
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2016; 9:5977–5995

Published online 24 January 2017 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.1750

RESEARCH ARTICLE

CA-ARBAC: privacy preserving using context-aware
role-based access control on Android permission
system
J. Abdella, M. Özuysal and E. Tomur*

Department of Computer Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey

ABSTRACT

Existing mobile platforms are based on manual way of granting and revoking permissions to applications. Once the user
grants a given permission to an application, the application can use it without limit, unless the user manually revokes
the permission. This has become the reason for many privacy problems because of the fact that a permission that is
harmless at some occasion may be very dangerous at another condition. One of the promising solutions for this problem is
context-aware access control at permission level that allows dynamic granting and denying of permissions based on some
predefined context. However, dealing with policy configuration at permission level becomes very complex for the user as
the number of policies to configure will become very large. For instance, if there are A applications, P permissions, and C
contexts, the user may have to deal with A�P�C number of policy configurations. Therefore, we propose a context-aware
role-based access control model that can provide dynamic permission granting and revoking while keeping the number
of policies as small as possible. Although our model can be used for all mobile platforms, we use Android platform to
demonstrate our system. In our model, Android applications are assigned roles where roles contain a set of permissions
and contexts are associated with permissions. Permissions are activated and deactivated for the containing role based on
the associated contexts. Our approach is unique in that our system associates contexts with permissions as opposed to
existing similar works that associate contexts with roles. As a proof of concept, we have developed a prototype application
called context-aware Android role-based access control. We have also performed various tests using our application, and
the result shows that our model is working as desired. Copyright © 2017 John Wiley & Sons, Ltd.

KEYWORDS

privacy; usability; roles; permissions; context

*Correspondence

E. Tomur, Department of Computer Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey.
E-mail: emrah.tomur@gmail.com

1. INTRODUCTION

During the last decade, there has been a major change in
the computing ecosystem, as more and more computing
devices have been replaced by their mobile counterparts.
This is due to a combination of advancement of technol-
ogy that increased the computational capacity of mobile
devices and a drop in prices. Mobile devices are now ubiq-
uitous in both personal and enterprise environments. This
brings in new challenges in terms of privacy and secu-
rity because most mobile users have a constantly attached
profile to their devices. A large part of this mobile com-
puting environment, approximately 85% [1], is composed
of devices running the Android platform. Because of this
prevalence of Android devices, around 98% of the attacks
target the Android platform [2].

One major issue with the current permission systems is
that once a permission is granted, the application always
has the privilege to access the related resources. They do
not support the dynamic switching of application permis-
sions based on the user context. Such a static approach
to application permissions is not well suited in the case
of mobile systems. The security risks depend a lot on the
present situation and, while accessing a particular resource
is safe in some contexts, it might violate privacy in another
context. While the modern platforms allow editing of per-
mission lists, it is impractical to manually change a long
list of permissions when the context changes fast and often.

Going back to Android versions earlier than Android
version 4.3, Android permission system (APS) was not
only course-grained but also static. Hence, most of the
earlier researches focused on making APS fine-grained

Copyright © 2017 John Wiley & Sons, Ltd. 5977

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324140534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CA-ARBAC: context-aware role-based access control on Android J. Abdella, M. Özuysal and E. Tomur

and dynamic. Some of the most prominent works pub-
lished on this topic are AppGuard [3], Apex [4], BlurSense
[5,6], Flaskdroid [7], TISSA [8], MockDroid [9], and
Dr. Android and Mr. Hide [10]. However, although the con-
cept of context awareness is crucial in mobile environment,
it has been ignored by most of these earlier solutions.

Google, on the other hand, modified the permission
system to support fine-grained and dynamic permission
system starting from Android version 4.3 and officially
declared the change in Android 6. In earlier versions of
Android, to install an application, the user had to review a
long list of permissions and accept some of them that had
significantly affected the usability of the system. Android
6 also improves usability by moving the permission deci-
sions to resource access time instead of the time of the
application installation similar to that of Apple’s iOS
permission system.

Once the user grants permission to a specific applica-
tion, the permission will be added to the list of allowed
permissions for that application, and it will permanently
stay granted until the user manually revokes the permis-
sion. However, if the user denies the requested permission,
the decision will not be permanent. The application has the
chance to request the permission at a later time.

The negative side of this approach is that permis-
sion requests could become annoying if users have to be
asked confirmation for each specific permission requested
by applications. As a solution to this problem, Google
grouped related permissions together. Therefore, when a
user is asked to grant permission, he is actually being
asked to grant many permissions at a time not just a sin-
gle permission. For example, when the user grants PHONE
permission, he is granting six permissions: directly call
phone numbers, write call log, read call log, reroute out-
going calls, modify phone state, and make calls without
user’s intervention permissions. This may result in privacy
problems because users are being made to grant all per-
missions inside the group even though they do not want to
grant some of the permissions inside the group. The other
important point in APS is that the new system grants Inter-
net permission to all applications by default. Users will not
be asked to grant access to the Internet, and it is not even
possible to revoke it, even if they wanted to do so.

Despite significant improvements, APS does not take
context awareness into consideration yet. Once the user
grants permission to an application, the application can
use the permission at all conditions without limit. Existing
work that introduces context-aware access control (CAAC)
to mobile devices include the works of [11], ConUcon [12],
CRêPE [13], and ConXsense [14].

In all of these earlier access control models, privacy
policies have to be configured for each individual entity
separately. For example, in APS, we may have to deal with
approximately 140 permissions. The problem with such
a model is that the user has to deal with large number
of policy configurations. Generally, if we have A appli-
cations and P permissions, in the worst case, we need to
deal with A � P number of policies. In addition, in the

case where context is considered, context policy configu-
ration has to be performed for each permission per each
application. Users usually need to associate more than one
context with a single permission. If we have C number
of contexts for each permission on average, we will end
up with A � P � C number of policies. For systems that
have large number of permissions and installed applica-
tions, configuring this much number of policies leads to
reduced usability especially for the ordinary users.

In fact, different studies show that most mobile users
are not interested or not able to configure detailed poli-
cies, and instead, they prefer to accept every permission
request without careful examination resulting in overpriv-
ileged applications. For example, [15] reports how much
Android users understand APS and pay attention to pri-
vacy risks during application installation as discovered by
an Internet survey and laboratory experiments. The result
shows that only 3% of users correctly understand the per-
missions and only 17% of the users give their attention to
permissions requested by applications.

To overcome these problems, we propose a permission
system that combines role-based access control (RBAC)
with CAAC. Our model, context-aware Android role-based
access control (CA-ARBAC), works by assigning roles to
applications where roles consist of a list of permissions that
will be activated and deactivated for the containing role
depending on a set of contexts. In CA-ARBAC, users are
not required to deal with a large number of permissions;
instead, they just need to assign roles to applications. In
other words, the kind of permission grouping adopted by
Android to promote usability is replaced by RBAC in our
system without compromising the privacy. However, there
is small amount of overhead at the beginning. The user has
to configure policies initially. Once created, roles can be
used for as many applications as needed. Furthermore, it is
possible to have default roles such that ordinary users who
have difficulty in creating their own roles can use them.

Therefore, by using our system, the number of poli-
cies can be reduced to A � R where R is the number of
roles. Moreover, in our model, because role-permission
and permission-context maps are independent of applica-
tions, we do not need to modify these configurations if
applications have to be uninstalled and installed again.
Without RBAC, every time we re-install a given applica-
tion, all the rules related to that application have to be
reconfigured because they are dependent on the applica-
tion. Altogether, our system satisfies three requirements at
the same time: least privilege, dynamic permission grant-
ing and revoking, and keeping the number of policies as
small as possible.

To create roles, we followed a method of categorizing
applications into logical groups. Examples of functional
groups include messenger applications, photography appli-
cations, multimedia applications, and travel applications.
Roles correspond to these functional groups. Different
functional groups require different type and number of per-
missions and hence will be assigned different kinds of
roles. This approach should not be taken as the best way

5978 Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

J. Abdella, M. Özuysal and E. Tomur CA-ARBAC: context-aware role-based access control on Android

of creating roles. It is rather a simple approach used to
demonstrate our model. We believe that there can be better
way of doing this. However, as the main goal of this paper
is not providing an appropriate method of creating roles,
we have chosen to postpone this work to the future.

To give more insight into the process of role
creation and assignment in our system, we look at
some examples. For instance, “PHOTOGRAPHY” role
can be created for photography applications and a
“MESSENGER” role can be created for messenger
applications. These roles will be allocated different num-
ber and types of permissions. For example, permissions
such as CALL_PHONE, SEND_SMS, RECIEVE_SMS,
RECORD_AUDIO, CAMERA, WRITE_CONTACTS, or
READ_CONTACTS are normal for messenger applications
but most of them are suspicious if requested by a photogra-
phy application. Thus, out of these mentioned permissions,
PHOTOGRAPHY role may be assigned only CAMERA per-
mission, whereas MESSENGER role could be granted all
of them.

Moreover, using the context awareness functionality of
the system, we can impose restrictions on permission usage
for already granted permissions. For instance, we can set
the precondition that RECORD_AUDIO permission is not
allowed for MESSENGER role during the time that the
user is talking on the phone or if the user is in a meet-
ing room. We can also say that PHOTOGRAPHY role is
forbidden from using CAMERA permission if the user is at
home or in a meeting room. A common attack by hack-
ers is calling and/or sending SMS messages to premium
numbers when the phone is locked. In such cases, we may
have a context policy that forbids the application from
using permissions such as CALL_PHONE, SEND_SMS,
and RECIEVE_SMS if the screen is locked. Another com-
mon privacy attack is tracking user’s location. The user can
have a policy that denies location permission to applica-
tions when the user is at secure locations such as home.
As mentioned earlier, in Android 6, all applications have
Internet permission by default. We believe that limiting
the Internet permission depending on context allows a bet-
ter privacy/functionality trade-off that is possible with the
system we propose.

We also argue that CA-ARBAC can improve privacy
and usability at the same time. First of all, RBAC is a
known method of applying principle of least privilege.
RBAC enables users to give a minimum number of permis-
sions as they wish. Secondly, CAAC further strengthens
privacy protection by allowing dynamic alteration of appli-
cation privileges based on contexts. As explained earlier,
the numbers of policy rules needed to be configured is
less in CA-ARBAC as compared with the existing access
control models.

Our contributions:

� New context-aware role-based access control
(CA-RBAC) model for APS that assigns roles to
applications and associates contexts with permissions
allowing principle of least privilege and dynamic

granting and revoking of application permissions
with little effect on usability

� Dynamic and fine-grained permission system for
Android versions earlier than Android 6.

� New CA-RBAC architecture for APS that can possi-
bly be integrated to Android security modules (ASM)
[16].

The rest of this paper is organized as follows: Section 2
discusses related work. We review existing Android secu-
rity mechanisms in Section 3. CA-ARBAC access control
policy model is explained in detail in Section 4. Section 5
presents our CA-ARBAC architecture designed based on
ASM. Section 6 provides a description of the implementa-
tion of our system followed by Section 7 that demonstrates
our implementation by examples and tests. The formal ver-
ification of our system is presented in Section 8. Section 9
addresses performance related issues, and Section 10 dis-
cusses our future work plan. Finally, Section 11 summa-
rizes and concludes the paper.

2. RELATED WORK

In this section, we examine existing work that is closely
related to ours by dividing them into three groups: those
that focus on RBAC, those that deal with CAAC, and those
that combine both of these (CA-RBAC models).

Role-based access control models. MPDROID [17] is
good example of pure RBAC model that is close to our
approach. It is a security framework that supports two
kinds of access control models at two layers of Android
system: RBAC at the application framework layer and
mandatory access control (MAC) at the kernel layer.
At the application framework layer, it enhances APS
with RBAC to provide fine-grained access control.
This enables users to define their own security policy
and control malicious applications. At the kernel layer,
it implements MAC to allow administrators enforce
fine-grained access control. Administrators can limit
activities of applications and their processes according
to a centralized security policy. Similar to our system,
users authorize Android applications by assigning roles
instead of permissions. But MPDROID does not take
context into account.
Context-aware access control models. Various kinds
of CAAC models have been proposed in the past.
Four of the most recent ones are [11], ConUcon [12],
CRêPE [13], and ConXsense [14]. Our CAAC policy
model is analogous to that of [11]. Similar to our pro-
posed system, it associates Android permissions with
context. However, it works only for two kinds of con-
texts: location and time. Our system is designed to
support more types of context. In addition, [11] is a
pure CAAC model unlike CA-ARBAC that is a hybrid
of RBAC and CAAC.

Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd. 5979
DOI: 10.1002/sec

CA-ARBAC: context-aware role-based access control on Android J. Abdella, M. Özuysal and E. Tomur

ConUcon proposed a general CAAC framework
that works with several mobile platforms. It uses con-
text information to protect privacy and to control
resource usage. It supports active context usage con-
trol, that is, context check is not only performed prior
to resource access but also during the access.

CRêPE developed a system that enforces fine-
grained context-related policies on Android. In
CRêPE, policies can be configured both by phone users
and authorized third parties locally or remotely, via
SMS, MMS, Bluetooth, or QR-code. The policies can
also be applied in a system-wide manner.

ConXsense focuses on usability of APS that is
ignored by most other CAAC models. It does not
require users to configure policies. Instead, it is based
on a probabilistic approach that automatically classifies
contexts according to their security and privacy risks
using machine learning and context sensing.
Context-aware role-based access control models.
There exist also works that combine aspects of RBAC
model with context awareness. Some of the existing
literature that fall under this category are dynamic
role-based access control for Android [18], context-
related role-based access control [19], CA-RBAC
[20], [21], and role-based access control for Android
(RBACA) [22].

Dynamic role-based access control for Android offers
an RBAC system that is similar to traditional desktop com-
puters. It allows the management of multiple users on
Android mobile devices. In addition, it provides both appli-
cation and permission level fine-grained access control by
using RBAC.

Context-related role-based access control incorporates
the contextual information of user and system environ-
ment with the traditional RBAC. Context-related role-
based access control defines user roles based on their
access privileges. Users are categorized according to their
access rights of device’s resources and services. Each user
possesses one role at a time.

Context-aware role-based access control also proposes
an access control model that combines RBAC with con-
text awareness. CA-RBAC dynamically assigns roles to
users and permissions to roles according to the current
context. CA-RBAC is similar to our system in that it
assigns permissions dynamically. However, CA-RBAC is
for ubiquitous computing environments not for Android. In
addition, our system does not change roles contextually to
avoid unnecessary creation of roles.

Jung and Park [21] is a relationship-based CA-RBAC
approach for mobile users in enterprise environment. It
considers the relationship between users as context infor-
mation. The access control architecture is designed by
using near-field communication technology.

Role-based access control for Android is the closest
existing work to our approach. It is an RBAC approach
proposed for APS to mitigate the security risks caused
by overprivileged applications. In RBACA, similar to our

system, roles are assigned to applications, and roles con-
tain a subset of Android permissions. The main difference
between our system and RBACA is the way context is han-
dled. In RBACA system, context is associated with roles.
Application’s roles are switched manually or dynamically
depending on some contexts. In our system, roles stay
constant. Context is applied on permissions, that is, per-
missions are turned on and off for the role they belong
based on the status of associated context. We argue that our
approach avoids the creation of extra roles for each context.
Moreover, our method allows fine-grained context usage at
permission level.

To support the claim that our system avoids the cre-
ation of unnecessary number of roles as compared with
both CA-RBAC and RBACA, we present a comparison of
our system with RBACA and CA-RBAC by example. Let
us assume that a given user has installed application A that
requires five permissions P1, P2, P3, P4, and P5. More-
over, let us assume that the user wants to associate three
contexts C1, C2, and C3 with permissions P1, P3, and P5,
respectively, that is, P1, P3, and P5 are allowed for appli-
cation A only when contexts C1, C2, and C3 are satisfied
consequently. However, P2 and P4 are always allowed for
application A as there is no context associated with them.
To satisfy the previous requirement, in our model, only
one role needs to be created for application A as shown in
Table I. However, in RBACA and CA-RBAC, three roles
need to be created for application A as shown in Table II.
Application A will be assigned either role R1, R2, or R3
based on the contexts C1, C2, and C3.

Table I. CA-ARBAC way of creating role for application A.

Role Permissions Condition to use permission

R1

P1 When C1 is satisfied
P2 Always
P3 When C2 is satisfied
P4 Always
P5 When C3 is satisfied

CA-ARBAC, context-aware Android role-based access control.

Table II. RBACA and CA-RBAC way of creating role for
application A.

Context Role Permissions

C1 R1

P1

P2

P4

C2 R2

P2

P3

P4

C3 R3

P2

P4

P5

RBACA, role-based access control for

Android; CA-RBAC, context-aware role-

based access control.

5980 Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

J. Abdella, M. Özuysal and E. Tomur CA-ARBAC: context-aware role-based access control on Android

Figure 1. Android application resource access procedure.

3. ANDROID SECURITY OVERVIEW

In Android, every time the user installs an application,
a unique user ID (UID) is generated for the application.
The application runs under that UID for the whole of its
life. In addition, all data stored by that application are
assigned that same UID, whether a file, database, or other
resource. Every application’s sandbox accesses its own pri-
vate resources by direct system calls to the kernel. The
Linux kernel enforces private resource access by compar-
ing the UID of the requesting application with the UID
of the requested resources. An application needs permis-
sion from the user to access resources other than its private
resources.

An application can access resources other than its pri-
vate directory using two different ways. Firstly, when
an application is granted less sensitive public resources
such as SDCard and BLUETOOTH permissions, it is
added to a Linux group that has access to the correspond-
ing resources. Thus, the application is assigned a group
ID (GID) in addition to the UID. Such kinds of public
resources are also accessed by directly interacting with the
underlying kernel through system calls in a similar fashion
to private resource access. The Linux kernel enforces the
access control policy, that is, the access control in the file
system ensures that the application has the necessary per-
missions. For example, it checks whether the application is
allowed to open a file on the BLUETOOTH by checking
the GID of the application with the GID that is privi-
leged to access the BLUETOOTH. The file system access
control uses traditional Linux discretionary access con-
trol. The Linux kernel access control also supports a MAC
scheme called security-enhanced Android starting from
Android 4.3.

Secondly, applications are not allowed to access highly
privileged resources, such as SMS, PHONE, and CON-

TACTS, by direct system calls to the kernel. Such kinds
of resources are accessed through Middleware layer sys-
tem services and applications that implement the target
application program interface (API). For example, the
location service provides the API used to communicate
with the GPS or other location providers. Therefore, if
an application wants to obtain user’s location, it com-
municates with the location service instead of directly
interacting with the GPS or other location providers.
A permission check is also performed by system ser-
vices/applications at the middleware layer. The system
services/applications use Android permission validation
mechanism to check whether the caller application with the
given UID has the necessary permission or not. The system
service/application obtains the UID of the caller applica-
tion from the binder IPC. Figure 1 elaborates Android
application resource access procedure.

The fact that in Android, applications are uniquely iden-
tified by their UIDs makes assigning roles to applications
possible. In our CA-ARBAC system, applications are also
identified by their UIDs. Our system assigns roles to appli-
cations based on their UIDs. Therefore, permission check
is also performed by UID during resource access.

4. CONTEXT-AWARE ANDROID
ROLE-BASED ACCESS CONTROL
ACCESS CONTROL MODEL

Context-aware Android role-based access control is an
adaptation of the traditional RBAC model. The three main
components of the traditional RBAC are users, roles, and
permissions. In CA-ARBAC, applications replace users,
and applications are considered as users. In addition to this,
our model contains a fourth component: context. In the fol-
lowing sections, we describe CA-ARBAC access control

Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd. 5981
DOI: 10.1002/sec

CA-ARBAC: context-aware role-based access control on Android J. Abdella, M. Özuysal and E. Tomur

policy model. Here is the formal definition of the basic
system components:

Definition (Applications). An application is any Android
application in the system. Let A represent the set of all
Android applications installed on the device.

Definition (Roles). In CA-ARBAC, a role is a functional
category of Android applications. Let R stand for the set of
roles created in the system.

Definition (Permissions). The permissions in our system
are any one of the permissions defined in Android system.
Let P represent the set of all permissions in Android system.

4.1. Application assignment

Application assignment is a mapping that associates an
application with an assigned role. A role can be assigned to
multiple applications at the same time. Similarly, an appli-
cation can also have more than one role simultaneously.

Definition (Application role mapping). Let ARM be the
list containing the mapping between applications and
roles. The elements of ARM are tuples: hAi, Rji where Ai 2

A and Rj 2 R.

A many-to-many mapping (application-to-role assign-
ment relation) exists between applications and roles:
ARM � A� R. The user manually creates roles and assigns
it to one or more applications. When the user assigns roles
to applications, it is added to the application role mapping
(ARM). The ARM is static and do not change dynamically
based on contextual data.

4.2. Static permission assignment

Permission assignment is a mapping that associates roles
with an assigned permission. A role can be assigned mul-
tiple permissions and a single permission can also occur in
many roles.

Definition (Role permission mapping). Let RPM be the
list containing the mapping between roles and permissions.
The elements of RPM are tuples: hRm, Pki where Rm 2

R and Pk 2 P. A many-to-many mapping (role-to-
permission assignment relation) exists between roles and
permissions, RPM � P � R.

In the absence of context associated with permissions,
the permission set assigned to roles stays active for the role
all the time, that is, all the permissions assigned to a role
are allowed for the role all the time.

4.3. Dynamic permission assignment in the
presence of context

In CA-ARBAC, the usage of permissions inside a given
role can be restricted by specifying the conditions under
which the permission should or should not be allowed.

In this paper, we use two kinds of context sources: envi-
ronmental context and system context. Location of the user
and surrounding temperature are types of environmental
contexts. Some examples of system context include: time,
battery status, whether there is an ongoing phone call or
not, and whether the screen is locked or not.

Definition (Context). Many kinds of contexts can be
applied in our model. Each context is identified by
its name and one or more attributes: Context =
hContextName, ContextAttributesi. For example, LOCA-
TION is a context that is identified by two attributes:
latitude and longitude; TIME is a context identified by
single attributes: time of day.

Definition (Context policy). A context policy is
a rule that specifies the condition under which a
given permission should be allowed or not allowed.
It consists of two parts: the context description
and the action to take. Context description is
expressed as follows: ContextDescription =
hContextName, Operator, AttributeValuesi. The Operator
represents different kinds of key words used for com-
parison. It includes: EqualTo, GreaterThan, LessThan,
GreaterThanOREqualTo, LessThanOREqualTo, InBe-
tween, and In. AttributeValues is the set of values
for each of the context attribute of the given context.
Let CD and CP be the set of all context descriptions
and context policies configured in the system, then
CPi = hCDi, Actioni where CPi 2 CP and CDi 2 CD.

When we configure context policy, we may need to
specify multiple values for the context based on the range
we want to include. For example, we may specify that
some permission should be denied access from some start-
ing time to some end time. Another case is we may specify
that a given permission can be allowed on weekdays. The
action attribute indicates the action to be taken when the
context is satisfied. It is either allow or deny.

Definition (Context combination). Often, context poli-
cies are made up of a combination of contexts not just
with a single context. Let CCP (combined context policy)
be the set of context policies containing combination of
context descriptions, then CCPi = h(CD1 ^ CD2 ^ : : : ^

CDm), Actioni, where CCPi 2 CCP and CDi 2 CD.

The value of CCP is either true or false based on the
value of the Action attribute and the return value of the
combination of the context descriptions. When the Action
attribute is set to allow, it returns true if all the contexts in
the combination are satisfied. Otherwise, it returns false.
When the Action attribute is set to deny, it returns false if
all the contexts in the combination are satisfied. Otherwise,
it returns true.

Definition (Context list). Sometimes, permissions are
also associated with a list of combined contexts joined

5982 Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

J. Abdella, M. Özuysal and E. Tomur CA-ARBAC: context-aware role-based access control on Android

Figure 2. Illustration of context-aware Android role-based access control model.

together using logical disjunction operator. Let CPL be
the set of context policy lists, CPLi 2 CPL, where CPLi
is the context policy list associated with permission Pi.
CPLi = h(CCP1 V CCP2 V : : : V CCPn), Action >, where
CCPi 2 CCP.

In this case, when the Action is set to allow, CPL returns
false if all of the CCPs in the list return false. Otherwise,
it returns true. When the Action is set to deny, CPL returns
true if all the CCPs in the list return false. Otherwise, it
returns false.

Definition (Active permissions). Not all the permissions
assigned to a role are active for the role all the time. An
application can only use active permissions. Whether per-
mission is active or not for a given role is determined by the
list of contexts associated with the permission. Active per-
missions are permissions for which the associated context
is satisfied.

Figure 2 above illustrates our access control model
graphically by example. In the figure, APPx is assigned the
role Rx. Role Rx is granted j permissions. Permission P1
has no any context associated with it, which means that it
will be active for role Rx at all times. Permissions P2, P3,
and Pj of role Rx on the other hand have contexts associ-
ated with them. P2 is associated with single context. P3
is associated with combination of two contexts, and Pj is
associated with a context list that contains two combined
contexts. APPx can access these permissions only if the
contexts associated with them are satisfied.

5. CONTEXT-AWARE ANDROID
ROLE-BASED ACCESS CONTROL
ARCHITECTURE

Android system does not provide a comprehensive API for
the development and integration of new security applica-
tions and enhancements. Because of this, all of the earlier
Android security system enhancements required modifica-
tion to the Android operating system. Consequently, these

previous works are provided in one of two ways. Some of
them are presented as separate model-specific patches to
the Android operating system. Others are imbedded into
Android’s software stack and become part of the Android
system.

As noted by Android security framework (ASF) [23], if
we look back at the history of stable security frameworks
like Linux security modules (LSM) and the BSD MAC
Framework, following either of the earlier two approaches
is not a practical way of providing security solutions.

Firstly, if security solutions are provided as updates
to Android operating system, it causes maintenance prob-
lems. Every time the operating system is upgraded to
another version, each of the security solutions should also
be updated to make them compatible with the new version.

Secondly, integrating the security model into the oper-
ating system makes it much more difficult to work with
multiple different security models that are suitable for dif-
ferent kinds of scenarios. Moreover, each patch to the
security system requires rebuilding the operating system,
which is very difficult for the average user.

Understanding this gap, ASF and ASM recently devel-
oped an extensible security framework for Android that
provides a programmable interface that allows the devel-
opment and integration of various kinds of security appli-
cations in the form of security modules. ASF and ASM
are two independent but similar systems developed by
independent researcher groups. Taking the aforementioned
unsatisfactory situations into consideration, we decided to
design CA-ARBAC as independent code-based security
module which is a pure java application built on the appli-
cation layer based on ASM. Before we present our design,
we briefly discuss ASM.

5.1. Android security modules

The motivation behind the development of ASM is to
provide a programmable interface that will enable secu-
rity application developers to extend Android security
without changing the operating system. ASM provides a

Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd. 5983
DOI: 10.1002/sec

CA-ARBAC: context-aware role-based access control on Android J. Abdella, M. Özuysal and E. Tomur

reference monitor interface for building new security appli-
cations/security modules. This allows reference monitor
developers to focus on their novel security models and not
worry about enforcement hooks. The security modules are
called ASM apps, and they are developed just like any
other conventional Android applications. ASM apps imple-
ment the security logic. They use ASM hooks for policy
enforcement.

Android security modules supports enforcement hooks
at two layers of Android system: at the middleware layer
and at the kernel layer. The ASM reference monitor inter-
face that is placed at the middleware layer is called ASM
Bridge. This is the part which is directly communicating

with ASM apps. The ASM Bridge automatically invokes a
callback in the ASM apps when a resource is going to be
accessed. The component of ASM that provides enforce-
ment hooks at the Linux kernel is ASM LSM. ASM LSM
makes up calls to the ASM Bridge when an application
makes a direct system call to kernel to access sensitive
resource.

5.2. Architecture overview

The design of CA-ARBAC, which is based on ASM, is
shown in Figure 3. The big grey colored part is our CA-
ARBAC system. CA-ARBAC is an ASM app. Therefore,

Figure 3. CA-ARBAC architecture based on ASM. On the figure, there are three kinds of components. The white colored parts belong
to existing Android system components which participate in the resource access process. The two blue colored boxes represent ASM
system extensions to Android operating system. The two (blue) and (green) arrows indicate the steps followed when an application
needs to access a sensitive resource in Android system that is enhanced with ASM and CA-ARBAC. The big grey colored part on the

top right corner is our CA-ARBAC system.

5984 Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

J. Abdella, M. Özuysal and E. Tomur CA-ARBAC: context-aware role-based access control on Android

Figure 4. Context-aware Android role-based access control (CA-ARBAC) components.

in our case, CA-ARBAC is only responsible for imple-
menting the policy logic. It is concerned about policy
decision making, policy configuration, context detection,
and policy storage. Policy enforcements are handled by
ASM. CA-ARBAC receives a callback from ASM when
a sensitive resource is going to be accessed. CA-ARBAC
consists of four components. The components of CA-
ARBAC, which are shown in Figure 4, are explained in the
subsequent sections as follows:

Policy decision manager (PDM). The PDM is the
core component of CA-ARBAC. It is the part that
makes security decisions inside CA-ARBAC. CA-
ARBAC is connected to ASM through PDM.
Policy configuration manager (PCM). Policies are
configured by the user through the user interface com-
ponent called PCM.
Context manager. The PDM needs to obtain the cur-
rent contextual information to make access decision,
that is, it needs to check whether the pre-specified
context associated with permissions is fulfilled or not.
The PDM obtains current context information from
the context database (CDB). The CDB stores different
kinds of context and their current values. The con-
text manager is the part responsible for continuously
receiving updates of contextual information from dif-
ferent context provider elements and updating the CDB
with the new values.
Context-aware Android role-based access control
policy databases. Access control policies are stored
in two separate databases. Application assignment

database (AADB) stores applications and their cor-
responding roles. Permission assignment database
(PADB) is used to store roles and the permissions
assigned to roles. PADB also contains context informa-
tion for permissions that have associated contexts.

5.3. Working principle of context-aware
Android role-based access control

Every time an application wants to access sensitive
resource other than its private resource, it makes a call
to either the middleware layer Android API or directly to
the kernel as shown by blue and green lines on Figure 3.
Permissions are also enforced at both of these points. In
the existing Android system, when the two Permission
Enforcement Points receive access request message, they
will decide whether the application should be allowed
access or not, and they either allow access to resources or
send back exception message.

In Android system enhanced with ASM, the ASM
intercepts access request messages and sends callback
to registered ASM applications. CA-ARBAC is an ASM
application. Thus, it receives callback from ASM through
the PDM interface. The callback comes both from the ker-
nel and the middleware layers. The red lines on Figure 3
show callback and response messages. The callback mes-
sage contains tuples Application ID, Permission, that is,
the application that requests access and the requested per-
mission. The PDM analyzes the request and decides on
whether the request should be allowed or denied. The PDM

Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd. 5985
DOI: 10.1002/sec

CA-ARBAC: context-aware role-based access control on Android J. Abdella, M. Özuysal and E. Tomur

then responds with allow/deny message to ASM based on
the decision made.

The PDM performs the following actions to make a
decision. It first checks if there is a role assigned to the
requesting application in the AADB. If there is no role
given for the application in AADB, the PDM automatically
sends deny message to ASM. If it finds a role associated
with that application, it retrieves the list of permissions
allowed for that role from PADB. If the requested permis-
sion is not found in the list, PDM will again send back a
deny message to ASM. If the requested permission is found
in the list, there are two cases. Either there is context data
associated with the permission or not.

Therefore, the PDM goes on to check if there are any
contexts associated with the permission. If the permission
is not accompanied by context, it will be allowed for the
application automatically. If however, there are some con-
texts associated with the permission, the PDM obtains the
current value of the context from CDB and checks if the
preconfigured context is satisfied by the current value of
the context. If all the contexts are satisfied, an allow mes-
sage will be sent to ASM. Otherwise, a deny message will
be sent to ASM. Based on the response from PDM, the
ASM either allows the application to access the requested
resource or sends back an access denied exception to the
application.

5.4. Integrating context-aware Android
role-based access control to different kinds
of Android devices and versions

Android operating system runs on a variety of different
devices from different vendors. Because of this, device
manufacturers customize the operating system for differ-
ent reasons such as to be able to adapt it to their specific
hardware design, to add new services, and to make it
fit to different models such as smartphone and tablet.
In addition to device manufacturers, Google also updates
the operating system frequently. Given the vast variety of
Android devices and versions, providing security appli-
cations that require modification as devices and Android
versions change is very ineffective.

Context-aware Android role-based access control sys-
tem is an independent code-based security application that
does not require modification based on the type of the
device or version of Android operating system installed on
the device. This is because of the following two reasons:
First of all, CA-ARBAC is not affected by the modification
performed by device manufacturers or version upgrades
as it is situated on the application layer of Android soft-
ware stack. Secondly, CA-ARBAC system security policy
configuration is based on the user-based security model of
the Linux kernel. CA-ARBAC identifies each application
using unique UID and keeps permission grant informa-
tion with the UID. The user-based security model of the
Linux kernel is the basic building block for Android secu-
rity mechanism that does not change from device to device
or from version to version.

Nonetheless, CA-ARBAC requires a programmable
interface that sends callback (notification message) when
a sensitive resource is going to be accessed. That is where
systems such as ASM and ASF come to the scene. There-
fore, to use CA-ARBAC on different Android devices and
versions, we need to have systems such as ASM integrated
to the operating system. One may argue that we should
have developed our own reference monitor similar to ASM
and ASF. For the two reasons mentioned earlier, this is
not a good way. Every security applications developer
should not modify the operating system but rather should
rely on some extensible security framework integrated to
Android code base and provide a programmable interface
for security application developers. We believe that Google
will soon integrate such kind of security framework into
Android operating system.

5.5. Context-aware Android role-based
access control on other mobile platforms

In this paper, we show the implementation of CA-ARBAC
system on Android. However, CA-ARBAC can also be
implemented on other major mobile platforms such as iOS
and Blackberry.

iOS mobile platform. In Android, applications are
uniquely represented using Linux UID. In CA-ARBAC
system, these UIDs are mapped to roles and roles
are mapped to Android permissions. Analogous to the
UID in Android, iOS system also uses a unique ID
called bundle ID to identify iOS applications. More-
over, access to resources in iOS is allowed through
something similar to Android permission called enti-
tlement. Entitlements are capabilities that are declared
in the application code to request access to different
system resources. Hence, CA-ARBAC can be imple-
mented in iOS using bundle ID and entitlements.
Bundle IDs can be mapped to roles and role can
be mapped to entitlements. A reference monitor that
sends a callback message should also be inserted
into permissions enforcement points inside the iOS
operating system.
Blackberry mobile platform. Blackberry’s applica-
tion security mechanism is quite similar to that of
Android. Each application runs in its own virtual con-
tainer called sandbox. Application sandboxes are iso-
lated from each other. The sandbox encompasses the
applications: own files and the application’s memory
area. The operating system assigns a unique group ID
to each application. Like that of Android, by default,
an application can access its own data in its own sand-
box. If the application wants to access resources that
are not associated with the application’s group ID, it
has to obtain permission from the user. The part of the
operating system that enforces permissions is called
authorization manager. Hence, CA-ARBAC could be
implemented on Blackberry mobile platform by using
group IDs and Blackberry application permissions.

5986 Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

J. Abdella, M. Özuysal and E. Tomur CA-ARBAC: context-aware role-based access control on Android

Moreover, authorization manager should be modified
to send callback message to CA-ARBAC whenever a
sensitive resource is going to be accessed.

6. IMPLEMENTATION

Currently, ASM is not integrated to the Android operat-
ing system. Therefore, we could not use ASM directly,
and instead, we simulated ASM with our own application
called ASM simulator. Figure 5 shows the architecture of
CA-ARBAC after ASM is replaced with the ASM simu-
lator. In the future, we plan to rebuild Android operating
system with ASM and integrate our system to it. For the
time being, we will explain the implementation of our
system using the ASM simulator application.

6.1. Android security modules simulator

Android security modules simulator is an Android library
application that controls resource accesses operations of
other applications. ASM simulator is different from ASM
in that it lies in the application layer as opposed to ASM
that is placed at two of the other layers: the middleware
and kernel layers. In normal case in Android, applica-
tions directly communicate with either the middleware
layer or the kernel layer Permission Enforcement Points to
access sensitive resources. In this case, applications obtain
access to sensitive resources through ASM simulator.
When an application wants to access some resource, it calls
the public method getAsmSimulatorService() of
ASM simulator by specifying the resource it needs
to access.

Figure 5. Architecture of context-aware Android role-based access control (CA-ARBAC) with Android security modules (ASM)
simulator.

Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd. 5987
DOI: 10.1002/sec

CA-ARBAC: context-aware role-based access control on Android J. Abdella, M. Özuysal and E. Tomur

The ASM simulator checks whether the application
has the necessary permission to access the requested
resource by contacting CA-ARBAC. ASM simulator
calls the public method call() inside the PDM. The
call() method in turn invokes the private method
checkAppPermission() inside PDM itself. The
arguments to both methods are tuples Application ID, Per-
mission. The response to ASM simulator is either ALLOW
or DENY. If the response is ALLOW, ASM simulator obtains
the resource from Android system on behalf of the appli-
cation and passes the acquired resource to the requesting
application. Otherwise, it sends back a security exception
to the application.

Android applications have to be modified to make them
use ASM simulator for resource access instead of existing
Android system. The grey and white box on the left-top in
Figure 5 indicates Android applications developed in such
a way that they should ask resources from ASM simulator
instead of existing Android system.

6.2. Context-aware Android role-based
access control implementation

Context-aware Android role-based access control system is
implemented using four of the Android application compo-
nents: activities, services, content providers, and broadcast
receivers. It consists of various components that altogether
perform these four main operations: policy configuration,
context detection, policy decision, and storage.

Policy configuration. PCM is the component of CA-
ARBAC that provides user interfaces for policy con-
figurations. As such, it is made up of many Android
Activity classes that allow the user to perform various
activities. It consists of classes used for role creation,
role assignment, and role modification. Role creation
involves giving appropriate name to the role, assigning
one or more permissions to the role, and associating
context with the permissions (in the case where the user
is interested to associate context with permissions).

When a new role is created, it is stored in PADB.
PADB and all other databases in our system are imple-
mented using SQLite database. Role assignment is
assigning roles to applications. When a role is assigned
to an application, the data is saved in AADB. Role
modification enables the user to modify existing roles.
Context detection. This part consists of the context
manager and CDB. The list of contexts defined in the
system and their current values is kept in CDB. The
context manager is an Android service class that works
continuously in the background. It constantly col-
lects current context information from different context
sources and updates the values in CDB. To be able to
do so, it implements different kinds of listeners such
as Android LocationListener. Context collec-
tion does not affect the performance of the other parts
of our system because the service runs on a separate
process independent of the other components. More-

over, not to harm the overall performance of the mobile
device, it is possible to adjust the frequency at which
the context manager collects context data.

The context manager service is started at boot
time by the ContextManagerStarter class
that extends Android BroadcastReceiver
class. Broadcast receivers can register for
Intent.ACTION_BOOT_COMPLETED system
intent that tells the device has completed boot-
ing. Our ContextManagerStarter class is
also registered for this intent. Hence, it starts
the context manager service when it receives the
Intent.ACTION_BOOT_COMPLETED intent.
Policy decision. Upon the arrival of request mes-
sage from ASM simulator, the PDM performs
policy decisions based on the entries in the AADB,
PADB, and CDB. The PDM extends Android content
provider class. It consists of various methods such as
checkAppPermission(), getAppRoles(),
getRolePermissions(), and
checkContext(). checkAppPermission()
is the main method that checks whether the
application should be currently granted a given
permission or not. It uses getAppRoles() to
obtain the roles of the application from AADB and
getRolePermissions() to retrieve the permis-
sions assigned to the roles of the application from
PADB. Finally, checkContext() is used to check
if the preconfigured context is satisfied or not.

7. EXAMPLE USE CASES

In this section, we further demonstrate our system by using
some real examples. We explain the working of our sys-
tem using three applications, three roles, and four kinds
of contexts. We developed three test applications for this
purpose. The first one is a messenger application called
PhoneCaller that allows phone call, SMS sending, and
audio recording. The second one is called PhotoEditor.
It is a photography application that allows taking photos
and editing them. The last application is a simple appli-
cation that obtains the users current location and displays
it. We named it LocationGetter. The three roles we
created for our test are MESSENGER, PHOTOGRAPHY,
and TRAVEL roles. Four types of contexts, namely,
LOCATION, CALL_STATE, SCREEN_STATE, and TIME
are used for this test.

7.1. Creating roles

As mentioned earlier, we assign roles to applications based
on their functional group. We categorize applications into
functional groups and create different roles that are appro-
priate for each functional category. Being able to create
roles, which contain optimum number of permissions, is
one of the challenges of our system. For skilled users, we
believe that deciding which permissions to assign to which

5988 Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

J. Abdella, M. Özuysal and E. Tomur CA-ARBAC: context-aware role-based access control on Android

roles is completely up to the user. However, as most users
of mobile devices are ordinary users who have difficulty
in creating roles, there is a need to create default system
roles that can be used as needed. Currently, there is no any
reference standard that states which kinds of applications
should use which kind of permissions. There is also no
satisfactory system that can identify the permissions appro-
priate for the different categories of applications. This topic
by itself is a new research area that needs further study.

However, there are few works such as [24–28] that have
performed limited researches on this topic. Most of these
studies used this methodology as a way of detecting mali-
cious Android applications. Among them, we found [24]
to be more convenient for our work. We used their open
source application called SuspiciousAppsChecker
to find sample application roles and corresponding per-
missions. SuspiciousAppsChecker is an application
that analyzes Android applications for overprivilege. It
checks Android applications for overprivilege by com-
paring the permissions used by the applications with a
predefined permission list allowed for the category that
the application belongs. We recognize that this is not
sufficient way of generating roles for applications. First
of all, the methodology by itself may not be taken as
a good means of dealing with this problem. Secondly,
SuspiciousAppsChecker is not yet mature and has
limitations. To mention one, the categorization is too gen-
eral and not fine-grained. For instance, the system assumes
that all messenger applications belong to the same cate-
gory and believes that all messenger applications should be
given the same set of permissions. In reality, there are vari-
ous kinds of messenger applications such as text messaging
applications and voice messaging applications. For exam-
ple, RECORD_AUDIO permission is not necessary for text

messaging applications but is must for voice messaging
applications. So it is wrong to group all messenger appli-
cations into one category and assign them the same set of
permissions.

In the future, we have a plan to develop a system
that can automatically classify permissions based on appli-
cation functionality. We also hope that a better auto-
mated technique may be discovered by other researchers.
Nonetheless, for the purpose of explaining our model, we
believe that it is adequate to use simple samples developed
with the help of SuspiciousAppsChecker because
our main goal in this paper is not identifying roles and
equivalent permissions but rather showing that CA-RBAC
can be used to provide usable privacy-preserving permis-
sion system. The three roles, the permissions they con-
tain, and the contexts associated with them are shown in
Table III earlier.

7.2. Associating contexts

We associated contexts with three of the permissions
assigned to our roles as shown in Table III. For example,
RECORD_AUDIO permission is a desirable permission for
multimedia and messenger applications. However, it may
be very dangerous at some conditions such as when the
user is in a meeting, or if the user is talking on phone and
if the phone is locked. Therefore, we set a policy saying
that RECORD_AUDIO permission is not allowed if the user
is in one of these situations. To know that the user is in a
meeting, we may need to know the meeting place and time.
Hence, it is expressed using a combination of LOCATION
and TIME contexts. For instance, let us say that the user
John has meeting at İzmir Institute of Technology (IYTE)

Table III. Example application roles, permissions, and contexts.

Role Permissions Context policy Context policy type

Messenger

RECORD_AUDIO

USER IS IN A MEETING(LOCATION+TIME) DENY
USER IS TALKING ON THE PHONE DENY

PHONE IS LOCKED DENY
READ_CONTACTS

WRITE_CONTACTS

CALL_PHONE PHONE IS LOCKED DENY
SEND_SMS PHONE IS LOCKED DENY

RECEIVE_SMS PHONE IS LOCKED DENY
READ_SMS PHONE IS LOCKED DENY

...
...

...

Travel

INTERNET

ACCESS COURSE LOCATION USER IS NOT AT HOME ALLOW
ACCESS_FINE_LOCATION USER IS NOT AT HOME ALLOW

...
...

...

Photography

CAMERA USER IS NOT AT HOME ALLOW
WRITE_EXTERNAL_STORAGE

READ_EXTERNAL_STORAGE
...

...
...

Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd. 5989
DOI: 10.1002/sec

CA-ARBAC: context-aware role-based access control on Android J. Abdella, M. Özuysal and E. Tomur

Computer Engineering Department meeting room every
Monday and Friday from 2:30 PM to 4:30 PM and he does
not want applications to record audio while he is in a meet-
ing. The snapshot in Figure 6 shows how location context
policy can be configured in our system. The user sets a cir-
cular area by selecting two points on the map. Configuring
time context involves selecting time range and days. The
context policy for the previous context is represented in our
system as h([LOCATION = 38.32; 26.64; 38.32; 26.64] ^
[TIME = 1430; 1630; MONDAY , FRIDAY]), DENYi.

Moreover, John also does not want applications to
record audio if he is talking on phone or if his phone
is locked. The context policy for these two situa-
tions looks like this in our system h[CALL_STATE =
CALL_STATE_OFFHOOK], DENYi and
h[SCREEN_STATE = SCREEN_STATE_OFF], DENYi,
respectively. Similarly, the user John specified a con-
text rule that says that CALL_PHONE, SEND_SMS,
and RECEIVE_SMS permissions are not allowed
if his phone is locked. Finally, John stated that
ACCESS_FINE_LOCATION and CAMERA permissions
are allowed only if he is out of his home such as in cafe-
teria, markets, and workplace. Let us assume that John’s

Figure 6. Location context configuration.

workplace is at IYTE Computer Engineering Department
and his home is at İnciraltı Atatürk Student Dormitory.

7.3. Assigning roles to applications and
making experimental tests

In this section, we first see role assignment to our test appli-
cations, and then, we conduct an experiment by running
our test applications in different contexts.

Let say John who has configured the prior contexts
has installed our three applications. John then has to
assign roles to the applications based on the permis-
sions they require. Our test applications require different
number of permissions. The PhoneCaller application,
which represents a messenger application, requires the
highest number of risky permissions. It usually requires
most of the permissions in MESSENGER role. Moreover,
messengers may require CAMERA permission that is in
the PHOTOGRAPHY role. Messengers also usually need
access to location. Location permission is contained in
TRAVEL role. Hence, John assigned PhoneCaller all
the three roles in the system. The other two applications
each is assigned one role; PhotoEditor is assigned
PHOTOGRAPHY role and LocationGetter is assigned
TRAVEL role. We did various tests based on John’s policy
configurations as follows:

Firstly, we performed the following four tests using
PhoneCaller application:

TEST 1. We tried to record audio using PhoneCaller
at IYTE Computer Engineering Department meeting
room on Monday and Friday between 2:30 PM and
4:30 PM. We also checked if we can record audio at
some other contexts.
RESULT 1. The result shows that we are not able to
record audio on the given days and time. PhoneCaller
displays a “MediaRecorder not found” message.
Moreover, a security exception is thrown by ASM
simulator as shown in Figure 7. However, we can
record audio at other contexts.
TEST 2. We tried to record audio while there is an
ongoing phone call. We also tried to record audio
while the phone is idle.
RESULT 2. We cannot record audio on the first
case but we are able to record audio for the second
scenario.
TEST 3. We again tried to record audio while the
phone’s screen is on. We also tried to record audio
while the phone is locked.
RESULT 3. It is possible to record audio for the
former case but not for the latter case.
TEST 4. We checked if it is possible to call a phone,
send and receive SMS while the phone is locked. We
also tested if the same thing may happen when the
phone is unlocked.
RESULT 4. The result shows that it is possible to
call phone, send and receive SMS when the phone is
unlocked but not possible for the opposite case.

5990 Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

J. Abdella, M. Özuysal and E. Tomur CA-ARBAC: context-aware role-based access control on Android

Secondly, we made a single test using
PhotoEditor application.
TEST 5. We tried to take photos at İnciraltı Atatürk
Student Dormitory and also at IYTE Computer Engi-
neering Department.
RESULT 5. PhotoEditor can take photos when
we are at IYTE Computer Engineering Department
but not at İnciraltı Atatürk Student Dormitory.

Finally, we made a test using
LocationGetter application.
TEST 6. We tried to obtain the current location of
the user at IYTE Computer Engineering Department
and outside of it.
RESULT 6. We can obtain the location of the user
outside of IYTE Computer Engineering Department
but not inside it.

8. FORMAL VERIFICATION

In the previous sections, we showed how our system
enhances user privacy in APS by enabling dynamic per-
mission granting and revoking. However, this is not enough
to show that the system is valid. One of the important cri-
teria for access control policies is the ability to prevent
unauthorized access to resources. An access control pol-
icy should not also deny access to resources for actors that
possess the right privilege. In this section, we present the
formal expression of our access control policy to prove
that our system allows only authorized applications to
obtain access to permissions. In our model, an application
is authorized to use a given permission if all of the four
properties in the following are fulfilled:

� If there exists a role that the application is assigned.
� If that role contains the requested permission.
� If the context (if any) associated with the given per-

mission is satisfied.
� If there does not exist any other role containing the

same permission and also assigned to the same appli-
cation but the context associated with the permission
is not satisfied.

The last rule is required because a single permission
can appear in different roles and hence can have differ-

ent context policies associated with it for different roles.
For example, permission P can have context policy CP1
for role R1. The same permission may be associated with
another context policy CP2 when assigned to role R2.
Hence, for instance, if application A is assigned the two
roles R1 and R2, allowing permission P for application A
requires that both of the two contexts CP1 and CP2 be
satisfied. Otherwise, if application A is allowed to use per-
mission P based on the satisfaction of only one of the
contexts, it leads to contradiction.

We demonstrate the formal expression of our model
based on the previous definitions covered in Section 4: A:
set of applications, R: set of roles, P: set of permissions,
CP: set of context policies, ARM: application role mapping,
and RPM: role permission mapping. We also include more
definitions in this section as follows:

� AssignedApps(r : Role) ! 2A is the map-
ping of a set of applications to role r, that is,
AssignedApps(r) = {a 2 A|(a, r) 2 ARM}

� AssignedPerms(r : Role) ! 2P is the map-
ping of a set of permissions to role r, that is,
AssignedPerms(r) = {p 2 P|(r, p) 2 RPM}

� Permission context mapping: Let PCM be the list
consisting of the mapping between permissions
and associated context policies. It contains triplets
hPi,Ri,CPii, where Pi 2 P, Ri 2 R and CPi 2 CP.

� AssociatedContext(p : Permission, r :
Role) ! CP is the mapping of permis-
sion p to context policy CP for role r,
that is, AssociatedContext(p, r) =
{cp 2 CP|(p, r, cp) 2 PCM}.

� ContextState = {1, 0} is the set contain-
ing the possible outcome of a context policy rule.
At any given time, the context policy rule eval-
uates to either true or false. If it evaluates to
true, the ContextState is set to 1; otherwise, it
is set to 0.

� ContextStateMapping: Let CSM be the list con-
sisting of the mapping between context policy rules
and their states. It contains tuples hCPi,CSi where
CPi 2 CP and CS 2 ContextState.

� ActiveContextPolicies =
{cp 2 CP|(cp, 1) 2 CSM}.

Figure 7. Security exception thrown by Android security modules simulator.

Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd. 5991
DOI: 10.1002/sec

CA-ARBAC: context-aware role-based access control on Android J. Abdella, M. Özuysal and E. Tomur

Figure 8. Formal expression for run time authorization in context-aware Android role-based access control.

Figure 9. A1 cannot use P1 because even if A1 2 AssignedApps(R1)^P1 2 AssignedPerms(R1)^AssociatedContext(P1, R1) 2

ActiveContextPolicies, there is another contradicting rule, that is, A1 2 AssignedApps(R2) ^ P1 2 AssignedPerms(R2) ^

AssociatedContext(P1, R2) 2 InactiveContextPolicies. Similarly, A1 cannot use P4 because A1 2 AssignedApps(R2) ^

P4 2 AssignedPerms(R2) ^ AssociatedContext(P4, R2) 2 InactiveContextPolicies. However, A1 can use P2 and
P5 because A1 2 AssignedApps(R1) ^ P2 2 AssignedPerms(R1) ^ AssociatedContext(P2, R1) = ; and also A1 2

AssignedApps(R2) ^ P5 2 AssignedPerms(R2) ^ AssociatedContext(P5, R2) = ;. Moreover, A1 can use P3 because A1 2

AssignedApps(R1)^ P3 2 AssignedPerms(R1)^ AssociatedContext(P3, R1) 62 ActiveContextPolicies.

� InactiveContextPolicies =
{cp 2 CP|(cp, 0) 2 CSM}.

Hence, the run-time authorization decision in our sys-
tem is governed by the formal expression in Figure 8, and
an example is provided in Figure 9.

9. PERFORMANCE TESTS

In this section, we analyze the additional performance
cost incurred by CA-ARBAC on the mobile device and
on applications’ resource access time. Concerning the cost

of device performance, we performed two kinds of per-
formance tests. We took a measurement of CA-ARBAC
memory and CPU consumption by running it for high
resource-consuming operations (worst case) such as con-
textual location setting by using Google maps. After
monitoring its execution over long time frame, we have
observed that the average memory space and CPU uti-
lized by CA-ARBAC for the heaviest operations is
approximately 6 MB and 5%, respectively, as shown in
Figures 10 and 11.

Context-aware Android role-based access control also
introduces some time delay on applications’ run time
resource access. This additional time delay is caused by
callback to CA-ARBAC during applications “access to

5992 Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

J. Abdella, M. Özuysal and E. Tomur CA-ARBAC: context-aware role-based access control on Android

Figure 10. Context-aware Android role-based access control memory usage statistics.

Figure 11. Context-aware Android role-based access control CPU consumption statistics.

Table IV. Record audio permissions run time access delay.

Measurement 1 2 3 4 5 6 7 8 9 10 Average

Callback time in ms 7 6 13 4 25 7 8 10 2 10 9.2

permissions.” This extra time delay may vary from permis-
sion to permission and also from time to time. To show
an example of the time delay, we took a record of the
time delay introduced when our PhoneCaller applica-
tion tries to access RECORD_AUDIO permission as shown
in Table IV. There is an average delay of approximately
9.2 ms based on 10 measurements taken at different times.
Finally, we would like to mention that the disk space used
by CA-ARBAC is 3.94 MB.

10. FUTURE WORKS

Because of the various restrictions we have, there are some
issues that we are forced to postpone for the future. The
following are some of the future works that we plan to
accomplish in our next work.

Active context management. In our current sys-
tem, we use passive context management. In passive
context management, once an application is granted
permission, it can use it irrespective of changes in
context information. However, for realistic situations,
the application should be revoked access if the con-
text changes during the time that the application is

using the permission. We could not use active context
management currently in CA-ARBAC as the under-
lying Android security policy enforcement framework
does not support context management. ASM frame-
work also does not support context management. For
the future, we suggest the integration of security APIs
similar to ASM that support active context manage-
ment.
Usability test. We argue that our system can be better
in usability than the existing APS. But, this claim needs
to be confirmed with real user studies that measure
usability.
Default system roles. Skilled users can easily create
roles on their own. This might not be an easy task
when it comes to naive users. The situation becomes
more difficult if the user has to configure context for
permissions. One of the solutions for this problem can
be having system default roles. Creating default roles
requires that the roles should contain optimum number
of permissions and context configuration. As explained
earlier, we used a rough method of grouping applica-
tions into functional groups to create roles. We believe
that this is not the only way to so do. For example,
we can think of an automated system that can analyze
applications and suggest roles to the user.

Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd. 5993
DOI: 10.1002/sec

CA-ARBAC: context-aware role-based access control on Android J. Abdella, M. Özuysal and E. Tomur

11. CONCLUSION

In this paper, we proposed a new access control model for
APS to protect user’s privacy. Our model allows dynamic
permission granting and revoking based on predefined con-
texts. Our system is a variety of CA-RBAC designed in
such a way that roles, which will consist of a set of
Android permissions, are assigned to applications and con-
texts are associated with permissions. This is different from
existing CA-RBAC models that associate contexts with
roles in contrary to our system that associates contexts
with permissions. We believe that our proposed system
can provide better privacy without significant effect on
the usability of the permission system. Our system can
also provide dynamic and fine-grained permission system
for Android versions earlier than Android version 6. We
designed a novel architecture for our proposed system.
We also developed and implemented a prototype applica-
tion called CA-ARBAC. We made various tests using our
prototype application and obtained expected results.

Acknowledgement

Juhar Abdella has been supported by a YTB scholarship
during his thesis studies.

REFERENCES

1. IDC. Worldwide smartphone shipments edge past
300 million units in the second quarter; Android
and iOS devices account for 96% of the global
market August 2014. http://www.idc.com/getdoc.
jsp?containerid=prUS25037214 last accessed on
December 2015.

2. Mobile cyber threats. Technical Report, Kaspersky
Lab and INTERPOL Joint Report October 2014.
http://media.kaspersky.com/pdf/Kaspersky-Lab-KSN-
Report-mobile%2Dcyberthreats-web.pdf, last accessed
on December 2015.

3. Backes M, Gerling S, Hammer C, Maffei M, von Styp-
Rekowsky P. AppGuard—fine-grained policy enforce-
ment for untrusted Android applications. In Data
Privacy Management and Autonomous Spontaneous
Security, vol. 8247, Garcia-Alfaro J, Lioudakis G,
Cuppens-Boulahia N, Foley S, Fitzgerald WM (eds),
Lecture Notes in Computer Science. Springer Berlin
Heidelberg: Woburn, MA, 2014; 213–231.

4. Nauman M, Khan S, Zhang X. Apex: extending
Android permission model and enforcement with user-
defined runtime constraints. Proceedings of the 5th
ACM Symposium on Information, Computer and Com-
munications Security, ASIACCS ’10,ACM, New York,
NY, USA, 2010; 328–332.

5. Cappos J, Wang L, Weiss R, Yang Y, Zhuang Y.
BlurSense: dynamic fine-grained access control for
smartphone privacy. Sensors Applications Symposium
(SAS), 2014 IEEE, Queenstown, 2014; 329–332.

6. Stelly CD. Dynamic user defined permissions for
Android devices. Master’s Thesis, Dept. of Computer
Science, University of New Orleans, LA, USA, 2013.

7. Bugiel S, Heuser S, Sadeghi AR. Flexible and fine-
grained mandatory access control on Android for
diverse security and privacy policies. Presented as part
of the 22nd USENIX Security Symposium (USENIX
Security 13), USENIX, Washington, D.C., 2013;
131–146.

8. Zhou Y, Zhang X, Jiang X, Freeh VW. Tam-
ing information-stealing smartphone applications (on
Android). Proceedings of the 4th International
Conference on Trust and Trustworthy Comput-
ing, TRUST’11, Springer-Verlag, Berlin, Heidelberg,
2011; 93–107.

9. Beresford AR, Rice A, Skehin N, Sohan R. Mock-
Droid: trading privacy for application functionality
on smartphones. Proceedings of the 12th Workshop
on Mobile Computing Systems and Applications, Hot-
Mobile ’11, ACM, New York, NY, USA, 2011;
49–54.

10. Jeon J, Micinski KK, Vaughan JA, Fogel A, Reddy N,
Foster JS, Millstein T. Dr. Android and Mr. Hide: fine-
grained permissions in Android applications. Proceed-
ings of the Second ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, ACM,
New York, NY, USA, 2012; 3–14.

11. Shebaro B, Oluwatimi O, Bertino E. Context-based
access control systems for mobile devices. IEEE
Transactions on Dependable and Secure Computing
2015; 12(2): 150–163.

12. Bai G, Gu L, Feng T, Guo Y, Chen X. Context-aware
usage control for Android. In Security and Privacy in
Communication Networks, Lecture Notes of the Insti-
tute for Computer Sciences, Social Informatics and
Telecommunications Engineering, Vol. 50, Jajodia
S, Zhou J (eds). Springer Berlin Heidelberg: Berlin,
Heidelberg, 2010; 326–343.

13. Conti M, Crispo B, Fernandes E, Zhauniarovich Y.
CRêPE: a system for enforcing fine-grained context-
related policies on Android. IEEE Transactions on
Information Forensics and Security 2012; 7 (5):
1426–1438.

14. Miettinen M, Heuser S, Kronz W, Sadeghi AR,
Asokan N. ConXsense: automated context classifica-
tion for context-aware access control. Proceedings of
the 9th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS ’14, ACM,
New York, NY, USA, 2014; 293–304.

5994 Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

http://www.idc.com/getdoc.jsp?containerid=prUS25037214
http://www.idc.com/getdoc.jsp?containerid=prUS25037214

J. Abdella, M. Özuysal and E. Tomur CA-ARBAC: context-aware role-based access control on Android

15. Felt AP, Ha E, Egelman S, Haney A, Chin E, Wagner
D. Android permissions: user attention, comprehen-
sion, and behavior. Proceedings of the Eighth Sym-
posium on Usable Privacy and Security, SOUPS ’12,
ACM, New York, NY, USA, 2012; 3:1–3:14.

16. Heuser S, Nadkarni A, Enck W, Sadeghi A R. ASM:
a programmable interface for extending Android secu-
rity. 23rd USENIX Security Symposium (USENIX
Security 14), USENIX Association, San Diego, CA,
2014; 1005–1019.

17. Guo T, Zhang P, Liang H, Shao S. Enforcing multiple
security policies for Android system. 2Nd Interna-
tional Symposium on Computer, Communication, Con-
trol and Automation, Atlantis Press, Singapore, 2013;
165–169.

18. Rohrer F, Zhang Y, Chitkushev L, Zlateva T.
DR BACA: dynamic role based access control for
Android. Proceedings of the 29th Annual Computer
Security Applications Conference, ACSAC ’13, ACM,
New York, NY, USA, 2013; 299–308.

19. Yee TTW, Thein N. Leveraging access control
mechanism of Android smartphone using context-
related role-based access control model. 2011 7th
International Conference on Networked Comput-
ing and Advanced Information Management (NCM),
Gyeongju, 2011; 54–61.

20. Choi J H, Jang H, Eom YI. CA-RBAC: context aware
RBAC scheme in ubiquitous computing environments.
Journal of information science and engineering 2010;
26(5): 1801–1816.

21. Jung K, Park S. Context-aware role based access
control using user relationship. International Journal
of Computer Theory and Engineering 2013; 5 (3):
533–537.

22. Rohrer F, Zhang Y, Chitkushev L, Zlateva T. Role
based access control for Android (RBACA). Technical

Report, Boston University, MA, USA, 2012. http://
www.acsac.org/2012/program/posters/poster09.pdf
Access Date: 11.12.2015.

23. Backes M, Bugiel S, Gerling S, von Styp-Rekowsky
P. Android security framework: enabling generic and
extensible access control on Android, 2014. arXiv
preprint arXiv:1404.1395.

24. Varga J, Muska P. Presenting risks introduced by
Android application permissions in a user-friendly
way. Tatra Mountains Mathematical Publications
2014; 60(1): 85–100.

25. Mylonas A, Theoharidou M, Gritzalis D. Assessing
privacy risks in Android: a user-centric approach.
In Risk Assessment and Risk-Driven Testing, Lecture
Notes in Computer Science, Vol. 8418, Bauer T,
Großmann J, Seehusen F, Stølen K (eds). Springer
International Publishing: Berlin, Heidelberg, 2014;
21–37.

26. Qadir MZ, Jilani AN, Sheikh HU. Automatic feature
extraction, categorization and detection of malicious
code in Android applications. International Journal of
Information and Network Security (IJINS) 2014; 3(1):
12–17.

27. Zhou Y, Jiang X. Dissecting Android malware: char-
acterization and evolution. Proceedings of the 2012
IEEE Symposium on Security and Privacy, SP ’12,
IEEE Computer Society, Washington, DC, USA, 2012;
95–109.

28. Barrera D, Kayacik HG, van Oorschot PC, Somayaji
A. A Methodology for empirical analysis of
permission-based security models and its application
to Android. Proceedings of the 17th ACM Conference
on Computer and Communications Security, CCS ’10,
ACM, New York, NY, USA, 2010; 73–84.

Security Comm. Networks 2016; 9:5977–5995 © 2017 John Wiley & Sons, Ltd. 5995
DOI: 10.1002/sec

http://www.acsac.org/2012/program/posters/poster09.pdf
http://www.acsac.org/2012/program/posters/poster09.pdf

	CA-ARBAC: privacy preserving using context-aware role-based access control on Android permission system
	Introduction
	Related Work
	Android Security Overview
	Context-aware Android Role-based Access Control Access Control Model
	Application assignment
	Static permission assignment
	Dynamic permission assignment in the presence of context

	Context-aware Android Role-based Access Control Architecture
	Android security modules
	Architecture overview
	Working principle of context-aware Android role-based access control
	Integrating context-aware Android role-based access control to different kinds of Android devices and versions
	Context-aware Android role-based access control on other mobile platforms

	Implementation
	Android security modules simulator
	Context-aware Android role-based access control implementation

	Example Use Cases
	Creating roles
	Associating contexts
	Assigning roles to applications and making experimental tests

	Formal Verification
	Performance Tests
	Future Works
	Conclusion

