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ABSTRACT

A STUDY ON NUMBER THEORETIC CONSTRUCTION AND

PREDICTION OF TWO DIMENSIONAL ACOUSTIC DIFFUSERS

FOR ARCHITECTURAL APPLICATIONS

Defined as the scattering of sound independent from angle, optimum diffusion is

very important for the perception of musical sound. For this purpose, Schroeder used

mathematical number sequences to propose ’reflection phase grating diffusers’, of two

main types: Single plane or one-dimensional (1D) diffusers that scatter sound into a

hemi-disc, and two dimensional (2D) diffusers that scatter into a hemisphere to disperse

strong specular reflections without removing sound energy from the space, which is the

main advantage of these devices. Currently, two methods are used to design 2D dif-

fusers: Product Array and Folding Array Methods. Both are based on number theory

and used methodologically in the field of acoustics, producing results that offer limited

diffusion characteristics and design solutions for a variety of architectural spaces rang-

ing from concert halls to recording studios where Schroeder diffusers are widely used.

This dissertation proposes Distinct Sums Property Method originally devised for water-

marking digital images, to construct adoptable 2D diffusers through number theoretical

construction and prediction. At first, quadratic residue sequence based on prime number 7

is selected according to its autocorrelation properties as the Fourier transform of good au-

tocorrelation properties gives an even scattered energy distribution. Then Distinct Sums

Property Method is applied to construct 2D arrays from this sequence from which well

depths and widths are calculated. Third, the aimed scattering and diffusion properties of

the modeled 2D diffuser are predicted by Boundary Element Method which gives approx-

imate results in accordance with the measurements based on Audio Engineering Society

Standards. Fourth, polar responses (i.e. the scattering diagrams for specific angles) in

each octave band frequency are obtained. Finally, predicted diffusion coefficients for uni-

form scattering are calculated and compared to the reference flat surface’s coefficients and

previous studies’ results.
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ÖZET

MİMARİ UYGULAMALAR İÇİN İKİ BOYUTLU AKUSTİK

SAÇICILARIN SAYI TEORİSEL KURULUMU VE ÖNGÖRÜLMESİ

ÜZERİNE BİR ÇALIŞMA

Sesin açıdan farklı olarak dağılması olarak tanımlanan ideal saçıcılık, müzikal

seslerin algısında çok önemlidir. Bu amaçla, Schroeder matematiksel sayı serilerini

kullanarak, iki ana tipte olan ızgarasal fazlı yansıma saçıcılarını önermiştir: Sesi yarı

dairesel olarak saçan bir boyutlu (1D) saçıcılar ve sesi yarı küresel olarak saçan iki

boyutlu (2D) saçıcılar. Bu saçıcıların ana avantajı, direkt gelen ses ışınlarını, ortam-

daki ses enerjisini azaltmadan saçmalarıdır. Halen 2D saçıcılar tasarlamak için iki

metod kullanılmaktadır: Çarpım Dizisi Metodu ve Katlanan Dizi Metodu. İki metod

da sayı teorisine dayanmakta ve günümüzde akustik alanında kullanılmaktadır. Ancak

sundukları saçıcılık özellikleri ve konser salonlarından kayıt stüdyolarına değişen mi-

mari mekanlar için tasarım çözümleri sınırlıdır. Bu tez, farklı seçimlerde 2D saçıcıların

sayı teorisel kurulumu ve öngörülmesinde dijital resimlerin filigranında kullanılan Ayrık

Toplamlar Özelliği Metodunu önermektedir. İlk olarak, iyi otokorelasyon özelliklerine

sahip olduğu bilinen, asal sayı 7’yi temel alan kuadratik kalan sayı serisi seçilmiştir.

Çünkü bilindiği üzere ideal otokorelasyonun Fourier dönüşümü dengeli saçılan en-

erji dağılımı göstermektedir. Sonra, Ayrık Toplamlar Özelliği Metodu kullanılarak 2D

diziler oluşturulmuş ve hücre derinlikleri ve genişlikleri hesaplanmıştır. Üçüncü olarak

modellenmiş 2D saçıcının sesi saçma özellikleri, Audio Engineering Society standart-

larıyla uyumlu olduğu bilinen Sınır Eleman Yöntemi ile öngörülmüştür. Her oktav band

frekanstaki kutupsal yansımalar elde edilmiştir. Son olarak öngörülmüş saçılım kat-

sayıları hesaplanmış, referans düz yüzey katsayıları ve önceki çalışmaların sonuçlarıyla

karşılaştırılmıştır.
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CHAPTER 1

INTRODUCTION

1.1. Definition of the Problem

The acoustics of music performance spaces play a major role in the perceived

sound by the audience. Fine acoustic quality enriches the music while the poor weak-

ens (Cox & D’Antonio 2003). Today acoustic diffusers have been widely used in music

performance spaces to achieve that acoustic quality.

When a sound wave strikes on a surface, it is transmitted, absorbed, or reflected.

We call the surface a diffuser when a reflected sound wave is dispersed both spatially and

temporally from the surface, and the reflection becomes a diffuse reflection. This thesis

concentrates on the phase grating diffusers introduced by Schroeder in 1975. Schroeder

diffusers consist of a series of wells with same widths and different depths which are

designed according to the mathematical sequences such as quadratic residue and primitive

root sequences. These diffusers disperse sound into a hemi-disc. This study aims to

construct “two dimensional quadratic residue diffusers”, which disperses sound into a

hemisphere, with a new method in acoustics, the Distinct Sums Property Method.

In order to understand the theory behind the diffusers and the need for diffus-

ing surfaces in music performance spaces, it is important to mention the brief history

of music performance spaces and address the problems which lead to the invention of

Schroeder diffusers. The history of music performance spaces goes back to Greek Pe-

riod (650 BC) (Long 2006). Given today’s classical acoustic repertoire in concert halls

and the varying acoustic demands from one concert hall, we need to review the history

of concert hall acoustics starting with Baroque Period (1600–1750), and then continue

with Classical Period (1750–1820), Romantic Period (1820–1900) and Twentieth Cen-

tury (1900–2000)(Beranek 2004; Long 2006). Each period has its own musical charac-

teristics resulting in different acoustic requirements. In addition Beranek (2004) points

that the composers usually wrote music for a specific church, a concert hall or an opera

house which is highly different from today’s circumstances. Therefore the music sounded
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best when played at the aimed architectural space. For instance, the architecture, hence

the acoustical properties of the spaces, shaped the Baroque music at the Baroque Period

(Beranek 2004). Interestingly, there were two acoustically opposite performance spaces

serving for secular music and sacred music. Secular music was composed for ballrooms

of palaces or small theaters which had reflective hard surfaces. Therefore, these private

spaces with low reverberation time (less than 1.5 s) were perfect for secular music, or

Baroque orchestral music (Beranek 2004). On the contrary, Baroque sacred music was

composed for variety of churches or cathedrals. Plainchants were listened in highly re-

verberant large eighteenth century churches while much Baroque music were composed

for Lutheran churches which had dry acoustics.

At the Classical Period which started around 1750s, audiences enjoyed music

which was composed in Classical style. The composers such as Haydn, Mozart and

Beethoven were influenced by the increasing number of music publishers. The style was

more independent compared to Baroque Period. In fact, the strict structure of Baroque

music, such as interweaving of equal parts was changed to the idea of accompanied

melody. Therefore, Classical music had a bigger sound with fullness and depth when

compared to the clarity of the Baroque Period. During Classical Period, the biggest

change was the public interest and expanding audience which required larger performance

spaces. Therefore, the first concert halls designed specifically for concerts were built in

the middle of nineteenth century. Full orchestra was required for the musical depth of

classical music and so larger spaces were built for higher reverberation times. Today, the

required reverberation time for classical music is ranged between 1.6 to 1.8 seconds.

From 1820 to 1900, audience enjoyed Romantic music. Romantic Period intro-

duced the audience with more emotional, personal and poetic tones (Long 2006). How-

ever, Long (2006) states that the Classical and Romantic Period cannot be strictly departed

from each other in terms of time periods for the reason of continuous progress in music.

Therefore, although Beethoven lived in Classical Period, it is believed that some of his

music such as Sixth and Ninth symphonies can be considered in Romantic Period. He

influenced the famous composers such as Schubert, Brahms, Mendelssohn and Wagner

(Long 2006). All of these composers and Debussy, Tchaikovsky increased the size and

color of the orchestra, and they explored new melodies. Therefore, the clear definition

of musical tones during Baroque and Classical Period was over with the introduction of

2



complex orchestral harmonies, and the music required spaces that provides high fullness

of tone and less clarity. This is why the concert halls built at the end of the nineteenth

century had longer reverberation times, about 1.9 to 2.1 seconds (Beranek 2004).

From the beginning of twentieth century, concerts have grown into a more cultural

activity world-wide, as compared to having a more religious flavor in Baroque Period.

Hence, today the concert halls have to meet the requirements of the music of earlier times,

and the recent compositions which result in variety of acoustic conditions. The famous

orchestras travel around the world’s famous concert halls which have different acoustical

properties. In addition, the public interest to music has resulted in larger concert halls that

host larger audience.

On the other hand, since the beginning of the 1950s, the modern architecture

shaped the design of the concert halls. The simple, modernist style of today’s archi-

tecture and larger concert halls that host many people has resulted in problems at the

acoustics of modern halls (Beranek 2004; Cox & D’Antonio 2003). At the eighteenth

and nineteenth century, the spaces for concerts had ornaments, niches, and coffers which

diffuse the sound and gave the music a non-glary tone (Beranek 2004; Haan & Fricke

1997; Hidaka & Beranek 2000). In addition, the energy produced by the orchestra was

easily preserved at these smaller spaces when compared to today’s larger halls. In fact,

Beranek (2004), one of the well-known experts in acoustics, stated that the three halls

which still rated highest by the famous conductors and music critics are built in 1870,

1888, and 1900. These concert halls are Grosser Musikvereinssaal in Vienna, Concert-

gebouw in Amsterdam, and Boston Symphony Hall in Boston. As a result, the flat walls

of the modernist style of the twentieth century has brought acoustical problems such as

glare, distortion of sound, and the non-preservation of the sound energy in larger spaces.

Contrary to poor architectural acoustics, improvements in the science of acoustics offer

significant insights. There are universally accepted subjective and objective criteria to

measure and evaluate acoustic quality of the concert halls today.

Since 1960s, many acousticians have studied the relationship between subjective

responses and objective acoustic measurements in concert halls to overcome the afore-

mentioned problems. During the late 1960s and early 1970s, it has been proven that

early lateral reflections are essential for subjective spatial impression; a sense of being

enveloped by the sound (Barron 1971; Marshall 1967; Schroeder et al. 1974). Later, in
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1981 Barron and Marshall proposed the objective measure of early lateral energy frac-

tion (LF), which has found to be linearly related to subjective spatial impression (SI).

Beranek describes spatial impression as “the difference between feeling inside the sound

and feeling on the outside observing it, as through a window’ ’ (Beranek 1992, page:8).

Furthermore, in his comparative study of European concert halls in 1974,

Schroeder et al. stated that halls that have lateral reflections from the sides have better

sound performance than the halls with sound waves only coming from the front direction

(see Figure 1.1). To provide lateral reflections to the listeners’ ears, Schroeder (1975;

1979) proposed “phase grating diffusers” based on mathematical sequences that reflect

sound energy in all directions except specular direction, thus resulting in better diffusion.

The proposed diffusers were also advantageous for the reason of not removing the sound

energy from the space like absorbers (Cox & D’Antonio 2003; Schroeder 1979). Because

in case of today’s large concert halls, every amount of energy produced by the orches-

tra should be conserved within the hall for reverberation and richness. In addition, these

diffusers also met the requirements of modern architecture by their innovative design.

Figure 1.1. Lateral reflections added by Schroeder et al. to concert hall impulse re-
sponses. The result is improved subjective preference (Source: Schroeder
1980, page:28)

The subjective responses of the audience at the concert halls are described and

judged by five elements (Beranek 1992):

1. Spatial Impression (SI): Spatial impression is related to the measured early
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lateral reflections as mentioned before, and describes the communication between the

audience and the orchestra (Beranek 1992; Barron & Marshal 1981).

2. Liveness: Beranek (1992) also describes the liveness as reverberance and the

term is directly related to the measured reverberation times of the hall. The halls which

has low reverberation times are called “dry” while longer reverberation times make the

hall “live”.

3. Warmth: This element is described as the subjective response related to the

bass component of music performed by the orchestra. The warmth increases if the music

is rich in bass. Beranek (1992) states that if the measured reverberation times of large

halls are less than 2.1 seconds, the warmth is linearly correlated with the reverberation

times at low frequencies.

4. Loudness: This term is related to the reverberation time and size of the concert

hall. The direct sound from the orchestra and the reverberant sound effects the loudness.

Therefore, the ratio of reverberation times and the measured distances from the stage to

the volume of the concert hall is related to the loudness (Beranek 1992).

5. Diffusion: The aforementioned study of Schroeder et al. (1974) clearly proves

the importance of the diffusing surfaces on the subjective preference. Beranek (1992) also

mentions that the hard reflective surfaces gives the performed music a harsh sound; and

the concert halls should have diffusive surfaces in order to provide early lateral reflections

in all directions to prevent focus of the sound at certain locations of the hall.

This study is focused on the first and fifth item of the list above to improve the

subjective responses of the audience in terms of introducing two dimensional phase grat-

ing diffusers. Since their discovery in the 1970s by Manfred Schroeder, reflection phase

grating diffusers, so–called ‘Schroeder diffusers’ have been widely used worldwide in

many applications including concert halls, recording studios, churches, and listening

rooms (Cox & D’Antonio 2000, 2004; Cox & Lam 1994; D’Antonio 1989; Järvinen

et al. 1998). In concert halls, the major role of diffusing surfaces on acoustic quality has

been widely accepted today (Haan & Fricke 1997; Hidaka & Beranek 2000; Jeon et al.

2004). In 1997, Haan and Fricke investigated the relationship between the diffusion of

sound and the acoustical quality of fifty-three halls known world-wide. They proved that

subjective surface diffusivity index correlates very highly with acoustic quality index. Not

surprisingly, the best three halls mentioned above rated highest. Later in 2000, Hidaka
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and Beranek conducted a study on objective and subjective evaluation of twenty-three

opera houses in Europe, Japan, and the Americas. They stated that “every opera house

and concert hall with ratings above ‘passable’ has architectural means for bringing about

diffusion of the reverberant sound field” (Hidaka & Beranek 2000, p:379).

Schroeder diffusers can be classified into two main types: Single plane or one-

dimensional (1D) diffusers and two-dimensional (2D) diffusers (Cox & D’Antonio 2000;

2004). One-dimensional diffusers consist of an array of wells that have equal widths

and different depths based on number sequences. The wells are separated by thin fins.

The most common investigated one-dimensional diffuser is based on Quadratic Residue

sequence which has been introduced by Schroeder in 1979 and is shown in Figure 1.2. In

fact, Schroeder proposed different mathematical sequences for the design of diffusers such

as Primitive Root and Index sequences. In addition, numerous studies on the development

and modification of one-dimensional diffusers have been carried out (Angus 1992; 1999;

2001; Cox 1995; Cox & D’Antonio 2000; Cox et al. 2006; D’Antonio 1990; 1992;

Järvinen et al. 1998; 1999).

Figure 1.2. One dimensional quadratic residue diffuser (Source: Cox & D’Antonio 2000,
page:121)

Concept of reflection phase grating diffusers based on different sequences will

be theoretically and quantitatively analyzed in Chapter 2 in detail. In brief, Schroeder

diffusers are designed by the following concept. Sound comes incident on the diffusers.

Plane waves propagate within each well; then radiate from the wells into the space. Waves

have different phase due to the phase change and therefore creates an interference pattern.

Consequently, the relative phases of the waves can be modified by changing well depths.

Therefore, scattering depends on the choice of well depths (Cox 1995; Cox & D’Antonio
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2004).

One-dimensional diffusers scatter sound into a hemi-disc (D’Antonio & Cox

2000). But there is also a need for a diffuser that provides scattering into a hemisphere

which would be successful at dispersing strong specular reflections as shown in Fig-

ure 1.3. And, this can only be achieved by two-dimensional diffusers (Cox & D’Antonio

2004; D’Antonio & Cox 2000; Schroeder 1979). Cox and D’Antonio (2009) have stated

two known methods for designing two-dimensional diffusers. The key point is to preserve

and transfer the one dimensional diffusion properties when forming two dimensional dif-

fusers, and it is related to the autocorrelation properties of the number sequence which is

described in Chapter 2 in detail. The first method is the Product Array Method, applying

two number sequences at x and z directions in form of Equation 1.1:

Ai,j = Pi ×Qj (1.1)

where P and Q are two number sequences with length of p and q, and A is the array of

size pq (Schyndel et al. 1999). Quadratic residue and primitive root sequences can be

used to form such diffusers. In fact, in his pioneer work in 1979, Schroeder proposed

two-dimensional quadratic residue diffusers based on Product Array Method.

Figure 1.3. Scattering patterns of one and two dimensional diffusers (Source: Everest
2001, page:310)

The other method is called Folding Arrays Method and is based on Chinese Re-

mainder Theorem which folds a 1D sequence into 2D array while preserving the autocor-

relation properties of the 1D sequence (Cox & D’Antonio 2009; MacWilliams & Sloane

1976; Schyndel et al. 1999). Chinese Remainder Theorem is based on reconstructing cer-

tain range of integers from their residues modulo a set of coprime moduli. For instance,

15 integers from 0 to 15 can be reconstructed from their two residues modulo 3 and mod-
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ulo 5 which are coprime factors of 15). If we say r3 = 1 and r5 = 0, then the unknown

number is 10 (Schroeder 1997). Figure 2.21 shows the principle of the method.

Figure 1.4. Folding Array Construction Method

This technique can be also applied to quadratic residue sequence for large moduli,

primitive root sequence, and other sequences such as Chu sequence. In fact, D’Antonio

and Konnert (1995) designed a two dimensional primitive root diffuser with Folding Ar-

rays Method under the registered trademark Skyline. In addition, Cox and D’Antonio

(2004) modified primitive root sequence based on prime number 43 folded into a 6 × 7

array and found that the folding technique is successful. Other than these studies which

are based on two known methods, D’Antonio and Konnert (1987) modified two- dimen-

sional quadratic residue diffusers under the registered trademark Omniffusor and FRG

Omniffusor with a well-depth optimization technique over the Product Array Method.

Omniffusor is shown in Figure 1.5. Today, two-dimensional quadratic residue diffusers

have been commercially exploited and developed.

However, contrary to one-dimensional diffusers, Cox and D’Antonio (2009)

agreed that there is limited study on the measurement and prediction of multi-dimensional

diffusers. Furthermore, research on the literature of multi-dimensional diffusers shows

that the further studies after Schroeder (1979) are limited to the works of Cox and
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Figure 1.5. Omniffusor (Source: RPG Diffusor Systems 2009)

D’Antonio (2009), D’Antonio and Konnert (1990; 1995), D’Antonio et al. (1990) and

Angus and Simpson (1997). In fact, constructing multi dimensional arrays from one-

dimensional sequences have been also studied in other fields such as digital watermark-

ing (Schyndel et al. 1999; 2000; Tirkel et al. 1998a; 1998b), encoding devices used in

physics, astronomy, television, medicine and radiation safety (Fedorov & Tereshchenko

1999), and coded aperture imaging and optical systems (Fan & Darnell 1996). The Dis-

tinct Sums Property (DSP) Method introduced and investigated by Tirkel et al. (1998a;

1998b) and Schyndel et al. (1999; 2000) is a method used in digital watermarking for

forming two dimensional arrays from one dimensional sequences. The method which is

shown in Figure 3.1 is based on using cyclic shifts of the seed sequence in the rows or

columns of the array and offers different construction possibilities.

Figure 1.6. The Distinct Sums Property Array Method (Source: Schyndel et al. 1999,
page: 359 )

In addition, the method preserves the autocorrelation properties of the seed se-

quence in two dimensional arrays. Therefore, applying The Distinct Sums Property

Method used in digital watermarking to construct two dimensional acoustic diffusers en-

ables new two dimensional acoustic diffusers with good diffusion properties. The research
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shows that the two dimensional acoustic diffusers based on DSP Method have successful

diffusion properties. Furthermore the previous studies of D’Antonio and Konnert (1990;

1995) and D’Antonio et al. (1990) resulted in diffusers with limited visual choices. Us-

ing the same diffuser in rows and columns, rotating them, or applying a binary sequence

to determine the overall design in order to create a visual difference gives the architect

limited choice. Therefore, there should be a variety of design options for the architect to

choose from without giving up the acoustic requirements.

1.2. Aim and Scope of the Study

This dissertation aims to design new two dimensional acoustic diffusers based

on quadratic residue sequence with the Distinct Sums Property Method which is used in

digital watermarking. As stated before, there is limited study on the construction and

prediction of two dimensional diffusers. Although there are commercially available two

dimensional diffusers like Omniffusor, FRG (Fiber Reinforced Gypsum) Omniffusor and

Skyline, the prediction of scattering from two dimensional acoustic diffusers with Bound-

ary Element Method (BEM) are not systematically stated in books related to the field of

acoustics. Polar response data and related diffusion coefficients of new diffusers intro-

duces new scientific data for future studies. In addition, construction and prediction of

new two dimensional diffusers with BEM will contribute to the current literature on the

subject.

Furthermore, current methods to construct two-dimensional diffusers from one-

dimensional sequences limit the design and therefore possibilities of new diffuser struc-

tures. Hence, applying the Distinct Sums Property Method to construct two dimensional

quadratic residue diffusers will enable multi-choice options for the architects and acous-

ticians.

1.3. Limitations and Assumptions

This dissertation proposes to develop two dimensional quadratic residue diffusers

based on the Distinct Sums Property Method. The development and evaluation of acoustic
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diffusers in the twentieth century was concentrated on concert hall applications. But

today, acoustic diffusers cover a wide area of applications such as concert halls, music

recording rooms, churches and music education facilities. Therefore, this thesis does not

limit the application areas of the proposed diffusers.

One dimensional quadratic residue diffusers are chosen to construct two dimen-

sional diffusers for the reason of optimum diffusion characteristics. Between the design

frequency and the upper frequency limit, Cox and D’Antonio (2009) states that optimum

diffusion can be achieved. However, primitive root diffusers work only at discrete fre-

quencies and produce an even polar response only at large moduli (Cox & D’Antonio

2009).

In addition, the design of the quadratic residue diffusers are based on prime num-

ber 7 for the application purposes. Previous studies of D’Antonio and Konnert (1990;

1995), D’Antonio et al. (1990) shows that the dimensions of two dimensional acoustic

diffusers should be around 60 centimeters x 60 centimeters with varying depths accord-

ing to application requirements. Only the diffuser based on prime number 7 achieves a

modular dimension. In addition, the proposed diffusers will cover the walls or ceilings

of a music performance area with a required design pattern. In order to be compatible

with other structures such as acoustic tiles and for construction advantages, the quadratic

residue diffusers are based on prime number 7.

The material selection of proposed two dimensional diffusers is also limited to re-

flective hard materials such as wood, plexiglass and fiber reinforced gypsum. Schroeder

diffusers based on quadratic residue sequence already shows sound absorption charac-

teristics, which was first experimentally investigated by Commins et al. (1988). Then

Fujiwara and Miyajima (1992), and Kuttruff (1994) studied the low-frequency absorp-

tion of Schroeder diffusers. However, later in 1995, Fujiwara and Miyajima found that

the poor quality of the construction of Schroeder diffusers at the previous study was the

reason of absorption. In order to avoid such results, the absorption properties should be

minimized by optimization of well width, proper sealing of joints, and using rough con-

struction materials (Cox & D’Antonio 2009). When it comes to the prediction of the

scattering with BEM, Cox (1994; 1995) and Cox and Lam (1994) states that the diffusers

should be assumed to have hard reflective surfaces which are non-absorbent. Therefore

the proposed diffusers are assumed to have hard reflective surfaces and the sound absorp-
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tion properties are beyond the scope of the thesis. In addition, possible precautions will be

taken to minimize absorption in future architectural applications. However, it is crucial to

state that studies covering hybrid surfaces providing partial absorption, partial reflection

are vital and offers suitable solutions for spaces requiring both properties like studios.

Therefore, the hybrid surfaces is thought to be investigated for future studies1.

1.4. Method

This study aims to develop two-dimensional quadratic residue diffusers with the

Distinct Sums Property (DSP) Method. In order to characterize the diffuser’s perfor-

mance, the diffuser should be constructed upon the design equations for the given se-

quence. Then the diffuser should be exactly modeled with real geometry for the prediction

process. This thesis consists of two major phases:

1. Construction

2. Prediction

1.4.1. Construction

Firstly, the quadratic residue sequence for prime number 7 is used as a seed se-

quence. In order to form two dimensional diffusers with the DSP Method, a grid consist-

ing of 7 rows and 7 columns is created. The DSP Method offers N − 1 designs where N

is the prime number and the length of the sequence. Therefore, 6 arrays are constructed

with different cyclic shifts from m = 1 to m = 6 which is shown in Figure 3.2. Distinct

Sums Property Method is chosen for the reason of preserving good autocorrelation and

Fourier properties. Cox and D’Antonio (2004) stated that one way of finding a proper

sequence is to look for sequences with good autocorrelation properties. Autocorrelation

is the correlation of a signal with itself (Manolakis 2005). The Fourier transform of an

autocorrelation function gives the scattered energy distribution (Cox & D’Antonio 2009).

Therefore, a good diffuser has even scattered energy distribution, and has good autocor-

relation properties. Therefore, in order to proceed with the construction, two dimensional
1For the concept and design of hybrid surfaces see Angus (1995), Angus and D’Antonio (1999), Cox et

al. (2006), Cox and D’Antonio (1999), D’Antonio (1998), and Wu et al. (2000; 2001).
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autocorrelation function of each array is calculated and plotted with MATLAB. The re-

sults showed that the arrays has ideal two dimensional autocorrelation properties for the

further progress.

For the array ofm = 1, the well widths are set in accordance with the previous 2D

diffusers which are also specified the upper frequency limit (D’Antonio .& Konnert 1990;

1995; D’Antonio et al. 1990). A design frequency is also set to provide diffusion for

maximum possible bandwidth and well depths are calculated for each well for the given

design frequency. The thicknesses of the fins separating each well are chosen realistically

for future construction. At the end of the calculations, cross-check equations are applied

for the probable design failures. Finally, all the data and dimensions are transferred into

CAD program and modeled in 3D.

1.4.2. Prediction

As the modeling method for diffusers, BEM is chosen because it is the most ac-

curate and effective method which highly correlates with the measurement results (Cox

1992, Cox & D’Antonio 2009, Cox & Lam 1994; D’Antonio 1995). In addition, theoretic

background of BEM at predicting the scattering from Schroeder diffusers and reflective

surfaces has been verified with the studies of Cox (1994; 1995; 1998), Hargreaves and

Cox (2005), Kawai and Terai (1990), and Lam (1999).

To optimize a diffuser, it is essential to predict the reflected pressure from the

surface. Long computational times and storage limitations limit the prediction of scat-

tering techniques which use whole space prediction algorithms. Therefore, predicting

the scattering from the diffuser’s surface isolated from other surfaces and with bound-

aries is considered. Boundary Element Method is a numerical computational method to

solve partial differential equations which requires calculating only the boundary values.

Consequently, for prediction, BEM is used throughout the prediction phase.

Boundary Element Method works by constructing a mesh of the modeled struc-

ture. A specialized meshing software is used to mesh the 3D modeled diffuser. There

are different methods based on different integral equations varying in accuracy and com-

putational time. Considering the mentioned studies, Standard Boundary Element Method
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Figure 1.7. The Application of DSP Method for One Dimensional Quadratic Residue Se-
quence for N = 7
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based on Helmholtz-Kirchhoff integral equation is the most accurate but the slowest meth-

ods for the prediction of diffusers. However, the accuracy of the method is vital in case

of applying a new method and predicting the results. Therefore, Standard Boundary Ele-

ment Method is used to predict the scattering. In order to speed the computational time,

some adjustments are made on the 3D model according to the previous studies by Cox

and D’Antonio (2009), Hargreaves and Cox (2005). The geometry of the test setup in

BEM software is modeled according to the Audio Engineering Society Standard AES-

4id-2001(r2007):AES information document for room acoustics and sound reinforcement

systems - Characterization and measurement of surface scattering uniformity and the stud-

ies of Cox and D’Antonio (2009).

The distribution of the scattered energy is described by polar responses in octave

band frequencies for a given angle of incidence. Therefore, a successful diffuser produces

a polar response in all angles in the reflected sound field (Cox & D’Antonio 2009). Con-

sequently, to evaluate the quality of the scattering produced by the diffusers, scattered

polar responses are obtained with BEM for each octave band frequency. Secondly, to

evaluate the scattering by a single merit, the diffusion coefficient for each octave band

frequency is calculated in accordance with AES-4id-2001(r2007). The obtained diffusion

coefficients of the 2D DSP diffuser are plotted with the reference flat surface with same

dimensions and normalized to see the actual performance. The diffusion coefficients of

the new diffuser are compared with FRG Omniffusor and Omniffusor (D’Antonio et al.

1990) which are also based on quadratic residue sequence.
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CHAPTER 2

SCHROEDER DIFFUSERS

2.1. Diffusion from Schroeder Diffusers

Acoustics is the science of sound. Since we define sound as a wave, the behav-

ior of sound waves play an important role when dealing with the acoustic problems. A

sound wave hitting on a surface may behave in three ways: It is transmitted, absorbed or

reflected. The acoustical properties of the surface effects the amount of the sound energy

which goes into transmission, absorption or reflection (Long 2006). The room acoustics

deal with the boundary of the surfaces, so we concentrate on the absorption and reflection.

The reflection can occur in two ways: It can be specularly reflected by a large

flat surface or it can be scattered by a diffusing surface. Large flat panels reflect sound

waves specularly, therefore creating a mirror reflecting light effect. The amount of the

sound energy is preserved and reflected in the specular direction with equal incidence and

reflection angles (Cox & D’Antonio 2003). In 2009, Cox and D’Antonio have studied

the behavior of a flat surface with Finite Difference Time Domain (FDTD) method which

is a simulation technique currently being used in electromagnetism. A cylindrical wave

was sent to the flat surface and the response of the panel have been calculated. As seen in

Figure 2.1 , the reflected wave has the same angle of the incident sound which was normal

to the surface, so the reflected wave just changed direction.

The diffusers are generally defined as surfaces which has geometrical shapes or

corrugates which scatters sound. However, scattering the sound in certain bandwidths

not always results in desired sound environments. Cox and D’Antonio (2009) states that

not all corrugated or geometrically shaped surfaces can be called a diffuser. The surface

should disperse the incident sound wave both spatially and temporally. Spatial dispersion

in all angles means that the surface scatters sound in all angles independent from the an-

gle of the incident sound. In addition, to prevent coloration meaning that the scattered

component is interfering with the incident sound, there should be temporal dispersion.

Therefore, optimum diffusion occurs when surfaces diffuse sound both spatially and tem-
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porally. Same study for plane surfaces was applied to Schroeder diffusers using the FDTD

method (Cox & D’Antonio 2009). A cylindrical wave was sent to the surface of the dif-

fuser. As seen in Figure 2.2, the reflected wavefront is dispersed in angles and temporal

dispersion occurs due to the time the sound wave takes to travel in and out of the wells.

Figure 2.1. Cylindrical wave reflected from a flat surface computed with FDTD method
(Source: Cox & D’Antonio 2009, page:35)

For better comparison, it is important to state the measured spatial and temporal

responses. Figure 2.3 shows the temporal and spatial response of a flat surface and a

Schroeder diffuser. The flat surface’s time response indicate the similarity with the direct

sound. As seen, the reflection occurs with the nearly same sound pressure level and lasts

for a short time. Spatial response shows the direction change of the reflected sound which

may lead to echo problems. The spatial response of the Schroeder diffusers indicates the

dispersion occurring independent from the incident sound. For the temporal response, the

reflections are altered and lasts for a longer time period.

Furthermore, in music, the surface’s frequency responses play an important role.

The original sound from the orchestra should be properly reflected in order to prevent

coloration. It is not acceptable for the surface to emphasize some frequencies and deem-

phasize the others (Cox & D’Antonio 2003). This leads to hearing some of the instru-

ments’ frequency while not hearing others’. Figure 2.4 shows the temporal and frequency
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Figure 2.2. Cylindrical wave reflected from a Schroeder diffuser computed with FDTD
method (Source: Cox & D’Antonio 2009, page:36)

Figure 2.3. Comparison of the spatial and temporal response of a flat surface and a
Schroeder diffuser (Source: Cox & D’Antonio 2003, page:120)
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responses of a flat surface and a Schroeder diffuser. The flat reflector reflects high fre-

quencies but attenuates the lower frequencies depending on the size and shape. However,

Schroeder diffuser shows peaks and lows indicating a more successful reflection of the

original sound in terms of frequency (Cox & D’Antonio 2009).

Figure 2.4. Comparison of the temporal and frequency response of a flat surface and a
Schroeder diffuser (Source: Cox & D’Antonio 2009, page:37)

The optimum diffusion of Schroeder diffusers comes from the fundamentals of

number theory. Schroder diffusers consist of a series of wells separated by thin fins. In

order to provide spatial and temporal dispersion while preserving the total reflection, well

depths are determined upon a number sequence. The exponentiated number sequence

gives the reflection coefficients of the surface. For instance, for quadratic residue se-

quence, the surface reflection coefficients (R(x) are given by Equation 2.1 (Schroeder

1979):

R(x) = e(2π·j·sx/N) (2.1)

where sx is the sequence number calculated for the xth element of the sequence and N

is the modulo of the sequence. In optics, Joseph von Fraunhofer found that the far-field

scattering can be determined from the Fourier transform of the surface reflection coeffi-

cients (Cox & D’Antonio 2009; Brooker 2003). This method is also applied to acoustics

but it is more limited in terms of low frequency predictions and oblique source and re-
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ceiver points (Cox, Avis & Xiao 2006; Cox & D’Antonio 2009). However, Fraunhofer

model is generally used at the design stage of new sequences for the reason of using sim-

ple equations (Cox & D’Antonio 2009). Therefore, scattering in terms of the pressure

magnitude | p | from a surface according to Fraunhofer model is given by Equation 2.2

(Cox & D’Antonio 2004; Schroeder 1975):

| p(θ, ψ) |≈| A
∫
s

R(x)ejkx[sin(θ)+sin(ψ)]dx | (2.2)

where R(x) is the reflection coefficients along a wall, θ the angle of reflection with re-

spect to the normal of the direction of the wall, ψ the angle of incidence with respect to the

normal of the direction of the wall, x the distance along the surface, and k the wavenum-

ber. The relationship between scattering angle θ and the spatial frequency k is given by

Equation 2.3:

k = 2π(sin(θ)− sin(ψ))/λ (2.3)

To obtain scattered energy for θmax = 90 for normal incidence ψ = 0, the highest spatial

frequency k should be equal to:

kmax = 2π/λ (2.4)

The Fourier transform of the surface reflection factors R(x) nearly equals to the scattered

energy distribution as stated in Equation 2.2. Wiener-Khinchine theorem states that power

spectrum is the Fourier Transform of the autocorrelation function (Bracewell 2000). This

theorem can be applied to number theoretic diffusers and makes it easier to investigate

other number sequences. Consequently if the scattered energy distribution is constant,

it shows that the diffuser has good scattering properties. If we apply Wiener-Khinchine

theorem to diffusers, the Fourier Transform of the autocorrelation of the surface reflection

coefficients gives the scattered energy distribution. Therefore, a good diffuser is one

which has a Dirac delta function autocorrelation function for the reflection coefficients as

it will result in an even scattered energy distribution (Cox & D’Antonio 2009; Schroeder

2006).

The autocorrelation is defined as the correlation of the signal with itself (Smith
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1999). It is used to represent the degree of self-similarity over a given time series (Girod

2001). The signal and the lagged version of itself is calculated. The discrete autocorrela-

tion of a sequence ân is given by Equation 2.5 (Fan & Darnell 1996):

Ra(τ) =
N−1∑
n=0

ânâ
∗
n+τ (2.5)

Giving the Fourier transform of a sequence ân in Equation 2.6, if we apply Wiener-

Khinchine theorem and state the relationship between the autocorrelation function and

its Fourier transform as in Equation 2.7 (Fan & Darnell 1996):

F (k) =
N−1∑
n=0

âne
−j 2πnk

N (2.6)

R(τ)↔
N−1∑
τ=0

R(τ)ej
2πτk
N (2.7)

=
N−1∑
τ=0

[
N−1∑
n=0

ânâ
∗
n+τ

]
ej

2πτk
N

=
N−1∑
n=0

â∗ne
j 2πnk

N

N+n−1∑
m=n

âme
−j 2πmk

N , (m = τ + n)

= F ∗(k)F (k) =| F (k) |2

Autocorrelation of a sequence which has delta function will have a strong peak at

τ = 0 and will be 0 for all other τ given by Equation 2.8 (Fan & Darnel 1996):

Ra(τ) =

E for τ = 0

0 for τ 6= 0

(2.8)

These sequences are called perfect sequences and have an even scattered energy distribu-

tion, e.g. a flat power spectrum. Assuming that the sequence ân is perfect, Equation 2.7

becomes:

R(τ)↔
N−1∑
τ=0

R(τ)ej
2πτk
N = R(0)ej

2πk0
N = E (2.9)

or we can write:

| F (k) |=
√
R(0 =

√
E (2.10)

Therefore, if all the elements of the sequence ân = (a1, a2, ..., an] has the same magnitude

21



of F (k) =
√
R(0 =

√
E, we can say that a diffuser based on a perfect sequence has even

scattered energy based on the Fraunhofer or Fourier model. The sequence properties

determines the general design parameters for the Schroeder diffusers. Consequently it

will be proper to analyze each of them individually.

2.2. One Dimensional Diffusers

2.2.1. Maximum Length Sequence Diffusers

Maximum length sequences are good type of pseudo-random sequences which

are very useful in applications such as system identification, synchronization, spread-

spectrum communication, cryptography, and radar (Fan & Darnell 1996; MacWilliams

& Sloane 1976). These sequences have a period length of N = 2m − 1. Figure 2.5

shows the cross section of a one period of maximum length sequence for N = 7 which is

sn = {1, 1, 0, 1, 0, 0, 0}.

Figure 2.5. Cross section of a one period of maximum length sequence for N=7 (Source:
Cox, Avis & Xiao 2006, page:809)

Schroeder (1975) first investigated the maximum length sequence diffusers and

gave the reflection coefficients as in Equation 2.11:

R(x) =
∞∑

n=−∞

snrect
(x
d
− n

)
(2.11)
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rect(x) = u(x)


0 if x > 1

2

1
2

if x = 1
2

1 if x < 1
2

(2.12)

whereR(x) is the reflection coefficients along a wall, sn is the corresponding sequence for

the nth element, and d is the well depth. Scattering in terms of the pressure magnitude | p |

from a surface according to Fraunhofer model is given by Equation 2.2 (Cox & D’Antonio

2009). Normally, an incident wave is reflected from a hard surface with a reflection factor

(Rn) of +1. According to maximum length sequence for N = 7, {1, 1, 0, 1, 0, 0, 0}, if we

set back the wells like in Figure 2.5 by a quarter wavelength, λ/4, the wave will travel an

additional λ/2. Therefore it is shifted by π, and so the complex amplitude is eiπ is equal

to −1 for the design frequency (Schroeder 1997). The pressure magnitude at the design

frequency becomes (Cox & D’Antonio 2009):

| pm |≈| A
∫
s

R(x)e
j2πxm
Nd dx |=| A

N∑
n=1

Rne
j2πnm
N | (2.13)

Consequently, if we have a maximum length sequence for , N = 7, {1, 1, 0, 1, 0, 0, 0}, re-

flection factors (Rn) are {1, 1,−1, 1,−1,−1,−1}. However, if the incident wave has one

octave higher frequency than the design frequency, therefore having half the wavelength,

the phase is shifted 2π, meaning that the surface behaves like a plane surface. As a result,

maximum length sequence diffusers are useful over a limited bandwidth, which is over

an octave (Cox & D’Antonio 2004; Schroeder 1997). Therefore the scattering pressure

magnitude is given by Equation 2.14:

| Pm |=

A m = 0,±N,±2N

A
√
N + 1 otherwise

(2.14)

To overcome this limited scattering properties of maximum length sequences, Cox, Avis

and Xiao (2006) introduced active diffusers. They placed an active controller in the central

well of a maximum length diffuser forN = 7 as shown in Figure 2.6. The active controller

has set to generate reflection factor (Rn) of−1. The passive and active diffusers were built

specifically for the design frequency of 500 Hz.
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Figure 2.6. Cross section of a one period of an active maximum length sequence for N=7.
The central well has active controller. (Source: Cox, Avis & Xiao 2006,
page:808)

At the design frequency of 500 Hz., both active and passive diffusers produced

similar scattering properties. However, at 1000 Hz, the passive diffuser behaved like a

plane surface as the well depth is half a wavelength. Therefore, the waves reflecting from

the surface were in phase. On the contrary, the active diffuser continued scattering, as the

reflection factor of the central well was still −1. Figure 2.7 shows the measured polar

responses from a plane surface, the passive and the active maximum length diffuser.

Figure 2.7. The scattering from three surfaces at 500 Hz. and 1000 Hz: Thin line: plane
surface, bold line: active MLS diffuser, dotted line: passive MLS diffuser
(Source: Cox, Avis & Xiao 2006, page:813)

2.2.2. Quadratic Residue Diffusers

Schroeder (1979) continued his research about number theoretic diffusers. Be-

cause of the limited diffusion properties of maximum length sequence diffusers,

Schroeder (1979) searched for new sequences which should give excellent sound diffu-

sion over more broadband frequency range. Thus, Schroeder (1979) proposed quadratic
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residue sequences (also called Legendre sequences) first introduced by Adrien Marie Leg-

endre and Johann Carl Friedrich Gauss. Quadratic residue sequences are given by Equa-

tion 2.15:

sn = n2modN (2.15)

where sn is the sequence number for the nth well, mod the indication of the least non-

negative remainder, N an odd prime which is also the number of wells per period. For in-

stance, for one period of anN = 7, quadratic residue diffuser has sn = {0, 1, 4, 2, 2, 4, 1}.

Quadratic residue sequences are symmetrical between n ≡ 0 and n ≡ (N − 1)/2. Fig-

ure 2.8 and Figure 2.9 shows one dimensional quadratic residue diffusers.

Figure 2.8. One dimensional quadratic residue diffuser (Source: Cox & D’Antonio 2000,
page:121)

Figure 2.9. One dimensional quadratic residue diffusers made from different materials
(Source: Cox & D’Antonio 2009, page:290)

The Fourier Transform of the surface reflection coefficients R(x) nearly equals to

the scattered energy distribution as stated in Equation 2.2. The reflection coefficients of

quadratic residue sequence is given by Equation 2.16 (Schroeder 1979):

R(n) = e2πjsn/N (2.16)

where sn is the sequence number for the nth well and N is the number of wells. The auto-

correlation of quadratic residue sequences shows the following property (Fan & Darnell
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1996):

Rn(τ) =

N for τ ≡ 0(modN)

E otherwise
(2.17)

If we apply Fourier Transform to the autocorrelation Rn(τ):

Rn(τ)↔
N−1∑
τ=0

R(τ)e−2πjnk/N = R(0)e−2πj0k/N =| F (k) |2= N (2.18)

and we can write:

| F (k) |=
√
R(0) =

√
N (2.19)

The power spectrum, e.g. the Fourier transform of the autocorrelation function of the

quadratic residue sequences have a constant magnitude. Therefore according to Fraun-

hofer model, we can say each scattered wave from the quadratic residue diffusers have a

constant magnitude which shows us the optimum diffusion properties. Consequently the

scattered energy distribution in terms of pressure magnitude is given by Equation 2.20

(Cox & D’Antonio 2009):

| Pm |=
√
N,m = 0,±1,±2, ... (2.20)

Even energy lobes at the scattering can also be seen in Figure 2.10 which shows the polar

responses of a quadratic residue diffuser and a flat surface.

Figure 2.10. Scattering from a quadratic residue sequence and a flat surface (Source: Cox
& D’Antonio 2009, page:291)
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Design of Quadratic Residue Diffusers

Quadratic residue diffusers shows optimum diffusion properties for certain band-

widths. At the beginning of the design stage of the quadratic residue diffuser, an upper

frequency limit, fmax should be found. The chosen well width, W determines the lowest

wavelength, λmin, and is related to it by Equation 2.21 (Cox & D’Antonio 2004):

W = λmin/2 (2.21)

W is the total well width of one well and is equal to(D’Antonio & Konnert 1983):

W = w + t (2.22)

where w is the well width and t is the width of the fins separating the wells. Since we

know the speed of sound is c = f · λ in m/s, the Equation 2.21 becomes:

W = c/2fmax (2.23)

Cox and D’Antonio (2009) states that the criterion for the well width is that the

wells should be as narrow as possible to maximize the upper frequency but not so nar-

row to prevent absorption and difficulty of manufacturing. According to D’Antonio and

Konnert (1992), manufacturing limits the lowest well width to 2.5 cm. Also, as the well

width increases, the upper frequency limit decreases which may cause specular reflec-

tions at higher frequencies. Cox and D’Antonio (2009) states that the usual well widths

are around 5 cm. The design frequency, f0 of the quadratic residue diffusers determines

the lower frequency limit. For a given maximum depth, dmax that depends on the man-

ufacturing and space limitation, the design frequency is given by Equation 2.24 (Cox &

D’Antonio 2004):

f0 =
smax
N

c

2dmax
(2.24)

where smax is the largest number in the given quadratic residue sequence. The quadratic

residue diffusers show even scattering behavior at the integer multiples of the design fre-
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quency as stated in Equation 2.20. We can see from Equation 2.24 that the choice of

prime number N and the maximum number smax in the quadratic residue sequence de-

termines the lower frequency efficiency of the device (Cox & D’Antonio 2004). For in-

stance for quadratic residue sequence based on prime number 7, sn = {0, 1, 4, 2, 2, 4, 1}

and the smax = 4. In addition let’s consider another sequence based on prime number 17,

sn = {0, 1, 4, 9, 16, 8, 2, 15, 13, 13, 15, 2, 8, 16, 9, 4, 1} and the smax = 16. If we compare

smax/N for 4/7 and 16/17, it is clear that the quadratic residue diffuser based on prime

number 7 is more efficient in terms of lower frequency. Furthermore, in order to increase

the bass response of the diffuser, Cox and D’Antonio (2004) suggests a constant phase

shift which is given in Equation 2.25:

sn = (n2 +m)modN (2.25)

In addition, architectural requirements and manufacturing determines the lower

frequency of the device in terms of allowable maximum depth, dmax. The allowable space

changes from one architectural space to another. Therefore, before the design process, it

is crucial to discuss the space requirements in order to construct the quadratic residue

diffusers for a particular design frequency. However, D’Antonio and Konnert (1992)

states that the allowable maximum depth cannot exceed 40 cm. in terms of absorption

and manufacturing. After the lower and upper frequency limits are set based on previously

mentioned criteria, well depths of each well are calculated for the given design frequency

f0 based on Equation 2.26:

dn =
snc

2Nf0

(2.26)

where dn is the depth of the nth well in the quadratic residue diffuser, sn is the sequence

number for the nth well, and N is the number of wells. Figure 2.11 shows the cross-section

of a one dimensional quadratic residue diffuser based on prime number 7.

Critical frequencies at quadratic residue diffusers occur at mNf0 where m =

1, 2, 3..... At these frequencies, diffuser behaves like a plane surface because of the wells

radiating in phase. In order to avoid this, it is essential to place the first critical frequency

above the maximum frequency, fmax of the device which is given by Equation 2.27 (Cox
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& D’Antonio 2004):

N � c

2ωf0

(2.27)

Figure 2.11. Cross-section of one dimensional quadratic residue diffuser based on prime
number 7 (Source: Cox & D’Antonio 2009, page:290)

2.2.3. Primitive Root Diffusers

A primitive root sequence is given by Equation 2.28 (Cox & D’Antonio 2004;

Schroeder 1997):

sn = rnmodN n = 1, 2, 3, ...N − 1 (2.28)

where N is an odd prime and r the primitive root of N. The primitive root has N-1 wells

per period. In general, an integer r is said to be a primitive root of a prime N if and only if

r0, r1, r2, ...., rN−1 are all different modulo N (Fan & Darnell 1996). Since gcd(r,N) = 1,

it is clear that rN−1 = 1(modN). For instance, if r = 3, and N = 7, the sn will be

sn = {3, 2, 6, 4, 5, 1} which are all distinct. Therefore 3 is a primitive root of 7.

The well depths dn for the nth element of the primitive root sequence is given by

Equation 2.29 (Cox & D’Antonio 2000):

dn =
snc

2Nf0

(2.29)

where dn is the depth of the nth well in the quadratic residue diffuser, sn is the sequence

number for the nth well, N is the prime number and f0 is the design frequency.
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The primitive root diffusers reduce the energy in the specular direction and

therefore produce a notch diffuser, meaning groovy at the scattering directions (Cox &

D’Antonio 2000). Like quadratic residue diffusers, primitive root diffusers has increased

diffusion at the integer multiples of the design frequency. However, Cox and D’Antonio

states that a large of N is required to achieve minimum pressure at the specular reflec-

tion. For instance, their comparative study (2009) on the scattering of two primitive root

diffusers based on prime numbers N = 7 and N = 37 and a flat surface indicates that

scattering from primitive root diffuser for N = 7 produces 3 lobes showing specular

direction as in plane surface scattering. However when a large number of prime is se-

lected, N = 37, a significant decrease occurs in the specular direction. The results of this

study is shown in Figure 2.12. The requirement of large primes is disadvantageous for

manufacturing and construction.

Figure 2.12. Scattering from PRD based on N = 7, a plane surface, and PRD based on N
= 37 and for normal incidence (Source: Cox & D’Antonio 2009, page:298)

In addition, the scattering in terms of pressure amplitudes of the lobes are given

by Equation 2.30 (Cox & D’Antonio 2004):

| Pm |

A m = 0,±N,±2N

A
√
N otherwise

(2.30)

We can say that a decrease will occur at the integer multiples of N. However, they

will be above the upper frequency limit of the primitive root diffuser and can be ignored.
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2.3. Two Dimensional Diffusers

One dimensional diffusers scatter into a hemi-disc and act like a plane surface at

other directions as mentioned before. There is also a need for a diffuser that scatters into a

hemisphere. This can be achieved by two dimensional diffusers. Currently, there are two

known procedures for constructing two dimensional diffusers: Product Arrays Method

and Folding Array Method (Cox & D’Antonio 2009). The main concept of construct-

ing two dimensional diffusers is to transfer the scattering properties of one dimensional

diffusers while forming multi-dimensional ones. Therefore, the autocorrelation proper-

ties of the sequences forming 1D diffusers should be preserved in 2D arrays. If we take

two perfect sequences am and an which have autocorrelation properties as described in

Equation 2.8, an array of am,n should have autocorrelation function properties such as in

Equation 2.31 (Fan & Darnell 1996):

R(τ, ρ) =

E for (τ, ρ) = (0, 0)

0 for (τ, ρ) 6= (0, 0)

(2.31)

in order to be called a perfect array. Furthermore, the Fourier transform of autocorrelation

function of perfect arrays are given by Equation 2.32 (Fan & Darnell 1996):

R(τ)↔| F (u, v) |2= E (2.32)

or we can write:

| F (u, v) |=
√
E (2.33)

Therefore, the scattering magnitude of perfect arrays should have a frequency dependent

constant,
√
E in order to provide the perfect array properties.

2.3.1. Product Array Method

Product Array Method is basically a vector product of a row and column sequence

vector to produce a P by Q matrix (Schyndel et al. 2000). In other words, two sequences,

one for the x direction, one for the z direction is considered and the amplitude of both
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forms the two dimensional diffuser. For quadratic residue sequence the product array

method is given by Equation 2.34 (Cox & D’Antonio 2009):

sn,m = (n2 +m2)modN (2.34)

where n and m are integers and give the sequence for the nth well in the x direction and

mth well in the z direction. The same method can be applied to primitive root diffusers

and is given by Equation 2.35 (Cox & D’Antonio 2009):

sn,m = (rn + rm)modN (2.35)

In addition, Cox and D’Antonio (2009) stated that it is also possible to use two

different number sequences at x and z directions. But both residue sequences should be

based on the same prime number modulo. A two dimensional (2D) quadratic residue

sequence for N = 7 based on Product Array Method is shown at Figure 2.13:

Figure 2.13. Two dimensional quadratic residue sequence for N=7 based on Product Ar-
ray Method

After the array is constructed, one dimensional equations for fmax, f0, and the well

depths dn are calculated according to the equations in Section 2.2.2. In 1976, Schroeder

also proposed 2D quadratic residue diffusers based on Product Array Method on a scaled

model. But the polar response data of proposed structure shown in Figure 2.14 could not

be found.
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Figure 2.14. Scaled model of two dimensional quadratic residue sequence for N=7 based
on Product Array Method (Source: Schroeder 1979, page:962)

The two dimensional autocorrelation plot and power spectrum of 2D quadratic

residue sequence based on Product Array Method is configured and calculated with MAT-

LAB in Figure 2.15 and Figure 2.16 (see Appendix A: script 2.1).

We can see from Figure 2.15 that the two dimensional autocorrelation properties

is not perfect, showing irregular formations for (τ, ρ) 6= (0, 0). The power spectrum is

flat except at the DC. In addition, Cox and D’Antonio states that 2D diffusers based on

Product Array Method have lower frequency efficiency than 1D diffusers as smax/N is

closer to 1. If we have a look at Figure 2.13, smax/N = 6/7 for 2D quadratic residue

sequence. However, smax/N = 4/7 for 1D quadratic residue structures.

In addition, it is possible to adjust the original sequence, sn = {0, 1, 4, 2, 2, 4, 1}

such as in Figure 2.17. In order to place 0 in the middle of the diffuser, n and m are started

from 4 so that on the diagonal the original sequence becomes sn = {4, 1, 2, 0, 2, 1, 4}.

Cox and D’Antonio (2009) states that it is suitable to start the n and m from any integer,

because the surface is periodic.

At the same study, Cox and D’Antonio (2009) predicted the scattering from this modified

2D quadratic residue diffusers based on N = 7. Figure 2.14 shows the scattering in 3D

polar responses. The autocorrelation and power spectrum for the modified 2D quadratic

residue diffuser for N = 7 is configured and calculated with MATLAB in Figure 2.19

and Figure 2.20 (see Appendix A: script 2.2).

When compared to Figure 2.15, Figure 2.19 shows more irregular formations for
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Figure 2.15. Autocorrelation plot of two dimensional quadratic residue sequence for N=7
based on Product Array Method

Figure 2.16. Power spectrum of two dimensional quadratic residue sequence for N=7
based on Product Array Method
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Figure 2.17. A sequence array for two dimensional quadratic residue diffuser for N = 7
(Source: Cox & D’Antonio 2004, page:316

Figure 2.18. Scattering from two dimensional quadratic residue diffuser for N = 7,sn =
{4, 1, 2, 0, 2, 1, 4} (top), and a flat surface (below) at four times the design
frequency (Source: Cox & D’Antonio 2009, page:318)
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Figure 2.19. Autocorrelation plot of two dimensional quadratic residue sequence for
N=7,sn = {4, 1, 2, 0, 2, 1, 4} based on Product Array Method

Figure 2.20. Power spectrum of two dimensional quadratic residue sequence for
N=7,sn = {4, 1, 2, 0, 2, 1, 4} based on Product Array Method
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(τ, ρ) 6= (0, 0). In addition, the power spectrum is less flat for (τ, ρ) 6= (0, 0). Therefore

it is clear that the shifted version will not show scattering properties as the original 1D

quadratic residue sequence.

As for the manufactured and patented products based on Product Array Method,

D’Antonio and Konnert (1987) modified two dimensional quadratic residue diffusers un-

der the registered trademark Omniffusor and FRG Omniffusor with a well-depth opti-

mization technique over the Product Array Method which is shown in Figure 4.11. The

diffusion coefficients are requested and obtained from D’Antonio (personal communica-

tion 2011) for further comparison. However, the optimization procedure is not stated in

registered trademark Omniffusor, which is described in U.S. Pat. No. D306,764.

2.3.2. Folding Array Method

The Folding Array Method is first introduced by MacWilliams and Sloane in

1976. It is based on Chinese Remainder Theorem which is mentioned in Section 1.1.

MacWilliams and Sloane (1976) folded a pseudo-random sequence of composite length

into a matrix diagonal and proved that the matrix has the same autocorrelation and the

Fourier properties as the pseudo-random sequence. A sequence which has a composite

length of pq can be folded into an array of length p and width q, where p and q are the

co-prime. The construction of the arrays based on Folding Array Method is shown in

Figure 2.21. For example, a sequence of length 21 can be folded into a 3x7 array. The

rule is to have two co-prime factors such as 3 and 7. Therefore, this method can not be

applied to quadratic residue diffusers for the reason of having prime number of wells.

Cox and D’Antonio (2004) have studied the primitive root diffusers to form two

dimensional diffusers based on folding array method. The prime number N = 43 was

generated and the sequence was 42 elements long. It was folded into a 6x7 array. The

predicted scattering of 2D primitive root diffuser is shown in Figure 2.22.

Another study based on the Folding Array Methods is the work of D’Antonio and

Konnert (1993). They designed a two dimensional primitive root diffuser with Folding

Arrays Method under the registered trademark Skyline which is shown in Figure 2.23.

The scattering properties according to different multiples of design frequency is given

in Figure 2.24 (D’Antonio & Konnert 1995). The 2D diffuser has no fins and due to

37



Figure 2.21. Folding Array Construction Method

Figure 2.22. Scattering from 2D primitive root diffuser which is folded into a 6x7 array
(Source: (Cox & D’Antonio 2009, page:320)
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the nature of Folding Array Method, shows no symmetry. In addition, as it can be seen

from Figure 2.24, the 2D primitive root diffuser’s scattering becomes more even in the

multiples of design frequency.

Figure 2.23. Skyline (Source: D’Antonio & Konnert 1993)

Figure 2.24. Scattering from registered trademark Skyline at 3/4, 1, 4, 8, 12 times design
frequency, f0 (Source: D’Antonio & Konnert 1993)
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CHAPTER 3

CONSTRUCTION OF TWO DIMENSIONAL

QUADRATIC RESIDUE DIFFUSERS WITH DISTINCT

SUMS PROPERTY METHOD

3.1. Distinct Sums Property Method

Schyndel et al. (1999; 2000) have introduced The Distinct Sums Property (DSP)

method for folding a one dimensional sequence into a two dimensional array. The pro-

posed method is used in digital watermarking and steganography for the reason of offering

ideal two dimensional autocorrelation properties. The method is based on cyclic shifts on

the rows or columns of the array. Schyndel et al. (2000) states that Distinct Sums Property

(DSP) can only be applied to a sequence sn = {s1, s2, ..., sn} based on prime N and if:

s1 + s2, s2 + s3, ..., sn−1 + sn, sn + s1 are all distinct, and also s1 + s2 +

s3, ..., sn−1 + sn + s1, sn + s1 + s2, and for k = 4, 5, ..., N − 2 consecutive

sums.

To construct an array with Distinct Sums Property Method, first the seed sequence

sn = {s1, s2, ..., sn} is placed at each row. Second, seed sequence is shifted by

m× (rownumber−1) depending on the previous row, where m = 1, 2, ..., N−1. There-

fore the array is constructed by Distinct Sums Property and possesses the DSP property

(Schyndel 1999; 2000). Schyndel (2000) states that duplicate rows can be removed or

row of zeros can be added. In addition, Tirkel et al. (1998) mentions that the maxi-

mum duplicate of rows or columns cannot exceed 1. The method is basically shown at

Figure 3.1.
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3.2. Application of Distinct Sums Property Method to Quadratic

Residue Sequence for N = 7 and Autocorrelation Properties

DSP Method is chosen for the applicable properties of both quadratic residue

sequence and the method itself. Tirkel (1998) and Schyndel et al. (2000) states that

the Legendre sequences shows a perfect response for the DSP Method. In addition, the

phase shifting properties of the method offers many construction possibilities. Therefore

DSP Method is applied for quadratic residue sequence based on prime number n = 7,

sn = {0, 1, 4, 2, 2, 4, 1} for m = 1, 2, ...6 and arrays are formed in Figure 3.2.

Figure 3.1. The Distinct Sums Property Array Method (Source: Schyndel et al. 1999)

It is stated that the autocorrelation properties of a sequence determines the even

scattering from number theoretic diffusers. Therefore, two-dimensional autocorrelation

plots of each m are calculated based on and plotted in Figure 3.3 and Figure 3.4. The

evaluation of the autocorrelation properties of sequences are also determined by peak to

largest sidelobe ratio. The ratio of the peak value magnitude for (τ, ρ) = (0, 0) to the

sidelobe magnitudes for (τ, ρ) 6= (0, 0) should be highest in order to show the ideal auto-

correlation property. For instance, a perfect array as shown in Equation 2.31 has a peak

value of E for (τ, ρ) = (0, 0), and the sidelobes are 0 for (τ, ρ) 6= (0, 0). The ratio is

E/0 =∞ for perfect arrays. Therefore for better comparison of the autocorrelation prop-

erties of arrays based on Product Array and Distinct Sums Property, Table 3.1 shows the

peak to largest sidelobe ratios. As seen in Table 3.1, Distinct Sums Property method has

higher ratios for all m than Product Array method. Therefore, the autocorrelation prop-

erties of quadratic residue sequence array based on DSP is better than the array based

on Product Array method. In addition, power spectrum plots of each m are shown in
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Table 3.1. Peak to Largest Sidelobe Ratios

P. A. P.A. Shifted DSP for m = 1, 2, 3, 4, 5, 6
1,26 1,03 1,5

Figure 3.5 and Figure 3.6 (see Appendix A:script 3.1:3.6). As seen in Figure 3.3 and Fig-

ure 3.4, the autocorrelation properties of 2D arrays based on DSP method shows perfect

array properties as stated in Equation 2.31. In addition, the power spectrum is more flat

for m = 1 than for m = 2, 3, 4, 5, 6 and shifted Product Array as shown in Figure 2.20.

It resembles the power spectrum of quadratic residue sequence based on Product Array

method. Therefore, based on design equations of quadratic residue sequences in Section

2.2.2, the diffuser for can be constructed and modeled for m = 1.

3.3. Construction of Two Dimensional Quadratic Residue Diffusers

Cox and D’Antonio (2009) stated that the lower frequency efficiency of two di-

mensional diffusers tend to be less than one dimensional diffusers for the reason of

smax/N is greater for Product Array Method. For quadratic residue diffuser based on

Product Array Method smax/N is equal to 6/7. However, DSP Method uses the original

seed sequence, sn = {0, 1, 4, 2, 2, 4, 1} and smax/N is equal to 4/7.

Therefore the DSP Method is expected to have more bass efficiency than Product Array

Method.

In order to specify the upper frequency, fmax limit, the total well width,W = w+t

should be decided. For further comparison and manufacturing, the author of the research

uses the same total widths which are suggested and manufactured by D’Antonio et al.

(1990) like Omniffusor and FRG Omniffusor. In addition Cox and D’Antonio (2009)

suggests similar dimensions for scattering comparison. Therefore the total well width for

both vertical and horizontal directions:

W = w + t = 7.8 + 0.6 = 8.4cm. (3.1)

where w is the well width and t is the width of the fins separating the wells. Since the

proposed diffuser will be constructed from wood, min. 0.6 cm. fin width is a necessity.

42



Figure 3.2. The Application of DSP Method for One Dimensional Quadratic Residue Se-
quence for N = 7
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Figure 3.3. Autocorrelation Plot of 2D Quadratic Residue Sequences for N = 7 based on
DSP Method for m = 1, 2, 3
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Figure 3.4. Autocorrelation Plot of 2D Quadratic Residue Sequences for N = 7 based on
DSP Method for m = 5, 6, 7
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Figure 3.5. Power Spectrum of 2D Quadratic Residue Sequences for N = 7 based on
DSP Method for m = 1, 2, 3
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Figure 3.6. Power Spectrum of 2D Quadratic Residue Sequences for N = 7 based on
DSP Method for m = 4, 5, 6
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The total dimensions of the 2D diffuser is:

Wt = (w + t)N + t = (7.8 + 0.6)7 + 0.6 = 59.4cm. (3.2)

The upper frequency limit is calculated according to Equation 3.3:

fmax =
c

2W
= 2041.667Hz. (3.3)

The maximum well depth of the device determines the design frequency, f0 of the device,

vice versa. For further bass efficiency, the maximum well depth is chosen around 20

cm. Correspondingly, the design frequency of the device should be around 500 Hz. for

large bandwidth diffusion. For f0 = 500Hz, the maximum well depth dmax is given by

Equation 3.4:

dmax =
smax
N

c

2f0

= 19.6cm. (3.4)

Therefore both values satisfy the requirements. For construction and prediction the mod-

ulation based on m = 1 is chosen. Consequently, for f0 = 500Hz, well depths formed

according to DSP Method are calculated according to Equation 3.5 and results are given

in Table 3.2.

dn =
snc

2Nf0

(3.5)

Table 3.2. The Calculation of Well Depths for 2D Quadratic Residue Sequence forN = 7

Well depths, dn in meters
0 0,049 0,196 0,098 0,098 0,196 0,049
0 0,049 0,196 0,098 0,098 0,196 0,049

0,049 0 0,049 0,196 0,098 0,098 0,196
0,098 0,196 0,049 0 0,049 0,196 0,098
0,049 0,196 0,098 0,098 0,196 0,049 0
0,098 0,196 0,049 0 0,049 0,196 0,098
0,049 0 0,049 0,196 0,098 0,098 0,196

According to the calculated data, the proposed 2D diffuser is 3D modeled in CAD

environment. The technical drawings are shown in Figure 3.7:
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Figure 3.7. The technical drawings of 2D quadratic residue sequences for N = 7 based
on DSP Method for m = 1 A: Isometric View B:Top View C:Left View D:
Front View
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CHAPTER 4

PREDICTION OF SCATTERING FROM TWO

DIMENSIONAL DISTINCT SUMS PROPERTY

APPLIED QUADRATIC RESIDUE DIFFUSERS WITH

BOUNDARY ELEMENT METHOD

There are different methods to predict the scattering from acoustic diffusers in the

literature such as Standard BEM, Thin Panel BEM, Kirchhoff boundary conditions, Fres-

nel and Fraunhofer Methods (Cox & D’Antonio 2009). The simplest and fastest method

is the Fraunhofer Method described in Chapter 2. Although the Fraunhofer method is

appropriate for understanding the physical process of scattering and good for the prelim-

inary design stage, Cox (1992; 1994; 1995) Cox and Lam (1994) found it to be least

accurate. They studied the scattering from acoustic diffusers with Fraunhofer Method

and Boundary Element Method; then compared the predicted scattering with the mea-

surements. The results clearly state that Fraunhofer method is especially problematic in

the low frequencies and near-field conditions. A far-field near-field comparison of Cox

(1992) is shown in Figure 4.1 and Figure 4.2. Although Cox and D’Antonio claims that

a diffuser performing optimum scattering in far-field also performs well in the near-field,

the author of the research also finds the results unrelated with the measurement results.

On the contrary, Boundary Element Method (BEM) correlates high with the measurement

results as a prediction method for the scattering properties of diffusers (Cox 1992, Cox

& D’Antonio 2004, Cox & Lam 1994; D’Antonio 1995). The prediction method is es-

sential to predict the reflected pressure from the surface to form acoustic diffusers based

on a new method in acoustics. In addition, whole space prediction algorithms such as

Finite Element Method require long computational times. Therefore the scattering of the

acoustic diffusers is predicted in isolation of other objects and boundaries with BEM.
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Figure 4.1. The prediction of scattering from a surface in far-field: Cont. line: BEM,
Dotted line: Fraunhofer (Source: (Cox & D’Antonio 2009, page:276)

Figure 4.2. The prediction of scattering from a surface in near-field: Cont. line: BEM,
Dotted line: Fraunhofer (Source: (Cox & D’Antonio 2009, page:276)

4.1. The Theory and Formulation of Boundary Element Method

Models to predict scattering are based on Helmholtz-Kirchhoff integral equation.

The wave equation reduces to Helmholtz equation under steady-state, constant frequency

as in Equation 4.1 (Cox $ D’Antonio 2009; Kirkup 2007):

52p(r) + kp(r) = 0 (4.1)

where p is the sound pressure, r is a point in space and k is the wavenumber and equals to

2πf/c. If we apply Green’s functions (G) for the transformation of integral equations on

Equation 4.1, the pressure p(r) at point r for a single frequency is given by Equation 4.2

(Cox 1994; Cox & D’Antonio 2004; 2009):

pi(r, r0) +

∫
s

p(rs)
∂G(r, rs)

∂n(rs)
−G(r, rs)

∂p(rs)

∂n(rs)
ds


r ∈ E p(r)

r ∈ s 1
2
p(r)

r ∈ D 0

(4.2)
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where r0 = {x0, y0, z0} is the vector describing the source location; r = {x, y, z} is

the vector describing the receiver location; rs = {xs, ys, zs} is the vector describing a

point on the surface, pi(r, r0) is the pressure radiated from source to the receiver r, n

is the normal to the surface, E the external region, s the surface, and D the interior of

the surface. The Helmholtz-Kirchhoff intergral equation is compromised of three parts:

First part formulates the combination of pressures direct from sources, second part takes

the surface integral of the pressure, and third part takes its derivative over the reflecting

surfaces (Cox 1994; Cox $ D’Antonio 2004; 2009). The geometry which is used in

equations and for scattering is shown in Figure 4.3:

Figure 4.3. Geometry used for prediction with BEM (Source: Cox & D’Antonio 2009,
page: 254)

Equation 4.2 determines the direct pressure from the source to the receiver point

r. In addition, the integral is applied to determine the reflected energy from a point on

the surface rs to the receiver point r. In order to understand the propagation of the sound

pressure and its derivative from one point to another, Green’s function is used and for 3D

case G is given by Equation 4.3 (Cox 1994; Cox & D’Antonio 2004; 2009; Kirkup 2007):

G(r) =
e−jkr

4πr
, (k ∈ C) (4.3)

where r =| r − r0 |, k is the wavenumber and C is the complex set of numbers. There

is also formulation for 2D case for two dimensional prediction with BEM. Cox (1994)

formulated equations for 2D BEM for predicting scattering from 1D Schroeder diffusers.

1D Schroeder diffusers scatter sound into a hemi-disc meaning that the diffusion occurs

along the width. However in case of 2D diffusers, diffusion occurs into a hemisphere;
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both in width and height. Therefore 3D BEM is used throughout the study.

BEM is used to calculate the sound pressures at desired external points such as

stated in Equation 4.2, depending on the receiver point r. The receiver point r can be on

the external region, E, on the surface, s, or on the interior region D which is shown at

Figure 4.3. The solution of the Equation 4.2 involves the surface pressure, p(rs) and its

derivative, ∂p(rs)
∂n(rs)

. If we assume a point source, locally reacting surface, the derivative of

the surface pressure is related to the surface pressure by Equation 4.4 (Cox & D’Antonio

2009):

jkp(rs)− β(rs) =
∂p(rs)

∂n(rs)
(4.4)

where β is the surface admittance. The surface admittance is related to the surface

impedance, Z by Equation 4.5 (Cox & D’Antonio 2009; Iemma & Marchese 2011):

β = 1/Z (4.5)

We know that the Z is related to the pressure reflection coefficient R in terms of Equa-

tion 4.6 (Cox & D’Antonio 2009; Iemma & Marchese 2011):

Z cos(ψ) = ρc
1 +R

1−R
(4.6)

where ψ is the angle of incidence, ρ is the density of the medium which air travels, c is the

speed of sound. The reflection coefficient R is related to the incident and reflected sound

pressure levels by Equation 4.7 and naturally contains information about the phase angle

and the magnitude of the reflected sound.

R =
pr
pi

(4.7)

After obtaining the necessary information about the solution of the integral con-

tents in Equation 4.2, the BEM is applied to solve Equation 4.2 twice. First, the surface

pressures, p(rs) on the diffuser surfaces are found. Then to obtain the sound pressures at

external receiver points, integral is carried out over the obtained surface pressures (Cox

& D’Antonio 2004; 2009).

BEM involves the meshing process which is an obligatory application to calculate
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the surface pressures. The surface is meshed into boundary elements. It is assumed that

the pressure is constant. Cox and D’Antonio (2009) suggests to use elements which are

smaller than λ/8 for the largest frequency in order to prevent discrete values while pre-

senting the continuous pressure variation. Figure 4.4 shows a meshed Schroder diffuser.

Figure 4.4. A meshed Schroeder diffuser (Source: Hargreaves & Cox 2005)

After the meshing procedure is completed, surface pressures are calculated sepa-

rately for each of the element, involving a number of equations. Therefore, we can write

Equation 4.2 in matrix form in terms of Equation 4.8, Equation 4.9 and Equation 4.10

(Cox & D’Antonio 2004; 2009):

(
1

2
δ + A

)
P = Pi (4.8)

δnm = 1 m = n (4.9)

δnm = 0 m 6= n

Amn =

∫
Sm

∂G(rn, rs)

∂nm(rs)
−G(rn, rs)jk(−β)mdsm (4.10)

where P is matrix form of surface pressures in (1×N), Pi is the direct incident pressures

from the source to the surface in (1×N), N is the number of elements which are shown in

(m,n), m and n are the elements of the matrix, and sm is the surface of the mth element.

After the surface pressures are obtained, the external pressures at a desired point r is

obtained by solving Equation 4.2.
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4.2. The Formation of the Prediction Setup for the Boundary Element

Method Software

The author of the research uses AcouSTO software package for the prediction of

scattering from 2D quadratic residue diffusers based on DSP Method. The software is

open-source and developed by Prof. Umberto Iemma and Vincenzo Marchese in Univer-

sity of Rome Tre. The selection of the correct software is a difficult process since there

are many software for Boundary Element Method applications. The clear definition of

the BEM equations used in the software is the most important criteria. Because there

are numerous methods within the theory based on different equations. The author finds

AcouSTO to be the most applicable one since the software uses 3D BEM method based

on Helmholtz-Kirchoff integral equations and all related equations are clearly defined in

the user manual. The author applied AcouSTO under the inspection of Prof. Iemma in

order to prevent errors.

The prediction process simulates the measurement procedures. Therefore, we

carefully applied the prediction criteria suggested by the Audio Engineering Society Stan-

dard AES-4id-2001(r2007):”AES information document for room acoustics and sound

reinforcement systems - Characterization and measurement of surface scattering unifor-

mity” to the software input. For the measurement of scattering, AES (2001:r2007) recom-

mends a point source and an arc of receivers around the surface which is measured. The

point source (loudspeaker) should be 10 meters away from the center of the surface while

the receivers (microphones) should be on an arc of 5 meter radius, 5◦ apart. Hence the

total number of receivers are 37. The arc of receivers should be centered with the middle

of the width of the surface. Figure 4.5 shows the measurement procedure.

For the prediction, AES suggests source position of 100 meters and receiver arc

radius of 50 meters to ensure the far-field. For further comparison and accordance, we

take the receiver coordinates in (x, y) from Prof. Cox’s database (See Appendix B). The

point source is a pure tone and normal to the diffuser for the normal incidence of sound.

After the coordinates are set, we transfer the modeled 2D quadratic residue diffuser based

on DSP Method into Blender, a meshing software. For the transformation, we construct

the model again with surface elements for easy meshing. Since the predictions are run for
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Figure 4.5. The measurement procedure of AES (Source: Cox & D’Antonio 2009, page:
112)

each octave band frequency, 125 Hz., 250 Hz., 500 Hz., 1000 Hz., 2000 Hz., and 4000

Hz., the highest frequency 4000 Hz. determines the number of elements in the meshed

diffuser. For λ/8 = c/8f , the element sizes are approximately 0.0107 meters. After

the meshing is complete, we import the model into the AcouSTO. The geometry of the

prediction is in Figure 4.6. In order to define the geometry in the study, note that the

source and the receivers are closer to the diffuser. Otherwise, both the source and the

receivers are too far away that it is impossible to take a screen shot of the geometry.

Figure 4.6. The geometry of the prediction of 2D quadratic residue diffuser based on DSP
Method

The results obtained in each receiver are in pressure magnitudes, Pascal. In order
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to calculate the sound pressure level (SPL) in dB, the following Equation 4.11is applied:

SPL = 20 log
P (r)

P0

(4.11)

where P(r) is the pressure at the receiver and P0 is the reference atmospheric pressure

which is equal to 20×10−6 Pa. After obtaining the sound pressure levels at each receiver,

the data is plotted as polar responses for each octave band frequency.

In addition, in the literature and database, diffusion coefficients are used to mea-

sure the uniformity of the scattering (AES 2001:r2007; Cox & D’Antonio 2009; Farina

2006). Diffusion coefficients are different from scattering coefficients and it is crucial to

state the difference. Cox and D’Antonio (2009) define both in the following terms:

“A diffusion coefficient measures the quality of reflections produced by

a surface, in the case of the AES coefficient, by measuring the similarity

between the scattered polar response and a uniform distribution. A scatter-

ing coefficient is a measure of the amount of sound scattered away from a

particular direction or distribution. This has the greatest similarity to the co-

efficients required as inputs to current geometric room acoustic models” (Cox

and D’Antonio 2009, page:228).

In order to compare the results of this study to the previous studies, the author of

the research uses diffusion coefficients since all related research are in diffusion coeffi-

cient form. Furthermore, evaluation of the uniformity of scattering is important for the

application of DSP on two dimensional diffusers. AES (2001:r2007) gives the calculation

of diffusion coefficient in terms of Equation 4.12:

dψ =

(∑n
i=1 10

Li
10

)2

−
∑n

i=1

(
10

Li
10

)2

(n− 1)
∑n

i=1

(
10

Li
10

)2 (4.12)

where dψ is the diffusion coefficient of the surface, Li is the sound pressure levels in dB

at the receivers, n is the number of receivers and ψ is the angle of incidence. In order

to see the actual performance of the diffuser in regard to a reference flat surface with the

same dimensions, the diffusion coefficients are normalized according to the flat surface’s
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diffusion coefficients with Equation 4.13 (Cox & D’Antonio 2009):

dψ,n =
dψ − dψ,r
1− dψ,r

(4.13)

where dψ,n is the normalized diffusion coefficient, dψ is the diffusion coefficient of the

diffuser and dψ,r is the diffusion coefficient of the reference flat panel.

4.3. The Results

After the test setup, BEM is applied to obtain pressures at each receiver according

to the equations stated in Section 4.1. The results are total field pressures and scattered

field pressures. In order to evaluate the data in terms of scattering, the scattered field

pressures are used. Equation 4.11 is applied to calculate the sound pressure levels in each

receiver.

Therefore, the scattering of 2D quadratic residue diffusers based on DSP Method

for m = 1 modulation are given in terms of pressure magnitude P (r) and in Sound

Pressure Levels (SPL) in decibels. Since 2D diffusers scatter sound into both x and y

directions, pressure magnitudes are predicted in both coordinates and converted to sound

pressure levels. Table 4.1 and Table 4.2 gives the results for each octave band frequency

at x-coordinate. In order to evaluate the scattering in terms of angles for each octave

band frequency, scattered sound pressure levels from each receiver are plotted as polar

responses as shown in Figure 4.7. 0◦ direction is plotted at 90◦ in order to refer to the

normal incident sound. The dots refer to the receiver points in degrees and the sound

pressure levels in dB.

The design frequency, f0 of the 2D diffuser is 500 Hz. and the upper frequency,

fmax limit is 2041.667 Hz. We should expect optimum diffusion between those frequen-

cies. For 500 Hz., we see incident sound is dispersed into all angles, meaning that the

spatial response is achieved. No grating lobes are present even though lobes with the

same energy was expected due to the nature of Schroeder diffusers’ gratings. At the

upper frequency limit which is around 2000 Hz., lobes begin to appear however spatial

diffusion in all angles is still present. Pressure variation is constant at overall distribution

and around 60 dB. Between those frequencies, at 1000 Hz. we examine grating lobes
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between 270◦ (-90◦) and 330◦(-60◦) but the energy of the lobes are the same. The unsym-

metrical distribution of pressure is due to the unsymmetrical design of the 2D diffuser

and is expected at some frequencies. At 4000 Hz., scattering becomes more specular. The

sound pressure level increases at the specular direction meaning that the diffuser reflects

the incident sound. In addition, grating lobes should have the same energy at Schroeder

diffusers but what we examine is the variable lobes with uneven energy. However, 4000

Hz. is beyond the upper frequency limit.

In lower frequencies, the spatial response is achieved. However, sound absorption

occurs. The sound pressure level highly decreases because of sound absorption. This may

have advantages and disadvantages due to the acoustical requirements of the architectural

space. If the space requires sound absorption in low frequencies, this situation is an

important advantage. Absorbing nearly half low-frequency content and dispersing the

other half optimally is still an achievement. Because diffusion is surprisingly symmetrical

between -90◦ and 90◦. However, if we want diffusion at lower frequencies, we should

increase the maximum well-depth dmax according to Equation 2.24. This depends on

the spatial requirements of the architectural space and is achievable. As a result, for x-

coordinate, 2D quadratic residue diffuser based on DSP Method scatters sound optimally

between proposed frequency limits.

Table 4.3 and Table 4.4 give results for each octave band frequency at y-

coordinate. In order to evaluate the scattering in terms of angles for each octave band

frequency, scattered sound pressure levels from each receiver are plotted as polar re-

sponses as shown in Figure 4.8. 0◦ direction is plotted at its place in order to refer to

the normal incident sound coming from the y direction of the diffuser. The dots refer to

the receiver points in degrees and the sound pressure levels in dB.

The scattering in the horizontal direction is also important in case of 2D diffusers.

At design frequency, f0 = 500 Hz., the diffuser also shows optimal diffusion qualities.

At the upper frequency limit, around 2000 Hz., the scattering is better than the scattering

at x direction. Grating lobes are more even in both -90◦ and 90◦. However, there is

specular reflection at 0◦. At 1000 Hz., we examine suppressed reflection at 0◦ proving that

the lateral reflections are present. The lobe energies are more even. Therefore between

designed bandwidths, 2D diffuser scatters sound in both directions. At 4000 Hz which is

8 times the design frequency, scattering is achieved although there are pressure variations.
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Table 4.1. Predicted Pressures Pr in Pa. and Sound Pressure Levels in dB. from 2D
Quadratic Residue Diffusers based on DSP Method for m = 1 at x-coordinate
for 125 Hz., 250 Hz., and 500 Hz.

RC Frequency (Hz.)
No 125(f0/4) 250(f0/2) 500 (f0)

Prx (Pa) SPL (dB) Prx (Pa) SPL (dB) Prx (Pa) SPL (dB)
1 0,0001508 17,549835 0,00092695 33,320542 0,00525672 48,393701
2 0,0002197 20,814958 0,00146324 37,285739 0,00552734 48,829719
3 0,0002881 23,171454 0,00200117 40,005061 0,00591420 49,417327
4 0,0003559 25,004809 0,00254001 42,076118 0,00640927 50,11557
5 0,0004224 26,494023 0,00307830 43,745605 0,00699525 50,875459
6 0,0004874 27,736796 0,00361479 45,141065 0,00763695 51,637796
7 0,0005503 28,792129 0,00414636 46,332738 0,00831291 52,37446
8 0,0006108 29,698075 0,00466886 47,363622 0,00899566 53,060056
9 0,0006684 30,480423 0,00517865 48,263736 0,00964408 53,664613

10 0,0007226 31,157247 0,00566924 49,049899 0,01023493 54,181102
11 0,0007729 31,741594 0,00613641 49,737694 0,01072676 54,58877
12 0,0008188 32,242986 0,00657169 50,332938 0,01110784 54,891991
13 0,0008599 32,668485 0,00696971 50,84369 0,01135214 55,080951
14 0,0008958 33,023335 0,00732205 51,27206 0,01145716 55,16094
15 0,0009260 33,311453 0,00762298 51,621898 0,01141642 55,130002
16 0,0009502 33,535741 0,00786859 51,897334 0,01122779 54,985286
17 0,0009681 33,698242 0,00805151 52,096947 0,01091070 54,736451
18 0,0009796 33,80036 0,00816864 52,222393 0,01047730 54,384388
19 0,0009844 33,842965 0,00821994 52,276775 0,00993780 53,925209
20 0,0009825 33,826367 0,00820201 52,257809 0,00931814 53,365981
21 0,0009740 33,750447 0,00811848 52,168894 0,00862765 52,697249
22 0,0009589 33,614541 0,00796952 52,008041 0,00788997 51,920908
23 0,0009374 33,417471 0,00775832 51,774749 0,00712399 51,033869
24 0,0009097 33,157432 0,00749240 51,471817 0,00633792 50,018329
25 0,0008762 32,831832 0,00717554 51,096498 0,00555584 48,874401
26 0,0008373 32,437141 0,00681330 50,646545 0,00479980 47,60387
27 0,0007933 31,968568 0,00641397 50,121936 0,00408323 46,199468
28 0,0007448 31,419726 0,00598244 49,516971 0,00343358 44,694336
29 0,0006920 30,781912 0,00552703 48,829234 0,00286307 43,116044
30 0,0006356 30,043404 0,00505125 48,047369 0,00240085 41,586709
31 0,0005760 29,187944 0,00456123 47,161036 0,00206026 40,257831
32 0,0005136 28,192711 0,00405994 46,1498 0,00186182 39,378173
33 0,0004490 27,024387 0,00355107 44,986579 0,00181565 39,160051
34 0,0003825 25,632184 0,00303734 43,629263 0,00192813 39,682119
35 0,0003146 23,934558 0,00251932 42,005082 0,00220701 40,855501
36 0,0002457 21,787601 0,00199813 39,99186 0,00265033 42,445395
37 0,0001762 18,90032 0,00147414 37,350188 0,00325194 44,222264
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Table 4.2. Predicted Pressures Pr in Pa. and Sound Pressure Levels in dB. from 2D
Quadratic Residue Diffusers based on DSP Method for m = 1 at x-coordinate
for 1000 Hz., 2000 Hz., and 4000 Hz.

RC Frequency (Hz.)
No 1000 (2f0) 2000(4f0) 4000(8f0)

Prx (Pa) SPL (dB) Prx (Pa) SPL (dB) Prx (Pa) SPL (dB)
1 0,01885295 59,486985 0,01766013 58,919276 0,05421599 68,661948
2 0,01896939 59,540466 0,02440609 61,729364 0,02698797 62,602805
3 0,01793035 59,051174 0,02999825 63,521319 0,02328432 61,32067
4 0,01571263 57,904376 0,03440867 64,712758 0,08329831 72,392124
5 0,01238892 55,840068 0,03761254 65,486053 0,12936614 76,215813
6 0,00820924 52,265462 0,03953015 65,91797 0,13797921 76,775673
7 0,00347263 44,792567 0,04068814 66,168756 0,10491384 74,396056
8 0,00131501 36,357997 0,04186342 66,416095 0,05386230 68,605098
9 0,00541940 48,658418 0,04366589 66,782246 0,01704959 58,613679

10 0,00805531 52,101042 0,04640865 67,311379 0,01466352 57,304163
11 0,00837606 52,440192 0,04927147 67,831311 0,06013810 69,562394
12 0,00577189 49,205764 0,04997177 67,953894 0,04484874 67,014404
13 0,00005433 8,680724 0,04518304 67,07891 0,14629566 77,284029
14 0,00886989 52,937767 0,03220368 64,13751 0,35158026 84,89989
15 0,01989009 59,952137 0,01082398 54,667136 0,20529596 80,227008
16 0,03183692 64,038021 0,01482129 57,39712 0,15194311 77,61302
17 0,04314485 66,67798 0,03670019 65,272766 0,01239539 55,844606
18 0,05226842 68,344188 0,04636479 67,303165 0,85128630 92,580913
19 0,05799599 69,247359 0,03825620 65,633436 1,37900981 96,770747
20 0,05970270 69,499279 0,01570012 57,897462 0,84074951 92,472733
21 0,05745215 69,165525 0,01319465 56,38736 0,07971717 72,010437
22 0,05196980 68,294422 0,03648172 65,220906 0,30991436 83,804234
23 0,04443500 66,933903 0,04703377 67,427595 0,02836680 63,035608
24 0,03613720 65,13849 0,04494944 67,033887 0,13743599 76,741409
25 0,02830138 63,015554 0,03574396 65,043453 0,05010074 67,976282
26 0,02180826 60,751819 0,02641099 62,415093 0,08175502 72,229689
27 0,01703733 58,607429 0,02096895 60,410934 0,04777334 67,563112
28 0,01402943 56,9202 0,01911916 59,608774 0,05036219 68,021492
29 0,01242723 55,866889 0,01833115 59,243196 0,05194120 68,28964
30 0,01182244 55,433542 0,01614563 58,140501 0,04290202 66,628955
31 0,01171259 55,352456 0,01233663 55,803332 0,08619033 72,68857
32 0,01172342 55,360487 0,00846574 52,5327 0,17501896 78,841102
33 0,01157429 55,249285 0,00682084 50,656155 0,13810411 76,783532
34 0,01112167 54,902804 0,00900607 53,07011 0,03008368 63,54602
35 0,01030466 54,240071 0,01531637 57,682519 0,05004224 67,966135
36 0,00910037 53,160585 0,02459031 61,79468 0,05042101 68,031631
37 0,00751685 51,500122 0,03439009 64,708067 0,02179414 60,746196
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Figure 4.7. Scattered sound pressure levels in dB for normal sound incident on 2D
quadratic residue diffuser based on DSP Method for m = 1 modulation at
x-coordinate
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Table 4.3. Predicted Pressures Pr in Pa. and Sound Pressure Levels in dB. from 2D
Quadratic Residue Diffusers based on DSP Method for m = 1 at y-coordinate
for 125 Hz., 250 Hz., and 500 Hz.

RC Frequency (Hz.)
No 125(f0/4) 250(f0/2) 500 (f0)

Pry (Pa) SPL (dB) Pry (Pa) SPL (dB) Pry (Pa) SPL (dB)
1 0,0000215 32,432458 0,00278697 42,882038 0,00557394 48,902638
2 0,0000172 30,482177 0,00312473 43,875637 0,00624945 49,896237
3 0,0000131 28,113649 0,00342146 44,663641 0,00684293 50,684241
4 0,0000092 25,024181 0,00367547 45,285654 0,00735094 51,306254
5 0,0000054 20,44005 0,00388466 45,766457 0,00776932 51,787057
6 0,00000196 11,636617 0,00405121 46,131091 0,00810242 52,151691
7 0,0000012 7,7022773 0,00416863 46,379267 0,00833726 52,399867
8 0,0000043 18,421901 0,00423159 46,509481 0,00846319 52,530081
9 0,0000070 22,671837 0,00424256 46,531955 0,00848512 52,552555

10 0,0000095 25,353212 0,00419735 46,43891 0,00839471 52,45951
11 0,0000116 27,060389 0,00410757 46,25109 0,00821513 52,27169
12 0,0000134 28,362045 0,00397363 45,963156 0,00794727 51,983756
13 0,0000149 29,258438 0,00381307 45,604905 0,00762615 51,625505
14 0,0000162 29,965025 0,00363541 45,190459 0,00727081 51,211058
15 0,0000171 30,468563 0,00346014 44,761276 0,00692028 50,781876
16 0,0000176 30,68404 0,00330942 44,374447 0,00661885 50,395047
17 0,0000178 30,789979 0,00318972 44,054452 0,00637944 50,075052
18 0,0000177 30,757916 0,00311232 43,841091 0,00622464 49,86169
19 0,0000171 30,452644 0,00308594 43,767159 0,00617189 49,787759
20 0,0000163 30,020722 0,00310009 43,806899 0,00620019 49,827499
21 0,0000149 29,248044 0,00315066 43,947432 0,00630132 49,968032
22 0,0000132 28,20639 0,00321695 44,128276 0,00643389 50,148876
23 0,0000113 26,842654 0,00327918 44,294705 0,00655836 50,315305
24 0,0000088 24,684445 0,00332250 44,408706 0,00664500 50,429306
25 0,0000060 21,343866 0,00332537 44,416204 0,00665074 50,436804
26 0,0000030 15,210106 0,00327297 44,278245 0,00654594 50,298845
27 0,0000005 0 0,00315963 43,972113 0,00631925 49,992713
28 0,0000042 18,239617 0,00298086 43,466225 0,00596172 49,486825
29 0,0000083 24,216193 0,00274282 42,743346 0,00548564 48,763946
30 0,0000126 27,836695 0,00245136 41,767534 0,00490272 47,788134
31 0,0000173 30,541011 0,00211953 40,504178 0,00423905 46,524778
32 0,0000220 32,647685 0,00175946 38,886974 0,00351891 44,907574
33 0,0000269 34,394437 0,00138484 36,807397 0,00276968 42,827997
34 0,0000320 35,908749 0,00100817 34,050097 0,00201635 40,070697
35 0,0000372 37,204942 0,00063722 30,065229 0,00127445 36,085829
36 0,0000424 38,339618 0,00027776 22,852664 0,00055551 28,873264
37 0,0000476 7,5364807 0,00006699 10,498997 0,00013397 16,519597
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Table 4.4. Predicted Pressures Pr in Pa. and Sound Pressure Levels in dB. from 2D
Quadratic Residue Diffusers based on DSP Method for m = 1 at y-coordinate
for 1000 Hz., 2000 Hz., and 4000 Hz.

RC Frequency (Hz.)
No 1000 (2f0) 2000(4f0) 4000(8f0)

Pry (Pa) SPL (dB) Pry (Pa) SPL (dB) Pry (Pa) SPL (dB)
1 0,01839534 59,273555 0,01234426 55,8087 0,00040186 26,060913
2 0,01988987 59,95204 0,00323530 44,177701 0,00573031 49,142968
3 0,02095468 60,405019 0,00793370 51,968916 0,02239516 60,982485
4 0,02152245 60,637236 0,02038087 60,163853 0,03257709 64,237645
5 0,02147591 60,618432 0,03148857 63,942459 0,00187520 39,440332
6 0,02067914 60,290048 0,03760680 65,484727 0,08606587 72,676019
7 0,01911927 59,608824 0,03519415 64,908809 0,16234944 78,188416
8 0,01684328 58,507936 0,02374533 61,490965 0,16975942 78,576078
9 0,01400975 56,908006 0,00790113 51,933186 0,14920918 77,455311

10 0,01088012 54,712071 0,00383433 45,653186 0,18976765 79,543844
11 0,00781350 51,836314 0,00274341 42,745209 0,22909385 81,179669
12 0,00512660 48,175994 0,01250051 55,917955 0,11275983 75,022488
13 0,00309279 43,786418 0,03259865 64,243391 0,07204590 71,131586
14 0,00181701 39,166531 0,03947006 65,904756 0,07844018 71,870172
15 0,00122532 35,74441 0,01694807 58,561807 0,01395275 56,872599
16 0,00098754 33,870493 0,03808980 65,595574 0,06777894 70,601296
17 0,00075502 31,538521 0,11072735 74,864498 0,21175316 80,495998
18 0,00010230 14,177028 0,17406268 78,793513 0,14870034 77,42564
19 0,00141579 36,999353 0,20354398 80,152565 0,02515543 61,992034
20 0,00379092 45,554282 0,18928727 79,521828 0,06019779 69,57101
21 0,00705868 50,953866 0,14102942 76,965594 0,12696933 76,053376
22 0,01074401 54,60273 0,08115313 72,165506 0,08394316 72,459106
23 0,01433015 57,104413 0,03256059 64,233245 0,06592029 70,359782
24 0,01741140 58,796075 0,00728296 51,225556 0,11520582 75,208889
25 0,01945111 59,75829 0,00407234 46,176289 0,10926777 74,749241
26 0,02016917 60,07316 0,01255639 55,956697 0,06637708 70,419762
27 0,01956227 59,807785 0,02132297 60,556354 0,09303411 73,352244
28 0,01772519 58,951216 0,02422129 61,663345 0,15191880 77,611631
29 0,01496816 57,482769 0,02087116 60,370332 0,15568801 77,824503
30 0,01157302 55,248338 0,01440491 57,149612 0,12812800 76,132281
31 0,00787624 51,905779 0,00776833 51,785949 0,13171085 76,371831
32 0,00410590 46,247569 0,00235799 41,430243 0,16006618 78,065392
33 0,00044916 27,027452 0,00197964 39,91111 0,17278477 78,729509
34 0,00296344 43,415325 0,00576942 49,202049 0,16011682 78,068139
35 0,00609864 49,684066 0,00893784 53,004055 0,13701427 76,714716
36 0,00889795 52,965202 0,01057812 54,467567 0,11383863 75,105193
37 0,01127923 55,024992 0,00925004 53,302272 0,08046531 72,091573
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Figure 4.8. Scattered sound pressure levels in dB for normal sound incident on 2D
quadratic residue diffuser based on DSP Method for m = 1 modulation at
y-coordinate
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If we compare the results with x-coordinate, it is clear that the scattering is more even at

y-coordinate in terms of lobe energies and the specular reflection does not occur at y.

At 125 Hz. and 250 Hz., the diffuser continues to absorb sound. We examine

symmetrical lobes due to the nature of grating lobes at 125 Hz. The scattering looks

optimal. However at 250 Hz, the diffuser almost does not scatter sound at 90◦ and extreme

absorption occurs. Further studies are required for increasing the maximum well-depth

dmax and examine the scattering in lower frequencies.

Furthermore, in real applications to architectural spaces, we use series of diffusers

on the walls or on the ceilings. Therefore, Cox and D’Antonio (2009) suggests using

at least 5 periods of diffusers for additional prediction in order to see the performance

of series of diffusers. Hence, in future studies, this will be taken into account. In addi-

tion, the maximum well-depth dmax should be adjusted to decrease or increase the design

frequency f0 with paying careful attention to the suggested upper limit of 40 cm. by

D’Antonio and Konnert (1992).

In order to evaluate the diffusion by a single merit, the diffusion coefficients of the

reference flat panel and 2D quadratic residue diffuser are calculated according to Equa-

tion 4.12. The pressure magnitudes for both x and y coordinates are also given as a scalar

product at the software. In order to calculate the overall pressure, these values are con-

verted to sound pressure levels. The diffusion coefficients of the reference flat panel are

taken from the study of Farina et. al (2006) since the panel has the same dimensions, 60

m. x 60 m. The formulation is set in MS Excel and for each octave band frequency, the

diffusion coefficients are found and shown at Figure 4.9. By using Equation 4.13, the

diffusion coefficients of the diffuser are normalized according to flat panel and shown at

Figure 4.10.

As seen from Figure 4.9 and Figure 4.10, the 2D diffuser scatters sound optimally

between 250 Hz. and 1500 Hz. However, after 2000 Hz., the diffusion quality decreases

significantly. We examined the same results at the polar responses. At 125 Hz., both

the diffuser and the reflector has almost the same diffusion coefficient. But, we must

remember that the diffusion coefficient does not evaluate the polar responses. Therefore,

the achievement of spatial response at 125 Hz. is still valid.

It is important to compare the results with other 2D quadratic residue diffusers.

The registered trademarks FRG Omniffusor and Omniffusor developed by D’Antonio et
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Figure 4.9. Diffusion coefficients of 2D quadratic residue diffuser based on DSP Method
for m = 1 and reference flat panel at octave band frequencies

Figure 4.10. Normalized diffusion coefficients of 2D quadratic residue diffuser based on
DSP Method for m = 1 at octave band frequencies
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al. (1990) are both based on prime number 7 and developed according to well-depth op-

timization technique applied on Product Array Method. FRG Omniffussor consist of 7 x

7 wells while Omniffusor consist of 8 x 8 wells. In order to achieve symmetrical design,

Omniffusor has additional wells. Both have the same dimensions with the proposed dif-

fuser (approx. 60 centimeters x 60 centimeters) and shown at Figure 4.9. The diffusion

coefficients for normal incident sound are given by D’Antonio (pers. comm. 2011). The

comparison of diffusion coefficients with 2D quadratic residue diffuser based on DSP

Method are givenin Figure 4.12 and Figure 4.13.

Figure 4.11. Left: FRG Omniffusor, Right: Omniffusor (Source: RPG Diffusor Systems)

Figure 4.12. Diffusion coefficients of 2D quadratic residue diffuser based on DSP Method
for m = 1 and FRG Omniffusor at octave band frequencies
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Figure 4.13. Diffusion coefficients of 2D quadratic residue diffuser based on DSP Method
for m = 1 and Omniffusor at octave band frequencies

The results for FRG Omniffusor and the proposed diffuser indicate that between

125 Hz. and 1000 Hz. the diffusion coefficients of the proposed diffuser is higher than

FRG Omniffusor. After 1000 Hz. FRG Omniffusor behaves better in terms of overall

diffusion. This may be due to the fact of design frequencies. We know from the related

product documents that the design frequency, f0 of FRG Omniffusor and Omniffusor is

around 1500 Hz. while the DSP based 2D diffuser has a design frequency of 500 Hz.

But the overall comparison shows the validation of the relevant data in terms of design

parameters. Both diffusers behave according to the proposed frequency bandwidths. If we

compare the diffusion coefficients of Omniffusor and the proposed diffuser, we examine

the parallel results with above as shown at Figure 4.13. However, at 2000 Hz. the diffusion

coefficient of Omniffusor slightly drops.

In conclusion, all the results predicted with Boundary Element Method indicate

that the application of Distinct Sums Property Method on the construction of two di-

mensional quadratic residue diffusers is successful. The proposed diffuser scatters sound

spatially between desired bandwidths. However, for higher frequencies the scattering

should be determined by adjusting well-widths or by applying a well-depth optimization

technique. In addition, a series of diffusers should be tested in order to predict diffusion

in more realistic manner.
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CHAPTER 5

CONCLUSIONS

This dissertation introduces Distinct Sums Property Method, which has been used

in digital watermarking, to construct two dimensional quadratic residue diffusers in the

field of acoustics. The current methods for the construction of two dimensional diffusers

does not offer variable design solutions both for the architects and the acousticians in

terms of visual options and diffusion bandwidth. In addition, current literature on the

subject of two dimensional acoustic diffusers is limited to the works of Peter D’Antonio

and Trevor Cox who made pioneering studies on the field of acoustic diffusers. The lack

of scientific data on the prediction of scattering from two dimensional diffusers with BEM

is another area of problem.

Therefore, the study firstly concentrates on the construction of two dimensional

quadratic residue diffusers with a new method in acoustics. Quadratic residue sequences

are chosen for their optimum diffusion properties validated by studies of Late Manfred

Schroeder. On the other hand, Distinct Sums Property Methods is chosen for the success-

ful applications of constructing two dimensional arrays from one dimensional sequences

in the field of digital watermarking. In addition, the method offers many construction

possibilities since it is based on different cyclic shifts ranging from m = 1, 2, ..., N − 1.

The pre-prediction method based on Fraunhofer Theory shows that the autocorrelation

properties of two dimensional quadratic residue diffusers based on Distinct Sums Prop-

erty Method are producing nearly perfect arrays when compared to Product Array method

which is used currently. Furthermore, the peak to largest sidelobe ratios of the autocorre-

lation function indicate that Distinct Sums Property Method has larger magnitudes when

compared to Product Array Method which result in better diffusion.

Secondly, the study focuses on the Boundary Element Method for the prediction

of scattering from two dimensional diffusers. Since the current literature is based on

one dimensional diffusers, the study is an additional reference on the subject. The re-

sults of the prediction validates the current methodology and assures that Distinct Sums

Property Method is applicable at constructing two dimensional acoustic diffusers. The

predicted diffusion coefficients are higher than the diffusion coefficients based on Prod-
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uct Array Method from 250 Hz to 1000 Hz. In addition, the proposed diffuser scatters

sound optimally at the desired frequency range. However, this study will be a starting

point. More prediction schemes must be developed for different design frequencies. Be-

cause the results also indicate sound absorption at low frequencies while indicating less

diffusion at higher frequencies. However, the proposed diffuser behaves ideally at mid-

frequency range. These data should be used for the construction of other modulations for

the quadratic residue sequence.

The application of the Distinct Sums Property is not complex when compared

to Product Array Method. The architect will be able to use an interface to select the

desired design which ranges from m = 1 to m = 6. In addition, the cyclic shifts can be

applied at the rows or columns of the two dimensional array. Therefore, there are visual

options for the architect to choose from. There are also different options depending on

the space requirements of the architectural space. The available maximum well depth

determines the design frequency where the well width determines the upper frequency

limit. Therefore, depending on the architectural space limits, the acoustician will choose

the most appropriate design for the aimed architectural space.

In conclusion, this dissertation achieves to apply a new method for the construc-

tion of two dimensional acoustic diffusers with the validated results predicted with Bound-

ary Element Method.

5.1. Future Work

Future studies could concentrate on constructing other modulations for quadratic

residue sequence as a starting point. Using different modulations at the same row or

column should be studied in order to see the variable options. A joint study for the mea-

surement of proposed diffusers is also planned to compare the predicted results with mea-

surement results. In addition, application of DSP on other sequences such as primitive

root and Huffman codes are planned for near future.

There are various methods currently used in other fields such as Chaotic Maps and

Costas Arrays to form two dimensional arrays from sequences. Therefore, future studies

also include application of different methods for constructing two dimensional acoustic

diffusers.
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APPENDIX A

MATLAB SCRIPTS

Chapter 2

script 2.1

%Autocorrelation Plot of 2D Quadratic Residue Diffuser for N = 7

%Based on Product Array Method

%not shifted

%for s_n = {0, 1, 4, 2, 2, 4, 1}

x = [0 1 2 4 4 2 1;

1 2 3 5 5 3 2;

2 3 4 6 6 4 3;

4 5 6 1 1 6 5;

4 5 6 1 1 6 5;

2 3 4 6 6 4 3;

1 2 3 5 5 3 1];

y = [x x x;

x x x;

x x x];

r = xcorr2 (x,y);

surfc (r);

colormap gray

%Power Spectrum of 2D Quadratic Residue Diffuser for N = 7

%Based on Product Array Method

%not shifted

%for s_n = {0, 1, 4, 2, 2, 4, 1}

x = [0 1 2 4 4 2 1;

1 2 3 5 5 3 2;

2 3 4 6 6 4 3;

4 5 6 1 1 6 5;
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4 5 6 1 1 6 5;

2 3 4 6 6 4 3;

1 2 3 5 5 3 1];

r = xcorr2 (x);

y = fft2 (r);

yshifted = fftshift (y);

mesh(abs(yshifted))

script 2.2

%Autocorrelation Plot of 2D Quadratic Residue Diffuser for N = 7

%Based on Product Array Method

%shifted for n,m = 4

%for s_n = {4, 1, 2, 0, 2, 1, 4}

x = [4 6 3 2 3 6 4;

6 1 5 4 5 1 6;

3 5 2 1 2 5 3;

2 4 1 0 1 4 2;

3 5 2 1 2 5 3;

6 1 5 4 5 1 6;

4 6 3 2 3 6 4];

y = [x x x;

x x x;

x x x];

r = xcorr2(x,y);

surfc(r);

colormap gray

%Power Spectrum of 2D Quadratic Residue Diffuser for N = 7

%Based on Product Array Method

%shifted for n,m = 4

%for s_n = {4, 1, 2, 0, 2, 1, 4}

x = [4 6 3 2 3 6 4;

6 1 5 4 5 1 6;

3 5 2 1 2 5 3;

2 4 1 0 1 4 2;

79



3 5 2 1 2 5 3;

6 1 5 4 5 1 6;

4 6 3 2 3 6 4];

r = xcorr2(x);

y = fft2 (r);

yshifted = fftshift (y);

mesh(abs(yshifted))

Chapter 3

script 3.1

%Autocorrelation Plot of 2D Quadratic Residue Diffuser for N = 7

%Based on Distinct Sums Property Method

%for m = 1

%for s_n = {0, 1, 4, 2, 2, 4, 1}

x = [0 1 4 2 2 4 1;

0 1 4 2 2 4 1;

1 0 1 4 2 2 4;

2 4 1 0 1 4 2;

1 4 2 2 4 1 0;

2 4 1 0 1 4 2;

1 0 1 4 2 2 4];

y = [x x x;

x x x;

x x x];

r = xcorr2 (x,y);

surfc (r);

colormap gray

%Power Spectrum of 2D Quadratic Residue Diffuser for N = 7

%Based on Distinct Sums Property Method

%for m = 1

%for s_n = {0, 1, 4, 2, 2, 4, 1}

x = [0 1 4 2 2 4 1;

0 1 4 2 2 4 1;
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1 0 1 4 2 2 4;

2 4 1 0 1 4 2;

1 4 2 2 4 1 0;

2 4 1 0 1 4 2;

1 0 1 4 2 2 4];

r = xcorr2 (x);

y = fft2 (r);

zshifted = fftshift (y);

mesh(abs(yshifted))

script 3.2

%Autocorrelation Plot of 2D Quadratic Residue Diffuser for N = 7

%Based on Distinct Sums Property Method

%for m = 2

%for s_n = {0, 1, 4, 2, 2, 4, 1}

x = [0 1 4 2 2 4 1;

0 1 4 2 2 4 1;

4 1 0 1 4 2 2;

1 4 2 2 4 1 0;

4 2 2 4 1 0 1;

1 4 2 2 4 1 0;

4 1 0 1 4 2 2];

y = [x x x;

x x x;

x x x];

r = xcorr2 (x,y);

surfc (r);

colormap gray

%Power Spectrum of 2D Quadratic Residue Diffuser for N = 7

%Based on Distinct Sums Property Method

%for m = 2

%for s_n = {0, 1, 4, 2, 2, 4, 1}

x = [0 1 4 2 2 4 1;

0 1 4 2 2 4 1;
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4 1 0 1 4 2 2;

1 4 2 2 4 1 0;

4 2 2 4 1 0 1;

1 4 2 2 4 1 0;

4 1 0 1 4 2 2];

r = xcorr2 (x);

y = fft2 (r);

yshifted = fftshift (y);

mesh(abs(yshifted))

script 3.3

%Autocorrelation Plot of 2D Quadratic Residue Diffuser for N = 7

%Based on Distinct Sums Property Method

%for m = 3

%for s_n = {0, 1, 4, 2, 2, 4, 1}

x = [0 1 4 2 2 4 1;

0 1 4 2 2 4 1;

2 4 1 0 1 4 2;

4 1 0 1 4 2 2;

2 2 4 1 0 1 4;

4 1 0 1 4 2 2;

2 4 1 0 1 4 2];

y = [x x x;

x x x;

x x x];

r = xcorr2 (x,y);

surfc (r);

colormap gray

%Power Spectrum of 2D Quadratic Residue Diffuser for N = 7

%Based on Distinct Sums Property Method

%for m = 3

%for s_n = {0, 1, 4, 2, 2, 4, 1}

x = [0 1 4 2 2 4 1;

0 1 4 2 2 4 1;
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2 4 1 0 1 4 2;

4 1 0 1 4 2 2;

2 2 4 1 0 1 4;

4 1 0 1 4 2 2;

2 4 1 0 1 4 2];

r = xcorr2 (x);

y = fft2 (r);

yshifted = fftshift (y);

mesh(abs(yshifted))

script 3.4

%Autocorrelation Plot of 2D Quadratic Residue Diffuser for N = 7

%Based on Distinct Sums Property Method

%for m = 4

%for s_n = {0, 1, 4, 2, 2, 4, 1}

x = [0 1 4 2 2 4 1;

0 1 4 2 2 4 1;

2 2 4 1 0 1 4;

4 2 2 4 1 0 1;

2 4 1 0 1 4 2;

4 2 2 4 1 0 1;

2 2 4 1 0 1 4];

y = [x x x;

x x x;

x x x];

r = xcorr2 (x,y);

surfc (r);

colormap gray

%Power Spectrum of 2D Quadratic Residue Diffuser for N = 7

%Based on Distinct Sums Property Method

%for m = 4

%for s_n = {0, 1, 4, 2, 2, 4, 1}

x = [0 1 4 2 2 4 1;

0 1 4 2 2 4 1;
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2 2 4 1 0 1 4;

4 2 2 4 1 0 1;

2 4 1 0 1 4 2;

4 2 2 4 1 0 1;

2 2 4 1 0 1 4];

r = xcorr2 (x);

y = fft2 (r);

yshifted = fftshift (y);

mesh(abs(yshifted))

script 3.5

%Autocorrelation Plot of 2D Quadratic Residue Diffuser for N = 7

%Based on Distinct Sums Property Method

%for m = 5

%for s_n = {0, 1, 4, 2, 2, 4, 1}

x = [0 1 4 2 2 4 1;

0 1 4 2 2 4 1;

4 2 2 4 1 0 1;

1 0 1 4 2 2 4;

4 1 0 1 4 2 2;

1 0 1 4 2 2 4;

4 2 2 4 1 0 1];

y = [x x x;

x x x;

x x x];

r = xcorr2 (x,y);

surfc (r);

colormap gray

%Power Spectrum of 2D Quadratic Residue Diffuser for N = 7

%Based on Distinct Sums Property Method

%for m = 5

%for s_n = {0, 1, 4, 2, 2, 4, 1}

x = [0 1 4 2 2 4 1;

0 1 4 2 2 4 1;
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4 2 2 4 1 0 1;

1 0 1 4 2 2 4;

4 1 0 1 4 2 2;

1 0 1 4 2 2 4;

4 2 2 4 1 0 1];

r = xcorr2 (x);

y = fft2 (r);

yshifted = fftshift (y);

mesh(abs(yshifted))

script 3.6

%Autocorrelation Plot of 2D Quadratic Residue Diffuser for N = 7

%Based on Distinct Sums Property Method

%for m = 6

%for s_n = {0, 1, 4, 2, 2, 4, 1}

x = [0 1 4 2 2 4 1;

0 1 4 2 2 4 1;

1 4 2 2 4 1 0;

2 2 4 1 0 1 4;

1 0 1 4 2 2 4;

2 2 4 1 0 1 4;

1 4 2 2 4 1 0];

y = [x x x;

x x x;

x x x];

r = xcorr2 (x,y);

surfc (r);

colormap gray

%Power Spectrum of 2D Quadratic Residue Diffuser for N = 7

%Based on Distinct Sums Property Method

%for m = 6

%for s_n = {0, 1, 4, 2, 2, 4, 1}

x = [0 1 4 2 2 4 1;

0 1 4 2 2 4 1;
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1 4 2 2 4 1 0;

2 2 4 1 0 1 4;

1 0 1 4 2 2 4;

2 2 4 1 0 1 4;

1 4 2 2 4 1 0];

r = xcorr2 (x);

y = fft2 (r);

yshifted = fftshift (y);

mesh(abs(yshifted))
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APPENDIX B

LIST OF RECEIVER POINTS

Scattering data courtesy of T. J. Cox, University of Salford and P.D’Antonio, RPG Diffusor

Systems Inc., database at: www.acoustics.salford.ac.uk

(x,y)

0 -50

4.3578 -49.8097

8.6824 -49.2404

12.941 -48.2963

17.101 -46.9846

21.1309 -45.3154

25 - 43.3013

28.6788 -40.9576

32.1394 -38.3022

35.3553 -35.3553

38.3022 -32.1394

40.9576 -28.6788

43.3013 -25

45.3154 -21.1309

46.9846 -17.101

48.2963 -12.941

49.2404 -8.6824

49.8097 -4.3578

50 0

49.8097 4.3578

49.2404 8.6824

48.2963 12.941

46.9846 17.101

45.3154 21.1309

43.3013 25

40.9576 28.6788
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38.3022 32.1394

35.3553 35.3553

32.1394 38.3022

28.6788 40.9576

25 43.3013

21.1309 45.3154

17.101 46.9846

12.941 48.2963

8.6824 49.2404

4.3578 49.8097

0 50
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APPENDIX C

INPUT AND OUTPUT FILES OF BEM SOFTWARE

Input File for 125 Hz, 250 Hz., 500 Hz., 1000 Hz., 2000 Hz., 4000 Hz.

runinfo={

active = 1;

title = "Ayce.coarse";

owner = "Acousto";

ksymmi=0;

krow =-1;

vsound =343.0;

# nprows=1;

# npcols=1;

};

modgeom={

active = 1;

geoms = ["diffuser"];

chief_file = "acousto.chief.mesh";

nchief = 0;

mics_file = "acousto.mics.mesh";

nmics = 160;

# mics_file = "mics.acousto";

# nmics = 9511;

};

diffuser={

type="nodes";

filename="ayce.final.coarse.scaled.in";

nnodb=12557;

nelmb=11556;

ncntr=11556;

translation={x=0.0; y=0.0; z=0.0;};

rotation={x=0.0; y=0.0; z=0.0;};
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scale={x=0.02136; y=0.02136; z=0.02136;};

};

modcoefac={

active=1;

};

modcoemic={

active=1;

};

modsol={

active=1;

sources_file="acousto.sources.mesh";

nsourc=1;

imped_file="acousto.imped.mesh";

nimped=0;

radiants_file="acousto.radiants.mesh";

nradian=0;

radiant_real=0.0;

radiant_imag=0.0;

planw_file="acousto.planw.mesh";

nplanw=0;

knw=1;

rho=1.225;

minsig=0.0;

maxsig=0.0;

nsig=1;

% each frequency input are in different files

% plotted under same file

minfreq=125.00;250.00;500.00;1000.00;2000.00;4000.00

maxfreq=125.01;250.01;500.01;1000.01;2000.01;4000.01

nome=1;

printvtk=1;

pre_calculate_coefs=1;
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solver="PSEUDOINV";

tolerance=1E-6;

maxiterations=1000;

restart=2000;

};

mysql={

active=1;

host="localhost";

user="acousto";

password="acousto";

db="acoustorun";

port=0;

};

Output Files for 125 Hz, 250 Hz., 500 Hz., 1000 Hz., 2000 Hz., 4000
Hz.

125 Hz.

SCALARS Re(Scat_Solution) float

LOOKUP_TABLE default

1.56861362E-07

2.28439997E-07

2.99638058E-07

3.70053647E-07

4.39263779E-07

5.06831999E-07

5.72309167E-07

6.35225583E-07

6.95096961E-07

7.51426698E-07

8.03718469E-07

8.51478272E-07

8.94228485E-07
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9.31517420E-07

9.62934798E-07

9.88123680E-07

1.00678407E-06

1.01869048E-06

1.02369952E-06

1.02174521E-06

1.01285340E-06

9.97128881E-07

9.74760266E-07

9.46010222E-07

9.11204440E-07

8.70725544E-07

8.24997577E-07

7.74480655E-07

7.19647556E-07

6.60989363E-07

5.98992570E-07

5.34145804E-07

4.66921220E-07

3.97771314E-07

3.27153920E-07

2.55507893E-07

1.83248421E-07

SCALARS Im(Scat_Solution) float

LOOKUP_TABLE default

2.23269881E-08

1.78367647E-08

1.35796854E-08

9.51516471E-09

5.61319030E-09

2.03722079E-09

1.29515311E-09

4.44940888E-09
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7.25770170E-09

9.88252337E-09

1.20289215E-08

1.39736391E-08

1.54927733E-08

1.68057728E-08

1.78088298E-08

1.82561515E-08

1.84801810E-08

1.84120873E-08

1.77762213E-08

1.69138838E-08

1.54742440E-08

1.37254548E-08

1.17311332E-08

9.15017742E-09

6.22874483E-09

3.07406161E-09

5.33589174E-10

4.35700526E-09

8.66995580E-09

1.31535203E-08

1.79579933E-08

2.28871399E-08

2.79852450E-08

3.33153738E-08

3.86771401E-08

4.40745742E-08

4.95277142E-08

SCALARS Abs(Scat_Solution) float

LOOKUP_TABLE default

1.58442360E-07

2.29135293E-07

2.99945618E-07
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3.70175958E-07

4.39299642E-07

5.06836093E-07

5.72310632E-07

6.35241165E-07

6.95134849E-07

7.51491681E-07

8.03808480E-07

8.51592925E-07

8.94362683E-07

9.31669007E-07

9.63099465E-07

9.88292312E-07

1.00695367E-06

1.01885686E-06

1.02385385E-06

1.02188520E-06

1.01297160E-06

9.97223342E-07

9.74830855E-07

9.46054473E-07

9.11225729E-07

8.70730970E-07

8.24997750E-07

7.74492910E-07

7.19699780E-07

6.61120226E-07

5.99261703E-07

5.34635914E-07

4.67759125E-07

3.99164042E-07

3.29432252E-07

2.59281414E-07

1.89823545E-07
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250 Hz.

SCALARS Re(Scat_Solution) float

LOOKUP_TABLE default

4.81971517E-07

7.60818713E-07

1.04051253E-06

1.32068781E-06

1.60056946E-06

1.87952244E-06

2.15591269E-06

2.42758998E-06

2.69265709E-06

2.94774011E-06

3.19064836E-06

3.41696999E-06

3.62392140E-06

3.80712588E-06

3.96359383E-06

4.09129654E-06

4.18640860E-06

4.24730947E-06

4.27398512E-06

4.26466278E-06

4.22122931E-06

4.14377627E-06

4.03396124E-06

3.89569638E-06

3.73094743E-06

3.54259500E-06

3.33496328E-06

3.11059012E-06

2.87379611E-06

2.62641121E-06

2.37162528E-06
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2.11098075E-06

1.84638897E-06

1.57927376E-06

1.30993082E-06

1.03893237E-06

7.66484978E-07

SCALARS Im(Scat_Solution) float

LOOKUP_TABLE default

8.36820347E-08

7.31786936E-08

2.30476039E-07

3.88705872E-07

5.48148990E-07

7.07464463E-07

8.66749266E-07

1.02568666E-06

1.18187894E-06

1.33505967E-06

1.48117881E-06

1.62033104E-06

1.74856657E-06

1.86535436E-06

1.96765478E-06

2.05140258E-06

2.11746109E-06

2.16381291E-06

2.18717125E-06

2.18976438E-06

2.16867474E-06

2.12653757E-066

2.06476865E-06

1.98190248E-06

1.88155322E-06

1.76640366E-06
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1.63664001E-06

1.49610298E-06

1.34450919E-06

1.18607158E-06

1.02110540E-06

8.52357289E-07

6.80431683E-07

5.05517914E-07

3.29599132E-07

1.52891312E-07

2.46819251E-08

SCALARS Abs(Scat_Solution) float

LOOKUP_TABLE default

4.89182201E-07

7.64329925E-07

1.06573239E-06

1.37670205E-06

1.69183034E-06

2.00826059E-06

2.32362084E-06

2.63537972E-06

2.94061899E-06

3.23597838E-06

3.51768782E-06

3.78168700E-06

4.02371612E-06

4.23954648E-06

4.42512614E-06

4.57678489E-06

4.69144524E-06

4.76673096E-06

4.80111100E-06

4.79399799E-06

4.74572724E-06
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4.65757918E-06

4.53167881E-06

4.37085663E-06

4.17854176E-06

3.95855544E-06

3.71491192E-06

3.45168003E-06

3.17276048E-06

2.88180527E-06

2.58210432E-06

2.27656598E-06

1.96777527E-06

1.65820806E-06

1.35076065E-06

1.05012201E-06

7.66882272E-07

500 Hz.

SCALARS Re(Scat_Solution) float

LOOKUP_TABLE default

1.36662476E-06

1.43697827E-06

1.53755485E-06

1.66626004E-06

1.81860014E-06

1.98542755E-06

2.16116173E-06

2.33865991E-06

2.50723428E-06

2.66084358E-06

2.78870616E-06

2.88777788E-06

2.95128961E-06

2.97859379E-06
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2.96800332E-06

2.91896264E-06

2.83652630E-06

2.72385307E-06

2.58359648E-06

2.42249725E-06

2.24298666E-06

2.05120781E-06

1.85207124E-06

1.64770974E-06

1.44438949E-06

1.24783668E-06

1.06154313E-06

8.92649650E-07

7.44331627E-07

6.24165433E-07

5.35618811E-07

4.84030718E-07

4.72026946E-07

5.01268239E-07

5.73771939E-07

6.89023463E-07

8.45429582E-07

SCALARS Im(Scat_Solution) float

LOOKUP_TABLE default

1.44909270E-06

1.62471096E-06

1.77900144E-06

1.91107153E-06

2.01984067E-06

2.10643850E-06

2.16749256E-06

2.20023124E-06

2.20593148E-06
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2.18242711E-06

2.13574189E-06

2.06610337E-06

1.98262015E-06

1.89024102E-06

1.79911144E-06

1.72074533E-06

1.65850522E-06

1.61826179E-06

1.60454607E-06

1.61190414E-06

1.63819600E-06

1.67266153E-06

1.70502012E-06

1.72754580E-06

1.72903761E-06

1.70179217E-06

1.64285758E-06

1.54990649E-06

1.42613807E-06

1.27459135E-06

1.10205474E-06

9.14835435E-07

7.20052381E-07

5.24202523E-07

3.31326134E-07

1.44420032E-07

3.48292471E-08

SCALARS Abs(Scat_Solution) float

LOOKUP_TABLE default

1.99186669E-06

2.16900720E-06

2.35136578E-06

2.53547173E-06
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2.71791515E-06

2.89465123E-06

3.06082408E-06

3.21097302E-06

3.33951455E-06

3.44137714E-06

3.51258815E-06

3.55078079E-06

3.55540336E-06

3.52775171E-06

3.47071256E-06

3.38840780E-06

3.28580599E-06

3.16830345E-06

3.04130545E-06

2.90976423E-06

2.77753043E-06

2.64674330E-06

2.51739181E-06

2.38733363E-06

2.25296073E-06

2.11025898E-06

1.95597925E-06

1.78858423E-06

1.60869493E-06

1.41921302E-06

1.22532125E-06

1.03499257E-06

8.60979017E-07

7.25298650E-07

6.62564144E-07

7.03996078E-07

8.46146710E-07
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1000 Hz.

SCALARS Re(Scat_Solution) float

LOOKUP_TABLE default

2.45066245E-06

2.46579834E-06

2.33073530E-06

2.04245772E-06

1.61041439E-06

1.06710553E-06

4.51401122E-07

1.70936218E-07

7.04458120E-07

1.04709562E-06

1.08878936E-06

7.50278469E-07

7.06269521E-09

1.15298223E-06

2.58547948E-06

4.13842732E-06

5.60832637E-06

6.79428328E-06

7.53879962E-06

7.76065251E-06

7.46810686E-06

6.75546654E-06

5.77602993E-06

4.69741305E-06

3.67884888E-06

2.83481809E-06

2.21465314E-06

1.82366157E-06

1.61539494E-06

1.53677883E-06

1.52249908E-06
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1.52390746E-06

1.50452198E-06

1.44568763E-06

1.33948485E-06

1.18294212E-06

9.77103038E-07

SCALARS Im(Scat_Solution) float

LOOKUP_TABLE default

2.39117872E-06

2.58545058E-06

2.72386267E-06

2.79766720E-06

2.79161734E-06

2.68804571E-06

2.48528089E-06

2.18942989E-06

1.82110322E-06

1.41428787E-06

1.01566381E-06

6.66398429E-07

4.02026925E-07

2.36189615E-07

1.59277619E-07

1.28368633E-07

9.81432244E-08

1.32979789E-08

1.84035625E-07

4.92774644E-07

9.17545377E-07

1.39659595E-06

1.86275143E-06

2.26327871E-06

2.52841739E-06

2.62175600E-06
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2.54286612E-06

2.30406672E-06

1.94568577E-06

1.50435779E-06

1.02381908E-06

5.33719041E-07

5.83857500E-08

3.85212613E-07

7.92752430E-07

1.15662981E-06

1.46616847E-06

SCALARS Abs(Scat_Solution) float

LOOKUP_TABLE default

3.42395708E-06

3.57277429E-06

3.58493443E-06

3.46389597E-06

3.22281893E-06

2.89211064E-06

2.52594222E-06

2.19609254E-06

1.95260805E-06

1.75972141E-06

1.48897121E-06

1.00349621E-06

4.02088958E-07

1.17692547E-06

2.59038095E-06

4.14041775E-06

5.60918503E-06

6.79429629E-06

7.54104561E-06

7.77628152E-06

7.52426140E-06
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6.89831924E-06

6.06896734E-06

5.21422284E-06

4.46394708E-06

3.86132078E-06

3.37207008E-06

2.93844601E-06

2.52887207E-06

2.15053053E-06

1.83472313E-06

1.61466714E-06

1.50565443E-06

1.49612883E-06

1.55649481E-06

1.65443180E-06

1.76192518E-06

2000 Hz.

SCALARS Re(Scat_Solution) float

LOOKUP_TABLE default

1.14780490E-06

1.58625295E-06

1.94971091E-06

2.23636230E-06

2.44459496E-06

2.56922868E-06

2.64449084E-06

2.72087770E-06

2.83802742E-06

3.01629070E-06

3.20235753E-06

3.24787245E-06

2.93663347E-06

2.09305074E-06
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7.03495124E-07

9.63297167E-07

2.38529769E-06

3.01343989E-06

2.48642908E-06

1.02041622E-06

8.57575333E-07

2.37109825E-06

3.05691977E-06

2.92145092E-06

2.32314812E-06

1.71655971E-06

1.36285908E-06

1.24263328E-06

1.19141778E-06

1.04937167E-06

8.01808857E-07

5.50223683E-07

4.43314593E-07

5.85342113E-07

9.95474672E-07

1.59822620E-06

2.23515490E-06

SCALARS Im(Scat_Solution) float

LOOKUP_TABLE default

8.02304602E-07

2.10275811E-07

5.15644093E-07

1.32463709E-06

2.04657287E-06

2.44422182E-06

2.28741358E-06

1.54330771E-06

5.13527318E-07
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2.49208908E-07

1.78305497E-07

8.12460051E-07

2.11872130E-06

2.56532321E-06

1.10152568E-06

2.47561421E-06

7.19663020E-06

1.13130559E-05

1.32291678E-05

1.23025650E-05

9.16608711E-06

5.27447878E-06

2.11624778E-06

4.73349676E-07

2.64678539E-07

8.16091949E-07

1.38586835E-06

1.57424216E-06

1.35650339E-06

9.36234965E-07

5.04895769E-07

1.53255617E-07

1.28664801E-07

3.74978817E-07

5.80907533E-07

6.87515696E-07

6.01198463E-07

SCALARS Abs(Scat_Solution) float

LOOKUP_TABLE default

1.40041021E-06

1.60012948E-06

2.01674526E-06

2.59922676E-06
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3.18818208E-06

3.54614669E-06

3.49651150E-06

3.12809433E-06

2.88411337E-06

3.02656813E-06

3.20731767E-06

3.34794964E-06

3.62115949E-06

3.31085255E-06

1.30700582E-06

2.65642752E-06

7.58163118E-06

1.17075212E-05

1.34608028E-05

1.23448108E-05

9.20611690E-06

5.78292601E-06

3.71796492E-06

2.95954987E-06

2.33817705E-06

1.90067970E-06

1.94371190E-06

2.00558616E-06

1.80543008E-06

1.40631320E-06

9.47532153E-07

5.71168439E-07

4.61608557E-07

6.95150704E-07

1.15257251E-06

1.73982897E-06

2.31459651E-06
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4000 Hz.

SCALARS Re(Scat_Solution) float

LOOKUP_TABLE default

1.76186116E-06

8.77030159E-07

7.56672163E-07

2.70695159E-06

4.20402130E-06

4.48392079E-06

3.40939289E-06

1.75036719E-06

5.54061820E-07

4.76521411E-07

1.95431227E-06

1.45745278E-06

4.75418115E-06

1.14253303E-05

6.67151829E-06

4.93770668E-06

4.02813998E-07

2.76643151E-05

4.48137857E-05

2.73219002E-05

2.59057480E-06

1.00713102E-05

9.21838122E-07

4.46626761E-06

1.62812740E-06

2.65679904E-06

1.55249382E-06

1.63662391E-06

1.68793707E-06

1.39419021E-06

2.80093349E-06
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5.68760428E-06

4.48797973E-06

9.77631670E-07

1.62622645E-06

1.63853541E-06

7.08245942E-07

SCALARS Im(Scat_Solution) float

LOOKUP_TABLE default

1.30593005E-08

1.86218432E-07

7.27777352E-07

1.05866005E-06

6.09383762E-08

2.79688906E-06

5.27588186E-06

5.51668470E-06

4.84886184E-06

6.16689361E-06

7.44487999E-06

3.66436462E-06

2.34128111E-06

2.54907653E-06

4.53423696E-07

2.20261731E-06

6.88135845E-06

4.83232630E-06

8.17477820E-07

1.95625195E-06

4.12613178E-06

2.72790722E-06

2.14221666E-06

3.74385222E-06

3.55088280E-06

2.15706083E-06
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3.02333632E-06

4.93691671E-06

5.05940488E-06

4.16378512E-06

4.28021729E-06

5.20168273E-06

5.61499952E-06

5.20332835E-06

4.45256290E-06

3.69942247E-06

2.61488711E-06

SCALARS Abs(Scat_Solution) float

LOOKUP_TABLE default

1.76190956E-06

8.96581956E-07

1.04986315E-06

2.90660421E-06

4.20446294E-06

5.28470757E-06

6.28163110E-06

5.78771072E-06

4.88041450E-06

6.18527683E-06

7.69711469E-06

3.94356902E-06

5.29941842E-06

1.17062361E-05

6.68690880E-06

5.40670604E-06

6.89313813E-06

2.80831927E-05

4.48212411E-05

2.73918446E-05

4.87196483E-06

111



1.04342114E-05

2.33214016E-06

5.82786203E-06

3.90634964E-06

3.42220580E-06

3.39864672E-06

5.20112338E-06

5.33354566E-06

4.39099908E-06

5.11522125E-06

7.70755121E-06

7.18819738E-06

5.29437339E-06

4.74024565E-06

4.04605053E-06

2.70910445E-06
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