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ABSTRACT 
 

MOLECULAR CLONING, OVEREXPRESSION AND BIOCHEMICAL 

CHARACTERIZATION OF BACTERIAL AMYLASE FOR 

BIOTECHNOLOGICAL PROCESSES 

 
Amylases are the enzymes that act on glycosidic bond of starch and related 

polysaccarides. They comprise 25% of enzyme utilised in a variety of industry. It is 

used to obtain maltose, glucose and maltodextrins in various lenghts during industrial 

processes. Amylases are widely distributed enzymes in bacteria, fungi, higher plants 

and animals. Thermophilic enzymes are widely demanded in order to be stable at harsh 

process conditions. Isolating these enzymes from thermophilic microorganism is 

increasing trend because of ease of enzyme production. 

In this study α-amylase gene region from a thermophilic Bacillus sp. isolated 

from Balçova Geotermal region in İzmir was cloned to compotent E. coli BL 21 cells. 

Additionally protein expression was reinforced with pKJE7 chaperone plasmid. Cloned 

gene was sequenced and found as 1542 bp in length. Thermophilic amylase that has a 

59.9 kD molecular weight was expressed and purified from this recombinant strain. 

Mass spectrometric analysis were performed and the enzyme was matched with α-

amylase family protein of Geobacillus thermodenitrificans NG80-2 using NCBInr 

database. The aminoacid sequence of this enzyme was seen to be similar 92% with our 

obtained enzyme. 

According to the results of characterization studies, the amylase enzyme was 

seen to have highest activity at pH 8.0 and 60°C. The enzyme was also showed to have 

resonable activity between pH5 and 9. 85% of the enzyme activity was retained at 70°C. 

Furthermore, amylase activities at 65 and 85°C were observed to remain stable for 5 and 

2 hours, respectively. It was also showed that the activity was stable and pH7 and 9 for 

6 hours. The effects of some metal ions, chemical agents and organic solvents on 

enzyme activity were examined so, Co
+2

, Mg
+2

,Ca
+2

 was determined to be as inducer for 

the enzyme activity. Conversely the activity was inhibited by Cu
+2

. Furthermore 

methanol, DDT and Triton X-100 was found to have no effect on the enzyme activity. 
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ÖZET 

 
BİYOTEKNOLOJİK UYGULAMALARDA KULLANILMAK ÜZERE 

BAKTERİYEL AMİLAZIN KLONLANMASI, İFADELENMESİ VE 

BİYOKİMYASAL KARAKTERİZASYONU 
 

Amilazlar nişasta ve ilgili polisakkaritlerin glikozidik bağlarına etki eden enzimlerdir. 

Bunlar, çeşitli endüstrilerde kullanılan enzimlerin %25’ini oluştururlar. Endüstriyel 

işlemler esnasında maltoz, glikoz ve çeşitli uzunluklarda matodekstrinler elde etmek 

için kullanılırlar. Amilazlar bakteriler, mantarlar, yüksek bitkiler ve hayvanlarda geniş 

oranda bulunan enzimlerdir. Termofilik enzimler ağır işlem koşullarında kararlı 

oldukları için geniş oranda tercih edilirler. Termofilik mikroorganizmalardan bu 

enzimleri üretmek üretim kolaylıkları sebebiyle yükselen bir eğilim olmuştur. 

Bu çalışmada İzmir Balçova Jeotermal bölgesinden izole edilen termofilik 

Bacillus sp. suşundan α-amilaz gen bölgesi kompotent E. coli BL 21 hücrelerine 

klonlanmıştır. Ek olarak pKJE7 şaperon plazmiti ile protein ifadelenmesi 

güçlendirilmiştir. Klonlanan gen sekanslanmış ve uzunluğu 1542 bp olarak 

bulunmuştur. Bu rekombinant suştan 59.9 kD moleküler ağırlığına sasip termofilik 

amilaz üretilmiş ve saflaştırılmıştır. Kütle spektoskobi analizi yapılmış ve enzim 

NCBInr veritabanı kullanılarak Geobacillus thermodenitrificans NG80-2 α-amylase 

family protein ile eşleştirilmiştir.  Bu enzimin aminoasit sekansı bizim elde ettiğimiz 

enzimle %92 benzer olduğu görülmüştür. 

Karakterizasyon çalışmalarının sonuçlarına göre, amilaz enziminin en yüksek 

aktiviteyi pH 8.0 ve 60°C’de gösterdiği görülmüştür. Ayrıca enzimin pH5 ve 9’da kabul 

edilebilir bir aktiviteye sahip olduğu gösterilmiştir. 70°C’de enzim aktivitesinin %85’ini 

geri kazanmıştır. Dahası, 65 ve 85°C’deki enzim aktivitesinin sırasıyla 5 ve 2 saat 

kararlı kaldığı gözlenmiştir. pH7 ve 9’da da aktivitenin 6 saat kararlı olduğu 

gösterilmiştir. Bazı metal iyonları, kimyasal ajanlar ve organik solventlerin enzim 

aktivitesine etkileri incelenmiş ve Co
+2

, Mg
+2

,Ca
+2

 iyonlarının enzim aktivitesi için 

indükleyici olduğu saptanmıştır. Diger taraftan aktivite Cu
+2 

tarafından inhibe edilmiştir. 

Ayrıca methanol, DDT and Triton X-100’ün enzim aktivitesi üzerine bir etkisi olmadığı 

bulunmuştur. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1. Extremophiles and Extemozymes 

 

Extremophiles are microorganisms that can live and reproduce in harsh 

environments. They live in hot springs, volcanic areas, deep sea, in the Antarctic 

biotopes and in other particular geothermal sites (Schiraldi and De Rosa 2002). 

Extremophilic microorganisms can be thermophilic, psychrophilic, alkaliphilic and 

halophilic.  

Enzymes from these microorganisms are called extremozymes and they are also 

resistant to extreme conditions. For example; Moderately halophilic bacteria are able to 

grow over a wide range of saline concentrations from 0.4 to 3.5 M (Patel et al. 2005; 

Chakraborty et al. 2010). Halophilic enzymes from these microorganisms with polymer-

degrading ability at low water activity are utilized in many harsh industrial processes 

where concentrated salt solutions would inhibit enzymatic conversions (Chakraborty et 

al. 2010). Additional major examples for applications of extremozymes that have 

reached the market are; Taq polymerase, from Thermus aquaticus and cellulase 103 

from alkaliphiles. Becoming the key element of the polymerase chain reaction, Taq 

polymerase provided a new perspective in molecular biology and encouraged the 

research activities on DNA-polymerases from hyperthermophiles. Cellulase 103 was 

isolated from bacteria living in soda lakes. It is used to break down the microscopic fuzz 

of cellulose fibers that traps the dirts on the surface of cotton textile, without harming 

the natural fabric. This biocatalyst started to be used in 1997 by Genencor International 

(Rochester, NY, USA) as a novel detergent agent.  It helps to keep cotton fabric looking 

‘as new’ even after thousands of washing cycles (Pennisi 1997; Schiraldi and De Rosa 

2002). 

 In this concept all over the globe researchers are now trying to search out 

extremophiles which are valuable source of novel enzymes (Chakraborty et al. 2010). 

Several enzymes and biomolecules isolated from extremophiles and their applications 

were listed Table 1.1. 
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Table 1.1. Major examples of enzymes and biomolecules from extremophiles                                                                        

and their foreseen applications (Source: Schiraldi and De Rosa 2002) 

 

 

 

1.2. Thermophiles 

 

Bacteria are classified into the following four groups depending on their optimal 

growth temperature: psychrophiles (5 to 20 °C), mesophiles (15-45°C), thermophiles 

(45–80°C) (Li, Zhou, Lu 2005). Further classification for the thermophilic organisms 

was made by Baker et al. (2001). Thermophilic organisms was divided into three groups 

according to their minimal and maximal growth temperatures: moderate thermophiles 

(35-70ºC), extreme thermophiles (55-85ºC) and hyperthermophiles (75-113ºC). 

A reverse DNA gyrase produces positive super coils in the DNA of thermophiles 

(Lopez 1999; Haki and Rakshit 2003). This causes elevated melting point of the DNA 

as high as the organisms maximum temperature for growth. Thermophiles also tolerate 

high temperature by using increased interactions; electrostatic, disulphide bridge and 

hydrophobic interactions (Kumar and Nussinov 2001; Haki and Rakshit 2003). 

 Thermophilic organisms have thermostable cellular components such as 

enzymes, proteins and nucleic acids. They are also known to withstand denaturants of 

extremly acidic and alkaline conditions. Thermostable enzymes are being studied as 
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more useful alternatives to mesophilic enzymes already in place in some industrial 

processes because they are highly specific (Giver et al. 1998; Kumar 2002).  

Such enzymes maximizing reactions accomplished in the food and paper 

industry, detergents, drugs, toxic wastes removal and drilling for oil is being studied 

extensively (Haki and Rakshit 2003). Various thermostable enzymes have been purified 

from thermophilic bacteria; some are alkaline protease, endo-1,5-alpha-L-arabinase, and 

pectate lyase. Commercial products such as laundry detergents needs thermostable 

lipase and esterase usage. Alternatively, thermostable proteins are being studied in the 

hope that their adaptive mechanisms may yield methods to stabilize other less stable 

proteins (Giver et al. 1998; DeFlaun et al. 2007). 

 Because of a good area of usage in industry and research isolation and 

characterization of new thermophilic bacterial strains is one of the goals of the 

investigation all over the world. 

 

1.3. Thermoplilic Bacillus 

 

Geobacillus is a recently created genus (Nazina et al. 2001) that contains a 

number of highly thermophilic spore-forming bacilli, together with newly described 

species. Though many of the Geobacillus have been isolated from hot environments 

such as geothermal features and deep oil reservoirs, it has recently been shown 

(Marchant et al. 2002a, b; Pavlostathis et al. 2006) that they are almost abundant in cool 

environments. They also occur in great diversity and may since form an important part 

of the soil microflora (Rahman et al. 2004). Several Geobacillus species show a 

significant capacity to degrade hydrocarbons and recent studies have been focused on 

phenol degradation by Geobacillus thermoleovorans (Feitkenhauer et al. 2001; 2003; 

Pavlostathis et al. 2006). Metabolic capabilities of geobacilli suggest that they may have 

significant biotechnological applications in industrial and also environmental fields 

(Uma Maheswar Rao and Satyanarayana 2004; Pavlostathis et al. 2006).  

The taxonomy of the genus Bacillus showed that thermophilic species were 

members of Bacillus rRNA Group 5 (Ash et al. 1991; Rainey et al.1994; Romano et al. 

2005). Accordingly to the level of DNA-DNA reassociation values Bacillus 

thermoleovorans, Bacillus kaustophilus and Bacillus thermocatenulatus should be 
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combined into one species, namely  Geobacillus thermoleovorans which also included  

Bacillus caldolyticus, Bacillus caldovelox and Bacillus caldotenax (Nazina et al., 2001; 

Sunna et al. 1997; Romano et al. 2005). 

 

1.4.  Thermophilic Enzymes  

 

Enzymes produced by thermophilic and hyperthermophilic organisms known as 

thermozymes (or thermoenzymes) are also thermophilic and thermostable. They are 

resistant to irreversible inactivation at high temperatures and optimally active at high 

temperatures, between 60°C and 125°C (Vieil le et al. 1996).  

 Thermostable enzymes have received attention due to their potential commercial 

applications because of their overall inherent stability and high reaction rates at high 

temperatures. From different exotic ecological zones of the planet earth several 

thermophilic microorganisms have been isolated in order to be used for such 

applications. Applications and bioconversion reactions of some are mentioned in Table 

1.2. Thermozymes possess major biotechnological advantages distinct from mesophilic 

enzymes as follows:  

 They are easier to purify by heat treatment. 

 They have a higher resistance to chemical denaturants such as solvents 

and guanidinium hydrochloride. 

 They can withstand higher substrate concentrations.  

Because of their stability at elevated temperature, thermozyme reactions are less 

susceptible to microbial contamination and often display higher reaction rates than 

mesozyme catalyzed reactions. Additionally thermozymes can be seen as models for 

understanding thermostability. Therefore the structural features of thermozymes must be 

identified to contruct a theoretical description of the physico-chemical principles 

contributing to prote in stability and folding. Morover, this information also helps 

designing more stable enzymes for industrial processes (Li et al. 2005). 

Thermophilic enzymes in polysaccharides processing have major benefits. In 

addition to the reduced contamination, they lower the inlet stream viscosity and they 

can hold a constant pH during the whole biotransformation, so salt addition necessary in 

modern processes can be avoided. Actually, several research groups have focused on the 
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search and characterization of this type of biocatalyst. Polymer degrading enzymes, 

such as amylases, pullulanases, xylanases, proteases and cellulases, have a crucial role 

in food, chemical and pharmaceutical, paper, pulp and waste-treatment industries 

(Schiraldi and De Rosa 2002). 

 

Table 1.2. Bioconversion reactions and applications of thermostable enzymes  

(Source: Haki and Rakshit 2003) 

 

 

 
1.5.  Amylase  
 

Starch is one of the most existing polysaccharides composed of D-glucose 

molecules in nature. It has a heterogenous structure including two high molecular-

weight compounds: amylose (15–25%) and amylopectin (75–85%).  

 Amylose is a linear molecule composed of 100-700 glucose residues linked with 

α-1,4 bonds in every 4 glucose unit. It is insoluble in cold water. 
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Figure 1.1. Molecular structure of amylose molecule  

 (Source:Voet and Voet 1995) 

 
 Amylopectin is a branched polymer that has α-1,4–linked glucose units which 

are branched at every 17–26 residues with α-1,6 linkages (Bertolod and Antranikian 

2002).  

 

Figure1.2. Brached structure of amylopectin molecule  

(Source:Voet and Voet 1995) 

 
A wide variety of organisms secrete amylolytic enzymes to degrade and utilize 

starch molecule  as energy source. Amylolytic enzymes belong mainly to three families 

of glycoside hydrolases (GHs) : 

GH13 – the α-amylase family  

GH14 – β-amylases 

GH15– glucoamylases  (Rashid et al. 2009) 

The amylase superfamily can be divided into two groups; 

 Endoamylases (α-amylase); Endoamylases cleavage α-1,4 glycosidic bonds 

which present in the inner part of amylose or amylopectin chains and generate 

oligosaccharides of various lengths. Endoamylases have been found in phyla from 

Archaea to Mammalia (Frøystad et al. 2006; Chai et al. 2012). 
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 Exoamylases (β-amylase, α-amyloglucosidase); Exoamylases cleavage 

glycosidic bonds exist in the non-reducing ends of polysaccharides and produce low 

molecular weight products such as glucose and maltose (Chai et al. 2012). 

 

 β-amylases (alfa-1,4 glucan maltohidrolase, EC3.2.1.2) act on α-1,4 glycosidic 

bonds at the nonreducing end of molecule. Thus the reaction stops at α-1,6 

glycosidic bond, β-maltose and limit dextrins are formed. 

 Amyloglucosidases (glucoamylase, α-1,4-glucanohydrolase EC3.2.1.3) produces 

only glucose acting on both α-1,6 glucosidic bond and α-1,4 glycosidic bonds at 

the nonreducing end of amylopectin molecule (Pazur and Kleppe 1962). 

 

 

 

Figure 1.3. Hydrolytic mechanisms of amylases  

(Source: snnu 2011 ) 

 

Starch-processing industries demands for mainly amylases. Endoamylases first 

provide starch degradation (liquefaction process) with producing maltodextrins, and 

followingly exoamylases achieve further degradation of maltodextrins into glucose and 

maltose (saccharification process) (Chai et al. 2012). Hydrolytic mechanisms of 

amylases are summarized in Figure 1.3. 

 

http://fch.snnu.edu.cn/
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1.5.1. α- Amylase 

 

 α-Amylases (α-1,4-glucan-4-glucanohydrolases, EC 3.2.1.1)  are enzymes that 

catalyze the hydrolysis of amylose and amylopectin in starch and related poly- and 

oligosaccharides by the breaking down α-(1,4) glycosidic linkages (Titarenko and 

Chrispeels 2000). End product may be maltose, glucose and maltodextrins in various 

lenght. These amylases are widely distributed enzymes in bacteria, fungi, higher plants 

and animals (Janecek 1997; Rashid et al. 2009). 

 

                                 

Figure 1.4. Crystal structure of human salivary α-amylase                                                     

(Source: Davidson 2011) 

 

Thermophilic and thermostable α-amylases are needed in industry because the 

enzyme must be active at the high temperature of gelatinization (100–110
 ◦

C) and 

liquefaction (80–90°C). Thermophilic amylases also reduce cooling cost, provide better 

solubility of substrate resulting in lower viscosity which increases the mixing, pumping 

process and decreases the microbial contamination risk (Pancha  et al. 2010). 

 Owing to the maltose has diverse applications in e.g., food, pharmaceutical, 

biomedical field, and fine chemicals, α- amylases that produce high levels of maltose 

would rather prefered (Chai et al. 2012). Besides this, fungal α -amylases produce more 

maltodextrins and reported as more efficient in saccharifying (Brena et al. 1996;  

Aquino et al. 2003). 

Halofilic and alkalitolerant α-amylases has gained great attention. Common 

amylases are easily denaturated by high salt concentrations and certain organic solvents 

so halophilic ones are tolerant of these. Thermostable and alkalitolerant amylases are 

also desirable in the starch and textile industries and in detergent production (Shafiei et 

al. 2011; Chai et al. 2012). 

http://www.bio.davidson.edu/
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1.5.2. Microbial Amylase 

 

Because of they are more stable than plant and animal derivatives and can be 

obtained cheaply, microbial α-amylases have a broad spectrum of industrial applications 

(Grupta et al. 2003; Tanyıldızı et al. 2004). The economical bulk production capacity 

and easy manipulation to obtain desired characteristics in enzymes are major advantages 

of using microorganisms for the production of amylases (Chakraborty et al. 2010). 

 Thermophilic archaea and bacteria have been acknowledged as a very good 

source of starch hydrolyzing enzymes. There are many efforts to find the archaeal or 

bacterial microorganisms can produce mutually compatible amylolytic enzymes that 

would provide the reduction of starch degradation process to a single step (Horvathov et 

al. 2006). 

 Species of genus Bacillus are widely used for α-amylase production among 

bacteria. Bacillus subtilis, Bacillus stearothermophilus, Bacillus licheniformis and 

Bacillus amyloliquefaciens are reported to be good sources of α-amylase and for various 

industrial applications they have been used for commercial production of the enzyme 

(Rashid et al. 2009). Different Bacillus species produce various types of α-amylases for 

saccharifying or liquefying that are optimally active at different pH and temperature 

range (Cordeiro et al. 2002). 

 Specific maltooligosaccharides, mainly maltotetraose, maltoheptaose and 

maltohexaose has recently received considerable interest due to their potential use in 

food, pharmaceutical and fine chemical industries. Many bacterial strains have been 

described  secreting amylases able to produce these specific products. B. circulans, 

B.amyloliquefaciens, B. cadovelox, Bacillus sp. H-167 and a mutant of B. 

stearothermophilus produce maltohexaose-forming amylase; B. cereus NY-14 produce 

the maltopentaose-forming amylase and Pseudomonas sp. IMD 353 produce the 

maltotetraose-forming amylase. However, all these amylases are reported not to be 

sufficient thermoactive because the optimal activity is between 55°C and 70°C (Ben Ali 

et al. 1999). Some sources of amylolytic enzymes and their properties were listed in 

Table 1.3. 
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Table 1.3. Source microorganisms and properties of thermostable starch hydrolyzing  

      enzymes ( Source: Haki and Rakshit 2003) 

 

 

 

 

1.5.3. Industrial Applications of Amylase 

 

 The usage of enzymes in the industrial production has began when Dr. Jhokichi 

Takamine produce digestive enzyme from wheat bran koji culture of Aspergillus oryzae 

in 1894. Then α-amylase and glucoamylase were first utilized in industry for the 

production of dextrose powder and dextrose crystals from starch in 1959 (V. Aiyer. 

2005). Today amylase is used in extensive biotechnological applications in many 

industrial processes such as sugar, textile, paper, brewing, baking and distilling 

industries. The demand for amylase is increasing day by day because of its industrial 

applications (Chakraborty et al. 2010).  

 Some of the industrial applications can be mentioned as follows: 

 Paper industry: With the aim of protecting paper against mechanical damage 

during processing, the sizing of paper with starch is performed. Sizing improves the 
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quality of the finished paper, enhances the stiffness and strengthen in paper also 

improves the erasibilty. The temperature of sizing process generally in the range of 45-

60°C. Because of the viscosity of natural starch is too high for paper sizing it is adjusted 

by partially degrading the polymer with α-amylases in a batch or continuous processes 

(Gupta et al. 2003). 

 Bread and baking industry: Baking industry has used enzymes for hundreds of 

years to be able to manufacture a wide variety of high quality products. Malt and 

microbial α-amylases have been widely used in the baking industry for decades (Si 

1999,  Pintauro 1979;  Gupta et al. 2003). The enzymes were used to give the products a 

higher volume, better colour and a softer crumb. Malt preparation opened the 

opportunities for many enzymes to be used commercially in baking. Today, so many 

enzymes like proteases, lipases, xylanases, pullulanases, pentosanases, cellullases, 

glucose oxidases, lipoxygenases etc. are being used in the bread industry for various 

purposes (Kulp 1993; Pintauro 1979; Monfort et al. 1996; Prieto et al. 1995; Gupta et al. 

2003), but none of them had been able to replace α-amylases. α-Amylase provides 

improvement in the volume and texture of the product by enhancing the rate of 

fermentation and reducing the viscosity of dough. It also generates additional sugar in 

the dough that improves the taste, crust colour and toasting qualities of the bread (Van 

Dam and Hille 1992; Gupta et al. 2003). α-Amylase is also being used as antisalling 

agent. 

 Liquefaction: Liquefaction process includes the dispersion of insoluble starch 

granules in aqueous solution followed by partial hydrolysis with thermostable amylases.  

In industrial processes,  the viscosity of starch suspension for liquefaction is of 

extremely high following gelatinization.  Thermostable α-amylas is used for reducing 

the viscosity as a thinning agent and for partial hydrolysis of starch.  If the liquefaction 

process does not implemented well,  some problems like poor filtration and turbidity of 

the processed solution occurs. In ideal liquefaction of starch is that the starch slurry 

which contains suitable amount of  α-amylase must be treated at 105 -107°C as quickly 

and uniformly as possible (Hattori 1984; Aiyer 2005). 

 Manufacture of oligosaccharide mixture: Maltooligomer mix is a novel 

commercial product. Its composed of usually glucose, 2.2%; maltose, 37.5%;  

maltotriose, 46.4%; and maltotetraose and larger maltooligosaccharides, 14%. It is 

mainly used instead of sucrose and other saccharides. It is also prevents crystallization 
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of sucrose in foods and keep a certain level of hardness of the  texture during storage 

(Aiyer 2005). 

 Manufacture of maltotetraose syrup: Freezing points of frozen foods can be 

controled by Maltotetraose syrup (G4 syrup) addition. Thermostable α-amylase of 

B.licheniformis or B.subtilis is used to make commertial G4 syrups (Aiyer 2005). 

 Textile desizing: Considerable strain on the warp during weaving exist in 

modern processes for textiles. Therefore the yarn must be protected from breaking. Thus 

a removable protective layer is applied to the threads. Because starch is cheap, easily 

available in most regions of the world and can be removed quite easily it is a very 

attractive size agent. After production process starch is desized from textiles by the 

application of α-amylases. The enzyme selectively remove the size not to attack the 

fibres and randomly cleaves the starch into dextrins soluble in water then can be 

removed by washing (Gupta el al. 2003). 

 Detergent applications: Early automatic dishwashing detergents were very 

harsh, caused injury when ingested. Thus detergent industries started to search for 

milder and more efficient solutions (Van 1992; Gupta et al. 2003) like enzymes. They 

also lower washing temperatures. α–Amylase is included in 90% of all liquid detergents 

today (Kottwitz 1994; Gupta et al. 2003) and now for automatic dishwashing detergents 

the demand for it is increasing. Sensitivity to calcium and some oxidants comprise 

limitations of most wild-type α-amylases in detergents. As achieved in protease stability 

against oxidants in household detergents was accomplished by utilising successful 

strategies (Gupta et al. 2003). 

 Additionally amylase is beeing used in direct fermentation of starch to ethanol 

and in treatment of starch processing of waste water (SPW) (Aiyer 2005). 

 

1.6. Production of Enzymes by Recombinant DNA Technologies 

 

 To obtain high level of expression both for fundamental studies and commercial 

purposes foreign proteins are expressed in prokaryotic systems mostly. In the aim of 

achieving maximal expression convenient expression vector and host must be used. 

Bacterial expression might have problems like proteolytic degradation and the 

production of proteins that accumulate in misfolded forms (Abdel-Fattah and Gaballa 

2006). 



13 

 

 According to the objectives of expression the expression system should be 

choosen. As its vectors are well characterized E. coli expression is highly recommended 

to obtain quickly a sufficient amount of a recombinant enzyme for basic 

characterization. Furthermore E. coli has a specific growth rate five- to ten-fold higher 

than most of the extremophilic organisms. So it is easily cultivated in the laboratory, 

yields enough biomass and product even in simple shake flask growth. On the other 

hand expression in yeasts has noticeable advantages for large-scale industrial 

production. As yeast is a generally recognized as safe (GRAS) organism, it represents 

an ideal pilot system for the production of enzymes to be applied in food and feed 

manufacturing. Though stronger resistance of the yeast membrane respect to the 

bacterial membrane, cytosolic products can not be easily recovered ( Schiraldi and De 

Rosa 2002). 

 One strain can produce different amylases with different specificities or amount 

of amylase production may be very low. As the screening for a single amylase is 

difficult, cloning of amylase gene is performed. With the cloning of one gene directing 

synthesis of desired amylase, a good characterisation and a significant yield can be 

achieved in host like E. coli and B. substilis (Özcan, Altınalan and Ekinci 2001). 

To overcome misfolding of recombinant proteins coexpression can be performed 

with chaperone plasmids. Molecular chaperone is unstable conformer of another 

protein. It regulates folding, oligomeric assembly, interaction of target protein with 

other cellular components, switching between active and inactive conformations, 

intracellular transport, or proteolytic degradation, either singly or with the help of co-

factors (Agashe and Hartl 2000; Bhutani and Udgaonkar 2002). 
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

2.1. Materials  

 

Preparation of buffers, reagents, solutions and the standart curves are given in 

Appendix A and Appendix B  

 

2.2. Bacterial Strain, Growth Conditions and Amylase Activity Test 

 

Bacterial strain used in this study was isolated  from Baçova Geothermal Region 

in İzmir and determined as Gram (+) Geobacillus sp. in a previous study (Yavuz et al. 

2004). Optimum growth conditions were determined for the strain and the strain was 

cultivated in Luria Bertani broth at 55°C and 200 rpm for 22 hours. 

 

2.2.1. Starch-Iodine Test 

 

 The strain number 33 was chosen to perform the study and amylase activity was 

secreened according to starch iodine test (Bragger et al. 1989). Isolate was first spreaded 

on starch agar plate and incubated for 16 hours at 55°C. Then the plate was dyed with 

iodine solution. 

 

2.3. Genomic DNA Isolation 

 

The strain number 33 was cultivated in 5ml LB medium at 55ºC and 200 rpm for 

22 hours. The culture was centrifugated at 13000 rpm for one minute then the pellet was 

used to prepare cell lysate. Genomic DNA was isolated with Invitrogen PureLink 

Genomic DNA mini kit according to the instructions of user manuel. 
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2.4. Construction of Primers  

 

To constract primers for amplifing the genomic DNA, α-amylase gene region of 

Geobacillus thermoleovorans subsp. stromboliensis strain P220 (GenBank A.C 

HM034453.1) was taken as referans. Restriction sites of NdeI and Hind III enzymes 

were placed to the end of both primers. 

Seguences of primers; 

Amf F :  CATATGGAAATGGGGAACCGGCTCTTTATG 

Amy R :  AAGCTTTTATTCATTGATCCGTTTTGCCCG 

 

2.5. Amplification of Genomic DNA - PCR Conditions 

 

PCR mixture was prepared on ice as written below. 

 

dH2O     14 µl 

MgCl2      2  µl    

dNTP mix (2mmol)   2.5 µl  

Taq polimerase buffer  2.5 µl 

Primer F    0.5 µl 

Primer R    0.5 µl 

DNA template  (genomic DNA) 2.5 µl  

Taq polimerase   0.5 µl   

 

The PCR was performed for 30 cycle with the following conditions; 

 

Initial denaturation  94 ºC 

Denaturation   94 ºC 

Annealing temperature 56 ºC 

Extention   72 ºC 

Final extention  72 ºC 

Then the product was run on 1% agarose gel in order to be visualized. 
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2.6. Agarose Gel Electrophoresis 

 

0.5 g of agarose was dissolved in 50ml TAE buffer and boiled in microwave 

oven. After it was cooled under tap water, 0.5µl of EtBr (10.0 mg/ml) was added. The 

solution was poured into electorphoresis gel aparatus. Then a comb useful to form 

sample wells was placed. The gel was waited to cool to room temperature for 30 

minute. Then the comb was removed and TAE buffer was poured on gel to cover. 5µl of 

each samples were loaded into the wells after they were mixed with 1µl of 6x loading 

dye. The gel was run with 100V and 80mA electrical field for 45 minutes. Finally, it 

was visualized under the UV light. 

 

2.7. Extraction of PCR Product from Agarose Gel 

 

Agorose gel pieces including the amplified gene region was cut with a surgical 

blade and put in a vial. It was extracted and purified with the Fermentas K0513 DNA 

Extraction kit.  The quantity of purified DNA was calculated measuring the absorbance 

at 260nm with Nanodrop ND1000 instrument. 

 

2.8. Cloning of Amylase Coding Gene Region  

 

Purified PCR product was subcloned to T/A cloning vector, PTZ57RT, with 

Fermentas InsTA clone PCR cloning kit K1214.  

 

2.8.1. Ligation 

 

The reaction was set in way the optimal insert/vector ratio was 10:1. The insert 

volume was calculated from the equation: 

ng of insert = [ng of vector x size of insert (bp) ∕  size of vector(bp)] x vector/insert  

20 µl reaction mixture contained 2.0 µl 10X Ligation Buffer,  4µl T4 DNA 

Ligase, 1 µl Vector pTZ57R/T, (0.17 pmol ends), 12 µl PCR product (20.8 ng/ µl) , 1 µl 

ultra pure water. The mixture was incubated at room temperature overnight. 
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2.8.2. Compotent Cell Preperation (for E. coli DH5α and BL21 Cells) 

 

 Firstly, bacterial cell was inoculated on LB agar plate and incubated at 37ºC 

overnight. Single colony was selected from plate then it was inoculated into a 5.0 ml of 

LB liquid media with aditional incubation at 37˚C and 180 rpm overnight. After the 

incubation, bacterial culture was transfered into 200 ml of SOB media and incubated at 

100 rpm for 2 hours at 10˚C and 37˚C and for 16 hours at 10˚C. The culture was divided 

into four equal volume and incubated on ice for 10 minutes. After that they were 

centrifugated at 4˚C and 4000 rpm for 10 minutes. Supernatants were removed and 

pellets were resuspended with 5.0 ml of ice-cold TB medium and the samples were hold 

on ice for 10 minutes. They were centrifuged at 4˚C and 4000 rpm for 10 minutes. After 

the supernanats were poured off, the pellets were resuspended gently on ice with TB 

solution. 1.0 ml of TB solution was added for 1.0 ml of pellet. Then filtered (0.2 μm 

filter) DMSO was added by 7.0% of TB solution. Next, the samples were aliquoted in a 

volume of 100μl into previously cooled eppendorfs. In the final step, eppendorfs were 

immersed into the liquid nitrogen immediately and stored at -80˚C. 

 

2.8.3. Transformation of Cloning Vector to Compotent E. coli    

 DH5α Host Cells 

 

  5 µl of ligation mixture was mixed with 50 µl of compotent cell DH5α (stored at 

- 80
o
C and thawed on ice before use). After incubating on ice for 10 minute, the mixture 

was put in 42°C waterbath. Then it was incubated for 2 minutes on ice again. 400 µl 

SOC media was added and cells were incubated at 37°C for 1.5 hours. Finally they were 

spreaded on LB-ampicilin (100mg/ml) agar plate. Mixture of 40.0 μl of X-gal (20.0 

mg/ml), 40.0 μl of IPTG (Isopropyl-β-D thiogalactopyranoside) (0.1 M) and 20.0 μl of 

dH2O were spreaded on the surface of LB-amp plate before use. After the inoculation of 

cells, the plates were incubated at 37ºC for 18-20 hours. 
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2.8.4. Plasmid Isolation 

 

PTZ57RT vector including insert was isolated to be used in the following step of 

the cloning to seguence the inserted gene. Single white colony from LB-amp plate was 

inoculated into 5 ml LB-amp medium and incubated at 37°C for 12-16 hours while 

shaking at 250 rpm. The bacterial culture was harvested by centrifugation at 13500 rpm 

for 1 minute. The supernatant was decanted and the pellet was used to isolate plasmid 

with the Fermantas Plasmid Mini Prep kit ♯ K0503.  Finally amount of isolated plasmid 

was determined with Nanodrop Spectroptotometer ND1000 at 260 nm. Then the whole 

seguence of isolated PTZ57RT plasmid was analysed by (16 and 80 capillary, Applied 

Biosystem, 3130XL) using M13 primers.  

 

2.8.5. Digestion of Plasmid 

 

With the aim of transfering the target gene to expression vector, ligated gene 

was excised from cloning vector. The cloning vector PTZ57R/T was digested with the 

NdeI and Hind III digestion enzymes. Double digestion was applied as in this 

procedure.  

 3,5 µl of plasmid (202,4ng/µl)  

 0,5µl of NdeI 

 1µl of 10x fast digest buffer 

 4,5µl of dH20            

 The mixture was incubated at 37°C for 1 hour. Then the enzyme activity was 

altered at 65°C for 5 minute. After that 0,5 µl of Hind III was added to the mixture and 

incubated 37°C for 1 hour. The mixture was run on 1% agarose gel and digestion was 

observed. Then insert was extracted from gel by using gel extraction procedure. pET 

28a(+) was also digested with the same enzymes. 
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2.8.6. Ligation of Insert to Epression Vector pET 28a(+) 

 

Due to pET 28a+ and insert were digested with the same enzymes they had sticky 

ends and gained affinity to each other. The ligation reaction conditions were designed 

according to 1/10 ratio of vector to insert as below; 

 5x ligation buffer     4µl 

 T4 ligase                   1µlI 

 Insert            9µl  (78ng/ul) 

 pET28a+           6µl  (36ng/ul) 

The mixture was incubated overnight at room temperature. 

 

2.8.7. Transformation to Compotent E. coli BL21 Cells 

 

To express the target gene, plasmid pET 28a(+) with insert was transformed to 

compotent E. coli BL21 cell line. 100µl of compotent cell was taken from -80°C and 

put on ice immediately. Just before it thawed, 5 µl of ligation mixture was added. It was 

incubated on ice for 30 minutes, in 42°C waterbath for 45 seconds and again on ice for 

2 minutes. 250 µl SOC medium (heated to 37°C before use) was added and it was 

incubated  at 37°C, shaking with 200rpm for 1 hour. Finally the mixture was spreaded 

on LB kanamycin(30µg/ml) agar plate and it was incubated at 37°C for 18 hours. The 

colonies formed after incubation were used for plasmid isolation and also protein 

expression. 

 

2.9. Protein Expression Procedure for E. coli BL21 Cells 

 

Single colony choosen from LB-kan agar plate was inoculated in 20 ml LB-kan 

media and incubated at 37°C and 225 rpm for 16 hours. It was tranfered into 400ml LB-

kan media and incubated until the optical density of 0,8 at 600nm. Then IPTG was 

added to the culture in a final concentration of 1mM. Additional 4 hour incubation was 

proceeded at the same conditions. 

 



20 

 

2.10. Coexpression with Chaperone Plasmids 

 

While the expressed protein could not be purified with nickel affinity 

chromotography, chaperone plasmids were used to repair improper folding of expressed 

protein. Chaperone plasmids were transfered to compotent E. coli BL21 cells including 

pET 28a(+) with the insert. Firstly E. coli BL21 cells including pET 28(a+) plasmid 

with the insert were made compotent according to the compotent cell preperation 

method.  

1,5 µl of each chaperone plasmids (70ng/µl) were tranfered into each 100µl 

competent E.coli BL21 recombinant cells. 250 µl SOC medium (heated to 37° C before 

use) was added and was incubated at 37°C, shaking with 200 rpm for 1 hour. The cells 

were spreaded on LB-kan (30µg/ml)-chloramphenicol (20µg/ml) agar plates. The plate 

was incubated at 37°C for 16 hours. A single colony was selected and inoculated into 5 

ml of LB kan-chloramphenicol including also inducers of each plasmids. Five cultures 

were prepared. They were incubated at 37°C at 200rpm for 16 hours. 

 

Table 2.1. Chaperone plasmids and their properties  

(Source: Instruction manuel of Takara Chaperone Plasmid Set.Cat.no. 3340) 

 

No. Plasmid Chaperone Promoter Inducer 

Resistant 

Marker References 

1 pG-JE8 

dnaK-dnaJ-grpE                   

groES-groEL 

araB                                    

Ptz-1 

L-Arabinose                                         

Tetracyclin Cm 
(Nishihara 1998) 
(Nishihara 2000) 

2 pGro7 groES-groEL araB L-Arabinose Cm Nishihara 1998 

3 pKJE7 dnaK-dnaJ-grpE araB L-Arabinose Cm Nishihara 1998 

4 pG-Tf2 groES-groEL-tig Pzt-1  Tetracyclin Cm Nishihara 2000 

5 pTf16 tig araB L-Arabinose Cm Nishihara 2000 

 

 

At the end of incubation, they were transfered into 100 ml of the same media and 

incubated again at the same conditions. While the optical density of the cultures at 600 

nm (OD600) reached to 0,4,  IPTG was added with a final concentration of 1mM. Finally 

the cultures were incubated for 4 hours. 
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2.11. Lysis of Bacterial Cells 

 

Bacterial cultures were centrifuged at 5000 rpm, at 4°C for 10 minutes. Pellets 

were dissolved in 5 ml lysis buffer and the cells were disrupted with a sonicator for 

6x20 seconds. They were centrifuged again at 10000 g, at 4°C for 20 minutes. 

Supernatants were used for protein purification. Both supernatants and pellets were run 

in SDS-PAGE. 

 Lysis buffer was prepared in 50mM TrisHCl (pH 8.0) and included 10% 

glycerol, 0.1% Triton X-100, 100ug/ml lysozyme, 1mM PMSF and 2mM MgCl2. 

 

2.12. Enzyme Purification  

 

Crude enzyme extract was loaded in DEAE-cellulose anion exchange column 

(2.5 cm x 10cm). The column was equilibrated with 50mM Tris-HCl (pH 7.2) before 

use. After loading sample, the column was washed with the same buffer. In order to 

elute the proteins according to their ionic strenght, gradient dilutions of NaCl from 0 to 

2 M in 50mM Tris-HCl (pH 7.2) were flowed from the column. 30 drops of fractions 

were collected and then protein concentrations were measured at 280nm using 

Nanodrop ND1000.  

After SDS-PAGE analysis of fractions, collected fractions were loaded in 

Sephadex G-100 size exclussion column. Elution was applied with 50mM TrisHCl (pH 

7.2) in 50 drops.  

ISCO Low Pressure Liquid Chromotography system was used to apply both ion 

exchange and size exclussion. Purified protein was assayed for protein concentration 

determination using Bradford method and for amylase activity analysis. 

 

2.13. SDS-PAGE 

 

Purified enzyme solution was screened in SDS-PAGE gel to detect the 

molecular weight and purity. Biorad Mini– Protean Tetra Cell was used in this method. 

10 ml Seperating gel (12% monomer conc.) and 5 ml Stacking gel 4% were prepared as 

explained in appendix A and load to gel apparatus respectively. After the gel become 
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solid, module tank was filled with running buffer. In order to obtain 1µg/µl final 

concentration, samples were diluted with sample buffer in 1/1 ratio. Protein marker and 

samples were kept in boling water for 10 minutes to be denaturated. 5 µl marker and 10 

µl of each sample were loaded into wells on the gel. They were run at 100 V for 120 

minutes. Then the gel was replaced from electrophoretic modul and incubated into 20% 

TCA for 30 minutes by shaking gently. It was rinsed with fresh ultrapure water. Then 

the gel was incubated into 0,05% commassi blue R250 for 30 minutes on a shaker. After 

the gel was destained with destaining solution, it was monitored with camera under 

white light. 

 

2.14. Screening of Amylase Activity on Agar Plate 

 

1% starch agar plate was prepared then the crude enzyme extract and purified 

enzyme was droplet to the plate. It was incubated at 55°C for 10 minutes. Then the plate 

was dyed with iodine solution. 

 

2.15. Protein Identification and Mass Spectrometric Analysis 

 

2.15.1. In-Gel Digestion 

 

In gel digestion was applied according to Shevchenko and co-workers protocol 

(Shevchenko et al. 1996). It is a three-day procedure consists of cutting protein spot and 

washing the gel pieces for the first day, reduction, alkylation, washing out reagents and 

exchange of buffers followed by digestion with trypsin for the second day and 

extraction of peptides for analysis for the third day. 

Solutions required for in-gel digestion was prapared as described below. 

• Washing solution ( 50% (v/v) methanol and 5% (v/v) acetic acid): 10 ml of methanol 

(Merck) was mixed with 5 ml of deionized water and 1 ml of acetic acid was added. The 

solution was adjusted to 20 ml with deionized water.  

• 100 mM ammonium bicarbonate: 0.2 g of ammonium bicarbonate (AppliChem) was 

dissolved in 20 ml of water. 
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• 50 mM ammonium bicarbonate: 2 ml of 100 mM ammonium bicarbonate was mixed 

with 2 ml of deionized water. 

• 10 mM DTT: 1.5 mg of dithiothreitol was dissolved in 1 ml of 100 mM ammonium 

bicarbonate completely. 

• 100 mM iodoacetamide: 18 mg of iodoacetamide was dissoved in 1 ml 100 mM 

ammonium bicarbonate completely. 

• Trypsin solution (20 ng/ml): 20 μg of sequencing-grade modified trypsin (V5111; 

Promega) was dissolved in 1 ml of ice cold 50 mM ammonium bicarbonate by drawing 

the solution into and out of the pipette. The solution was kept on ice until use.  

• Extraction buffer (50% (v/v) acetonitrile and 5% (v/v) formic acid): 10 ml of 

acetonitrile (Merck) was mixed with 5 ml of deionized water and 1 ml of formic acid 

(Merck) was added. The solution volume was adjusted to 20 ml with deionized water.  

First day; Protein spot was cut from SDS-PAGE gel with a surgical blade as 

possible as beeing carefull to take whole protein and it was divided into smaller pieces. 

The gel pieces were placed in a tube. 200 μL of wash solution was added and it was 

incubated overnight. 

Second day;  Wash solution was removed from the sample. 200 μL of wash 

solution was added again with incubation for additional 2-3 hours at room temperature 

and finally discarded. Then the gel pieces were dehydrated with 200 μL of acetonitrile 

for 5 minutes at room temperature. They became opaque white color. After acetonitrile 

was removed the sample was dried in a vacuum centrifuge for 2-3 minutes at room 

temperature.  

In the next step gel pieces were incubated in 30 μL of 10 mM DTT for 30 

minutes at room temperature to reduce the protein.  

Again DTT was removed from the sample carefully. Then 30 μL of 100 mM 

iodoacetamide was added and incubated for 30 minutes at room temperature to alkylate 

the protein.  

After iodoacetamide was removed from the sample carefully, the sample was 

dehydrated for 5 minutes at room temperature with addition of 200 μL of acetonitrile. 

Then it was also removed. 

Rehydration was applied by incubating the sample with 200 μL of 100 mM 

ammonium bicarbonate for 10 minutes at room temperature.  
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Ammonium bicarbonate was carefully removed. 200 μL of acetonitrile was 

added to the sample and dehydrated for 5 minutes at room temperature. Acetonitrile was 

carefully removed. 

Sample was completely dried at room temperature in a vacuum centrifuge for 2-

3 minutes. 

30 μL of the trypsin solution was added and the sample was allowed to rehydrate 

on ice for 10 minutes with vortex mixing. 

  Sample was centrifugated for 30 seconds and the gel pieces were collected on 

the bottom of the tube. Excess trypsin solution was carefully discarded from the sample 

5 μL of 50 mM ammonium bicarbonate was added to the tube and the mixture 

was vortexed. The sample was driven to the bottom of the tube by centrifuging the 

sample for 30 seconds. Digestion was applied overnight at 37 ºC. 

 Third Day; After 30 μL of 50 mM ammonium bicarbonate was added and the 

sample was incubated for 10 minutes, it was centrifudated for 30 seconds. 

The supernatant was carefully collected and the sample was transferred to 

another micro centrifuge tube. 

30 μL of extraction buffer was added to the gel pieces and incubated for 10 

minutes, Then it was centrifuged for 30 seconds. The supernatant was carefully 

collected and combined with the former supernatant. 

30 μL of extraction buffer was added to the tube containing the gel pieces, and 

incubated for 10 minutes. It was centrifuged for 30 seconds and supernatant was 

carefully collected and added to the tube containig previous supernatants. 

 The volume of the supernatant was reduced to less than 20 μL by evaporation in 

a vacuum centrifuge at room temperature.  

Finally volume of the sample was adjusted to 20 μL with acetic acid. Sample 

became ready for mass spectrometric analysis. 

 

2.15.2. Mass Spectrometric Analysis 

 

Sample that was applied in-gel digestion procedure was identified by MALDI-

TOF-TOF Mass Spectrometry. Sequence of the protein spots were found by using 

NCBInr (National Center for Biothecnology Information, Bethesda, USA) database. 
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For mass analysis, α-cyano-4-hydroxycinnamic acid (HCCA) was used as 

matrix. 

 

2.16. Determination of Protein Concentration  

 

Protein concentration was determined with Bradford (Sigma, product number; B 

6916) reagent. Standart curve was constructed by measuring absorbance of BSA 

(Bovine serum albumin) standarts in 0.25 mg/ml, 0.5 mg/ml, 1 mg/ml, 1.4 mg/ml, 2 

mg/ml concentrations. 

 50 µl of sample was mixed with 1.5 ml of Bradford reagent. The mixture was 

incubated at room temperature in dark for 10 minutes. Protein concentrations were 

measured at 595 nm with Perkinelmer Lamda 25 UV-Vis spectrophotometer. 

 

2.17. Amylase Assay 

 

Amylase activity was estimated by measuring the reducing sugar released during 

the reaction of enzyme-substrate. Starch was used as substrate in the reaction and DNS 

assay method was modified from Somogyi and Nelson (Nelson, 1944). 25µl of purified 

enzyme extract was incubated with 50 µl of 1% starch solution in a 55ºC waterbath for 

20 minute. 100 µl DNS reagent (Dinitrosalycilic acid solution) was added to the mixture 

to stop the reaction. The mixture was incubated in boiling water for 5 minutes. After 

cooling to room tempereture, 825 µl dH2O was added. Finally the optical density at 540 

nm was measured. 

The amount of reducing sugar was estimated according to standart curve that 

was prepared by measuring absorbance of different concentrations of D-glucose at 540 

nm. One unit of enzyme was defined as the amount of enzyme that produce 1 µmol of 

reducing sugar per one minute under the assay conditions.  
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2.18. Protein Characterization 

 

2.18.1.  Optimum pH and Temperature 

 

In order to obtain optimum pH for enzyme activity, substrate solution (1% 

starch) was prepared in different buffers; pH 3.0-6.0 (citrate buffer), pH 7.0 (sodium 

phosphate buffer), pH 8.0 (Tris-HCl buffer), pH 9.0, 10.0 (Glycine-NaOH buffer). Then 

the amylase assay was applied in the sameway at 55°C. Blank was not including 

enzyme solution.  

Optimum temperature of the enzyme was determined by performing the enzyme 

assay at different temperatures. Incubation temperature of enzyme-substrate solution in 

waterbath was changed from 40ºC to 90 ºC. 

 

2.18.2. pH and Temperature Stability 

 

 pH stability of the enzyme was tested by incubating 25 µl of enzyme solution 

with 25 µl of pH 9 and pH 7 buffers for 6, 16, 24 hours respectively. Then the 50 µl 

substrate was added and the assay was performed, absorbance values were measured at 

540nm. 

 For temperature stability, 25 µl emzyme was incubated both 65 ºC and 80 ºC for 

12, 16,24 hours and 50 µl substrate was added then amylase assay was performed. 

 

2.18.3. Effect of Metal Ions on Enzyme Activity 

 

25 µl of purified enzyme extract was incubated at 60 ºC waterbath in the 

presence of 25 µl of some metal salts for 10 minutes then 25 µl of substrate solution 

was added. The reaction was allowed to happen for 20 minutes at 60 ºC. Afterwards the 

enzyme assay was applied. 10mM and 25mM of CaCl2, NaCl, NaF, MgCl2, CuSO4, 

CoCl2, KCl solutions were used. Blank was formed by adding 25 µl of water to enzyme 

extract and applying enzyme assay in the same conditions. 
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2.18.4. Effect of Solvents and Detergent on Enzyme Activity 

 

25µl of purified enzyme extract was incubated at 60ºC waterbath in the presence 

of 25µl of various surfectants and solvents for 10 minutes then 25µl of substrate 

solution was added. The reaction was allowed to happen for 20 minutes at 60ºC. Then 

the enzyme assay was applied in the same conditions. 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

3.1. Screening of Amylase Activity of Bacterial Strain  

 

 Isolate number 33 was spreaded on starch agar and incubated for 16 hours at 55°C. 

When it was dyed with iodine solution, white zones were obtained. It proves that 

isolated bacterial colonies are capable of degrading starch. 

 

 

Figure 3.1. Bacterial colonies on starch agar plate 

 

3.2. Genomic DNA Isolation and PCR Amplification 

 

 Bacterial genomic DNA was isolated from culture of isolate number 33. 87.24 ng/µl 

DNA was obtained by measuring absorbance with Nanodrop ND 1000. Target sequence 

(α-amylase) was amplified in the presence of designated amylase primers. After PCR 

amplification, the product was run on agarose gel and photographed. Its molecular weight 

was determined as nearly 1600 bp (Figure 3.2). 
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Figure 3.2. Agarose gel image of PCR product. 

 

3.3. Cloning Experiments 

 

3.3.1. Subcloning 

 

At the end of gel extraction, the concentration of obtained DNA was found to be 

43ng/µl. In 20µl ligation reaction, 142 ng DNA sample was used. Then ligated PTZ57R/T 

cloning vector was transformed into compotent cells of E. coli DH5α. After incubation of 

the compotents cells on LB-amp agar plate, blue and white colonies formed as shown in 

figure 3.3. Blue nonrecombinant cells could metabolize X-gal because of lac-Z gene on 

plasmid PTZ57R/T. Because the Lac-Z gene was interrupted by insertion of our target 

gene, X-gal could not be metabolized by white recombinant colonies. Therefore white 

colonies from the plate were choosen to continue further experiments. 
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Figure 3.3. White colonies on LB- amp plate indicating recombinant E.coli DH5α cells   

     including inserted gene 

 

 

 
For the confirmation purpose, four white colonies were chosen from transformation 

plate and plasmids were isolated from them. They were sequenced and compared with 

each other, then the complete sequence of insert was determined. The length of the target 

gene cloned into PTZ57R/T plasmid was found as to be 1542 bp. It was compared with the 

referans gene seguence in figure 3.4. Sequence alignment between the referans gene 

(Geobacillus thermoleovorans subsp. stromboliensis strain P220, GenBank A.C 

HM034453.1)  and our target gene sequences showed that overlap ratio is ~ 97%. Also, 

the protein sequence was constructed and the molecular weight of our protein was 

calculated as 59.9 kD. 

 

 

 

 

 

 

 

Recombinant 

colonies 
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Source          ATGGAAATGGGGAACCGGCTCTTTATGCTGCTCGTCCTTCCGTTCCTTCTTTTTTATGCC 60 

α-amylase       ATGGAAATGGGGAACCGGCTCTTTATGCTGCTCGTCCTTCCGTTCCTTCTTTTTTATGCC 60 

                ************************************************************ 

 

Source          ATGCCGGCTGCGGCGGCGGAAAAAGAAGAACGGACGTGGCAAGATGAAGCCATTTATTTC 120 

α-amylase       ATGCCGGCTGCGGCGGCGGAAAAAGAAGAACGGACGTGGGAAGATGAAGCCATTTATTTC 120 

                *************************************** ******************** 

 

Source          ATTATGGTCGACCGGTTTAACAATATGGATCCGACAAACGACCAGAACGTGAATGTGAAC 180 

α-amylase       ATTATGGTCGACCGGTTTAACAATATGGATCCGACAAACGACCAGAACGTGAATGTGAAC 180 

                ************************************************************ 

 

Source          GATCCGAAAGGGTATTTCGGCGGCGACTTGAAAGGGGTGACGGCGAAACTCGATTACATC 240 

α-amylase       GATCCGAAAGGGTATTTCGGCGGCGACTTGAAAGGGGTGACGGCGAAACTCGATTACATC 240 

                ************************************************************ 

 

Source          AAGGAGATGGGATTTACCGCCATTTGGCTGACGCCGATTTTTAAAAACATGCCGGGCGGT 300 

α-amylase       AAGGAGATGGGATTTACCGCCCTTTGGGTGACGCCGATTTTTAAAAACATGCCGGGGGGG 300 

                ********************* ***** **************************** **  

 

Source          TATCATGGCTATTGGATTGAAGATTTTTATCAAGTCGATCCGCACTTTGGCACGCTGGGC 360 

α-amylase       TATCATGGCTATTGGATTGAAGAATTTTATCAAGTCCATCCGCACTTTGGGACGCTGGGG 360 

                *********************** ************ ************* ********  

 

Source          GATTTGAAAACACTCGTCAAAGAAGCGCATAAGCGCGACATGAAAGTCATTTTGGATTTT 420 

α-amylase       GATTTGAAAAAACTCCCCAAAAAAACGCATAAACGCGACATGAAAGGCATTTTGGAATTT 420 

                ********** ****  **** ** ******* ************* ********* *** 

 

Source          GTCGCCAACCATGTCGGTTACAATCACCCATGGTTACATGACCCAACGAAAAAAGATTGG 480 

α-amylase       GTCGCCAACCATGGCGGGTACAATCACCCCTGGGTACATGACCCCACCAAAAAAAAATGG 480 

                ************* *** *********** *** ********** ** ****** * *** 

 

Source          TTTCACCCGAAAAAAGAGATTTTCGACTGGAACGACCAAACACAGCTTGAAAACGGCTGG 540 

α-amylase       TTTCTCCCCAAAAAAGAAAATTTCTACTGGGACGACCCAACCCCGCTTGAAAACGGCTGG 540 

                **** *** ******** * **** ***** ****** *** * **************** 

 

Source          GTGTATGGGTTGCCTGATTTGGCGCAGGAAAATCCAGAGGTCAAAACGTATTTAATTGAC 600 

α-amylase       GTGTATGGGTTGCCTGATTTGGCGCAGGAAAATCCAGAGGTCCAAACGTATTTAATTGAC 600 

                ****************************************** ***************** 

 

Source          GCTGCCAAATGGTGGATTAAAGAGACCGACATTGACGGTTACCGGCTCGATACAGTGCGC 660 

α-amylase       GCTGCCCAATGGTGGATTAAAGAGACCGACATTGACGCTTACCGGCTCGATACAGTGCGC 660 

                ****** ****************************** ********************** 

 

Source          CACGTGCCAAAATCGTTTTGGCAGGAGTTTGCGAAAGAAGTCAAATCGGTGAAAAAAGAC 720 

α-amylase       CACGTGCCAAAATCGTTTTGGCAGGAGTTTGTGAAAGAAAACAAATCGGTGAAAAAAGAC 720 

                ******************************* *******  ******************* 

                      
Source         TTTTTCCTTCTCGGTGAAGTGTGGAGCGACGATCCGCGCTATATTGCCGATTACGGGAAG 780 

α-amylase      TTTTTCCTTCTCTGTGAAGTGTGGAGCGACGATCCGCGCTATATTGCCGATTACGGAAAG 780 

               ************ ******************************************* *** 

 

Source         TATGGCATCGACGGGTTTGTCGATTATCCGCTGTATGGCGCGGTGAAGCAGTCGCTTGCG 840 

α-amylase      AATGGCATCGACGGGTTTGTCGATTATCCGCTGTATGGCGCGGTGAAGCAGTCGCTTGCG 840 

               *********************************************************** 

       

Source         AGGCGCGATGCCTCGCTCCGCCCGCTGTATGATGTCTGGGAATACAACAAAACGTTTTAC 900 

α-amylase      AGGCGCGATGCCTCGCCCCCCCCCCTGTATGATGTCTGGGAATACAACAAAACGGTTTAC 900 

               **************** ** *** ****************************** ***** 

 

Source         GACCGACCGTATTTGCTCGGGTCGTTTTTGGACAACCATGATACCGTGCGGTTTACGAAG 960 

α-amylase      GATCGACCGCATTTGCTCGCGTCGTTTTTGGACAACCATGATACCGTGCGGTTTACGAAG 960 

               ** ****** ********* **************************************** 

 

Source         CTCGCGATTGACAACCGCAACAACCCGATTTCACGCATTAAACTGGCCATGACGTATTTG 1020 

α-amylase      CTCGCGATTGACAACCGCAACAACCCGATTTCACGCATTAAACTGGCCATGACGTATTTG 1020 

               ************************************************************ 

 

Figure 3.4. Nucleotide sequence comparison of inserted gene and the source                                

   (Geobacillus thermoleovorans subsp. stromboliensis strain P220)  

        

       (Cont. on next page) 
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Source         TTCACCGCCCCTGGCATCCCGATCATGTATTACGGGACCGAAATCGCCATGAACGGCGGC 1080 

α-amylase      TTCACCGCCCCTGGCATCCCGATCATGTATTACGGGACCGAAATCGCCATGAACGGCGGC 1080 

               ************************************************************ 

 

Source         CAAGATCCGGACAACCGCCGTCTGATGGATTTCCGCGCCGATCCAGAAATCATCGATTAC 1140 

α-amylase      CAAGATCCGGACAACCGCCGTCTGATGGATTTCCGCGCCGATCCAGAAATCATCGATTAC 1140 

                 ************************************************************ 

 

Source         TTGAAAAAAATCGGCCCGCTTCGCCAAGAGCTGCCATCATTGCGGCGCGGCGATTTTACG 1200 

α-amylase      TTGAAAAAAATCGGCCCGCTTCGCCAAGAGCTGCCATCATTGCGGCGCGGCGATTTTACG 1200 

               ************************************************************ 

 

Source         CTGTTGTATGAAAAAGACGGCATGGCGGTGTTGAAACGGCAATATCAAGATGAAACGACG 1260 

α-amylase      CTGTTGTATGAAAAAGACGGCATGGCGGTGTTGAAACGGCAATATCAAGATGAAACGACG 1260 

               ************************************************************ 

 

Source         GTCATCGCCATCAACAATACGAGCGAAACGCAGCATGTCCATCTCACCAATGACCAGTTG 1320 

α-amylase      GTCATCGCCATCAACAATACGAGCGAAACGCAGCATGTCCATCTCACCAATGACCAGTTG 1320 

                ************************************************************ 

 

Source         CCAAAAAACAAAGAACTGCGCGGCTTTTTATTGGACGATCTCGTCCGCGGCGATGAGGAC 1380 

α-amylase      CCAAAAAACAAAGAACTGCGCGGCTTTTTATTGGACGATCTCGTCCGCGGCGATGAGGAC 1380 

               ************************************************************ 

 

Source         GGCTACGACCTTGTGCTCGACCGCGAAACGGCGGAAGTATACAAGCTGCGGGAGAAAACA 1440 

α-amylase      GGCTACGACCTTGTGCTCGACCGCGAAACGGCGGAAGTATACAAGCTGCGGGAGAAAACA 1440 

               ************************************************************ 

 

Source         GGGATCAACATCCCGTTTATCGCCGCCATCGTATCGGTTTACGTGCTGTTTCTTTTGTTT 1500 

α-amylase      GGGATCAACATCCCGTTTATCGCCGCCATCGTATCGGTTTACGTGCTGTTTCTTTTGTTT 1500 

               ************************************************************ 

 

Source         TTATATTTGGTGAAAAAACGGGCAAAACGGATCAATGAATAA 1542 

α-amylase      TTATATTTGGTGAAAAAACGGGCAAAACGGATCAATGAATAA 1542 

                 ****************************************** 

 

 Figure 3.4. (cont.) 

 

 

 

 

The protein sequence of our enzyme matched up by 95% score with the 

source gene. Protein sequence comparison of our enzyme and the source enzyme 

was shown in figure 3.5. 
 

 

 

 

α-Amylase   1 MEMGNRLFMLLVLPFLLFYAMPAAAAEKEERTWEDEAIYFIMVDRFNNMDPTNDQNVNVN 

Source      1 MEMGNRLFMLLVLPFLLFYAMPAAAAEKEERTWQDEAIYFIMVDRFNNMDPTNDQNVNVN 

              ********************************* ************************** 

 

α-Amylase  61 DPKGYFGGDLKGVTAKLDYIKEMGFTALWVTPIFKNMPGGYHGYWIEEFYQVHPHFGTLG 

Source     61 DPKGYFGGDLKGVTAKLDYIKEMGFTAIWLTPIFKNMPGGYHGYWIEDFYQVDPHFGTLG 

              *************************** * ***************** **** ******* 

 

α-Amylase 121 DLKKLPKKTHKRDMKGILEFVANHGGYNHPWVHDPTKKKWFLPKKENFYWDDPTPLENGW 

Source    121 DLKTLVKEAHKRDMKVILDFVANHVGYNHPWLHDPTKKDWFHPKKEIFDWNDQTQLENGW 

              *** * *  ****** ** ***** ****** ****** ** **** * * * * ***** 

 

 

Figure 3.5. Protein sequence comparison of our protein and the source 

   (Geobacillus thermoleovorans subsp. stromboliensis strain P220) 

     

       (Cont. on next page) 
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α-Amylase 181 VYGLPDLAQENPEVQTYLIDAAQWWIKETDIDAYRLDTVRHVPKSFWQEFVKENKSVKKD 

Source    181 VYGLPDLAQENPEVKTYLIDAAKWWIKETDIDGYRLDTVRHVPKSFWQEFAKEVKSVKKD 

              ************** ******* ********* ***************** ** ****** 

 

α-Amylase 241 FFLLCEVWSDDPRYIADYGKNGIDGFVDYPLYGAVKQSLARRDASPPPLYDVWEYNKTVY 

Source    241 FFLLGEVWSDDPRYIADYGKYGIDGFVDYPLYGAVKQSLARRDASLRPLYDVWEYNKTFY 

              **** *************** ************************  *********** * 

 

α-Amylase 301 DRPHLLASFLDNHDTVRFTKLAIDNRNNPISRIKLAMTYLFTAPGIPIMYYGTEIAMNGG 

Source    301 DRPYLLGSFLDNHDTVRFTKLAIDNRNNPISRIKLAMTYLFTAPGIPIMYYGTEIAMNGG 

              *** ** ***************************************************** 

 

α-Amylase 361 QDPDNRRLMDFRADPEIIDYLKKIGPLRQELPSLRRGDFTLLYEKDGMAVLKRQYQDETT 

Source    361 QDPDNRRLMDFRADPEIIDYLKKIGPLRQELPSLRRGDFTLLYEKDGMAVLKRQYQDETT 

              ************************************************************ 

 

α-Amylase 421 VIAINNTSETQHVHLTNDQLPKNKELRGFLLDDLVRGDEDGYDLVLDRETAEVYKLREKT 

Source    421 VIAINNTSETQHVHLTNDQLPKNKELRGFLLDDLVRGDEDGYDLVLDRETAEVYKLREKT 

              ************************************************************ 

 

α-Amylase 481 GINIPFIAAIVSVYVLFLLFLYLVKKRAKRINE 

Source    481 GINIPFIAAIVSVYVLFLLFLYLVKKRAKRINE 

                    ********************************* 

Figure 3.5. (cont.) 

 

 
After digestion of the PTZ57R/T vector carrying insert gene with NdeI and 

HindIII restriction enzymes, agarose gel electrophoresis was performed for confirmation 

of digestion. Target sequence was isolated with gel extraction method. Then, isolated α-

amylase gene sequence was ligated with expression vector (pET28a+ plasmid). In the 

following step transformation was carried out by using compotetent E.coli BL21 cells.  

Protein expression procedure was applied to these recombinant cells and 

expressed protein was tried to be purified with Ni-affinity chromotography. Unfortunately, 

obtained protein amount was not sufficient for characterization studies.  Large amount of 

target protein was left in the pellet. It might be because of aggregation or misfolding of the 

protein. The reason for inadequate protein purification in supernatant could be because of 

histidine residues found inside of the protein ring resulting in blocking nickel binding to 

the protein. 

 

3.3.2. Coexpression with Chaperone Plasmids 

 

Chaperone plasmids may be used to overcome misfolding of expressed protein. In our 

studies, five chaperone plasmids were used to eliminate low expression of amylase 

protein. Chaperone plasmids were originated from heat shock proteins therefore these 
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choosen plasmid kits were useful to increase expression level of our termophilic protein.  

For the first step of coexpression , E. coli BL21 cells containing pET28a+ with target gene 

were made compotent to take in the plasmid. Then, chaperone plasmids were inserted into 

these cells seperately. After that protein expression procedure was employed according to 

TAKARA kit. Next, cells were disrupted and centrifuged. Supernatants and pellets of cells 

were loaded on SDS-PAGE and protein profiles were photographed as seen in figure 3.6. 

As a result, concentration of the target protein was increased considerably by employing 

chaperone 3.   

  

 

                               

 

Figure 3.6. SDS-PAGE image that shows effects of different chaperones on protein  

   expression: M: protein marker, S1: chaperone1supernatant, 

   P1: chaperone1pellet, S2: chaperone2 supernatant, P2: chaperone2 pelet,  

   S3: chaperone3 supernatant, P3: chaperone3 pelet, S4: chaperone4   

   supernatant, P4: chaperone4 pelet, S5: chaperone5 supernatant, 

   P5: chaperone5 pelet, SN: non-coexpressed protein in supernatant,  

   PN: non-coexpressed protein in pellet 

 

 

3.4. Protein Expression and Purification 

 

Protein exppession procedure was employed by using with cahperone 3. 

Unfortunately, a good yield of protein was not achieved with application of affinity 

chromotography as seen in figure 3.7. It seems that the target protein has no binding 

M P1 S2 S1 P2 S3 P3 S4 P4 S5 P5 SN PN 

35.0kD 

45.0kD 

18.4k D 

14.4kD 

66.0kD 

116.0kD 
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capacity to Ni-affinity column. Therefore, aternative method namely ion exchange and 

size exclussion chromotography were employed for the protein purification. 

 

 

 

 

 

Figure 3.7. SDS-PAGE image of purification of coexpressed protein with affinity     

     chromotography; M: protein marker, P: pelet (before purification),    

     S: supernatant (before purification), Fl: flowthrough, W: washing solution,  

     Fr: collected fraction  

 

 

First, the protein was tried to be purified by using ion exchange chromotography. 

After washing step, elution was done with a gradient concentration of NaCl. The proteins 

were seperated according to their ionic strenght. Collected fractions were first run on SDS-

PAGE to visualize the target protein. Fractions containing target protein were incorporated 

and loaded to Sephadex G-100 gel filtration column. After that, SDS-PAGE was 

performed again for confirmation of purification. 30 ml of amylase protein was obtained 

after overall prufication procedure. It was concentrated to 10 ml at 40ºC in vacuum oven. 

Then, the concentration of purified protein was found as 3mg/ml by measurements with 

nanodrop instrument. Concentrations of our purified protein was also measured by 

employing Bradford method. According to the standart curve constructed with optical 

densities of different concentrations of BSA at 595 nm, concentration of our purified 

enzyme was found to be 1,1252 mg/ml. So, obtained total protein was 11.252 mg.  
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Figure 3.8. SDS-PAGE image of unpurified and purified protein M: protein marker,  

    S:unpurified supernatant, P: unpurified pellet, F1, F2, F3, F4: fractions after  

    ion-exchange chromotography 

 

 

3.5. Screening of Amylase Activity on Agar Plate 

 

 Purified protein was spotted on 1% starch agar. Afterwards it was dyed with KI/I 

solution. White zones indicating amylase activity were formed (Figure 3.9). It was a 

preliminary test to screen amylase activity.  

 

 

 

Figure 3.9. Amylase activity screening on stach agar plate 
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3.6. Protein Identification and Mass Spectrometric Analysis 

 

 For mass spectrometric analysis of our protein spot on the SDS-PAGE gel, the protein 

was digested into its peptides. After in-gel digestion, the peptides were analysed in the 

MALDI-TOF mass spectrophotometry instrument. 1776 D peptid of our protein matched 

with α-amylase family protein of Geobacillus thermodenitrificans NG80-2 with NCBInr 

database. Protein sequence coverage and Mascot Mowse score were found to be as 3%, 

and 57, respectively. Nominal mass and pI of identified protein were found to be 59855 D 

and 5.66, respectively.   

 The sequences of identified protein in mass spectometric analysis and the sequence of 

our protein constructed were compared (Figure 3.10). Their complete sequence were 

matched with 92% ratio. Mached peptides in mass spectrometric analysis are shown in 

bold. 

Figure 3.10. Sequence comparison of our protein with the protein (α-amylase family  

      protein of G.thermodenitrificans NG80-2) identified in mass spectrometry  

      analysis. 

 

 

identified  MGNRLFMLFILPFLLFYAMPVAAAEKEERTWQDEAIYFIMVDRFNNMDSTNDQDVNVNDP  60 

our protein MGNRLFMLLVLPFLLFYAMPAAAAEKEERTWEDEAIYFIMVDRFNNMDPTNDQNVNVNDP  62 

 

identified  KGYFGGDLKGVTAKLDYIKEMGFTAIWLTPIFKNRPGGYHGYWIEDFYEVDPHFGTLDDL  120 

our protein KGYFGGDLKGVTAKLDYIKEMGFTALWVTPIFKNMPGGYHGYWIEEFYQVHPHFGTLGDL  122 

 

identified  KTLVKEAHKRDMKVILDFVANHVGYDHPWLHDPAKKDWFHPKKEIFDWNSQEQVENGWVY  180 

our protein KKLPKKTHKRDMKGILEFVANHGGYNHPWVHDPTKKKWFLPKKENFYWDDPTPLENGWVY  182 

 

identified  GLPDLAQENPEVKNYLIDAAKWWIKETDIDGYRLDMVRHVPKSFWQEFAKEVKAVKKDFF  240 

our protein GLPDLAQENPEVQTYLIDAAQWWIKETDIDAYRLDTVRHVPKSFWQEFVKENKSVKKDFF  242 

 

identified  LLGEVWSDDPRYIADYGKYGIDGFVDYPLYGAVKQSLAKRDASLRPLYDVWEYNKTFYDR  300 

our protein LLCEVWSDDPRYIADYGKNGIDGFVDYPLYGAVKQSLARRDASPPPLYDVWEYNKTVYDR  302 

 

identified  PYLLGSFLDNHDNVRFTKLVIDHRNNPISRMKVAMTYLFTAPGIPIMYYGTEIAMTGGPD  360 

our protein PHLLASFLDNHDTVRFTKLAIDNRNNPISRIKLAMTYLFTAPGIPIMYYGTEIAMNGGQD  362 

 

identified  PDNRRLMDFRADPEIIDYLKKVGPLRQQLPSLRRGDFTLLYEQDGMAVFKRQYKDETTVI  420 

our protein PDNRRLMDFRADPEIIDYLKKIGPLRQELPSLRRGDFTLLYEKDGMAVLKRQYQDETTVI  422 

 

identified  AINNTSETKHVHLTNEQLPKNKELRGFLLDDLVRGDEDGYDIVLDRETAEVYKLRNKTGV  480 

our protein AINNTSETQHVHLTNDQLPKNKELRGFLLDDLVRGDEDGYDLVLDRETAEVYKLREKTGI  482 

 

identified  NVPFIVAMVAVYALFILFLYMVKKRTKRTNE  511 

our protein NIPFIAAIVSVYVLFLLFLYLVKKRAKRINE  513 
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3.7. Protein Characterization 

 

3.7.1. Optimum pH and Temperature 

 

 Optimum pH and temperature values for the purified enzyme were determined 

by using the amylase assay based on Somogyi and Nelson (Nelson 1944) method. 

Relative enzyme activity was measured at different pHs and temperatures ranging from 

3 to 9 and 40°C to 90°C, respectively. According to our results shown in Figure 3.11, 

the enzyme showed 65% activity at pH 5 and 70% activity at pH 9. Optimum activity 

was obtained at pH 8 as considered 100% activity. On the other hand, as seen in Figure 

3.12,  the enzyme showed activity in range of 50-70°C, but the optimum temperature for 

enzyme activity was determined as to be 60°C. When the optimum pH and temperature 

values for α-amylase were compared with other studies, similarities and differences 

were observed. Optimum pHs and temperatures of amylase proteins obtained from 

some bacterial strains are listed as follows: from Bacillus ferdowsicous; pH 4.5, 70°C 

(Asoodeh A. et al 2010),  from Thermococcus profoundus; pH 4-5, 80°C (Kwak et al. 

1998), from Lactobacillus manihotivorans; pH 5.5, 55°C (Aguilar et al. 2000) from 

Geobacillus caldoxylosilyticus TK4; pH 7.0, 50°C (Kolcuğlu et al. 2010), from Bacillus 

sp. US100; pH 5.6, 80°C (Ben Ali et al. 1999), from Anoxybacillus sp.; pH 8.0, 60°C 

(Chai et al. 2012), from Bacillus amyloliquefaciens; pH 7.0, 70°C (Underkofler 1976), 

from Pyrococcus furiosus; pH 5.5, 100°C (Laderman et al. 1993a,b), from 

Thermococcus profoundus; pH 4.0–5.0, 80°C (Kwak et al. 1998). 
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Figure 3.11. Effect  of pH on amylase enzyme activity (at 55ºC) 

 

 

 

Figure 3.12. Effect  of temperature on amylase enzyme activity (pH 8) 

 

 

 

3.7.2. pH and Temperature Stabilities  

 

 Stability of the enzyme at different pHs and temperatures were determined in 

different time intervals. pH stability was studied by incubating the enzyme in pH 7 and 

9 buffers at 65°C for 6, 16 and 24 hours. After 6 hours, the enzyme retained 80 and  

75% of its activity at pH 7 and 9, respectively. After incubation of the enzyme at 60 and 
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80°C at pH 8 for 1, 2, 3, 4, 5, 6, 12, 16 and 24 hours, enzyme assay was performed and 

residual activity was measured. According to our results, enzyme activity was so high 

for 6 hours. At the end of 5 and 6 hours it retained 94 and 89% of activity, respectively. 

On the other hand, in 85°C its residual activity was 85% after 2 hours, then, it was 

gradually decreased to 60% at the end of 12 hours.  When the literature was examined; 

α-amylase obtained from Geobacillus caldoxylosilyticus TK4 was incubated in different 

pH buffers at 50°C and residual activity was obtained >90% at different pHs from pH 3 

to 9 after 7 days. While incubating at 80°C and pH7, 80%  residual activity was seen 

after 3 days in the same study (Kolcuoğlu et al. 2010). For α-amylase of Bacillus sp. 

US100, the activity was completely stable at 80°C for at least 90 minutes (Ben Ali 

1999). α-Amylase from marine haloalkaliphilic Saccharopolyspora sp. A9 retained 90% 

of its activity for 12 hours at pH10 and the activity was decreased gradually to 80% 

after 24 hours (Chakraborty et al. 2010). 

 

 

 

 

 

Figure 3.13. Stability of amylase activity at pH 7 for 24 hours (at 60ºC) 
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Figure 3.14. Stability of amylase activity at pH 9 for 24 hours (at 60ºC) 

 

 

 

 

 

 

Figure 3.15. Stability of the amylase activity at 65°C for 24 hours (pH 8) 
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Figure 3.16. Stability of the amylase activity at 85°C for 24 hours (pH 8) 

              

 

 

   3.7.3. Effect of Metal Ions on Enzyme Activity 

 

 In order to determine the effect of metal ions on enzyme activity, the enzyme 

was incubated with 10mM and 25mM metal salts for 10 minutes. Then the enzyme 

assay was applied and the enzymatic activity was measured. The results were shown in 

Figure 3.17. According to the results the activity was increased to 166, 141 and 12 by 

Co
+2

, Ca
+2

 and Mg
+2

, respectively. While Na
+
 and K

+
 ions showed no significant effect, 

relative activity was decreased slightly by Cu
+2

. According to the literature Ca was 

typically found to be as inducer of α-amylase enzyme activity. Chakraborty et al. (2010) 

measured relative activity as 110.21% with 10mM Co
+2

, 117% with 10mM Cu
+2

, 142% 

with 10mM Ca
+2

. In another study (Kolcuoğlu et al. 2010), the activity was inhibited 

25% by Co
+2

  whereas the activity was induced 150 and 110% by Mn
+2

 and Ca
+2

 , 

respectively. By contrast, the activity of a thermoactive α-amylase from Bacillus sp. was 

fairly degreased in presence of Ca
+2

 and Mg
+2

 (Pancha et al. 2010).  
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Figure 3.17. Effect of metal ions on enzyme activity 

 

 

 

3.7.4. Effect of Various Agents on Enzyme Activity 

 

 The effect of the organic solvents, surfactans and some agents on the enzyme activity was 

investigated to gather information on whether they inhibit or activate the enzyme. Seperately 10% 

organic solvents, 1% surfactants and 1mM agents were added to the enzyme solution. The samples  

were incubated for 10 minutes at 60°C. Then, the enzyme assay was performed. The results showed 

that acetone had excessive inhibition and methanol had no significant effect on the activity of the 

enzyme. PMSF, DDT and Triton X-100 had no effect on enzyme activity. On the other hand, the 

enzyme activity was slighty inhibited by SDS. 

 In the literature, α-amylase from Anoxybacillus sp. was investigated in presence of some 

agents and relative activities were listed as; b-Mercaptoethanol (50 mM)  67%, Urea (8 M) 

53%, SDS (1%, w/v) 3%, Triton X-100 (5%, v/v) 119%, EDTA (5 mM) 4% (Chai et al. 

2012). In another study, iodoacetic acid, N-bromosuccinic acid, SDS, guanidine 

hydrochloride were investigated and found to be as inhibitors for T. profundus DT5432 

amylase (Chung et al. 1995). 
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Table 3.1. Effect of various agents on enzyme activity 

 

 

 

Agent 

 

Concentration 

 

Relative Activity (%) 

 

None 

 
 

100 

Hexane 
10%     82.70 

Methanol 
10%    98.0 

Ethanol 
10%     85.0 

Acetone 
10%       55.12 

PMSF 
1mM      100.3 

DDT 
1mM      100.16 

EDTA 
1mM     87.73 

SDS 
1%   36.0 

Tween 20 
1%   60.6 

TritonX-100 
1%    102.8 

BME 
1%  93.3 
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CHAPTER 4 

 

CONCLUSION 

 

The aim of this study was to isolate amylase enzyme from thermophilic Bacillus 

sp. by using molecular cloning methods, purify and characterize the isolated enzyme. In 

this context, a thermophilic Bacillus strain isolated from Balçova Geotermal region in 

İzmir was used as the starting material for the experiments. The strain was previously 

characterized by Elif Yavuz. 

The strain number-33 was also determined as to produce amylase enzyme in her 

study. Firstly, the amylase activity was verified by performing starch-iodine test. The 

clear zones indicated amylase activity was formed around the colonies on starch agar 

plate. α-Amylase coding gene from this microorganism was cloned to compotent E.coli 

BL21 cells by using molecular methods. Recombinant cells were cultured and protein 

expression was stimulated by IPTG addition. The expressed enzyme was purified by 

performing ion exchange chromatograpy using a weak anion exchange (DEAE-

Cellulose) column and also size exclussion chromotography using G-100 Sephadex 

column. Purified enzyme was identified by mass specrometry and matched with α-

amylase family protein of Geobacillus thermodenitrificans NG80-2. Aminoacid 

sequence similarity of the identified enzyme and our purified enzyme was found to be 

92%. 

 In the enzyme characterization studies, the results indicated that the amylase 

enzyme had the highest activity at pH 8.0 and 60°C. After 6 hours the enzyme retained 

80% of its activity at pH 7 and 75% of activity at pH 9. The enzyme is stable for 6 hours 

at 65°C and 2 hours at 85°C. According to the results Co
+2 

, Ca
+2

, Mg
+2

 increased the 

enzyme activity. While Na
+
 and K

+
 ions did not have important effect on enzyme, Cu

+2
 

slightly decreased the relative activity. Resultant enzyme was found to be stable in the 

presence of 10% methanol, 1mM PMSF, 1mM DDT, 1% Triton X-100. The relative 

activity was considerably decreased in presence of 1% SDS and 1% Tween 20. 

In conclusion, the amylase enzyme isolated from alkaliphilic and thermophilic 

Bacillus sp. was cloned, expressed, purified and characterized during our studies. 
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 In the further studies, this enzyme features could be improved by protein 

engineering efforts in order to utilize in several biotechnological processes. Moreover 

the immobilization studies using various organic or inorganic supports could be appllied 

to the enzyme in order to be used in industrial processes. 
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APPENDIX A 

 

MEDIA, BUFFERS, REAGENTS AND SOLUTIONS 

 

A.1. Media and Buffers 

 

 Luria Bertani (LB) Medium 

 10 g tryptone, 5 g yeast extract, 5 g NaCl were dissolved in dH2O up to 1 L and 

autoclaved at 121°C for 15 minutes. 

 Luria Bertani (LB) Agar 

10 g tryptone, 5 g yeast extract, 5 g NaCl, 15 g agar were dissolved in dH2O up to 1 L and 

autoclaved at 121°C for 15 minutes. 

 SOC Media  

2.0 g Tryptone, 0.5 g of Yeast Extract, 1.0 ml of 1.0 M NaCl, 0.25 ml of 1.0 M KCl,  1.0 

ml of 2.0 M Mg
2+

 and 1.0 ml of 2.0 M Glucose were dissolved in dH2O up to 100.0 ml and 

sterilized. 

 SOB Medium 

2 g Tryptone, 0.5 g Yeast Extract, 1 ml 1M NaCl, 0.02 g KCl, 1 ml 1M MgCl, 1 ml 1M 

MgSO4 were dissolved in deionized dH2O up to 100 ml and autoclaved at 121°C for 15 

minutes. 

 Starch Agar Media 

0.5g yeast extract, 2.5g soluble starch and 7.5g agar agar was dissolved in 500ml distilled 

water and sterilised by autoclaving at 121°C for 15 minutes. 

 TB Medium, per 100 ml  

0.3 g PIPES, 3 ml 1 M CaCl2 and 1.85 g KCl were dissolved in 100 ml deionized water 

and the solution pH was adjusted to 6.7 with KOH. Then 1.4 g MnCl2 was added and the 

solution was filtered sterilized.  

 50 X TAE 

242 g Tris base was dissolved in deionized water, 57.1 ml glacial acetic acid and 100 ml 

0.5 M EDTA (pH 8.0) were added. Volume was adjusted to 1000 ml with deionized water. 
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 Citrate Buffer; pH 3.0, pH 4.0, pH 5.0, pH 6.0 

Citrate buffer (Gomori 1955) stock solutions: A: 0.1 M citric acid; B: 0.1 M sodium 

citrate. Using the following amounts from these stock solutions and diluting them to 100.0 

ml with 50.0 ml dH2O, the following buffer systems were prepared. Finally, to obtain 50.0 

mM concentration, one more 1:2 dilutions were applied. 

 

Volume of 0.1 M 

Citric acid, ml 

 

Volume of 0.1 M Sodium 

citrate (ml) 

Desired pH 

45.6 3.5 3.0 

33.0 17.0 4.0 

20.5 29.5 5.0 

 

 

 
Volume of 1.0 M 

Na2HPO4, ml 

Volume of 1.0 M NaH2PO4, 

ml 

Desired pH 

 

      57.7  

 

42.3 

 

7.0 

 

 

 Sodium Phosphate Buffer, 0.1 M; pH 7.0 

Indicated amounts of stock solutions were mixed and diluted as 1:2 to obtain 50.0 mM buffer 

system at pH 7.0. 

 

 Tris-Cl Buffer, 1.0 M; pH 8.0 

121.1 g of Tris base was dissolved in 700.0 ml of dH2O. Concentrated HCl was added until the 

pH reached to 8.0. The solution was filled up to 1.0 L with dH2O. Finally, the stock solution 

was diluted to 50.0 mM with dH2O. 

 Iodine solution 

2 g Potassium iodide and 1g of Iodine was dissolved in 300ml distilled water 
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A.2. Solutions and Reagents for SDS- PAGE 

 

10 ml Seperating Gel (12% monomer conc.) 

Acrylamide/bis     4 ml 

dH2O      3,35 ml 

1,5 M Tris-HCl , pH 8.8    2,5 ml 

10%SDS( w/v)     0,1 ml 

10% amonium persulfate (fresh preperation) 50µl     

TEMED      5µl    

 

5 ml Stacking Gel  4% 

Acrylamide/bis     650 µl     

Ultra pure water     3,05 ml 

0,5M Tris-HCl pH 6,    1,25 ml 

10% (w/v) SDS     50µl    

10% amonium persulfat    25µl     

TEMED      5µl     

 

30% Acrylamide Mixture  

(29.2 g acrylamide, 0.8 g N’N’-bis-methylene-acrylamide) 

Make up to 100 ml with ultrapure water. Filter and store at 4ºC in the dark for at least one 

month. 

 

Sample Buffer 

3,8 ml dH2O, 1ml 0.5 M Tris-HCl, pH 6.8, 0.8 ml Glycerol, 1.6 ml 10% (w/v) SDS, 0.4 ml 

2- mercaptoethanol, 0.4 ml 1% (w/v) bromophenol blue 

 

5X Running Buffer 

 

• 15g Tris Base 

• 72g Glycine 

• 5g SDS 

Dissolve Tris base, glycine and SDS in ~800ml deionized water and make up to 
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1L with water. Store at 4ºC. For electrophoretic run, dilute 5X stock solution to 1X with 

deionized water. 

 

Destaining soln:  

100ml Methanol,  250 ml acetic acid was added to 1650ml deionized water. 
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APPENDIX B 

 

ABSORBANCE VALUES OF BSA STANDARTS AND 

STANDART CURVES FOR BRADFORD ASSAY AND 

AMYLASE ASSAY 

 

Table B.1. Absorbance values of BSA standarts 

 

Concentration  

(mg/ml) 

Absorbance 

(595 nm) 

0.25 0.1908 

0.5 0.3623 

1 0.6963 

1.4 0.9082 

2 1.1409 
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Figure B.1. BSA standart curve for Bradford assay 

 

                      

          

  
 

         

 
 

 

 

 

 

 

 

 

 

  

 

 

0,25 0,305 

      

      

0,5 0,76 

      

      

1 1,417 

      

 

 

                  Figure B.2. Standart calibration curve for amylase assay    
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