uses input data to change its weights to learn the domain knowledge, the system could 

be in training mode or learning mode. When the system is being used as a decision aid 

to make recommendations, it is in the operation mode. In the off-line learning methods, 

once the system enters into the operation mode, its weights are fixed and do not change 

any more. In on-line or real time learning, when the system is in operating mode, it 

continues to learn while being used as a decision tool. 

 

 

  



 

2.1.1 Learning Rules 

These laws are mathematical algorithms used to update the weights. 

Hebb’s Rule: 

If a neuron receives an input from another neuron, and if both are active 

(mathematically have the same sign), the weight between the neurons should be 

strengthened.  

If “j” receives input from “k”, modify the weight wjk with: 

 

                                                     ∆ wj k  =  y j . y k                                                       (2.1) 

 

where, y j is the output of neuron “j” and  y k  is the output of neuron “k”. 

 

Hopfield Law: 

This law is similar to Hebb’s Rule with the exception that it specifies the magnitude of 

the strengthening or weakening. If the desired output and the input are both active or 

both inactive, increment the connection weight by the learning rate, otherwise 

decrement the weight by the learning rate. 

 

                                                   ∆ wj k  = γ . y j . y k                                                     (2.2) 

 

where γ is a positive constant representing the learning rate. 

Delta Rule: 

Another common rule uses not the actual activation of unit “k” but the difference 

between the actual and desired activation for adjusting the weights. 

 

                                                    ∆ wj k  = γ . y j . ( d k – y k )                                       (2.3) 

 

where d k is the target. This is also known as the Widrow-Hoff Rule. 

 

 

 

 

 

  



 

2.1.2 Learning Algorithms 

Forwardpropagation: 

Forwardpropagation is a supervised learning algorithm and describes the "flow 

of information" through a neural network from its input layer to its output layer. 

The algorithm works as follows: 

1. Set all weights to random values ranging from -1.0 to +1.0 

2. Set an input pattern (binary values) to the neurons of the net's input layer 

3. Activate each neuron of the following layer: 

4. Multiply the weight values of the connections leading to this neuron with the 

output values of the preceding neurons 

5. Add up these values 

6. Pass the result to an activation function, which computes the output value of 

this neuron 

7. Repeat this until the output layer is reached 

8. Compare the calculated output pattern to the desired target pattern and 

compute an error value 

9. Change all weights by adding the error value to the (old) weight values 

10. Go to step 2 

11. The algorithm ends, if all output patterns match their target patterns 

 

Backpropagation: 

Backpropagation is a supervised learning algorithm and is mainly used by Multi 

Layer-Perceptrons to change the weights connected to the net's hidden neuron layer(s). 

The backpropagation algorithm uses a computed output error to change the weight 

values in backward direction. 

To get this network error, a forwardpropagation phase must have been done before. 

While propagating in forward direction, the neurons are being activated using the 

sigmoid activation function. 

The formulation of sigmoid activation is: 

 

                                                        inpute
xf

−+
=

1
1)(                                                   

(2.4) 

  



 

 

 

The alg

e forwardpropagation phase for an input pattern and calculate the 

. Change all weight values of each weight matrix using the formula 

weight(new) = (n urons  * 

output(neurons i+1) *  ( 1 - output(neurons i+1) )   

5. The algorithm ends, if all output patterns match their target patterns 

2.1.3 T

ers, while feedback 

neurons of the same layer. 

1) Perc

licated logical operations (like the XOR 

ron. 

2) Mult

utput layers. It is mainly used in complex logical operations and pattern 

3) Recu

and output neurons. The main 

pplication is the storage and recognition of patterns.  

orithm works as follows: 

1. Perform th

output error 
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 weight(old) + learning rate * output error * output e i)

 

4. Go to step 1 

 

 

ypes of Neural Networks 

There are several types of neural networks exist. They can be distinguished by 

their type or their structure and the learning algorithm they use. Feedforward neural 

networks allow only neuron connections between two different lay

networks have also connections between 

eptron (Single Layer Networks): 

It is a very simple neural network type with two neuron layers that accepts only 

binary input and output values (0 or 1). The learning process is supervised and the 

network is able to solve basic logical operations like “AND” or “OR”. It is also used for 

pattern classification purposes. More comp

problem) can not be solved by a Percept

i Layer Feedforward Networks: 

It is an extended Perceptron and has one ore more hidden neuron layers between 

its input and o

classification. 

rsive Networks: 

They consist of a set of neurons, where each neuron is connected to every other 

neuron. There is no differentiation between input 

a

  



 

 

2.2 Cerebellar Model Articulation Controller 

ing 

 structure of the cerebellum is first outlined. Then the CMAC 

etwork is described.  

 

 The CMAC neural network, based on the cerebellar neuromuscular control, is 

basicly a nonlinear lookup table technique which maps n-dimensional input to a 

corresponding output.  The CMAC was first proposed by Albus [1], [2], [3] and has 

been modified and improved. These studies  focused on development of algorithms [9], 

[11], [13], improvements of CMAC structure, and applications [8], [10], [12], [15].  

 Lin and Chiang described the CMAC technique with mathematical formulation 

and use the formulation to study the CMAC convergence properties. Both information 

retrieval and learning rules are described by algebraic equations in matrix form. 

Convergence characteristics and learning behaviors for the CMAC with and without 

hashing are investigated with the use of these equations [7]. Thompson and Kwon 

studied the sequential neighborhood training and random training techniques for 

CMACs. These techniques were used to generate mathematical functions. In the 

neighborhood sequential training method, a strategy was devised for selecting points in 

the input space which would train CMAC systems in the most rapid manner. The 

random training method was found to converge on the training function with the 

greatest precision, although it requires longer training periods than the neighborhood 

sequential training method [6]. Commuri and Lewis developed novel weight update 

laws that guarantee the stability of the closed loop system. The passivity properties of 

the CMAC under the specified tuning laws are examined and the relationship betwen 

passivity and closed-loop stability is derived [13]. Çetinkunt, Abdelhameed and Pinspon 

showed that the CMAC based controller causes instability after a long period of real 

time runs. They proposed a new learning algorithm. They used their controller for the 

trajectory tracking control of a piezoelectric actuated tool post. The performance of the 

proposed controller is compared with conventional controllers. The experimental results 

showed that the performance of the CMAC based controller using proposed learn

algorithm is stable and more effective than that of the conventional controllers [10].  

The CMAC is the simple model of the cerebellum. It is a mathematical formalism 

developed by Albus to model the information processing characteristics of the 

cerebellum.  The brief

n

  



 

 

.2.1 The Cerebellum 

 

tline of the structure and the function of the cerebellar cortex is 

shown 

otor outputs. Each of mossy fibers makes excitatory 

(+) contact with granule cells [1]. 

2

This section explains how the information process is achieved in the cerebellum 

of humans and other mammals. The cerebellum is attached to the midbrain and nestles 

under the visual cortex as shown in Figure 2.4. It is involved with control of movements 

of the body. Injury to the cerebellum results in movement disability such as overshoot in 

reaching for objects and lack of coordination. During 1960s, the functional 

interconnections between the principal components of in the cerebellar cortex are 

identified. A brief ou

in Figure 2.5. 

The principal input to the cerebellar cortex arrives by mossy fibers. Mossy fibers 

carry information from different sources such as the vestibular system (balance), the 

reticular information (alerting), the cerebral cortex (sensory motor activity), and sensor 

organs that measure such quantities as position of joints, tension in tendons, velocity of 

contraction of muscles, and pressure on skin. Mossy fibers can be categorized into two 

classes based on their point of origin: those carrying information that may include 

commands from higher levels in the motor system, and those carrying feedback 

information about the results of m

 
                                      Figure 2.4 Exterior view of human brain [21] 

  



 

 

 
                                     Figure 2.5 Neuron cells in cerebral cortex  

 

Golgi cells sample the response of the granule cells by the parallel fibers and 

suppress by inhibitory (-) contacts all but the most highly excited granule cells. Purkinje 

cells are the output of the cerebellar cortex. They sum the excitatory (+) effect of 

parallel fibers through weighted connections. They also receive inhibitory (-) input from 

parallel fibers by basket cell inverters. The strengths of these weights determine the 

transfer function of the cerebellar cortex. Climbing fibers are believed to adjust the 

strength of these weights so as to train the cerebellum [1]. 

 

 

2.2.2 The CMAC Network 

The detailed knowledge of the structure and the function of the various cell and 

fiber types in cerebellum make it possible to form mathematical models to explain the 

information processing characteristics of the cerebellum. The general outlines of CMAC 

model are shown in Figure 2.6. Albus has produced the version illustrated in Figure 2.7 

[1]. 

 

  



 
Figure 2.6 A Theoretical model of the cerebellum [1] 

 
Figure 2.7 A schematic representation of CMAC [1] 

 

  



 

The CMAC, as a controller, computes control values by referring to a memory 

look-up table where those control values are stored [2]. Memory table basically stores 

the relationship between input and output or the control function. In comparison to other 

neural networks, CMAC has the advantage of very fast learning and it has the unique 

property of quickly training certain areas of memory without affecting the whole 

memory structure. 

The network architecture of the CMAC is illustrated in Figure 2.8. The input 

data of every state variable are quantized into discrete regions and mapped on to 

different memory areas. Each indexed block memory called hypercube contains the 

input data of one quantized discrete state. The association memory mapping is 

implemented through hypercube to the actual memory as the mapping function of table 

look-up model. In addition to the association memory mapping function, the CMAC 

gives the feedback of the error of output to adjust the actual memory contents [1]. 

 

Figure 2.8 The learning architecture of CMAC 

 

The output of this system is the summation of the contents of actual memory 

that is mapped by effective hypercubes. The error caused by the difference between the 

output summation and the desired output is processed as the feedback value for 

adjusting the contents of actual memory. The learning efficiency of CMAC system 

  



depends largely on the division of hypercube. Its technique can be explained with 

Figure 2.9. This example has two state variables (s1 and s2) with each quantized into 

four discrete regions, called blocks. For instance, s1 can be divided into A, B, C and D 

and s2 can be divided into a, b, c and d. Areas formed by quantized regions, named as 

Bb, Gg, Kk, Oo are called hypercubes in the input state of (s1, s2) = (7,7). If the 

quantization for each variable is shifted by one element, different hypercubes will be 

obtained. For example, E, F, G, H for s1 and e, f, g, h for s2 are shifted regions. Ee, Ff, 

etc. are new hypercubes from the shifted regions. Each state is covered by N e different 

hypercubes, where N e is the number of elements in a complete block. There are 64 ( = 

42 x 4 ) hypercubes in this example. Each hypercube is taken as the corresponding 

address of actual memory element. And the data of each state will be distributively 

stored in memory elements associated with hypercubes that cover this state. Assume a j 

represents an association vector of j th input space ( j = 1, 2,3 ... N s ) where N s indicates 

the total number of input states. 99 th input state (state (7, 7)) is used to explain the 

actual memory how to be mapped by an association memory. Figure 2.9 shows the state 

(7,7) is mapped by the hypercubes of Bb,Gg,Kk and Oo. If we give an index value for 

each mapped actual memory unit, then the state (7,7) can be mapped to the memory 

locations of 6,27,43 and 59. We can use an association vector shown as equation 2.6 to 

represent the mapping information. 

a 6           a 27         a 43          a 59

a 99 = [ 0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . .0 ] 1 x 64              (2.5) 

Bb          Gg          Kk          Oo 

This is a 1×64 vector because there are 64 hypercubes needed (i.e. 64 actual 

memory units are used) in this case. In this vector, four 1’s represent the mapped actual 

memory units that are used under this input state, and other 0’s represent the mapped 

actual memory units are not used. Therefore, the locations of 6,27,43 and 59 are 

recorded as 1 and everything else is recorded as 0. The actual output y 99 of input state 

(7,7) can be represented as: 

 

              y 99 = a 99 . w                                                           (2.6) 

 

where w indicates the weight vector of actual memory contents. 

  



 

Figure 2.9 Block division of CMAC for a two-variable example 

 

Since there are total of 169(=13x13) input states in this case, the association 

memory matrix can be represented as a 64 x 169 matrix shown as A matrix in equation 

2.7. If we consider all corresponding outputs of input states, then the actual outputs can 

be represented as: 

 

                                y  =  A . W =                            (2.7) 
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where y indicates the vector of actual output, A indicates the association matrix and w 

indicates the weight vector of actual memory. CMAC requires 10816 (= 169 x 64) 

association memory units to record the information and requires 64 (= 64 x 1) actual 

memory units to record the weight information on this case.  

 

  



 

 Every step of CMAC operation is defined in Chapter 3. Chapter 3 is also a guide 

for writing a CMAC code in MATLAB environment.  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 
 
 
 
 

  



 
 

 

 
CHAPTER 3 

 

 

 

CMAC PROGRAMMING 
 

 

This chapter includes programming details of the CMAC in the MATLAB 

environment and function approximation examples in order to analyze the effects of the 

CMAC parameters to the learning and learning convergence. There are not so much 

detailed explanations about CMAC programming in the literature. Authors who studied 

CMAC, preferred to explain the network structure based on mathematical neural form. 

From another point of view the CMAC is a look-up table as well. And during the 

programming phase, this perspective is useful to better understand the inner mechanism 

of this network 

 

3.1. The CMAC Mapping 

The input space is quantized into a number of intervals according to the 

generalization width. The distance among the input dimension of each interval is equal 

to the generalization width. Quantized region of the input space is called a layer. New 

layers can be added by shifting the intervals as shown in Figure 3.1, which is an 

example for one-dimensional CMAC. 

 

. 

Figure 3.1 An example for quantized layers of the input space 

 

  



 

The input space is defined between –5 and 14, the generalization width is equal 

to 5 and there are four layers. Each layer can be modeled as a vector by shifting such as; 

 

Layer 1 L1 = [ -5  0  5  10 ],  Layer 3 L3 = [ -5  -3  2  7  12 ], 

Layer 2 L2 = [ -5  -4  1  6  11 ], Layer 4 L4 = [ -5  -2  3  8  13 ]. 

 

A, B, C ... are the hypercubes that contain the weights. The hypercubes are 

numbered as,  “A = 1, B = 2, C = 3, ... , T = 19” and the CMAC memory is formed from 

19 memory locations. An address function is needed to map the input values into the 

memory locations.  

The function, MAX ( FIND ( L i ≥ x ) ) where “MAX” and “FIND” are the 

MATLAB commands, gives the hypercube number in the ith layer. For example, for the 

input x = 3, in the first layer, 3 ≥ -5 and 3 ≥ 0. The command, find ( L1 ≥ 3 ) gives the 

vector [ 1  2 ] and max ( [ 1  2 ] ) is equal to “2”. It means that the input x = 3, activates 

the 2nd hypercube “B” in the first layer and similarly G, L and R in the other layers as 

seen in Figure 3.2.  

 
Figure 3.2 Single point mapping for one-dimensional CMAC. 

  



 

The input (x = 3) is mapped on the memory locations of 2, 7, 12 and 17. The 

output for the input x = 3 is equal to the arithmetic sum of the weights in the hypercubes 

B, G, L and R. There is a two-dimensional mapping example shown in Figure 3.3. 

 
Figure 3.3 An example for two-dimensional CMAC  

 

The input ranges are quantized similarly in the previous example. The input 

range is between 1 and 5 for both dimensions, and the hypercubes are;  

Aa, Ab, Ba, Bb, Cc, Cd, Ce, Dc, Dd, ... , Ff, Fg, Gf, Gg. They are numbered as;  

Aa = 1, Ab = 2, ... , Gg = 17.  

 
Figure 3.4 Single point mapping for two-dimensional CMAC. 

  



 

The input (x=2 and y = 4) is mapped on the memory locations of 2, 9 and 15. 

Thus, the CMAC memory has 17 memory locations. For the input x = 2 and y = 4: the 

weights in the hypercubes Ab, Dd and Fg are activated and it is displayed in Figure 3.4. 

Briefly, CMAC mapping method is practiced in two steps. First, find out which 

hypercubes are used in each layer and secondly give each hypercubes a number that is 

its address index in the memory. The nth dimensional CMAC has the same mapping 

algorithm. While writing a CMAC code it is useful to create a subroutine that maps the 

input values to its memory locations. This subroutine may be a function where its inputs 

are the input dimension, input ranges, generalization width and total layer number and 

its outputs are the hypercube indexes or the memory address indexes.  

 

 

3.2. The CMAC Training  

CMAC training is the data storage of the memory. Initially all the memory 

locations are empty, it is to say all of the weights are equal to zero. The output for the 

desired point in the input space is the sum of the selected weights that are determined by 

the mapping. And the training procedure is: 

1. The function F will be computed by the CMAC. The desired value of the output 

for each point in the input space is Y = F ( X ).  

2. A point X is selected in the input space where Y is to be stored. The current 

value of the function at that point ( initially it equals to zero )  y = f ( X ) is 

computed. 

3. ∆i is added to every weight to produce yi 

   

L
yY ii

i
−

=∆ α                                    (3.1) 

 

where, 

| L | is the total number of layers and α is the learning rate.  

Working with matrices and vectors in the MATLAB programming language 

facilitates the data storage operation. After the hypercube indexes are determined a 

vector of address indexes of the memory is obtained.  

 

  



 

For the ith training point, the output is Y( i )  =  sum ( M ( address ( : ) ) ) where, 

“M” is the memory vector and “address” is the vector of the address indexes and  

 M ( address ( : ) )  =  M ( address ( : ) )  + α   ( Y ( i ) – y ( i ) )  / A. 

After all the points in the input space are trained, this loop is repeated for the same 

points until the memory elements converge.  

There are three cases:  

1. Memory elements change periodically after a cycle. 

2. Memory elements remain constant after a cycle. 

3. Instability. 

Convergence is gained in two ways. The memory elements remain constant after a 

certain cycle or the memory elements have the same values periodically. In which cycle, 

the elements converge, depends on the CMAC parameters, selected training points and 

the chosen size of the memory. If there are no learning interferences between the 

training points and if hash coding is not used, the memory elements converge at the first 

cycles. Very high learning rates may result in instability while very low learning results 

cause long convergence time. By using adaptive learning algorithms, the instability 

problem is solved [9]. 

 Here the CMAC operation is described by using the Figure 2.9. Figure 2.9 

displays a two dimensional CMAC. For instance, the input pairs are s1 = 7 and s2 = 7 

and the target value t = 4. The input pairs s1 and s2 will activate the weigths in the 

hypercubes Bb, Gg, Kk and Oo. There are 64 hypercubes in this example and the index 

numbers of Bb, Gg, Kk and Oo 6, 27, 43 and 59. After the first training the sum of these 

four weights in the hypercubes Bb, Gg, Kk and Oo will be equal to 4. Initially all the 

weights are equal to zero. So, each weight in these hypercubes will be equal to 1 in 

order to give the output 4.    

For example, after the first training, to calculate the output for the input pairs s1 = 7 and 

s2 = 8 first the active weights must be found. These are Bc, Gg, Kk and Oo. The 

memory index of Bc is 7. The weight value in Bc was not active in the training so it 

remained zero. The output for s1 = 7 and s2 = 8 will be equal to the sum of the weights 

in Bc, Gg, Kk and Oo. Gg, Kk and Oo are equal to 1 and Bc is equal to so the output is 

equal to 3. 

 

 

  



 

3.3. Hash Coding 

 As the dimension of the CMAC network increases, the required size of the 

CMAC memory increases exponentionally. After CMAC mapping, mapping the 

indexes into a smaller memory rather than the CMAC memory is a solution for the case 

of large memory requirements. Hash coding is used to solve this problem. The main 

idea is: 

 

        index  CMAC MAPPING =  MOD (index HASH MAPPING , hash size)                 (3.2) 

 

Formulation 3.2 causes different data mapped in the same memory address. This 

is called hash collisions. But usually, the errors due to the hash collisions are neglected 

with respect to the overall CMAC error. And choosing an appropriate hash size is 

important to minimize the errors due to the hash coding. One that gives smooth results 

is formulated below: 
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where, 

s : hash size 

I : input range 

w : generalization width 

n : input dimension 

k  = 1,2,3, …  

 

Formulation 3.3 is used in the case of no learning interferences and it is 

displayed in Figure 3.5 for one-dimensional and in Figure 3.6 for two-dimensional input 

spaces. This basic sense can be applied for the n-dimensional input space. Here, the 

distance between two consecutive training points is equal to the generalization width. 

The training points are selected in this fashion. 

 

 

  



 

Figure 3.5 Selection of training points for hashing in one-dimensional CMAC 

 

 Linear hashing and uniform hashing are the other ways that can be applied to 

overcome the memory problem. In linear hashing, collisions are resolved by trying the 

next memory location in a linear sequence. In uniform hashing collisions are resolved 

by trying a random memory address.  

 

 

Figure 3.6 Selection of training points for hashing in two-dimensional CMAC 

 

Hashing causes the memory to converge after a certain cycle, and the number of 

cycles to reach convergence is proportional to the input dimension. Hashing is 

necessary in the case of many degrees of freedom. In these situations, the required 

  



memory with CMAC mapping may not be possible physically so hash coding is a must 

to solve this problem. During this study the hardware implementation is performed with 

the PC interface and the PC RAM is used for the CMAC memory. For the limited sized 

memory devices such as micro controllers, the hash coding algorithms help to use the 

memory capacity economically.  

 

  

3.3. Function Approximation with the CMAC 

CMAC is a good function approximator for both single and multi input 

functions. Albus, proposed CMAC to determine the control function of a robotic 

motion. Especially for the many degrees of freedom, it is hard to solve the analytic 

equations and sometimes it is not possible to model the physical properties of 

interactions like friction. Although all the terms of the equations of the motion are 

exactly found, solving these equations may not be so practical. Rather than kinematic 

solutions, referring to a table the output is calculated for the desired input values. 

Actually, CMAC determines the same equations of the motion by learning in an 

adaptive manner without any knowledge of the physical laws. That’s what the human 

and the other mammals do while acting their motions. Some points in the input space is 

trained during training but by using the generalization property of the CMAC, the 

network gives output for every input point in the input range. This is the basic result of 

the idea “the similar inputs give similar outputs”. Mathematically, generalization 

property is suitable to approximate to the continuous functions like motion control 

functions. If the generalization width is taken one, then the CMAC look- up table 

becomes a simple look-up table and the outputs of the points rather than the trained 

points remain zero. If the generalization width is too large, some overlaps will be 

formed. This overlaps causes the network to converge after many cycles and finally 

with an unacceptable error. If the generalization width is chosen approximately equal to 

the distance between the training points of the input space, a function with an acceptable 

error is obtained. Another parameter of the CMAC is the total number of layers. As the 

number of layers increases, output becomes more precise because more weights are 

used for output calculation since the number of weights is exactly equal to the number 

of layers used. Networks with more layers need more memory locations. Generalization 

width, number of layers, training point numbers are the key parameters for the function 

approximation. There is no criteria or formulation to optimize these parameters. Some 

  



examples are shown here to see how the approximation changes with the parameters. 

These examples give an idea for the network architecture.  

The sine function { y =  sin ( x ),  -180≤ x ≤ 180 } is used as an example for the 

CMAC approximation. In the below tables, the output of the CMAC and the target 

function are plotted in the first figure. Next figure represents the convergence of the 

network.  

The CMAC parameters like total layer number, generalization width, learning 

rate and training points are stated. The maximum error and the mean error of the CMAC 

output are calculated. Some graphs are introduced for optimum parameters. 

In Table 3.1 total number of layers is equal to 10 and the generalization width is 

equal to 30. {-180, -150, -120, -90, -60, -30, 0, 30, 60, 90, 180} are the training points. 

130 memory locations are required and there is no hashing. The memory converges 

after the second cycle as seen in Figure 3.7.2 and the memory elements take the same 

values at every two cycles periodically. The learning rate is equal to 1 and remains 

constant during learning. The maximum error is 0.3084 and the mean error is 0.0917. 

Approximation results for this example are under the desired performance level.  

The training points’ set, {-180, -150, -120, -90, -60, -30, 0, 30, 60, 90, 180} is 

represented in a MATLAB vector form as (-180 : 30 : 180) . In the memory 

convergence graph the vertical axis defines the sum of the memory elements. As it is 

mentioned before in this chapter, the convergence is obtained in two ways: the memory 

elements remain constant after a certain cycle or take the same values periodically after 

a certain cycle. In Figure 3.7.2 it is seen that the memory convergence like in the second 

way. 

 

 

 

 

 

 

 

 

 

 

  



 

 
Figure 3.7.1 Sine approximation 

 

 
Figure 3.7.2 Memory Convergence 

L W α Training points Maximum Error Mean Error 

10 30 1 (-180 : 30 : 180) 0.3084 0.0917 

Required Memory Locations Hash Size Convergence  

130 No hashing Periodical 

 

Table 3.1 CMAC parameters and sine approximation results 

 

 

 
Figure 3.8.1 Sine approximation 

 

 
Figure 3.8.2 Memory Convergence 

L W α Training points Maximum Error Mean Error 

30 30 1 (-180 : 30 : 180) 0.0329 0.0146 

Required Memory Locations Hash Size Convergence  

390 No hashing Periodical 

 

Table 3.2 CMAC parameters and sine approximation results 

 

  



In Table 3.2 the total number of layers is increased from 10 to 30 so the required 

memory locations are increased from 130 to 390. There is no hashing. The same points 

in the input space are used for training (-180:30:180). The maximum error is decreased 

from 0.3084 to 0.0329 and the mean error decreased from 0.0917 to 0.0146. After 

convergence is obtained, the memory elements take the same values for every 10 cycles 

periodically.   

It is clear that the approximation is better than the previous one in Table 3.1. 

While the training points and the generalization width are the same with the example in 

Table 3.1, the total number of layers is increased from 10 to 30 and a better 

approximation is gained. Also it is seen that more memory locations are needed as the 

convergence characteristic of the memory is changed. So, the total number of layers 

affects the approximation performance and it has a direct effect on the memory. 

The total layer number and the maximum error relations are seen in Figure 3.9 

and the total layer number and mean error relations are seen in Figure 3.10. Other 

parameters are the same with the examples in Table 3.1 and Table 3.2. Training points 

are (-180:30:180), without hashing. The generalization width is 30 and learning rate is 

equal to 1.  

 
Figure 3.9 Maximum error – total number of layers. (w=30) 

 

  



 
Figure 3.10 Mean error – total layer number (w = 30) 

 

 
Figure 3.11 Mean error – total number of layers (w = 18) 

 

  



It is clear that for L < 30, error values are high and the minimum points are 

periodically at 30, 60, 90, 120, 150, … that are the multiples of 30.  

Approximately,  

L  ≈  k . w                                                       (3.4) 

where,  k = 1,2,3, ... 

The maximum error and minimum error are similarly affected with the total 

number of layers. In Figure 3.11 the same experiment was performed with 21 training 

points with no learning interference and where generalization width equals to 18. Figure 

3.11 displays the relation of the mean error and total number of layers. The minimum 

error values are at points where total number of layers is equal to 18 and its multiples.  

Choosing low L, is an advantage for less memory and fast computation and fast 

convergence. How many training points are used and training point locations affect the 

generalization width. And it is seen that the generalization width affects the total 

number of layers. And taking total number of layers equal to generalization width seems 

to be an optimum selection.  

 

 
Figure 3.12.1 Sine approximation 

 

 
Figure 3.12.2 Memory Convergence 

L w α Training points Maximum Error Mean Error 

36 36 1 (-180 : 30 : 180) 0.1263 0.0660 

Required Memory Locations Hash Size Convergence  

396 No hashing  Constant 

 

 Table 3.3 CMAC parameters and sine approximation results 

 

 In table 3.3 the generalization width and the total number of layers are equal to 

36. 396 memory locations are required and there is no hashing. The convergence is 

  



obtained after 6 cycles and the memory elements remain at constant values as seen in 

Figure 3.12.2. The maximum error is 0.1263 and the mean error is 0.0660. The same 

training points (-180 : 30 : 180 ) are used for training and it is seen that the error values 

are increased by increasing generalization width and total number of layers. In Table 3.3 

by increasing the generalization width with constant training points, learning 

interferences form. Also by increasing training data with constant generalization width 

causes learning interferences. In Figure 3.12.1 it is seen that with increasing 

generalization width the error values also increase. Figure 3.13 and 3.14 show the 

relations between the error values and the generalization width.  In these graphs the 

generalization width values are equal to the total number of layers. Each error value is 

calculated after convergence. Optimum results are obtained when w = 30. For w < 30 

there are no learning interferences, but there are untrained gaps between two training 

points so the learning is insufficient. w = 30 is a boundary for learning interference. The 

mean error doesn’t change dramatically for w > 30 but it is clear to choose w = 30 if the 

maximum error is taken into account. 

 
Figure 3.13 Mean error – total number of layers, generalization width  

training points ( –180 : 30 :180 ) 

  



 
Figure 3.14 Maximum error – total number of layers, generalization width  

training points ( –180 : 30 :180 ) 

Two training techniques are discussed in the literature, neighborhood sequential 

training and random training [6]. In neighborhood sequential training, there are no 

learning interferences like in the examples in Table 3.1 and 3.2. The training points are 

selected in a sequential fashion from –180 to180 and the distance between two neighbor 

training points is equal to the generalization width. For the example in Table 3.3 the 

training points are selected sequentially but the distance between two neighbor training 

point is not equal to the generalization width so this type of training is not neighborhood 

sequential training. The other type of training technique for CMAC is the random 

training. The training points are selected randomly. The selection of the training points 

affects the approximation performance. For uniformly distributed random numbers the 

resulting CMAC performance is in the desired level. The use of this technique 

minimizes the training errors [6].  

 

 

 

 

  



 

 
Figure 3.15.1 Sine approximation 

 

 
Figure 3.15.2 Memory Convergence 

L w α Training points Maximum Error Mean Error 

30 30 1 ( -180 : 22.5 : 180 ) 0.1695 0.0705 

Required Memory Locations Hash Size Convergence  

390 No hashing Constant 

 

Table 3.4 CMAC parameters and sine approximation results 

 

 In Table 3.4 the generalization width and the total number of layers are equal to 

30. 390 memory locations are required and there is no hashing. Maximum error is 

0.1696 and mean error is 0.0705. The memory converges after 5 cycles and the memory 

elements remain at constant values.  

When a CMAC is trained, the contents of all memory elements whose input 

points are in the same neighborhood of the training points are affected. If subsequent 

training input points are chosen in the same neighborhood as any previous inputs, then 

some memory elements are repeated and those that were adjusted by the previous 

training sessions will be improperly altered. This is termed learning interference [6]. 

And in the example in Table 3.4 although the same parameters are used the error values 

are increased with respect to the example in Table 3.2. The training points sequence 

created learning interferences in Table 3.4. 

In neighborhood sequential training technique that is devised to avoid learning 

interference is to choose training input points that lie just outside of the neighborhood of 

the previous training input point. No learning interference occurs in this training 

technique like in the example in Table 3.2. In table 3.4 there are learning interferences 

so the output is under desired performance level.  

  



In Table 3.5 the sequential neighborhood training technique is used and the 

output performance level is higher than the previous example. The generalization width 

and the total number of layers are equal to 15. 375 memory locations are required and 

there is no hashing. The memory converges after 2 cycles. The maximum error is 

0.0084 and the mean error is 0.0036.  

 

 
Figure 3.17.1 Sine approximation 

 

 
Figure 3.17.2 Memory Convergence 

L w α Training points Maximum Error Mean Error 

15 15 1 ( -180 : 15 : 180 ) 0.0084 0.0036 

Required Memory Locations Hash Size Convergence  

375 No hashing Periodical 

 

Table 3.5 CMAC parameters and sine approximation results 

 There are more training points in the example in Table 3.5 ( -180 : 15 : 180 ) and 

the approximation performance is higher than the example in Table 3.2 ( -180 : 30 : 

180).  

 

 

 

 

 

 

 

 

 

 

  



 

 
Figure 3.18.1 Sine approximation 

 

 
Figure 3.18.2 Memory Convergence 

L W α Training points Maximum Error Mean Error 

15 15 1 ( -180 : 15 : 180 ) 0.0084 0.0036 

Required Memory Locations Hash Size Convergence  

375 25 Periodical 

 

Table 3.6 CMAC parameters and sine approximation results 

  

In table 3.6 the generalization width and the total number of layers are equal to 

15. 375 memory locations are required. 375 memory locations are reduced to 25 

memory locations by hash coding according to the formulation 3.3. Maximum error is 

0.0084 and mean error is 0.0036. The memory converges. It is seen that all the 

parameters except the memory size are same with the example in Table 3.5. 

  The CMAC output error and hash size relation is seen in Figure 3.19 and 3.20. 

Figure 3.19 shows the relation between hash size and maximum error of the CMAC 

approximation. Figure 3.20 shows the relation between hash size and mean error of the 

CMAC approximation. The CMAC parameters are taken from Table 3.5 in for the 

graphs in Figure 3.19 and 3.20. It is seen that maximum error and the mean error 

affected similarly with hash size. The example in Table 3.6 is trained in neighborhood 

sequential training technique which is also illustrated in Figure 3.5 and Figure 3.6. In 

the example in Table 3.6 the hash size is selected according to the formulation 3.3. The 

graphs in Figure 3.19 and 3.20 prove formulation 3.3. This formulation gives high 

performance results with neighborhood sequential training.  

If the training points are selected according to the neighborhood sequential 

training technique, the formulation 3.3 can be used to evaluate the hash size. It is seen in 

  



the graphs in Figure 3.19 and 3.20 good results are obtained at 25 and its multiples. In 

this example the required memory locations are reduced to 25 from 375 and the 

performance of the approximation did not changed in sine approximation example. In 

the case of multi-dimensional CMAC networks hashing is very useful to use less 

memory space. But in this hashing algorithm the training points and hash size must be 

selected very carefully else the error values increases as shown in the graphs in Figure 

3.19 and 3.20. For instance if the hash size is 150 the mean error is approximately 0.004 

while mean error is over 0.6 if the hash size is 188.  

 

 
Figure 3.19 Hash size – maximum error  

One dimensional function approximation of CMAC 

 where training points set (-180 : 15 : 180) and L = 15, w = 15 

 

 

  



 
Figure 3.20 Hash size – mean error  

One dimensional function approximation of CMAC 

 where training points set (-180 : 15 : 180) and L = 15, w = 15 

 

In the example in Table 3.7 the training points are selected randomly at 43 

points. Total number of layers and generalization width is 55. The learning rate is equal 

to 1. 415 memory locations are required and there is no hashing. Memory converges 

after 100 cycles and the memory elements remain at constant values. Maximum error is 

0.0861 and mean error is 0.0189. It is seen that in graph in Figure 3.211 there are 

untrained regions between points –135 and –90 and between 75 and 105. The training 

point set for this example is {-143 -126 70 14 107 97 -114 129 -65 31 -175 -66 -127 85  

7 -140 32 104 162 -116 -165 -128 -79 87 17 66 -73 -68 24 -12 -55 -39 -33 -10 -44 -3 -

94 111 30 -164 40 28 125}.  

 In the random training technique the convergence is gained after more cycles 

with respect to neighborhood sequential training technique. In the example in Table 

3.20 the convergence is gained after 100 cycles while the convergence is gained in the 

first cycle in neighborhood sequential training technique. But the training point 

distribution is very important in random training technique. If there are no untrained 

gaps in the input space by the help of generalization the learning errors are minimized 

  



after cycles while in the neighborhood training technique the learning errors do not 

change with cycles.  

 

 
Figure 3.21.1 Sine approximation 

 

 
Figure 3.21.2 Memory Convergence 

L w α Training points Maximum Error Mean Error 

55 55 1 Random 43 points 0.0861 0.0189 

Required Memory Locations Hash Size Convergence  

415 No hashing Constant 

 

Table 3.7 CMAC parameters and sine approximation results 

 

 Figure 3.22 shows the relation between the total number of layers and CMAC 

output mean error. The CMAC parameters are equal to the parameters in the example in 

Table 3.7. Figure 3.10 shows that the total number of layers is affected with the 

generalization width. This relation is valid for neighborhood sequential training 

technique. In random training technique there is no such relationship. But in Figure 3.22 

it is seen that the error values are low where total number of layers are higher than 20.  

 In Figure 3.23 and Figure 3.24 the generalization width changes with total 

number of layers. It is seen that for very high and low values the maximum error is high 

but the mean error does not change after a certain value where generalization width and 

the total number of layers are equal to 60. But in Figure 3.23 the maximum error 

increases with the increasing generalization width and total number of layers.  

 According to the total number of layers and the CMAC performance graphs, low 

total number of layers results in unacceptable approximations. On the other hand very 

high values of total number of layers cause high maximum errors. As a result, 

  



convergence is slowed down. As the number of layers increases there are more loops in 

the program code so this makes slower learning and output calculation. 

 

 
Figure 3.22 Mean error – total number of layers 

w = 55,  random training in 43 points 

  



 
Figure 3.23 Maximum error – total number of layers 

  random training in 43 points 

 
Figure 3.24 Mean error – total number of layers 

  random training in 43 points 

  



 

 In Table 3.8 the generalization width and the total number of layers is 55. The 

learning rate is equal to 1. The training points are randomly chosen and same with the 

example in Table 3.7. 415 memory locations are required. It is reduced to 200 memory 

locations by using hash coding. The maximum error is 0.0892 and mean error of the 

output is 0.0211. Convergence is obtained after 250 cycles. The number of cycles to 

reach the convergence is increased with hash coding. So it can be said that the random 

training technique and hash coding cause the convergence to be reached after more 

cycles than the situations with no hashing. 

Generally, in neighborhood sequential training all memory elements are not 

addressed during training because some memory elements are not modified and remain 

zero. Hash size is reduced to very low values with respect to the required memory size 

of CMAC. But there is no such a relationship in random training technique. And the 

formulation 3.3 can not be used for estimating the hash size in the case of random 

training. Other hashing algorithms rather than the one applied to neighborhood training 

can be used for better approximation and low hash size values. 

 

 
Figure 3.25.1 Sine approximation 

 

 
Figure 3.25.2 Memory Convergence 

L w Α Training points Maximum Error Mean Error 

55 55 1 Random 43 points 0.0892 0.0211 

Required Memory Locations Hash Size Convergence  

415 200 Constant 

 

Table 3.8 CMAC parameters and sine approximation results 

 

 

  



 

Two-dimensional CMAC examples are seen in Figure 3.26 and Figure 3.28. (z = 

sin ( x ) . cos (y ) ). In Figure 3.26 the CMAC parameters are; 

w = 30, L = 30, α = 1, the sequential neighborhood training technique is used. 

Results are: 

Maximum Error = 0.0170, and mean error = 0.0056. 

2510 memory locations are used. 

Figure 3.26 the CMAC parameters are; 

w = 15, L = 15, α = 1, the sequential neighborhood training technique is used. 

Results are: 

Maximum Error = 0.0669, and mean error = 0.0221. 

1470 memory locations are hashed into 49 memory locations. The convergence 

curves are seen in Figure 3.27 and 3.29. The hashing algorithm makes CMAC to 

converge after a certain number of cycles. In case of no hashing like the example in 

Figure 3.26 the memory elements convergence at the first cycle. But as it is seen in 

Figure 3.29 the convergence is obtained after 250 cycles for the example in Figure 3.28. 

But if the memory requirements are taken into account and the convergence speed is 

less important than the memory capacity than hashing is very advantageous in that case. 

 
Figure 3.26 CMAC output for approximation of the function z = sin ( x ) cos ( y)  

  



 

Figure 3.27 Memory convergence of two-dimensional CMAC 

 

 

Figure 3.28 CMAC output for approximation of the function z = sin ( x ) cos ( y)  

  



 
Figure 3.29 Memory convergence of two-dimensional CMAC 

 

In Table 3.9 the generalization width and the total number of layers are equal to 

15. 375 memory locations are required and there is no hashing. The learning rate is 

equal to 0.5. The maximum error equals to 0.0084 and mean error of the CMAC output 

is equal to 0.0036 like in the example in Table 3.5. The only difference is the learning 

rate between two examples in Table 3.5 and in Table 3.9. The convergence is obtained 

at the second cycle in the example in Table 3.5 where the learning rate is 1. But in the 

example in Table 3.9 the memory converges after 55 cycles as it is seen in Figure 

3.30.2.  

Another example is displayed in Table 3.10 with different learning parameters.  

The generalization width and the total number of layers are equal to 27. The learning 

rate is 0.1. 387 memory locations are required and hash coding is not used. The 

maximum error is 0.0639 and the mean error is 0.0326. It is seen in Figure 3.31.2 that 

the memory converges after 200 cycles. 

Learning rate is a critical parameter for CMAC. While high learning rates causes 

instability, very low learning rates delay convergence. CMAC has an advantage of fast 

computation. Learning rate is the one of the parameters that affects convergence and 

computation time. 

  



 

 
Figure 3.30.1 Sine approximation 

 

 
Figure 3.30.2 Memory Convergence 

L W α Training points Maximum Error Mean Error 

15 15 0.5 ( -180 : 15 : 180 ) 0.0084 0.0036 

Required Memory Locations Hash Size Convergence  

375 No hashing Periodical 

 

Table 3.9 CMAC parameters and sine approximation results 

 

 

 
Figure 3.31.1 Sine approximation 

 

 
Figure 3.31.2 Memory Convergence 

L w α Training points Maximum Error Mean Error 

27 27 0.1 ( -180 : 15 : 180 ) 0.0639 0.0326 

Required Memory Locations Hash Size Convergence  

387 No hashing Constant 

 

Table 3.10 CMAC parameters and sine approximation results 

 

  



In Table 3.11 the generalization width and the total number of layers are equal to 

15387 memory locations are required without hashing. The learning rate is equal to 2 

and remains constant during the learning. But as it is seen in Figure 3.32.1 the output 

performance of the CMAC approximation is very low. The high learning rate causes 

this situation. And the Figure 3.32.2 displays that the memory elements do not converge 

still after 2500 cycles. The output of the CMAC changes for every training cycle and 

never reaches to desired performance level. 

In Table 3.12 the same CMAC parameters are used with the example in Table 

3.11 but the learning rate is reduces from two to zero for every cycle. Finally after 50 

cycles the memory converges and approximation is in the desired performance level.  

It is seen that high learning rates cause instability. The memory contents of a 

CMAC with or without hash coding will converge, provided that the learning rate 

values lies between two and zero. Table 3.12 is an example for this case. 

 

 

 

 
Figure 3.32.1 Sine approximation 

 

 
Figure 3.32.2 Memory Convergence 

L w α Training points Max error Mean Error 

15 15 2  ( -180 : 15 : 180 ) Instability Instability 

Required Memory Locations Hash Size Convergence  

387 No hashing Doesn’t converge 

 

Table 3.11 CMAC parameters and sine approximation results 

 

 

  



 

 
Figure 3.31.1 Sine approximation 

 

 
Figure 3.31.2 Memory Convergence 

L w Α Training points Maximum Error Mean Error 

15 15 2 → 0 ( -180 : 15 : 180 ) 0.0084 0.0036 

Required Memory Locations Hash Size Convergence  

387 No hashing Periodical 

 

Table 3.12 CMAC parameters and sine approximation results 

 

 

 

 

 

 

 

 

 

 

 

 
 

  



 

 

CHAPTER 4 
 

 

 

ROBOTIC CONTROL WITH CMACs 
 

 

 

The artificial neural networks theory made it possible to develop adaptive 

solutions to complex control problems, such as inverse kinematics control for robotic 

systems. In this chapter a CMAC network is used for the inverse kinematics control of a 

two degrees of freedom serial manipulator. In the first section general concepts of the 

robotic control are outlined. The second section explains the inverse kinematics 

problem for the serial manipulators. The CMAC network and the control architectures 

are presented with the simulation results in the third section. A hardware 

implementation of two degrees of freedom serial manipulator is seen in the fourth 

section. 

 

4.1. Robotic Control 

 The task of the robotic control is separated into two groups as motion control 

and force control. The motion control is a point to point control or continuous trajectory 

control. The control scheme can be open loop or closed loop. Very few robots use 

stepper motors or other actuators which can be controlled in an open fashion. Usually, 

manipulators are powered by actuators which output a torque or a force at each joint 

[20]. Figure 4.1 shows the basic idea of robotic control. Motion planning includes 

trajectory generation and forward/inverse kinematics computation. A robot is composed 

of joint motors, breaks, feedback sensors like position or velocity sensors or other 

special sensors such as force or torque sensors. Controller type is one of the most 

considerable factors of the robot control system. In present robot control systems, 

simple independent joint PID controllers are widely used. Actually, the control problem 

  



of robotic manipulators is non-linear but the nonlinearities of the system are cancelled 

and the linear controllers are designed for the linear system. This is called the computed 

torque method.  
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Figure 4.1 Basic Blocks of Robotic System 

 

Each joint is considered independent, and the inertia reaction of each actuator is 

constant. For an n-DOF robot, the dynamics are described as: 

                                                                 (4.1) τ=+++ )(),(),()(
.....

qGqqFqqqCqqD

 

where, 

q    : vector of joint variables, 

τ    : control torque vector, 

)(qD    : inertia matrix, 

),(
.
qqC  : coriolis and centrifugal force vector, 

)(qG  : gravitational force vector.   

 The dynamic control of such a robot system is seen in Figure 4.2. There are 

some disadvantages of computed torque method. The dynamic model is not known 

exactly. There are unmodelled dynamics such as friction, flexibility in the drive chain, 

noise, etc…  
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Figure 4.2 Functional block diagram of a dynamic robot control system 

 

 Real physical plants like robots often exhibit these non-linearity and variations 

due to the plant nature, noise or other factors. It is difficult to control such plants 

practically and precisely. Neuro controllers are good alternatives to conventional 

controllers. They have adaptation capabilities and also they can learn the real dynamics 

of the robot system. There are three basic tasks that the neuro controller can perform: 

(1) The neuro controller learns from a complex automatic controller.  

(2) Making a system or plant follow a desired set point or follow a reference model. 

(3) Optimization. 

For a more general effective neural network control the plant’s input-output to be 

controlled needs to be known [22]. 

 In supervised learning, a set of training inputs X(t) and targets Y*(t) for t =1 to t, 

is given to the network. The task is to learn how to generate Y*(t) for any given value of 

X(t). In neurocontrol, X(t) may be a set of sensor readings while the targets are a vector 

of desired control actions, u*(t) shown in Figure 4.3.  

 

 

                                                                                                       u*(t)  

                      X(t)                                                                                          u(t) = F(X(t)) 
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Figure 4.3 Neuro control in block 

 

 

 

 



 

 Neural networks based control systems may be open loop or closed loop. The 

open loop training is seen in Figure 4.4 where Ud is the actual input, and U refers to the 

output of the neural network approximation. The aim is to train the neural network so 

that U approximates Ud, the desired signal, as closely as possible. A closed loop 

training methodology with a controller can be used, shown in Figure 4.5. Here Ur is the 

persistent excitation that is added to the control input from the probing signal Ud(t) to 

the system. With the controller and the persistent excitation input, the closed loop 

training methodology will ensure the collection of sufficiently rich training data. After 

training the neural networks can be used as a series type neuro controller shown in 

Figure 4.6. To consider the adaptive plant control scheme the neuro controller can be 

structured as in Figure 4.7. 
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Figure 4.4 Open loop training scheme 
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Figure 4.5 Closed loop training methodology 
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Figure 4.6 The structure of the adaptive plant control system based on neural networks 

 

 The neuro control approach as described in the literature can be classified into 

two categories: 

(i) Indirect neuro control approach 

(ii) Direct neuro control approach 

 In the indirect neuro control approach, the parameters of the plant are estimated 

at any instant and the parameters of the controller (weights) are adjusted assuming that 

the estimated parameters of the plant represent true values. However this approach 

requires a neural identifier and a neuro controller, thereby increasing the complexity of 

the control scheme. On the other hand, in direct neuro controller approach, no neural 

identifier for the plant is required. The neuro controller is connected in cascade with the 

plant. During the process of learning and adaptation the neural controllers learn about 

the behavior of the plant and adapts itself to achieve the desired control system 

performance [24]. 

 The other perspective of robotic control is the inverse kinematics control 

problem of the robotic systems. It is a complex problem due to the non-linear equations. 

The desired position of the end point of the robot is specified in Cartesian Coordinates 

while the motions are actually obtained from the multiple actuators connected at the 

joints which decide the required joint angles. The transformation from Cartesian 

Coordinates to joint angles is a sophisticated problem especially in the case of many 

degrees of freedom.  

 

  



 

4.2. Inverse kinematics for position 

 The problem of inverse kinematics is to find the joint angles, for a given end-

effector position and orientation. In general, inverse kinematics is much harder than 

forward kinematics. Sometimes no analytical solution is possible, and an iterative 

search is required. Even with analytic solutions possible, multiple solutions arise from 

which one must pick. In the case of redundant manipulators, there may be many 

solutions. Another complication is that the workspace limits may be exceeded, the point 

may be outside the reach of the manipulator, or joint limits are exceeded. Geometric 

solution is one of the solutions for the inverse kinematics problem. In a geometric 

approach the geometry of the arm is decomposed into several plane geometry problems. 

Joint angles can be found by using the geometric formulas. The simplest manipulator to 

study inverse kinematics is the planar two degrees of freedom manipulator. Since the 

arm is planar, the plane geometry is applied to find a solution to the manipulator seen in 

Figure 4.7.  

 

Figure 4.7 Plane geometry associated with a 2-link planar manipulator 

  



 

To solve θ2 law of cosines is applied: 
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the 

mmetric position for θ’2 = - θ2. The expressions for the angles β and ψ are found.  

he value of angle β depends on the sign of x and y so two argument arctangent 

 used: 

                                                       

 

Equation 4.3 is solved for θ2 between 0 and –180 degrees. The other solution is 
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he law of cosines is again applied to find ψ.  
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 where 0 ≤ψ ≤180. Then: 

 ψβθ ±=1                                                      (4.6) 

here the plus sign is used if θ2 < 0 and minus sign is used if θ2 > 0. 
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4.3. The inverse kinematic control with CMAC 

 The inverse kinematic control problem is shortly finding each individual joint 

angles as mentioned before. The angles are calculated by using the formulations 4.2, 

4.3, 4.4, 4.5 and 4.6. Rather than using these formulations, CMAC is used here to 

evaluate the angles. The task is motion control (point to point in the defined 

workspace). The rate of the motion is constant. For the desired end-effector positions in 

the workspace (x, y coordinates of the end effector), the angles θ1 and θ2 are calculated. 

CMAC is trained in a supervised manner so, to find the training data set, the geometric 

equations can be used. The CMAC network of the two-link manipulator is composed of 

two CMACs.  The coordinates of the desired end effector positions are the inputs to 

both CMACs and each CMAC outputs the individual joint angles. The CMAC network 

ith two inputs for the inverse kinematics is displayed in Figure 4.8.   

                                  x                        θ1

                                  y                        θ2

 

Figure 4.8 CMAC network for inverse kinematics of two-link manipulator 
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 In the CMAC network architecture of the two-linked manipulator two CMACs 

are used. The network inputs are x,y coordinates and the outputs are θ1 and θ2 joint 

angles. Each output is related with both inputs. For estimating the θ1, x and y must be 

taken into account so the network is designed as shown in Figure 4.8. θ1 and θ2 are 

nonlinear because of the trigonometric functions and the squared terms. The problem 

becomes much more complex as the number of links increases. The standard 

methodology for calculating the inverse kinematics is training the neural network off-

line for possible data to obtain solutions. Because of the generalization property, neural 

networks can learn the associated patterns and recall the learned patterns. The trained 

network is then used to achieve the desired movements. This technique therefore 

involves two steps of operation as training phase and performing phase. From another 
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Initially, all the weigths are equal to zero. The output of the CMAC are the joint 

angles θ1 and  θ2 which are inputs to the robot's forward kinematics. The error signals 

are calculated as the difference between the desired end-effector positions and the actual 

end-effector positions. It is shown that the two
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Figure 4.9 Block diagram for online learning of inverse kinematics of two-DOF 

manipulator 
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Figure 4.10 Simulation of the actual positions of the end effector of the two-linked robot 

 
Figure 4.11 Joint angle trajectories of the two-linked robot 

  



 It is seen that 39 iterations are needed to reach the desired end-effector positions. 

The CMAC can be a fast solution for the inverse kinematics problem in robotics. On the 

other hand CMAC training is fast. Usually while it takes too much time for other 

network topologies CMAC is trained quickly. As a second case the two-link robot arm 

is trained offline and its performance figured out with graphics. The training data is 

selected in three different ways. First the training data is selected in a random fashion. 

The random training points are shown in Figure 4.12. Second the neighborhood 

sequential training technique is used. The neighbor training points are seen in Figure 

4.13. Finally, the training points are selected in symmetry of the workspace’s circle 

center as shown in Figure 4.14. The workspace is a semi-circle where the radius is equal 

to 440 mm. 165 points are trained in each technique.   

 

 
Figure 4.12 Random selected training data in the workspace of the two-linked robot arm 

 

 

 

 

 

 

  



 

 
Figure 4.13 Sequence training data in the workspace of the two-linked robot arm 

 

 

 
Figure 4.14 Polar symmetric training data in the workspace of the two-linked robot arm 

  



 Figure 4.15, Figure 4.16 and Figure 4.17 present the performance of each 

mentioned training schemes. In Figure 4.15 the random training performance is seen. 

Generalization width and total number of layers are equal to 164. Memory converges 

after 10 cycles. In Figure 4.16 neighborhood sequential training method’s performance 

is seen where the generalization width and the total number of layers are 44 and finally 

in Figure 4.17 the output errors of the network whose training data set is selected as in 

Figure 4.14 are seen. Here the generalization width and total number of layer are equal 

to 96. The desired end-effector positions are as follows: 

 

xd = [-331 -198 -239 -109 201 243 330 300 200 44 0 100 -300 440  2 120 -1 -200 -50  

-300 354 20 375 -5 -440]; 

yd = [ 111 64 285 242 290 149 67 200 300 44 380 250 2 3 60 200 300 10  

5 50 17 98 150  0]; 

 
Figure 4.15 The output error for the random trained network   

 

 

 

 

  



 
Figure 4.16 The output error for the sequentially trained network   

 

 
Figure 4.17 The output error for the symmetric trained network 

  



 It is seen that sequentially trained network performance is higher than the other 

two methods. Also it is a fast training method because the memory converges at first 

cycle.  

 

 

4.4. The hardware implementation of a two- DOF manipulator 

 The manipulator realized physically in this study is a two degrees of freedom 

robotic arm. Step motors are used as the joint actuators. The electronic circuit connected 

to the PC parallel port drives each step motors. The control scheme is open loop. 

CMAC is used for the inverse kinematics calculations. The training is performed in an 

off-line fashion. The task of the robot is moving to the coordinates that are specified by 

the user. In this section stepper motors are defined. Also the driver circuit of the 

steppers and the physical view of the robotic arm are displayed. 

 

4.4.1. Step Motors 

 Step motors are the electrical motors that are driven by digital pulses rather than 

applying a continuous voltage. Each pulse equals one rotary step which is a portion of 

one complete rotation. Counting pulses can be applied to achieve a desired shaft 

rotation of the motor. The count automatically represents how much movement has 

been achieved, without feedback information like in the servo systems. So open loop 

control is appropriate for this concept. Accuracy of the step motor is a result of the 

mechanical precision of its parts and assembly and some other noises. But this error can 

be negligible. The more steps cause greater precision. And also some step drivers divide 

normal steps into half steps or micro steps.  

 A step motor converts digital pulse inputs to shaft rotation. The rotation speed is 

related to the frequency of the pulses. Between steps, the motor holds its position and its 

load without any brake system in its mechanism. After the motion the stepper holds its 

load when it stops. Mechanical motion, load and the speed are the criteria for selecting a 

step motor.  

 Variable reluctance, permanent magnet and hybrid are the basic types of the step 

motors. They generally operate with step angles from 5 degrees to 15 degrees at high 

step rates, and have no detent torque. Detent torque is the holding torque when no 

current is flowing in the motor. In Figure 4.18, when phase A is energized, rotor teeth 

line up with the stator teeth of phase A by magnetic attraction. The next step is taken  

  



when A is turned off and phase B is energized. Continuing the sequence, C is turned on 

and next and then A again. Reverse rotation is achieved when the phase order is 

reversed. Permanent motors differ from variable reluctance motors by having permanent 

magnet rotors with no teeth, and are magnetized perpendicular to the axis. In energizing 

the four phases in sequence, the rotor rotates as it is attracted to the magnetic poles. The 

motor shown in Figure 4.18 will take 90 degree steps as the windings are energized in 

sequence A, B, C and D. Permanent magnet motors generally have steps 45 or 90 

degrees and step at relatively low rates, but they exhibit high torque and good damping 

characteristics. 

 
Figure 4.18 Variable Reluctance Motor 

  

 
Figure 4.19 Permanent Magnet Motor 

 

 Hybrid types of step motors seen in Figure 4.20 combine the qualities of the 

variable reluctance motors and permanent magnet motor. They have high detent torque 

and excellent holding and dynamic torque, and they can operate at high speeds. 

Normally, they exhibit step angles of 0.9 to 5 degrees. If the phases energized one at a 

  



time, the rotor rotates in full step. This motor can also be driven two phases at a time to 

yield more torque, or one then two then one phase, to produce half steps.  

 The computer or programmable logic controller (PLC) sends commands to the 

driver. The drivers determine amount, speed and rotation direction. They accept pulses 

and direction signals and translate these signals into phase currents in the motor. A step 

motor driver provides precisely speed and positioning. The motor increments a precise 

step with each control pulse easily converting digital information to exact incremental 

rotation without the need for feedback devices such as tachometers or encoders. 

Because the system is open loop, the problems due to the feedback loop and instability 

are eliminated. 

 
 

Figure 4.20 Hybrid motor 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

4.1.2. Step Motor Driver Circuit 

 NPN type transistors are used for the driver design seen in the circuit in Figure 

4.21.  

 
 

Figure 4.21 Step motor driver circuit 

 

 Two step motors are driven in one driver circuit. P2, P3, … ,  P9 are the output 

pins of the parallel port. S1-1, … , S1-4 are the phase connections of the first stepper 

likewise S2-1, … , S2-4 are the phase connections of the second step motor. C1 and C2 

are the common phases of the first and the second stepper. 

 

 

4.1.3. Experimental setup description 

 The hardware architecture block diagram of the real control system considered 

here is shown in Figure 4.22. The picture of the setup including the control system is 

shown in Figure 4.23. The experimental setup consists of a two-linked robot arm with 

its actuators, and the driver circuits. 

 The arm is designed as a plane redundant manipulator where each joints can 

travel among 360 degrees. Two steppers drive the mechanism. The rotation of the step 

  



motor is reduced with a gear. This gear rotates the shaft that is connected with the link. 

The link lengths are 220 mm (distance between two rotating shafts’ axis).   
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Figure 4.22 Block diagram of the control system 

 

 The advantages of the mechanism are that is controlled without feedback. Each 

step motors are hybrid type and rotates 7.5 degrees for full step. The step motors are 

driven with half steps so each pulse causes 3.75 degrees rotation. The rotation is 

reduced to 13 / 42 for the first step motor and 16 / 42 for the second step motor. The 

resolution is about 1.1607 degrees per pulse for the first step motor and 1.4285 for the 

second step motor. The motors are fed with +12 DC voltage. The control algorithm is 

implemented on a 486 DX-50 MHz personal computer using MATLAB programming 

language. The drawing of the robot arm is displayed in Figure 4.23 and the parts of the 

arm are listed in Table 4.1.  

 

1 First Gear Box’ Lower Plate 8 Bolt M3 

2 First Gear Box’ Upper Plate 9 Second shaft 

3 Bolt M4 10 Second link (220 mm) 

4 First shaft 11 First Gear Box’ driver gear 

5 First link (220 mm) 12 First Gear Box’ shaft gear 

6 Second Gear Box’ Lower Plate 13 Second Gear Box’ driver gear 

7 Second Gear Box’ Upper Plate 14 Second Gear Box’ shaft gear 

 

Table 4.1 Robot arm parts 

  



 
Figure 4.23 Experimental hardware setup 

 

 

Figure 4.24 Robot arm drawing 

  



 

 

CHAPTER 5 
 

 

 

CONCLUSIONS 
 

In this thesis, CMAC neural networks are studied. The CMAC operation is 

defined with examples. The network parameters and their effects on the system 

performance were analyzed in detail. Aim of the thesis is generating a two degrees of 

freedom manipulator's inverse kinematics by using CMACs. 

The learning techniques are divided into two groups as sequential neighborhood 

training and random training. It is seen that sequential neighborhood training is a fast 

and efficient method for the problem of inverse kinematics. The optimum results are 

obtained when generalization width is equal to total number of layers. And if the 

distance between two training points is equal to the generalization width the CMAC 

approximates a smooth curve. Also the other advantage of sequential neighborhood 

training is the less memory requirements. By using hash coding the required memory 

decreases dramatically. As a result for inverse kinematics calculations, a sequentially 

neighborhood trained CMAC network's performance is a good alternative. The main 

advantage of CMAC to other neural networks is its fast computation. In this study only 

a two degrees of freedom manipulator is discussed but in the case of many degrees of 

freedom, the analytic solutions are more complicated and sometimes there are no 

formulations for the inverse kinematics. In such situations some iteration methods take 

place. But these solutions are very slow computations according to CMAC computation.  

The thesis gives an idea for designing a CMAC network. Many engineering 

problems are non-linear and in real life problems to propose an accurate mathematical 

model is not possible for all situations.  

During the analysis of CMAC network and hardware implementation, 

MATLAB programming language is used on a PC. The simple nature of CMAC 

operation is an advantage for the application areas.  

  



The main disadvantage of CMAC is the large memory requirement. Hash coding 

is a solution for the memory problem but it causes hash collisions. Furthermore specific 

hashing algorithms for CMAC may overcome memory problems.  

Stability is another subject for CMAC. Some adaptive algorithms are developed 

for stability problems of CMAC [9]. These adaptive algorithms need to be researched. 

CMAC has strong approximation ability and it has a fast computation. It is suitable for 

intelligence applications. 
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APPENDIX 

 
 

MATLAB CMAC CODE SAMPLES 
 

% ############################################## 

% CMAC 1 INPUT ~ 1 OUTPUT FUNCTION APPROXIMATION 

% ############################################## 

% ---------------------------------------------- 

% initialization 

% ---------------------------------------------- 

   layer_num = 55; 

  min_ip_val = -180; 

  max_ip_val = 180; 

           w = 55; % generalization width 

          lr = 1;  % learning rate      

      ip_val = max_ip_val - min_ip_val + 1; 

% ---------------------------------------------- 

% total memory location calculation 

% ---------------------------------------------- 

  sayi=0; 

  for i = 1 : layer_num; 

        sayi = sayi + ceil( (ip_val - mod((i-1),w)) /w )+ sign(i-1)*1; 

  end 

         twn = sayi; % total memory location number 

% ---------------------------------------------- 

%  input & target values 

% ---------------------------------------------- 

          xx = -180:180; 

          rx = randperm(361);  

     trp_num = 43; 

          ix = rx(1:trp_num);  

  



           x = xx(ix(:));  

            

for  i = 1 : trp_num; 

        t(i) = sin(x(i)*pi/180); % target matrix 

end 

% ---------------------------------------------- 

%  CMAC memory parameters 

% ---------------------------------------------- 

hash_size = 200; % hash_size = twn for no hashing 

Mem = zeros(1,hash_size); 

% ---------------------------------------------- 

% training 

% ---------------------------------------------- 

for sayac = 1 : 250; 

for j = 1 : trp_num; 

% map hypercube address 

    for  i = 1 : layer_num 

            s(i) = ceil( (ip_val - mod((i-1),w)) /w )+ sign(i-1)*1; 

            ddizin = min_ip_val+(mod((i-1),w)) : w : max_ip_val; 

              if ddizin(1) == min_ip_val 

                   dizin = ddizin; 

              else 

                   dizin = [min_ip_val ddizin]; 

              end 

% hypercube no in that layer 

    hypcube(i) = max(find(dizin<=x(j)));   

% hypercube index no 

              if i == 1; 

              hyp_no(i) = hypcube(i); 

              if hyp_no(i) > hash_size 

                hyp_no(i) = mod(hyp_no(i), hash_size); 

                    if hyp_no(i) == 0; 

                    hyp_no(i) = 1; 

                    end 

  



                end 

              else     

              hyp_no(i) = sum(s(1:(i-1)))  +  hypcube(i); 

                if hyp_no(i) > hash_size 

                hyp_no(i) = mod(hyp_no(i), hash_size); 

                    if hyp_no(i) == 0; 

                    hyp_no(i) = 1; 

                    end 

                end 

              end  

    end 

OP(j) =  sum(Mem(hyp_no(:))); 

Mem(hyp_no(:)) = Mem(hyp_no(:)) + lr * (t(j) - OP(j)) / layer_num; 

end 

convergence(sayac) = sum(Mem); 

end 

% ---------------------------------------------- 

% OUTPUT 

% ----------------------------------------------        

for s_x = min_ip_val:max_ip_val; 

            for  i = 1 : layer_num 

                 s(i) = ceil( (ip_val - mod((i-1),w)) /w )+ sign(i-1)*1; 

                 ddizin = min_ip_val+(mod((i-1),w)) : w : max_ip_val; 

                    if ddizin(1) == min_ip_val 

                    dizin = ddizin; 

                    else 

                    dizin = [min_ip_val ddizin]; 

                    end 

% hypercube no in that layer 

                    hypcube(i) = max(find(dizin<=s_x));                

% hypercube index no     

% hypercube index no 

                          if i == 1; 

                          hyp_no(i) = hypcube(i); 

  



                                  if hyp_no(i) > hash_size 

                                    hyp_no(i) = mod(hyp_no(i), hash_size); 

                                        if hyp_no(i) == 0; 

                                        hyp_no(i) = 1; 

                                        end 

                                  end 

                          else     

                          hyp_no(i) = sum(s(1:(i-1)))  +  hypcube(i); 

                          if hyp_no(i) > hash_size 

                          hyp_no(i) = mod(hyp_no(i), hash_size); 

                          if hyp_no(i) == 0; 

                          hyp_no(i) = 1; 

                          end 

                          end 

                          end  

             end 

OUTPUT(s_x+abs(min_ip_val)+1) =  sum(Mem(hyp_no(:))); 

end 

 

% ---------------------------------------------- 

% PLOT 

% ----------------------------------------------  

 m = min_ip_val : max_ip_val; 

 n = sin( m * pi / 180 ); 

 

plot(m,n,'b', m,OUTPUT,'r' ) 

grid on 

dif = n-OUTPUT; 

%figure (2) 

%plot(ind,dif,'g') 

max_error = max(abs(dif)) 

mean_error = sum(abs(dif))/ip_val 

% ----------------------------------------------  

% ############################################## 

  



 

% ############################################## 

% CMAC 2 INPUT ~ 1 OUTPUT FUNCTION APPROXIMATION 

% ############################################## 

% ---------------------------------------------- 

% initialization 

% ---------------------------------------------- 

   layer_num = 15; 

  min_ip_val = 1; 

  max_ip_val = 181; 

           w = 15; % generalization width 

          lr = 1;  % learning rate      

      ip_val = max_ip_val - min_ip_val + 1; 

% ---------------------------------------------- 

% total memory location calculation 

% ---------------------------------------------- 

   sayi = 0; 

  ssayi = 0; 

  for i = 1 : layer_num; 

        sayi = ceil( (ip_val - mod((i-1),w)) /w )+ sign(i-1)*1; 

       ssayi = ssayi + sayi^2; 

  end 

         twn = ssayi; % total memory location number 

% ---------------------------------------------- 

%  input & target values 

% ---------------------------------------------- 

    trp_num_ = 12; % training point number in one axis 

          xx = min_ip_val : ((max_ip_val - min_ip_val)/(trp_num_)) : max_ip_val; 

        lexx = length(xx); 

           x = repmat(xx, 1, lexx); % x-component 

    for i = 1 : lexx 

          yy = repmat( xx(i), 1, lexx ); 

               y( ((i-1)*lexx+1) : (i*lexx) ) = yy; 

    end 

  



     trp_num = length(x); 

                for  i = 1 : trp_num; 

                t(i) = sin(x(i)*pi/180) * cos(y(i)*pi/180); 

                end      

% ---------------------------------------------- 

%  CMAC memory parameters 

% ---------------------------------------------- 

hash_size = twn; % hash_size = twn for no hashing 

Mem = zeros(1,hash_size); 

% ---------------------------------------------- 

% training 

% ---------------------------------------------- 

for sayac = 1 : 250; 

    for j = 1 : trp_num; 

% map hypercube address 

        for  i = 1 : layer_num 

            s(i) = ceil( (ip_val - mod((i-1),w)) /w )+ sign(i-1)*1; 

           ss(i) = s(i)^2; 

            ddizin = min_ip_val+(mod((i-1),w)) : w : max_ip_val; 

              if ddizin(1) == min_ip_val 

                   dizin = ddizin; 

              else 

                   dizin = [min_ip_val ddizin]; 

              end 

% hypercube no in that layer 

    hypcube_x(i) = max(find(dizin<=x(j)));  % x component 

    hypcube_y(i) = max(find(dizin<=y(j)));  % y component 

% hypercube index no 

            if i == 1; 

    hyp_no(i) = s(i)  * ( hypcube_x(i)-1 ) +  hypcube_y(i); 

                    if hyp_no(i) > hash_size 

                        hyp_no(i) = mod(hyp_no(i), hash_size); 

                    end 

                    if hyp_no(i) == 0; 

  



                        hyp_no(i) = 1; 

                    end 

            else     

    hyp_no(i) = sum(ss(1:(i-1)))   +  s(i)  * ( hypcube_x(i)-1 ) +  hypcube_y(i); 

             

                 if hyp_no(i) > hash_size 

                        hyp_no(i) = mod(hyp_no(i), hash_size); 

                 end 

                 if hyp_no(i) == 0; 

                        hyp_no(i) = 1; 

                 end 

           end                

      end 

OP(j) =  sum(Mem(hyp_no(:))); 

Mem(hyp_no(:)) = Mem(hyp_no(:)) + lr * (t(j) - OP(j)) / layer_num; 

end 

convergence(sayac) = sum(Mem); 

sayac 

end 

% ---------------------------------------------- 

% OUTPUT 

% ---------------------------------------------- 

for s_x = min_ip_val : max_ip_val; 

    for s_y = min_ip_val : max_ip_val; 

        for  i = 1 : layer_num 

            s(i) = ceil( (ip_val - mod((i-1),w)) /w )+ sign(i-1)*1; 

           ss(i) = s(i)^2; 

            ddizin = min_ip_val+(mod((i-1),w)) : w : max_ip_val; 

              if ddizin(1) == min_ip_val 

                   dizin = ddizin; 

              else 

                   dizin = [min_ip_val ddizin]; 

              end 

% hypercube no in that layer 

  



    hypcube_x(i) = max(find(dizin<=s_x));  % x component 

    hypcube_y(i) = max(find(dizin<=s_y));  % y component 

% hypercube index no 

            if i == 1; 

    hyp_no(i) = s(i)  * ( hypcube_x(i)-1 ) +  hypcube_y(i); 

                    if hyp_no(i) > hash_size 

                        hyp_no(i) = mod(hyp_no(i), hash_size); 

                    end 

                        if hyp_no(i) == 0; 

                            hyp_no(i) = 1; 

                        end 

            else     

    hyp_no(i) = sum(ss(1:(i-1)))   +  s(i)  * ( hypcube_x(i)-1 ) +  hypcube_y(i); 

             

                 if hyp_no(i) > hash_size 

                        hyp_no(i) = mod(hyp_no(i), hash_size); 

                 end  

                        if hyp_no(i) == 0; 

                            hyp_no(i) = 1; 

                        end 

                    end                        

    end 

%OUTPUT((s_x+abs(min_ip_val)+1), (s_y+abs(min_ip_val)+1)) =  

sum(Mem(hyp_no(:))); 

OUTPUT(s_x,s_y) =  sum(Mem(hyp_no(:))); 

    end 

end 

for n = 1 : 181 

    for m = 1 : 181 

        z(n,m) = sin(n*pi/180)*cos(m*pi/180); 

    end 

end 

D = z - OUTPUT; 

 

  



% ############################################## 

% CONTROL OF 2 DOF MANIPULATOR BY CMAC 

% ############################################## 

% ---------------------------------------------- 

% system parameters 

% ---------------------------------------------- 

       l1 = 220; 

       l2 = 220; 

        r = l1 + l2; 

    layer = 44; 

   min_ip = -(l1+l2); 

   max_ip = (l1+l2); 

    width = 44; % generalization width 

       lr = 1;  % learning rate      

       ip = max_ip - min_ip + 1; 

     tnow = memreq(layer,width,ip); 

hash_size = tnow; % hash_size = twn for no hashing 

     Mem1 = zeros(1,hash_size); 

     Mem2 = zeros(1,hash_size);    

 % ------------------------------------------------- 

 % Input & target pairs 

 % ------------------------------------------------- 

xt = [-440 -396 -352 -308 -264 -220 -176 -132 -88 -44

 0 44 88 132 176 220 264 308 352 396

 440 ... 

        -396 -352 -308 -264 -220 -176 -132 -88 -44 0

 44 88 132 176 220 264 308 352 396 ... 

        -396 -352 -308 -264 -220 -176 -132 -88 -44 0

 44 88 132 176 220 264 308 352 396 ... 

        -396 -352 -308 -264 -220 -176 -132 -88 -44 0

 44 88 132 176 220 264 308 352 396 ... 

        -396 -352 -308 -264 -220 -176 -132 -88 -44 0

 44 88 132 176 220 264 308 352 396 ... 

  



        -352 -308 -264 -220 -176 -132 -88 -44 0 44

 88 132 176 220 264 308 352 ... 

        -308 -264 -220 -176 -132 -88 -44 0 44 88

 132 176 220 264 308 ... 

        -308 -264 -220 -176 -132 -88 -44 0 44 88

 132 176 220 264 308 ... 

        -220 -176 -132 -88 -44 0 44 88 132 176

 220 ... 

        -176 -132 -88 -44 0 44 88 132 176 ... 

        440 ]; 

 

yt = [ 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 ... 

        44 44 44 44 44 44 44 44 44 44

 44 44 44 44 44 44 44 44 44 ... 

        88 88 88 88 88 88 88 88 88 88

 88 88 88 88 88 88 88 88 88 ... 

        132 132 132 132 132 132 132 132 132 132

 132 132 132 132 132 132 132 132 132 ... 

        176 176 176 176 176 176 176 176 176 176

 176 176 176 176 176 176 176 176 176 ... 

        220 220 220 220 220 220 220 220 220 220

 220 220 220 220 220 220 220 ... 

        264 264 264 264 264 264 264 264 264 264

 264 264 264 264 264 ... 

        308 308 308 308 308 308 308 308 308 308

 308 308 308 308 308 ... 

        352 352 352 352 352 352 352 352 352 352

 352 ... 

        396 396 396 396 396 396 396 396 396 ... 

        0 ]; 

 

    for i = 1 : length(xt); 

if xt(i) == 0 & yt(i) == 0 

  



 theta1_d(i) = 0; 

 theta2_d(i) = 0; 

else 

     

        theta = ikt(xt(i), yt(i), l1, l2);   

 theta1_d(i) = theta(1); 

 theta2_d(i) = theta(2); 

 

   end 

end  

 

 % ------------------------------------------------- 

 % start                                             

 % ------------------------------------------------- 

for k = 1 : 1; 

  

 for j = 1 : length(xt) 

 

    

     adres = hypno( layer,width,min_ip,max_ip,hash_size,xt(j),yt(j) ); 

 

    

     OP1 =  sum(Mem1(adres(:))); 

     Mem1(adres(:)) = Mem1(adres(:)) + lr * (theta1_d(j) - OP1) / layer; 

      

     OP2 =  sum(Mem2(adres(:))); 

     Mem2(adres(:)) = Mem2(adres(:)) + lr * (theta2_d(j) - OP2) / layer; 

             

c(k) =     sum(Mem1); 

      

 end   

end 

  

xd = [-331 -198 -239 -109 201 243 330]; 

  



yd =  [111 64 285 242 290 149 67]; 

 

for i = 1 : length(xd) 

 

adres = hypno( layer,width,min_ip,max_ip,hash_size,xd(i),yd(i)); 

t1a(i) = sum(Mem1(adres(:))); 

t2a(i) = sum(Mem2(adres(:))); 

 

xa(i) = dkx( t1a(i), t2a(i), l1, l2 ); 

ya(i) = dky( t1a(i), t2a(i), l1, l2 ); 

  

err_x(i) = xd(i) - xa(i); 

err_y(i) = yd(i) - ya(i); 

 

end 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  



 

Matlab Functions 

 

% inverse kinematics 

% INPUTS : x : end-effector’s x coordinate  

%              y : end-effector’s y coordinate  

% OUTPUTS : THETA(1) : first joint angle 

%    THETA(2) : second joint angle 

 

function THETA = ikt( x,y,l1,l2); 

 

theta2 = acos( (x^2 + y^2 - l1^2 - l2^2) / (2 * l1 * l2)) * 180 / pi; 

        beta = atan2(y, x) * 180 / pi; 

        ci = acos( (x^2 + y^2 + l1^2 - l2^2) / ( 2 * l1 * sqrt(x^2 + y^2) ) ) * 180 / 

pi; 

        if theta2 < 0 

        theta1 = beta + ci; 

        else 

        theta1 = beta - ci; 

        end 

        

THETA(1) = theta1;         

THETA(2) = theta2; 

 

% forward kinematics 

% INPUTS : theta1 : first joint angle  

%              theta2 : second joint angle  

% OUTPUTS : x : x coordinate of the end-effector 

 

function x = dkx(theta1, theta2, l1, l2); 

 

x = l1 * cos ( theta1 * pi / 180 ) + l2 * cos ( (theta1 + theta2) * pi / 180 ); 

 

 

  



% INPUTS : theta1 : first joint angle  

%              theta2 : second joint angle  

% OUTPUTS : y : y coordinate of the end-effector 

 

function y = dky(theta1, theta2, l1, l2); 

 

y = l1 * sin ( theta1 * pi / 180 ) + l2 * sin ( (theta1 + theta2) * pi / 180 ); 

 

 % hypercube index finder 

 

% INPUTS : layer_num : total number of layers 

%                           w : generalization width 

%         min_ip_val : minimum input value 

%         max_ip_val : maximum input value 

%            hash_size : total number of hashed memory locations 

%                             x_a : x component of the input 

%                             y_a : y component of the input 

% OUTPUT :              h : hypercubes index no  

 

 

% OUTPUTS : x : x coordinate of the end-effector 

 

function h = hypno( layer_num, w, min_ip_val, max_ip_val, hash_size, x_a, 

y_a) 

 

ip_val = max_ip_val - min_ip_val + 1; 

for  i = 1 : layer_num 

            s(i) = ceil( (ip_val - mod((i-1),w)) /w )+ sign(i-1)*1; 

           ss(i) = s(i)^2; 

            ddizin = min_ip_val+(mod((i-1),w)) : w : max_ip_val; 

              if ddizin(1) == min_ip_val 

                   dizin = ddizin; 

              else 

                   dizin = [min_ip_val ddizin]; 

  



              end 

% hypercube no in that layer 

    hypcube_x(i) = max(find(dizin<=x_a));  % x component 

    hypcube_y(i) = max(find(dizin<=y_a));  % y component 

% hypercube index no 

            if i == 1; 

    hyp_no(i) = s(i)  * ( hypcube_x(i)-1 ) +  hypcube_y(i); 

                    if hyp_no(i) > hash_size 

                        hyp_no(i) = mod(hyp_no(i), hash_size); 

                    end 

                    if hyp_no(i) == 0; 

                        hyp_no(i) = 1; 

                    end 

            else     

    hyp_no(i) = sum(ss(1:(i-1)))   +  s(i)  * ( hypcube_x(i)-1 ) +  hypcube_y(i); 

             

                 if hyp_no(i) > hash_size 

                        hyp_no(i) = mod(hyp_no(i), hash_size); 

                 end 

                 if hyp_no(i) == 0; 

                        hyp_no(i) = 1; 

                 end 

           end                            

      end 

        h = hyp_no; 

 

 

 

 

 

 

 

 

 

  



% step motor driver  

% half step per each pulse 

% INPUTS : loop : rotation loop 

%                t : pulse period 

%          direction  : rotation direction (cw, ccw) 

            % OUTPUT : angle1 : angle traveled after command  

%  parallel port’s 2nd-3rd-4th-5th pins are used. 

function angle1 = semistep1(loop, t, direction) % valid for matlab version 6.5 

 

dio=digitalio('parallel','lpt1');  

Port0=addline(dio,0:7,0,'out'); %Pin 2-9 

 

if direction = = 1;  

for k = 1 : loop; 

putvalue(Port0,8); 

pause(t); 

putvalue(Port0,12); 

pause(t); 

putvalue(Port0,4); 

pause(t); 

putvalue(Port0,6); 

pause(t); 

putvalue(Port0,2); 

pause(t); 

putvalue(Port0,3); 

pause(t); 

putvalue(Port0,1); 

pause(t); 

putvalue(Port0,9); 

pause(t); 

 end 

else 

    for k = 1 : loop; 

    putvalue(Port0,9); 

  



pause(t); 

putvalue(Port0,1); 

pause(t); 

putvalue(Port0,3); 

pause(t); 

putvalue(Port0,2); 

pause(t); 

putvalue(Port0,6); 

pause(t); 

putvalue(Port0,4); 

pause(t); 

putvalue(Port0,12); 

pause(t); 

putvalue(Port0,8); 

pause(t); 

end   

end 
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