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Abstract: Th e eff ect of orange peel concentration, HCl concentration, incubation time and temperature, and inoculum 

size on the spore count and activity of polygalacturonase (PG) enzyme produced from Aspergillus sojae M3 by solid-

state fermentation was screened using 2k factorial design. Orange peel and HCl concentrations and incubation time 

were signifi cant factors aff ecting the responses. Optimum conditions favoring both PG and spore production from 

Aspergillus sojae M3 were determined as 2% orange peel and 50 mM HCl concentrations at 22 °C and 4.3 days of 

incubation. An overlay plot was constructed for use as a practical chart for production of high enzyme activity (>35.0 

U/g substrate) and spore count (9.0 × 108 to 2.0 × 109 spore/mL) by superimposing the contours of PG activity and 

spore count responses. Th e accuracy and reliability of the constructed models on the responses was validated with the 

maximum calculated error rate between the predicted and actual activities at 14.1% and 22.4%, respectively.

Key words: Aspergillus sojae, polygalacturonase, spore production, solid-state fermentation, orange peel, response 

surface methodology

Introduction

Enzymes are a key component in the textile, ethanol, 

and pharmaceutical industries as well as in the 

manufacture of food and beverages. Among food 

enzymes, pectinases are the complex and diverse 

group of enzymes that degrade pectic substances 

(1). Pectin and other pectic substances are complex 

polysaccharides that play an important role in the 

fi rmness of plant tissues. Pectinases, which hold a 

25% share in global food enzyme sales, are produced 

from microbiological sources. Th ey have a variety of 

applications in the food industry such as clarifi cation 

of fruit juices, extraction of vegetable oils, curing of 

coff ee and cocoa, refi nement of vegetable fi bers, and 

manufacture of pectin-free starch (2-4). Th erefore, 

it is important to discover new pectinase-producing 

microbial strains and optimize their enzyme 

production conditions in order to meet increasing 

demand. 

Solid-state fermentation (SSF) is considered 

an attractive alternative method to submerged 

fermentation (SmF) for the production of industrially 

demanded enzymes that employ microorganisms 

(5). SSF was defi ned by Pandey (6) as a fermentation 

process involving solids in the absence (or near 

absence) of free water; among microorganisms that 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324140423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 H. DEMİR, N. GÖĞÜŞ, C. TARI, D. HEERD, M. F. LAHORE

395

are capable of growing on solid substrates, only 

fi lamentous fungi can grow to a signifi cant extent in 

the absence of free water (7). SSF has some advantages 

over SmF such as nonaseptic conditions, use of 

raw materials as substrates, use of a wide variety of 

matrices, low capital cost, low energy expenditure, 

less expensive downstream processing, lower 

water usage, and lower wastewater output. Higher 

volumetric productivity, higher concentrations of 

the products, high reproducibility, less fermentation 

space, easier control of contamination, absence of 

foam formation, and generally simpler fermentation 

media are other benefi ts of SSF (8,9).

Polygalacturonases (PGs; EC 3.2.1.67) which 

are involved in the hydrolysis of polygalacturonic 

acid chains with the addition of water, are the most 

abundant pectinolytic enzymes (3). Commercial 

preparations of PGs used in the food industry are 

usually derived from fungal sources, especially 

Aspergillus and Penicillium species (10,11). Many 

researchers have focused on producing PGs from 

Aspergillus species by using low-cost agroindustrial 

residues such as wheat and soy bran (12); lemon peel, 

sorghum stem, and sunfl ower head (13); wheat (14); 

orange peels and pulps (15); apple pomace (16); and 

sugarcane bagasse (17). Moreover, orange peel was 

utilized as a SSF medium by Ismail (18) on a local 

strain, Aspergillus niger A-20, and it favored both 

fungal growth and pectinase production. According 

to statistics from the United States Department of 

Agriculture (USDA), a total of 22,916,000 t of oranges 

were produced for processing in 2009 and 2010 by 

the major orange producer countries of the world 

(19). Since about 50% (in weight) of orange fruits are 

discarded as waste peels, membranes, juice vesicles, 

and seeds in the orange juice production process 

(20), orange peel is a sustainable by-product for 

the microbial production of industrially important 

enzymes by SSF. Moreover, utilization of this by-

product to produce a value-added enzyme will also 

help to solve the pollution problems encountered by 

orange juice manufacturers.

Ramachandran et al. (21) stated that one of 

the major applications of SSF is the production of 

spores. SSF was described as the model technology, 

dominating over SmF, as it yields a high quantity of 

quality spores. It also assures spore production with 

higher productivity, end concentration, and product 

stability. Th e production of spores, which are widely 

used as inoculum in many industrial fermentation 

processes, is highly aff ected by substrate selection 

and many environmental factors (21). Th erefore, in 

addition to enzyme production with high activity, 

the spore-production potential of a strain in SSF is an 

important point to consider.

In light of these points, this study investigated 

both the PG and spore-producing potential of a 

randomly mutated type of A. sojae, coded M3, by SSF, 

taking the eff ects of orange peel concentration, HCl 

concentration, incubation temperature, incubation 

time, and inoculum size as the main factor variables. 

Interaction among the above factors is expected. 

Hence, experimental design and statistical tools were 

employed to investigate the eff ects of these factors 

and their interactions with each other. Th is study not 

only serves as a basis for the combination of all the 

aforementioned parameters, but also introduces a 

new strain. To the best of our knowledge, this strain 

has not been previously considered for this purpose 

in biotechnology. 

Materials and methods

Microorganism and propagation

A. sojae ATCC 20235 was purchased in lyophilized 

form from Procochem Inc., an international 

distributor of the American Type Culture Collection 

(ATCC) in Europe. Th is wild-type culture was 

randomly mutated using ultraviolet light exposure 

at Jacobs University gGmbH, Bremen, Germany, 

and coded as Aspergillus sojae M3. According to 

the modifi ed procedure of De Nicolás-Santiago et 

al. (22), mutagenesis was performed at an exposure 

time during which 90% of spores were inactivated 

(LD
90

). All experiments in this study were conducted 

using this strain. Th e culture was propagated on yeast 

malt extract (YME) agar plate medium containing 

malt extract (10 g/L), yeast extract (4 g/L), glucose (4 

g/L), and agar (20 g/L) and incubated at 30 °C until 

sporulation (1 week). Stock cultures of these strains 

were prepared with 20% glycerol water and stored at 

−80 °C.
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Preparation of inoculum

Aft er the propagation step performed on YME agar 

using the stock cultures, spore suspensions used as 

inoculum were obtained on molasses agar slants, 

optimized by Gögus et al. (23), containing glycerol 

(45 g/L), peptone (18 g/L), molasses (45 g/L), 

NaCl (5 g/L), FeSO
4
·7H

2
O (15 mg/L), KH

2
PO

4
 (60 

mg/L), MgSO
4
 (50 mg/L), CuSO

4
·5H

2
O (12 mg/L), 

MnSO
4
·H

2
O (15 mg/L), and agar (20 g/L). Slant 

cultures were incubated at 30 °C for 1 week. Spores 

were harvested from the slants using 5 mL of sterile 

Tween 80 water (0.02%). Th e spore suspension was 

collected in a sterile falcon tube and stored at 4 °C 

until the inoculation step. Th e initial spore counts 

and viability counts were recorded. 

SSF fermentation conditions

SSF was conducted in 250-mL Erlenmeyer fl asks 

containing 10 g of sterilized (121 °C/15 min) solid 

media composed of ground (dried) bitter orange peel 

(concentrations given in Table 1) and wheat bran. 

Orange peel and wheat bran were purchased from 

a local market in Bremen, Germany. Th e prepared 

solid media were treated with 7 mL of HCl solution 

at diff erent concentrations (Table 1). Th e inoculation 

was carried out using prepared spore suspension in 

the range of 104 to 2 × 107 total spores at the screening 

step and 104 total spores at the optimization step. Th e 

total liquid amount in each fl ask was 12 mL; 7 mL of 

distilled water was used for HCl addition and 5 mL of 

distilled water was used for inoculation to maintain 

the homogenous spread of spores onto the solid-

state media. Th e inoculated fl asks were incubated 

at various temperatures, and durations are given in 

Table 1.

Enzyme extraction and spore count

At the end of fermentation, each fl ask was fi lled with 
100 mL of sterile Tween 80 water (0.02%) and shaken 
at 150 rpm and 30 °C for 30 min. Th e fl ask contents 
were then fi ltered through sterile cheese cloth and 
centrifuged at 4 °C and 6000 rpm for 15 min. Th e 
supernatant was separated and immediately used for 
the enzyme assay. 

Total spore counts were obtained by taking into 
account the extracted volume for each run, which 
varied between 89 and 99 mL, and were expressed 
as spore/mL. Spores were counted manually using 
a Th oma bright-line hemocytometer (Marienfi eld, 
Germany). Spores/g substrate was estimated by 
dividing the total spores obtained into the amount of 
substrate used in SSF. 

Enzyme assay

PG activity was assayed according to the procedure 
given by Panda et al. (24) using 2.4 g/L of 
polygalacturonic acid as the substrate at pH 4.0 and 
26 °C. Th e amount of substrate and enzymes used 
were 0.4 and 0.086 mL, respectively. Th e amount of 
enzyme that catalyzes the release of 1 micromole of 
galacturonic acid per unit volume of culture fi ltrate 
per unit time at standard assay conditions was defi ned 
as 1 unit of enzyme activity. Galacturonic acid (Sigma, 
St Louis, MO, USA) was used as a standard for the 
calibration curve of PG activity. Enzyme activity was 
expressed as U/g solid substrate:

Activity (U/g solid substrate) = microgram of 
galacturonic acid/212.12 × 1/20 × 1/0.086 × 1/10.

Experimental design and statistical analysis

Experimental design and statistical analysis were 
carried out in 2 steps: screening and optimization of 
the process variables. 

Table 1. Th e investigated factors and their levels in the experimental designs of screening and optimization processes.

Actual factor levels

Screening Optimization

−1 +1 −1 0 +1

Orange peel concentration (%) X
1

5 30 2 8.5 15

HCl concentration (mM) X
2

20 200 50 150 250

Incubation temperature (°C) X
3

30 22 29.5 37

Incubation time (days) X
4

4 8 3 4.5 6

Inoculum size (total spores) X
5

104 2 × 107 104



 H. DEMİR, N. GÖĞÜŞ, C. TARI, D. HEERD, M. F. LAHORE

397

In the screening part of this study, the eff ects of 
orange peel concentration (X

1
), HCl concentration 

(X
2
), incubation time (X

3
), and inoculum size (X

4
) 

on spore count and the PG enzyme produced from 
Aspergillus sojae M3 by SSF were investigated. 
A double replicate 2k factorial design with 32 
experimental runs was employed. Th e blocking 
number was 2 since 2 incubators were used.

In the optimization, inoculum size was kept at 104 
total spores based on the screening results, and a face-
centered composite design (FCCD) with 30 runs was 
employed using the above factor variables in addition 
to temperature. Th e blocking number was 3 because 
3 incubators were used. A second-order polynomial 
regression equation was fi tted to the response data:

Y β β β β εX X X X
i 1 i 1

0

κ κ

i i i i i ij

ji

i j
2= + + + +

= =

/ / //

where Y is the predicted response, k the number 
of factor variables, β

0
 the model constant, β

i
 the 

linear coeffi  cient, X
i
 the factor variable in its coded 

form, β
ii
 the quadratic coeffi  cient, β

ij
 the interaction 

coeffi  cient, and ε the error factor. 

Analysis of data and response surface graphics 
generation was performed with Design Expert 7.0.0 
soft ware in both screening and optimization stages. 
Th e range and levels of the variables investigated in 
both screening and optimization are given in Table 
1. A natural logarithm transformation was applied 
to the spore count response values. Th e following 
equation was used for coding the actual values of the 
factors between (−1) and (+1):

x = [actual − (low level + high level)/2)] / [(high 
level – low level)/2].

Results and discussion

Screening of the factors aff ecting PG activity and 
spore count

According to Montgomery (25), the 2k design is 
especially useful in factor screening experiments 
when there are many factors to be investigated 
since it provides the smallest number of runs with 
k factors that can be studied in a complete factorial 
design. Th erefore, in the screening step of this 
study, a 24 factorial experimental design with double 
replicate was employed in order to investigate 

the eff ects of orange peel concentration, HCl 

concentration, incubation time, and inoculum size 

and their interactions on PG activity and spore count. 

According to the results, maximum PG activity was 

42.3 U/g substrate at 5% orange peel and 200 mM 

HCl concentrations, 4 days of incubation, and 104 

total spore inoculum levels.

ANOVA results indicated that the constructed 

model is signifi cant with a P-value of 0.0004, and the 

most important factors aff ecting PG activity were the 

orange peel concentration (X
1
), HCl concentration 

(X
2
), and incubation time (X

3
) main factors and the 

orange peel concentration-incubation time (X
1
X

3
) 

interaction. As a result of these fi ndings, we decided 

to study these factors in order to optimize conditions 

and maximize PG activity even further.

Th e results showed that neither inoculum size nor 

its interactions have a signifi cant eff ect on PG activity. 

Based on this information, in the optimization 

segment of this study, the inoculum size was fi xed at 

104 total spores, where the maximum PG activity was 

obtained.

ANOVA results for spore count response 

indicated that orange peel concentration (X
1
) and 

incubation time (X
3
), incubation time-inoculum 

size (X
3
X

4
), orange peel concentration-HCl 

concentration-incubation time (X
1
X

2
X

3
), orange 

peel concentration-HCl concentration-inoculum 

size (X
1
X

2
X

4
), HCl concentration-incubation time-

inoculum size (X
2
X

3
X

4
), and the interaction of all 4 

factors (X
1
X

2
X

3
X

4
) have signifi cant eff ects on total 

spore count. Th e maximum spore count was 1.2 × 

108 spores/mL at 30% orange peel concentration, 200 

mM HCl concentration, and 8 days of incubation 

using 104 total spore inoculum levels.

Optimization of the factors aff ecting PG activity 
and spore count

Th e results of the screening step of this study show 

that orange peel concentration, HCl concentration, 

and incubation time were the most important factors 

aff ecting PG activity. In addition to these variables, 

another factor variable (incubation temperature), 

which was excluded in the screening step due to 

its known signifi cant eff ect, was included in the 

optimization step in order to determine the optimum 

temperature range and its possible interactive eff ect 
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on the other variables. In fact, Krishna (8) stated 

that the most important of all the physical variables 

aff ecting SSF performance is temperature, because 

growth and production of enzymes or metabolites 

are usually sensitive to temperature. Furthermore, 

many researchers have observed that incubation 

temperature is a major parameter aff ecting the 

production of pectinases in SSF (8,13,26). Patil and 

Dayanand (13) explained this by pointing out that 

temperature is known to infl uence the metabolic 

rate of the organism involved in the process, and 

this determines the amount of the end product. 

It is well known that fungi can grow from 20 to 55 

°C; nevertheless, the optimum growth temperature 

may be diff erent from the optimum for product 

formation (27). Hence, all of these variables were 

taken into consideration in the optimization step, 

and their eff ects on PG activity and spore count were 

investigated using FCCD (Table 2).

Table 2. FCCD design and experimental results of PG enzyme activity and spore count responses.

Run
Block (incubator 

number)

X
1 

(%)

X
2
 

(mM)

X
3
 

(°C)

X
4
 

(days)

PG activity (U/g 

substrate)

Spore count 

(spores/mL)

1  1 2.0 250 37.0 6.0 32.4 1.1 × 108

2  1 15.0 50 22.0 3.0 32.2 2.2 × 108

3  1 8.5 150 29.5 4.5 26.8 9.1 × 108

4  1 15.0 250 22.0 6.0 28.9 1 × 109

5  1 8.5 150 29.5 4.5 30.3 1.1 × 109

6  1 2.0 50 37.0 3.0 30.9 7.3 × 107

7  1 15 250 37.0 3.0 30.8 5 × 107

8  1 2.0 250 22.0 3.0 38.4 2.7 × 108

9  1 2.0 50 22.0 6.0 27.6 8.8 × 108

10  1 15.0 50 37.0 6.0 31.6 7.9 × 107

11  1 15.0 250 22.0 3.0 34.5 2.7 × 108

12  2 2.0 250 37.0 3.0 31.0 7 × 107

13  2 15.0 250 37.0 6.0 42.5 8.9 × 107

14  2 8.5 150 29.5 4.5 40.1 1 × 109

15  2 15.0 50 37.0 3.0 31.7 1 × 108

16  2 2.0 250 22.0 6.0 34.0 8.6 × 108

17  2 2.0 50 22.0 3.0 40.7 2.2 × 108

18  2 2.0 50 37.0 6.0 29.1 7.3 × 107

19  2 8.5 150 29.5 4.5 31.6 1.1 × 109

20  2 15.0 50 22.0 6.0 32.7 8.4 × 108

21  3 8.5 150 29.5 4.5 32.2 7.9 × 108

22  3 15.0 150 29.5 4.5 34.6 6.2 × 108

23  3 8.5 150 29.5 4.5 36.8 1.9 × 109

24  3 8.5 50 29.5 4.5 38.0 1.1 × 109

25  3 8.5 150 29.5 3.0 34.7 3.9 × 108

26  3 8.5 150 37.0 4.5 37.4 6 × 107

27  3 8.5 150 29.5 6.0 24.6 5.5 × 108

28  3 2.0 150 29.5 4.5 38.8 9.9 × 108

29  3 8.5 250 29.5 4.5 33.2 8.3 × 108

30  3 8.5 150 22.0 4.5 41.7 5.5 × 108
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Levels of the factors chosen for the optimization 
process were redetermined according to results 
obtained at the screening step. It was observed in 
the screening step that orange peel concentration 
and incubation time at their low levels and HCl 
concentration at its high level led to higher PG activity. 
Based on this information, orange peel concentration, 
incubation time, and HCl concentration were 
investigated at 2%-15%, 3-6 days, and 50-250 
mM ranges, respectively, in the optimization step. 
Additionally, the range of the incubation temperature 
investigated was 22-37 °C. Th ese levels were also 
in accordance with the optimization of the factors 
aff ecting the spore count response.

Th e most important factors aff ecting PG 
activity were selected (P < 0.1000) according to the 
ANOVA results of the responses and a model was 
developed. Th is analysis indicated that incubation 
time-incubation temperature (X

3
X

4
), orange peel 

concentration-incubation temperature (X
1
X

4
), and 

orange peel concentration-incubation time (X
1
X

3
) 

interactions and the quadratic forms of incubation 
time (X

3
2) and temperature (X

4
2) were the most 

important factors. Orange peel concentration (X
1
), 

incubation time (X
3
), and incubation temperature 

(X
4
) main factors were found to be insignifi cant 

terms, but they were included in the model because 
of their strong interactions with incubation time 
and temperature (i.e. X

3
X

4
, X

1
X

3
, and

 
X

1
X

4
). HCl 

concentration (X
2
) was not included in the model 

due to its insignifi cant eff ect on  PG activity.

Th e P-value of the model, according to ANOVA, 
was 0.0138. Th is indicated that the constructed 
model was signifi cant and that the terms included 
in this model had an important eff ect on PG activity. 
Moreover, the lack-of-fi t value of the model (0.8343) 
proved the validity of the factors included in the 
model. Th e model equation that expressed PG activity 
in terms of coded factors was as follows:

PG activity = 33.42 – 0.19X
1
 – 1.19X

3
 – 0.73X

4
 + 

1.52X
1
X

3
 + 1.59X

1
X

4
 + 2.12X

3
X

4
 – 4.73X

3
2 + 5.14X

4
2.

Th e response surface plots obtained according 
to the above model can be seen in Figure 1. Figure 
1A shows that high PG activity was obtained at a 
middle level of time and a low level of orange peel 
concentration. Nevertheless, a low level of orange peel 
concentration and both high and low temperature 

levels resulted in high PG activity (Figure 1B). 

According to Figure 1C, at the middle level of time 

and both high and low levels of temperature, PG 

activity was also high. 

Th e improvement in PG activity with the 

optimization process relative to the screening process 

can be clearly observed by comparing histograms of 

PG activity values obtained at the screening (Figure 

2A) and optimization (Figure 2B) steps. Th e PG 

activity values of the screening step were obtained 

in the range of 0-40 U/g substrate and increased to 

25-42.5 U/g substrate at the optimization step. Th is 

improvement was also pronounced in the mean 

activity values (14.9 U/g substrate for screening and 

33.7 U/g substrate for optimization step) presented 

in Figures 2A and 2B. 

It was concluded from ANOVA results from 

the other response, spore count, of the FCCD that 

incubation temperature (X
3
) and time (X

4
) main 

factors, their interaction with each other (X
3
X

4
), and 

the quadratic forms of incubation time (X
3

2) and 

temperature (X
4

2) were the most important factors 

aff ecting this response. Th erefore, the mathematical 

model developed for spore count in terms of coded 

factors is as follows:

ln(Spore count) =  20.75 – 0.92 X
3
 + 0.35X

4
 – 

0.28X
3
X

4
 – 1.37 X

3
2 – 0.43X

4
2.

Compared to our previous SSF study using wild 

type Aspergillus sojae (28) where maximum PG 

activity was 31.7 U/g solid, the investigated factors 

and their levels in this study improved PG activity by 

at least 25%, which provides a rough estimate as to 

the PG-producing potential of Aspergillus sojae M3. 

Similarly, this optimization process increased spore 

count production by approximately 56 times relative 

to our previous SSF study (28). Th ese improvements 

may be attributed to the mutation and screening 

process, the optimization routine, and the change in 

cultivation system.

In order to provide the end user with certain 

alternatives depending on their interest, the 

following criteria, summarized in Table 3, were 

used for numerical optimization of the 2 responses. 

Th e aim of Criterion 1 was to reach maximum 

PG activity in PG production processes with no 

limitation on spore production. In Criterion 2, 
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providing optimum conditions for the processes 

in which spore production is the main purpose. 

Criterion 3 is designed for processes where both 

high PG activity and spore production are desired. 

From the solution of obtained models and based 

on Criterion 1, the optimum PG activity and 

spore production conditions are 2% orange peel 

concentration, 50 mM HCl concentration, 22 °C 

incubation temperature, and 3.8 days of incubation 

time. Th is result is in accordance with the conditions 

obtained in the response surface plots of the PG 

activity response (Figures 1A-1C). Th e optimization 

results for Criterion 2, given in Table 3, show that, 
when compared with the optimum conditions of 
maximum PG activity (Criterion 1), nearly 1.5 more 
incubation days and slightly higher temperatures 
were required in order to obtain maximum spore 
count. Furthermore, the optimum conditions will be 
very close to those obtained with Criterion 1 when 
both maximum PG activity and spore count are 
targeted. 

Th e utilization of optimum conditions for spore 
production (Criterion 2) will yield 66% more spores 
than the process targeting maximum PG activity 
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Figure 1. A) Response surface plot showing the interaction between orange peel concentration and incubation time (constant 

values; HCl concentration: 150 mM, incubation temperature: 29.5 °C).

 B) Response surface plot showing the interaction between orange peel concentration and incubation temperature 

(constant values; HCl concentration: 150 mM, incubation time: 4.5 days).

 C) Response surface plot showing the interaction between incubation time and incubation temperature (constant 

values; orange peel concentration: 8.5%, HCl concentration: 150 mM).
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(Criterion 1). However, it should be kept in mind by the 

end user that maximum spore production will cause 

a reduction of about 24% in PG activity. Similarly, in 

a process where maximum PG activity is achieved, 

optimum conditions indicated for Criterion 1 lead to 

a 66% decrease in spore count. Criterion 3 supplies 

both maximum PG activity and spore count, which 

may result in an insignifi cant decrease in PG activity 

(1.4%) in addition to a signifi cant increase (24%) in 

spore count relative to Criterion 1. Criterion 3 may 

also lead to 1.3 times more PG activity; however, 

the spore count yield may be 2.3 times lower when 

compared with Criterion 2. 

Th e graphical optimization of responses built up 

the overlay plot where the contours of interest for 

the various response surfaces were superimposed. 

Th e overlay plot shown in Figure 3 was constructed 

with the contours of PG activity greater than 35.0 U/g 

substrate and spore count contours between 9.0 × 108 

and 2.0 × 109 spores/mL. Th is overlay plot (Figure 3) 

demonstrated an optimum region (shaded in gray) 

in which each point would represent a combination 

of fermentation conditions that would provide the 

maximum PG activity and spore count. In Figure 3, 

the optimum region for maximum PG activity and 

spore count is an incubation period of 3.8 to 5.5 days 

and 22.4 to 27.5 °C incubation temperatures. Th is 

overlay plot was prepared for visual presentation 

of optimum conditions where conditions meet the 

proposed criteria and can be used practically to select 

conditions at the preparation step of the fermentation 

process.

Validation of the constructed model for PG activity

In order to validate the models constructed for PG 

activity and spore count in the optimization step, 

4 experiments were conducted with the optimum 

conditions suggested by the soft ware (Design Expert 

7.0.0) and with the highest desirability values (0.891-

0.995). Th e conditions of validation experiments 

and the actual and predicted values and their error 

percentages are summarized in Table 3.
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Figure 2. A) Histogram of PG activity response values obtained 

at the screening step.

 B) Histogram of PG activity response values obtained 

at the optimization step.

3.00 3.75 4.50 5.25 6.00
22.00 

25.75 

29.50 

33.25 

37.00 
Overlay Plot

X4: Incubation time (day)
X

3
: I

n
cu

b
at

io
n

 t
em

p
er

at
u

re
 (

°C
)

PG Activity: 35

PG Activity: 35

Spore count: 9E+008

666666

Figure 3. Overlay plot of PG activity (U/g substrate) and 
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Table 3.  Numerical optimizatio n and results of validation experiments.

Criterion
X

1 

(%)

X
2
 

(mM)

X
3
 

(°C)

X
4
 

(days)

Predicted

PG activity 

(U/g substrate)
Spore count (spores/mL)

Actual
Error rate

(%)
Predicted Actual

Error rate

(%)

1
In range

2.0

Minimize

50

In range

22.0

In range

3.7

Maximize

42.3
40.5 4.2

In range

4.7 × 108

3.6 × 

108 22.4

2
In range

2.0

Minimize

50

In range

26.6

In range

5.3

In range

32.1
28.1 12.1

Maximize

1.4 × 109

1.2 × 

109 9.6

2
In range

9.7

Minimize

50

In range

26.6

In range

5.3

In range

32.1
36.5 −14.1

Maximize

1.4 × 109

1.3 × 

109 6.7

3
In range

2.0

Minimize

50

In range

22.0

In range

4.3

Maximize

41.7
41.1 1.3

Maximize

6.4 × 108

5.5 × 

108 13.6

Th e error percentages of the validation 
experiments were in the range of 1.3%-22.4%, which 
indicated good compatibility of the model with the 
experimental results. Moreover, the percentages 
of error in the predicted values given in Table 3 
demonstrate the accuracy and reliability of the 
constructed models for PG activity and spore count 
in the optimization step of this study.

Additionally, one randomly chosen treatment 
forming the shaded area of the overlay plot given in 
Figure 3 was validated experimentally. Th e conditions 
of this treatment were: 2% orange peel and 50 mM 
HCl concentrations, 4.3 incubation days, and 26 °C 
incubation temperature. Th e predicted PG activity 
and spore count values were validated with errors of 
13.9% and 2.9%, respectively.

Many researchers have reported on the SSF 
production of pectinases from a wide variety of 
fungal strains and agroindustrial substrates under 
optimized conditions. Th e current PG activity values 
are compatible with the enzymatic activity results 
of Freitas et al. (17), Martin et al. (29), and Silva et 
al. (30). Th e maximum PG activity in this study was 
nearly 2 times higher than the activity obtained by 
Botella et al. (9) (25 U/g solid) using grape pomace 
as the solid substrate. Moreover, Martin et al. (29) 
obtained a maximum PG activity of 27.0 U/g solid 
with 90% sugarcane bagasse and 10% wheat bran 
and of 34.0 U/g solid with 90% wheat bran and 10% 
sugarcane bagasse, levels lower than the maximum 
enzyme activity obtained in the current study. On 
the other hand, Taşkın and Eltem (31) focused on 
the production of PG from Aspergillus foetidus by 

SSF using agroindustrial residues. In their study, PG 
enzyme activity using wheat bran (moistened with 
sulfate and phosphate salt solutions) was around 50 
U/g, which was slightly higher than the maximum 
PG activity obtained in our study. Patil and Dayanand 
(32) produced a maximum exopectinase activity 
of 17.2 U/g using sunfl ower head and 10.2 U/g 
using lemon peel (both moistened with sulfate and 
phosphate salt solutions) by an Aspergillus niger strain, 
which showed us that the wheat bran and orange peel 
combination was superior to these agroindustrial 
residues with respect to PG production. 

At the validation step of this study, a maximum 
spore production of 1.4 × 109 spores/mL (equivalent 
to 1.2 × 1010 spores/g substrate) was obtained. Th is 
value is higher than that obtained by Nava et al. 
(33), which was 2.9 × 109 spore/g dry substrate in a 
study conducted on the spore production in SSF of 
coff ee pulp from Penicillium commune. Additionally, 
Penicillium roqueforti was cultivated by Larroche and 
Gros (34) on buckwheat seeds and resulted in hourly 
spore productivity values of 3.1 × 107 spores/g dry 
substrate, which was lower than in the current study 
(hourly values of 9.4 × 107 spores g/dry substrate). 

Although these comparisons may not provide 
direct information about PG and spore production 
capacities because of the diff erent conditions studied, 
a rough overview can be gained. Th erefore, the mutant 
A. sojae M3 utilizing orange peel under optimized 
conditions off ers signifi cant industrial potential for 
the production of PG enzyme and spores.

Th e PG enzyme and spore production potential 
of a mutant Aspergillus sojae strain in a fermentation 
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medium lacking the support of synthetic compounds, 

but including natural components such as orange peel 

and wheat bran, was investigated. Th e PG activity 

and spore count values obtained were higher than 

the activity values achieved in a previous SSF study 

of our group using corncob, maize meal, and crushed 

maize as substrates. Th ese results not only signify the 

increase of the PG activity and spore counts but also 

emphasize the utilization of agricultural by-product 

mixtures including orange peel, which is an important 

waste material of the fruit juice industry. In addition, 

this study off ers 3 options for optimum production 

conditions to manufacturers (end users) according to 

priority, PG enzyme or spore production.
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