
 1

 

Web and Java Based Architecture for 

Laboratory Experiments 

 
By 

 

Mustafa Özgür TUTUM 

 

 

A Dissertation Submitted to the  

Graduate School in Partial Fulfillment of the 

Requirements for the Degree of 

 

MASTER OF SCIENCE 

 

 
Department: Computer Engineering 

 Major: Computer Software 

 

Izmir Institute of Technology 

Izmir,Turkey 
 

June, 2003 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324140274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

 

 

We approve the thesis of Mustafa Özgür Tutum 

 

 

Date of Signature 

 

----------------------------------------------------------        ----------------------- 

Prof. Dr. Sıtkı AYTAç    

Supervisor 

Department of Computer Engineering 

 

----------------------------------------------------------        -----------------------

Assoc. Prof. Dr. Ahmet KOLTUKSUZ 

Department of Computer Engineering 

 

 

 

----------------------------------------------------------        -----------------------

Assist. Prof. Dr. �evket GÜMÜ�TEKiN  
Department of Electrical and Electronics Engineering 

 

 

----------------------------------------------------------        -----------------------

Prof. Dr. Sıtkı AYTAÇ 

Head of Department  
 
 
 

 



 3

 

 

 

ACKNOWLEDGEMENTS 

 
The author would like to express his gratitude to his thesis adviser, Prof. Sıtkı 

AYTAÇ, Ph.D, for his encouragement, guidance and support throught the 

development of this thesis. 

 

The author would like to thank all friends and colleagues at the department for 

their support. 

 

The author would especially like thank to his friend, Burak Galip ASLAN for his 

synergy . 

 

The author would also like  to express his gratitude to his parents for their  

patience. 

  

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



 4

 

 

ÖZETÇE 
 

�leti�im teknolojilerindeki geli�meler e�itim faaliyetlerinin ileti�im 

kanallarını kullanmasını yaygınla�tırmı�tır. Bu kanallardan biri olan �nternet, 

laboratuar uygulaması gerektirmeyen  e�itimlerin vazgeçilmez bir parçası 

olmu�tur.  E�itmen ve ö�renciler co�rafi konumdan ba�ımsız olarak �nternet 

ortamında bulu�maktadır.  Ne var ki farklı olan ihtiyaçlar ve bu ihtiyaçları 

kar�ılamaktaki güçlükler laboratuar uygulaması gerektiren e�itimlerin �nternet 

üzerinde aynı ölçüde yaygınla�masını engellemektedir. Bu çalı�mada laboratuvar 

uygulamalarının �nternet üzerinden gerçekle�tirilmesinde kullanılabilecek 

metodolojiler tartı�ılmaktadır. �htiyaçlar yeniden gözden geçirilerek �YTE’ deki 

uygulamalar için rafine edilmi�tir. Saptanan ihtiyaçları kar�ılayacak bir mimari 

önerilmi�tir ve bu mimari üzerinde geli�tirilebilecek bir yazılımın analizi  

yapılmı�tır. 

�
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ABSTRACT 

 
Developments in the communication technologies area have increased the 

popularity of usage of communication channels for the education activities. Being 

one of these communication channels, Internet, has become an inevitable 

component for theoretical education. Internet has brought together instructor and 

student without any geographical constraint. But having different requirements 

and difficulties during the satisfaction of these requirements are the common 

drawbacks for the widespread usage of Internet for laboratory educations. In this 

thesis, methodologies, which can be used in remote laboratory systems, have been 

discussed. Requirements have been scrutinized and refined. Remote laboratory 

architecture for IYTE has been proposed according to these requirements. 

Analysis of software that can be developed on the proposed architecture has been 

made. 
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Chapter1 

MOTIVATION 

 

1.1 Remote Experiment Concept 
Education process is composed of three basic components. These are 

education source, student and relationship between this source and student. 

Written documents, audiovisual presentations and instructor can be an education 

source. Relationship between these sources and student is called as an education 

method. In education, major aim should be to increase the student’s reasoning 

skills. 

Reasoning can be performed by using induction, deduction and retroduction 

methods in a complex order. Deduction is the mental process of forming 

conclusions based on premises. The conclusions must follow directly and 

necessarily from the premises. Retroduction is a pattern of inference, which 

accounts for the hypothetical causes of unobservable entities as verifiable, 

meaningful objects of a scientific inquiry. And finally; induction can be described 

as collecting the individual bits of verifiable information that exist around us and 

then trying to arrive at general truths. In order to collect the necessary information 

for induction, observation or experiment should be done. 

Observation is collection process of information. Observation must have two 

properties in order to be scientifically meaningful. One property is reliability. For 

reliable observation observer should be objective and observation should have a 

tolerable error. Other property is validity. Collecting information without any aim 

is not a valid observation. 

Another method for collecting the information is doing an experiment. While 

observer does not change the facts in observation, in experiment scientist plays 

with the facts. Scientist makes systematic changes in initial conditions of the 

observation and observes the dependent conditions. Here, initial conditions are 

independent variables. In order to make systematic changes and necessary 

controls, an artificial observation environment is needed. Laboratories provide 

this environment. 
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Being two basic components laboratory equipments and student determine 

the laboratory cost. Cost is depending on expensive equipments and students’ 

physical presence in the lab. Remote experimentation solution reduces the 

laboratory cost. Expensive laboratory equipments should be shared among 

students. Hence, there is no need for physical presence of students.  

  

1.2 Overview of the Thesis 
This chapter will continue with related work sub title. At that part, recent 

advances in remote experimentation subject are introduced.  

In the second chapter, requirements of remote experimentation such as 

computer controlled experiment setup and multimedia support is discussed.  

In the third chapter, feasibility study that has been done for IYTE is 

presented. Emulator solution is proposed as the first step of the real remote 

experimentation. Mathematical model of emulator and implementation details are 

explained. 

Fourth chapter covers the object oriented analysis and design of proposed 

system . Unified Modelling Language is used for analysis and design. 

Last chapter gives the conclusion and proposes the future extensions of 

this work. 

 

1.3 Related Research and Recent Advances  
Many institutions of higher education have successfully established Web-

based environments where learners can pursue their higher education via Internet 

or alternative distance education methods. The success, however, has been 

concentrated on the domain of virtual classroom (Hirumi&Bermudez, 1996). But, 

still many learners whose courses are heavily lab-dependent are not able to enjoy 

the multidimensional benefits of real laboratory experimentation via the virtual 

classroom due to its technical limitations (Aktan, Bohus, Crowl, Shorl, 1996). In 

distance teaching, laboratory experimentation is inconvenient because the students 

usually have to be physically present in the universities' labs. One solution to 

avoid this disadvantage is virtual experimentation. In this paradigm the 
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experiments are simulated and visualized by means of virtual reality (Schimid, 

1999). Another concept is remote control of laboratory experiments (Alhalabi, 

Anandapuram & Hamza, 1998). 

Currently, various studies are being executed about remote laboratory subject, 

but two of them are much more important than the others. 

 The University of Western Australia executes one of these projects. They 

state that over $2 million had been invested for this system since 1993.�  Their 

telerobot research team has developed reliable Internet software and user 

interfaces which can be tailored for remote control and operation of any kind of 

equipment. And their web-based teaching team has shown how students can 

effectively learn basic theoretical material through computers and how staff can 

track their progress. They are trying to combine these two studies to provide 

remote access to teach laboratory equipment. Their system allows student to 

operate the equipment and collect data automatically. Labview program is at the 

core of the system. Labview is commercial software for instrumentation of 

experiments. Software includes drivers for various type of PC interface card 

(RATL, 2003).  

Another important project continues at Federal University of Santa Carina 

in Brazil. Their system gives students an opportunity to run an assembly code 

remotely for 8051 microcontroller. Their lab is composed of a board containing 

8051 microcontroller and other devices for the communication between the 

microcontroller and the server. They have server software that receives 

information from the client. Then software takes this information to the 

microcontroller and the results back to the client. Web browser is not enough for 

client in this system so they use client side software that loads student’s machine 

code and sends it to the server. Here no visual feedback is used. It can be asked 

that what is the difference from the simulation of the microcontroller, but here 

students use real equipments and when an unexpected situation occurs, system 

responses real results (RELB, 2003). 

Also, there are some other projects, but these two have partially finished 

and they are leading projects in this area.  
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Chapter 2 

 

REQUIREMENTS OF REMOTE EXPERIMENTATION 
 

 

2.1 Introduction 

 
 

In engineering education, experiments play an important role. Experiment 

setups can be described as the light version of the real and complex engineering 

problems. Therefore, we should carefully determine which experiment could be 

done and which couldn’t be through Internet.  

Clearly we can state that computer based controller implementation is 

necessary for remote experimentation. With this statement we have changed our 

problem domain. Henceforth we will only deal with controller, regardless the type 

of experimental setup.  

Other component of the remote experiment system is scheduling. 

Experiment setup must be shared among students. Registered students select the 

time that they will do their experiment. These processes should be executed by the 

access control mechanism.  

Another important component is multimedia support. Visual feedback 

should be supplied to the student. With the visual feedback, the student supervises 

the experiment and checks whether the performance of the process is as expected. 

Therefore we will examine if Java software development environment is 

enough or not to meet the needs belonging to three basic components of a remote 

experiment system. Controller design, access management and multimedia 

support… The reason that we examine Java is only for research purposes. It may 

be interesting to see that all-Java solution is not feasible. 

In the next part of the chapter we will concentrate on these three basic 

components. 
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2.2 Controller Design 
 

In the previous part we have stated that computer based controller 

implementation is necessary for remote experimentation. Therefore, necessary 

definitions about control systems will be given, before we explore the controller 

alternatives appropriate for remote experiments. Then, common control actions 

will be introduced. 

 

2.2.1 Basic Definitions Related to Control Systems 

  

2.2.1.1 Plant 

A plant is a piece of equipment, perhaps just a set of machine parts 

functioning together, the purpose of which is to perform a particular operation 

(Ogata, 1990). In this thesis we shall call any physical experiment object to be 

controlled a plant. 

2.2.1.2 System 

 A system is a combination of components that act together and perform a 

certain objective (Ogata, 1990).  

2.2.1.3 Disturbance 

A disturbance is a signal that tends to adversely affect the value of the output 

of a system. If a disturbance is generated within the system, it is called internal, 

while an external disturbance is generated outside the system and is an input 

(Ogata, 1990). 

2.2.1.4 Feedback Control System 

A system that maintains a prescribed relationship between the output and 

some reference input by comparing them and using the difference as a means of 

control is called a feedback control system (Ogata, 1990).  



 6

2.2.1.5 Closed-Loop Control Systems 

Feedback control systems are often referred to as closed-loop control 

systems. In a closed-loop control system the actuating error signal, which is the 

difference between the input signal and the feedback signal, is fed to the controller 

so as to reduce the error and bring the output of the system to a desired value 

(Ogata, 1990).  

  

 

Figure 2.1. A typical closed-loop control system 

 

2.2.1.6 Open-Loop Control Systems 

Those systems in which the output has no effect on the control action are 

called open-loop control systems. In other words, in an open-loop control system 

the output is neither measured nor fed back for comparison with the input. Open-

loop control can be used, in practice, only if the relationship between the input 

and output is known (Ogata, 1990). 
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Figure 2.2. An Open-loop control system 

2.2.1.7 Actuator 

Actuator is a power device that produces the input to the plant according to 

the control signal so that the feedback signal will correspond to the reference 

input signal. The output of controller is fed to an actuator, such as a pneumatic 

motor or valve, a hydraulic motor, or an electric motor (Ogata, 1990). 

2.2.1.8 Sensor 

The sensor or measuring element is a device that converts the output 

variable into another suitable variable, such as a displacement, pressure, or 

voltage, that can be used to compare the output and the reference input signal 

(Ogata, 1990). 

 

2.2.2 Common Control Actions 

 

 There are six basic control actions are very common among industrial 

controllers: on- off, proportional, integral, proportional-plus-integral, 

proportional-plus-derivative and proportional-plus-integral-plus-derivative control 

action. Before examining these control action we need to explain two concepts 

Laplace transform and transfer function. 

 The Laplace transform of function f(t) is given by 

 � [f(t)] = F(s) = 0�
ϖ

 f(t)e-st dt   (Kuo, 1991)   

 (eq. 2.1) 
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 The transfer function of a linear, time-invariant, differential equation 

system is defined as the ratio of the Laplace transform of the output to the Laplace 

transform of the input under the assumption that all initial conditions are zero 

(Kuo, 1991). 

 The transfer function of a system is a mathematical model. It is an 

operational method of expressing the differential equation that relates the output 

variable to the input variable. A transfer function gives a full description of the 

dynamic characteristics of the linear and time-invariant system, as distinct from its 

physical description (Ogata, 1990). 

2.2.2.1 On-off Control Action 

 Actuating element has only two fixed positions. If the output signal from 

the controller is u(t) and the actuating error signal is e(t), the signal u(t) remains at 

either a maximum or minimum value, depending on whether the actuating error 

signal is positive or negative (Ogata, 1990). 

 u(t) = U1  for e(t) > 0     (eq. 2.2) 

 u(t) = U2  for e(t) < 0     (eq. 2.3) 

 

  

 
(a) (b) 

 

Figure 2.3. (a) Block diagram of an on-off controller (b) Block 

diagram of an on-off controller with differential gap 

 

 A differential gap is indicated Figure 2.3 (b). This gap causes the 

controller output u(t) to maintain its present value until the actuating error signal 

has moved slightly beyond the zero value. It may be the result of unintentional 
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friction. However, it is intentionally provided in order to prevent too frequent 

operation of the on-off mechanism (Ogata, 1990). 

2.2.2.2 Proportional Control Action 

The relationship between the output of the controller u(t) and the actuating 

error signal e(t) is  

u(t)=Kp*e(t)         (eq. 2.4) 

, where Kp is the proportional gain. In Laplace transform quantities, 

 T(s)=U(s) / E(s) = Kp        (eq. 2.5) 

, where T(s) is the transfer function of the controller (Ogata, 1990). 

     

  
  Figure 2.4. Block diagram of a proportional controller 

 

2.2.2.3 Integral Control Action 

 The value of the controller output u(t) is changed at a rate proportional to 

the actuating error signal e(t). It is 

 u(t)=KI 
0
� 

t
 e(t) dt                     (eq. 2.6) 

, where KI is an adjustable constant. 

 The transfer function of the integral controller is   

T(s)=U(s)  / E(s)=KI  / s      (eq. 2.7) 

 In the proportional control of a plant whose transfer function does not 

possess an integrator 1/s, there is a steady-state error in the response of a unit step 

input. Such error can be eliminated if the integral control action is included in the 

controller (Ogata, 1990). 
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Figure 2.5.
 
Block diagram of an integral controller 

  

 

2.2.2.4 Proportional-Integral Control Action 

The control action is defined as: 

u(t) = Kp *e(t) + Kp / TI 
0� 

t
e(t) dt       (eq. 2.8) 

, where TI is the integral time. 

The transfer function T(s) is  

U(s) / E(s) = Kp  * ( 1 + 1/ (TI * s) )  (Ogata, 1990)   (eq. 2.9) 

2.2.2.5 Proportional-Derivative Control Action 

The control action is defined as: 

u(t) = Kp *e(t) + K p *Td * de(t)/dt               (eq. 2.10) 

The transfer function T(s) is 

U(s) / E(s) = Kp * ( 1 + Td * s)          (Ogata, 1990)                     (eq.2.11)       

Derivative control action provides high sensitivity. An advantage of using 

derivative control action is that it responds to the rate of change of the actuating 

error and can produce a significant correction before the magnitude of the 

actuating error becomes too large. Although derivative does not affect the steady-

state error directly, it adds damping to the system and thus permits the use of a 

larger value of the gain K, which will result in an improvement in the steady-state 

accuracy. Because derivative control operates on the rate of change of the 
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actuating error and not the actuating error itself, this mode is never used alone 

(Ogata, 1990). 

 

2.2.2.6 Proportional-Integral-Derivative Control Action (PID) 

It is the combination of proportional, integral and derivative control 

actions. The equation of a controller with this combined action is given by  

 

u(t) = K  *e(t) + (Kp/T I) *
0� 

t
e(t) dt  + KpT d * (de(t)/dt)             (eq.2.12) 

or the transfer function is 

T(s) = U(s) / E(s) = Kp * [1 + ( 1 / ( Ti * s ) ) + ( Td * s )]               (eq.2.13) 

, where Kp is the proportional gain, Ti is the integral time and Td is the derivative 

time. They can be called as P, I and D parameters of the controller. In summary, it 

has three parameters and these parameters describe the model (Ogata, 1990).  

PID model is frequently used in industry. It is simple and powerful model. 

Thus we will use this model in remote controller design. In our design we will 

permit student to give an appropriate combination of three control parameters, Kp, 

Ti and Td through the Internet and to perform the experiment . 

 

2.2.3 Mathematical Model of Remote Experiment Plant 

 

 Although we concentrate on the design of the controller, we should define 

the model of our experiment setup or plant in control terminology. Most of basic 

real plants have no more than third order differential equation definition. Also 

controller solutions for second order systems are similar for higher order systems. 

Thus, we can design our controller for second order systems.  

 Second order systems are the systems that can be defined with second 

order differential equations. Transfer function of the system describes its dynamic 

behavior.   
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 Figure 2.6. Block diagram of second order system 

 

T(s) = C(s) / R(s) = ωn
2 / ( s2 + 2ξωns+ ωn

2 )       (Sarıo�lu, 1999)         (eq.2.14) 

  

 Also the dynamic behavior of the second order system can be described in 

terms of two parameters ξ and ωn. ωn  is the undamped natural frequency and ξ is  

the damping ratio of the system.  If 0 < ξ < 1, then the system is called 

underdamped and the transient response is oscillatory. If  ξ = 1, the system is 

called critically damped. Overdamped systems corresponds to ξ > 1. The transient 

responses of critically damped and overdamped systems do not oscillate. If  ξ = 0, 

the transient response does not die out (Sarıo�lu, 1999). 

 

2.2.4 Transient Response Characteristics of the Plant 

 

2.2.4.1 Delay Time (td) 

The delay time is the time required for the response to reach half of the 

final value at the first time (Ogata, 1990). 

2.2.4.2 Rise Time (tr) 

The rise time is the time required for the response to rise from 0% to 100% 

of its final value (Ogata, 1990). 
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2.2.4.3 Peak Time (tp) 

The peak time is the time required for the response to reach the first peak 

of the overshoot (Ogata, 1990). 

2.2.4.4 Maximum Overshoot (Mp) 

The maximum overshoot is the maximum peak value of the response curve 

measured from the final steady-state value (Ogata, 1990). 

2.2.4.5 Settling Time (ts) 

The settling time is the time required for the response curve to reach and 

stay within a range about the final value. This range changes between 2% and 5% 

of the final value (Ogata, 1990). 

These specifications are quite important since if we specify the values of 

these, then the shape of the response is virtually determined. Another important 

note is the conflict between the maximum overshoot and rise time. Both of them 

cannot be made smaller simultaneously. If one of them is made smaller, the other 

becomes larger. 

 

 
 Figure 2.7. Unit step response of a second-order system 

Our experiment emulator has generated the Plot in Figure 2.7. Here we can 

see tr, td, tp, ts and Mp in the in the unit step response. 
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 In remote experiment system, student will determine the PID parameters 

of the controller according to desired transient characteristics of overall system.  

 The next step of the analysis is to select the appropriate method to 

implement the control system. 

 

2.2.5 Two Approaches for Controllers 

 
2.2.5.1 Microcontroller Based Control 

 Microcontroller is a computer that all components of computer are on a 

single chip. These components are control unit, arithmetic logic unit, I/O interface 

and memory. In microcontroller-based control, control algorithm runs on the 

microcontroller’s memory. For the meeting the remote experimentation needs, it 

will be suitable to connect the microcontroller to the serial port of a PC, because 

most of microcontroller have serial unit for PC interfacing. This PC can be a web 

server or an agent for a web server.   

All communication between microcontroller and this PC is obtained 

through RS-232 interface. Experiment plant is connected using the 

microcontroller I/O ports and if it is needed, the number of these ports can be 

increased with external chips named peripheral interface adapter (PIA).  

If we want all Java solution for the remote experiment system, serial port 

access should be obtained using Java. Java Communications API is appropriate 

for this purpose. Java communications API contains support for RS232 serial 

ports and IEEE 1284 parallel ports. We can enumerate available ports in the 

system and perform asynchronous and synchronous I/O on ports (CommAPI, 

2002). 

 Let us examine the sequence of the process. Microcontroller waits for the 

PID parameter at the present time. PC sends parameters and waits for the result. 

Result is the output of the plant. In fact, it is the output of feedback sensor. All 

sampled outputs are written into microcontroller memory during the experiment 

and transferred to the PC memory. At this time we have only raw data. Here we 

have two choices. One is sending the raw data to client. The other is processing 
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and then sending. If raw data is sent, a program at the client side should make it 

visualized. On the other hand, if processed data is sent, client will loose the 

chance of making detailed analysis. Thus both of them should be sent to the client 

so client will make further analysis using the raw data. 

 Besides, in the microcontroller market there are some sorts of 

microcontrollers that include Ethernet module. They do not need any external web 

server to send and get information, but their applications to remote experiment 

systems are impractical because, still we need a PC as a web server for other 

purposes. But it can be used as only remote instrumentation server. 

 As a conclusion, microcontroller based controller is one possible 

alternative for remote experimentation. 

 

2.2.5.2 PC Based Control 
 

If PC based control is used, control algorithm runs on the PC memory. 

Communication between PC and experiment setup is obtained with PC interface. 

Using a PC provides us various interface alternatives.  

A general-purpose interface board is the most suitable solution if we need 

a lot of input and output ports. It is connected to the PCI slot of the PC. PCI 

(Peripheral Component Interconnect) bus standard have been developed by Intel 

in order to use for its own microprocessors. PCI has 32 and 64 bit data bus. Also, 

PCI bus supports maximum ten peripheral interfaces (Gümü�kaya, 1999). Its 

signaling mechanism is very complex and it requires an expertise to design a card 

that uses PCI bus. 

ISA bus is other alternative for interfacing. This is old standard for PC 

interfacing. PC producers have started to leave this standard. But an old IBM PC 

can be used to implement ISA bus interface. 

We cannot access the addresses of I/O with java. If we use PCI or ISA bus 

for interfacing, all java solution will be infeasible. One solution can be obtained 

by using a DLL that performs a communication between the hardware and java. 

DLLs are executable procedures that are loaded when they are needed. A DLL 

that performs this hardware access can be coded with a programming language 
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that can access hardware directly. It can be C or another language. Then Java uses 

this DLL with its native interface. Java native interface is used when a procedure, 

which is coded by using another language, is required (Schildt, 2001). But there 

are some drawbacks in the usage of native methods. One of them is loosing the 

portability because of using a native method depended on the native CPU. The 

other disadvantage is potential security risk. Because of this risk applets, which 

are small applications and one of the components of a web document that can be 

carried through the Internet have no right to use native methods (Schildt, 2001).  

One practical solution is to use parallel port. This solution is suitable for 

simple applications. Parallel port has 8-bit data pins. Standard parallel port 

supports unidirectional data transfer. It is only used for output. Besides, other 

parallel port standards are PS/2, Enhanced Parallel Port (EPP), Extended 

Capabilities Port (ECP) permits bidirectional data transfer (Axelson, 1999). 8-bit 

is not enough for experiment setup interface. We should have at least two signals. 

Actuator signal as an output and feedback signal as an input…Thus we need to 

expand the I/O capacity using external chips called Peripheral Interface Adapter 

(PIA). Most commonly used PIA is Intel’s 8085 chips. They triple the I/O 

capacity (Gümü�kaya, 1999). Other parallel interfaces are Small Computer 

System Interface (SCSI) and IEEE 488 (Axelson, 1999). IEEE 488 is important 

for us, because they are commonly used for laboratory equipment interfacing. 

Also expansion cards for IEEE488 are available. 

Also serial port (RS-232) is another alternative for interfacing. But this 

cannot alone provide I/O operations for remote experimentation. With an external 

board this alternative may be utilized. But this solution is not better than the 

solution, which includes serially connected microcontroller as previously 

described. RS-485, Universal Serial Bus (USB), Fireware (IEEE 1394) and IrDA 

(Infrared Data Association) are some of the other serial interfaces different from 

the RS-232 interface (Axelson, 1999). Each has different transfer rates, maximum 

allowable cable lengths and maximum allowable number of device connections 

(Gümü�kaya, 1999). 

If we want all Java solution, Java Communication API should be used. But 

as we state in the previous part, this API supports only RS-232 serial and IEEE 
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1284 parallel port standards. Thus, native methods should be used for other 

standards. 

In this part we made a survey about controllers and interfacing 

alternatives. We will continue with other two components of remote 

experimentation.  

 

2.3 Access Management 

 

 Doing an experiment is only one phase of the real laboratory applications. 

Other phases are registration, theoretical study and preliminary work including 

necessary simulations, laboratory quiz and report. In designing a remote system 

all these phases should be taken in consideration.   

Access management is one of the main parts of the remote 

experimentation. Student’s access to the system should be controlled at the each 

phase of the application process.  

Firstly, students enter the web page of the experiment. They examine the 

documents about the subject of the experiment. This examination corresponds to 

the theoretical study before the experiment. Animations about the subject 

strengthen the comprehension. Everything up to here had been doing at the first 

ages of the distant education. Thus, animations can be considered as the first level 

of remote experimentation.  

After theoretical study or immediately at the beginning, students should 

register to the system entering their name and e-mail. Session should be opened 

after the login process. In the session, student can view the previous documents. 

In addition they will have a chance of getting a quiz. This quiz corresponds to a 

preliminary work. If a student wants to take this quiz, a quiz page will be opened 

with several test questions. Results are recorded and informed to the students. 

Successful students will have right to download the simulation applet and to 

determine the experiment time suitable for them. Unsuccessful students will have 

no chance to continue. Until the experiment, students will have time to do 

simulations. In these simulations, they have a second order system to be 
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controlled. ωn   and ξ are the random parameters that describe the system. They 

should enter the PID controller parameters in order to satisfy the desired transient 

response characteristics such as rise time, maximum overshoot and settling time. 

Nowadays, making a simulation of an experiment is the most common technique 

at distant education of laboratory courses. Simulation process obtained by an 

applet can be considered as the second level of remote experimentation.  

 Students can have a chance to change the time of experiment if the 

schedule is available. Then they perform the third and the last level of remote 

experimentation. Doing the real experiment remotely. They send their PID 

parameters as they did at the simulation phase and get the drawing of the transient 

response function of over all system. They repeat the experiment in a given period 

of time. All parameters they sent are recorded to the system. According to the 

parameters, an evaluation of the student is made and recorded. At the end of the 

experiment students’ accounts have expired. 

 

 

 

 

2.4 Multimedia Support 
 

 Multimedia is the core of the remote experimentation process. It gives the 

feeling of a real experiment to the remote student. With the visual feedback, 

student manages the experiment and checks the experiment environment is as 

expected. A web camera provides this video broadcast.   

Mustek 300 mini web cam has been tested using the methods suggested by 

Java Media Framework (JMF), which makes it possible to capture the streaming 

video. In order to capture and to transmit images, we have used Real Time 

Transfer Protocol (RTP) implemented by JMF. This protocol is widely used for 

videoconference systems. It is faster for the transfer of an image than the TCP/IP 

protocol since it uses sending of UDP datagram and does not check the good 

arrival of the packages because loosing packages is not significant for the 
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streaming video. However, JMF is not the part of Java Development Kit (JDK) 

and not supported by the browsers. It means that the student has to download a 

plug-in, which has size about 8 Mb.  

 The RTP protocol will be examined in order to comprehend the real-time 

media streams. 

 

2.4.1 Streaming Media and Real Time Transfer Protocol 

  

 When media content is streamed to a client in real-time, the client can 

begin to play the stream without having to wait for the complete stream to 

download. 

 Transmitting media data across the net in real-time requires high network 

throughput. It is easier to compensate the lost data than to compensate large 

delays in receiving the data. This is very different from accessing static data such 

as a file, where the most important is that all of the data arrive at its destination. 

Thus, the protocols used for static data do not work well for the streaming media.  

The HTTP and FTP protocols are based on the Transmission Control 

Protocol (TCP). TCP is transport layer protocol designed for reliable data 

communications. When a packet is lost or corrupted, it is retransmitted. The 

overhead of guaranteeing reliable data transfer slows the overall transmission rate. 

Then, another protocol should be used for streaming media.  

User Datagram Protocol (UDP) is commonly used protocol for streaming 

media. UDP is an unreliable protocol. It does not guarantee that each packet will 

reach its destination. Also, there is no guarantee that the packets will arrive in the 

order that they were sent.  

UDP is a general transport layer protocol, which application specific 

protocols are built on it. RTP is the Internet standard for transporting real-time 

data such as video and it is often used over UDP.  

RTP is defined in Internet Engineering Task Force’s RFC 1889. RTP 

enables to identify the type of data being transmitted, determine what order the 

packets of data should be presented in, and synchronize media streams from 

different sources.  
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An RTP session is an association among a set of applications 

communicating with RTP. Each media type is transmitted in a different session. 

For example, if both audio and video are used in a conference, one session is used 

to transmit the audio data and a separate session is used to transmit the video data. 

This enables participants to choose which media types they want to receive. So, 

someone who has a low-bandwidth network connection might only want to 

receive the audio portion of a conference.  

JMF enables the playback and transmission of RTP streams through the 

APIs defined in the javax.media.rtp, javax.media.rtp.event, and 

javax.media.rtp.rtcp packages. 

 

We can play incoming RTP streams locally, save them to a file or both. 

Also, we can implement a videoconference application that captures live audio 

and video and transmits it across the network using a separate RTP session. 

Similarly, we can record a conference for later broadcast or use a previously 

recorded audio in a conferencing application. 

Figure shows the how RTP transmission process occurs. 

 

 

 

  

 Figure 2.8. RTP transmission 
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 In the figure, processor performs some user-defined processing on the 

media data, and then outputs the processed media data. JMF use data source to 

manage the transfer of media content. A data source encapsulates both the 

location of media and the protocol. Either a JMF media locator or a universal 

resource locator (URL) identifies a data source. Media locator is similar to a URL 

and can be constructed from a URL. A session manager is used to coordinate an 

RTP session. The session manager keeps track of streams that are being 

transmitted. In JMF, session manager interface defines the methods that enable an 

application to initialize, start participating in a session and close the entire session. 

A data sink is used to read media data from a data source and render the media to 

the destination. A particular data sink might write data to a file or write data 

across the network. Using JMF, data sink object are constructed through the 

manager class using a data source.  

 The simplest way to transmit RTP data is to construct an RTP data sink 

object using the createDataSink method of Manager class. Then we should pass in 

the output data source from the processor and a media locator that describes the 

RTP session to which the data source is to be streamed. The media locator 

provides the address and the port of the RTP session. To control the transmission, 

we can call start and stop methods on the data sink (JMFAPI, 1999). 

 Another way to transmit RTP data can be performed with Session 

Manager. Firstly, we should create a JMF Processor object and set each track 

format to an RTP specific format. After retrieving the output DataSource object 

from the processor, we should call createSendStream class on a previously created 

and initialized SessionManager object, passing in the DataSource object. Lastly, 

we should start the session manager by calling the startSession method of the 

SessionManager object (JMFAPI, 1999). 

 As a conclusion Java Media Framework makes easier to capture and 

transmit the video. Using JMF can be the part of the all-Java solution in remote 

experimentation. 

 

 

 



 22

Chapter 3 

 

REMOTE EXPRIMENT SYSTEM PROPOSED FOR IYTE 
  

 According to the basic requirements that we have mentioned, such 

architecture can be proposed for remote experiment system. We must have an 

interfacing computer to interface the experiment system. Database server is 

proposed to use in access management and experiment scheduling activities. 

Multimedia server is an interface for multimedia components such as web cam. 

All these servers can be executed either on a single computer or on different 

computers. Architecture should be checked if it is feasible or not for IYTE. 

 

 

 

Figure 3.1. Proposed Remote Experiment Architecture 
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Up to here, the three basic components of a remote experiment system 

have been examined. Access management and multimedia components can be 

applied to any laboratory course. The critical component is design of the 

controller. Therefore in order to determine the environment that the control 

algorithm will execute on, we have done an inventory research.  

3.1 Feasibility Study 
In IYTE, Computer engineering department there is a computer 

architecture laboratory. In this laboratory Intel’s 8086-microprocessor 

development kits, 8051 microcontrollers, digital oscilloscopes and lots of EPROM 

and Peripheral Interface Adapter (PIA) chips are the main laboratory equipments.  

8086 development kit has a ROM-based monitor program for simple 

interaction (MTS86-C). Using its RS-232 serial interface, data transmission can 

be done between kit and PC. It has Analog to Digital and Digital to Analog 

Converter. Also its three PIA is suitable for experiment interfacing. In the case of 

remote experiment, control parameters can be taken and the output can be sent 

using the serial port. All communication is performed through this port.  

 To use 8051 microcontroller is another alternative solution. It has ROM 

based BASIC interpreter for programming (Axelson, 1997). This interpreter gets 

the code from the PC through the serial port. It is unnecessary for our needs. 

Instead, it will be better to use an EPROM for programming needs.  

 Up to here, everything seems agreeable, but we left all control to the 

microprocessors. If we want to design a controller other than a PID controller, all 

software should be changed. We loose the flexibility and we restrict ourselves 

with a single controller algorithm.  

 If we examine the PC based controller solution, available PC Interfaces 

should be searched. At the Computer Engineering Department we don’t have any 

interface board for PCI or ISA slot. Then we have decided to design an emulator 

on PC, that emulates the experiment hardware and to concentrate on the protocol 

between this emulator and student. So when we have chance to get any PCI card 

in the future, new hardware can be substituted with the emulator and the same 
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protocol can be used. This emulator idea can be seen as the first step of building 

the remote experiment system.  

3.2 Emulator Solution 

Emulators imitate real systems. In this emulator, we are trying to emulate 

the experiment plant and PID controller. For the experiment system, we will use 

the mathematical model, which has been explained in the controller design 

chapter previously. 

 That was the second-order system having two parameters that describe its 

characteristics. Damping ratio ξ and undamped natural frequency ωn.   The 

emulator will produce these parameters randomly. Then emulator sends the plot of 

unit step response of the system to the student for system identification. Emulator 

waits for the PID parameters. After getting the PID parameters, emulator executes 

the controller process under a unit step input. Then emulator sends the response 

curve as a JPEG image. JPEGImageEncoder class, which belongs to 

com.sun.image.codec.jpeg package of Java, can be used for this purpose.  

Fourth order Runge-Kutta method (Karagöz, 2001) has been used for the 

execution of the overall controller system that can be defined with third order 

differential equation. 

Then, after the inclusion of the emulator, our architecture has changed. 

 

Figure 3.2. Remote Experiment System with the Emulator 
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3.3 Mathematical Model of Experiment Emulator 
In emulator, parallel RLC circuit was used as an experiment plant. This 

circuit includes resistor, capacitor and inductor in parallel.  

 

 

Figure 3.3. RLC circuit 

After adding PID controller, whole emulator system’s block diagram can be seen 

in figure 3.4.  

 

Figure 3.4. Emulator system block diagram 

  

 In order to describe emulator system with its tranfer function, differential 

equations of PID controller and RLC circuit should be given. 

   

u(t) = K  *e(t) + (Kp/T I) *
0� 

t
e(t) dt  + KpT d * (de(t)/dt)  (eq. 3.1) 
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In equation 3.1, e(t) is error input, K is proportional parameter, Ti is integral 

parameter and Td is derivative parameter. 

Acoording to figure 3.3; 

 

I=V/R + (1/L)
 0� 

t
V dt  +  C (dv/dt)    (eq. 3.2) 

(d
2

V / dt
2

) + (1/RC)(dV/dt) + (1/LC)V=i  (eq. 3.3) 

 

When we take Laplace tranforms of the differential equations, 

 

For RLC circuit: 

V(s)[s
2

+(1/RC)s+(1/LC)]=I(s)   (eq. 3.4) 

 

For PID controller 

 U(s)= Kp * [1 + ( 1 / ( Ti * s ) ) + ( Td * s )]E(s)     (eq. 3.5) 

 

Then transfer functions of block diagram in figure 3.4, 

 

For RLC circuit: 

T1(s)=V(s) / I(s) = RLC / [ RLs
2

 + Ls + R ]   (eq. 3.6) 

 

For PID controller 

 

T2(s) = U(s) / E(s) = Kp * [1 + ( 1 / ( Ti * s ) ) + ( Td * s )]     (eq. 3.7) 

  

Open loop transfer function of the system To(s) is, 

 

To(s) = T1(s) * T2(s)      (eq. 3.8) 
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To(s) = (KpTdTiRLC s
2

 + KpTiRLC s + KpRLC) / (RLCTi s
3

 + TiL s
2

 + RTi s) 

        (eq. 3.9) 

 

When feedback is added, closed loop transfer function Tc(s) is, 

 

Tc(s) = To / (1+To)       (eq. 3.10) 

 

        Y(s)  (KpTdTiRLC s
2

 + KpTiRLC s + KpRLC) 

Tc(s) =    
____ 

=
    _________________________________________________ 

       U(s)     RLCTi s
3

 +(RLCKpTdTi+TiL) s
2

+(RLCKpTi+RTi) s + KpRLC
 

        (eq. 3.11) 

 

In order to solve this transfer funtion with computer, state space definition of the 

system should be obtained. Thus, 3 first order differential equation can be solved 

simultaneously with Runga-Kutta method. 

 

The state space representation for the transfer function 

 

 

 Y(s)            b
0

s
n

  + b
1

s
n-1

 + ……………………..+ b
n-1

 s  + b
n 

T(s) =   ___    =   ______________________________________________ 

  U(s)             s
n

 + a
1

 s 
n-1

 + ………………………. + a
n-1

s + a
n

 

         

        (eq. 3.12) 

can be given by equations (eq. 3.13) and (eq. 3.14) 
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 . 
 X = Ax + Bu       (eq. 3.13) 

 Y=  Cx + Du       (eq. 3.14) 

where
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Our transfer function is third order then its state space form is, 
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a1, a2, a3 can be obtained from the equations. 

	
0 

, 	
1

 , 	
2

 and 	
3

 can obtained from the following equations, 

 

	
0

 = b0        (eq. 3.15) 

	
1

 = b1-a1 	
0       (eq. 3.16)

 

	
2

 = b2 -a1 	
1

 –a2 	
0

      (eq. 3.17) 
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3

 = b3 –a1 	
2

 –a2 	
1

 –a3 	
0

     (eq. 3.18) 

 

After getting state space form of our emulator system, Runga-Kutta method can 

be applied to these 3 derivative equations. 

. 
x

1
 = x

2
 + 	

1
 u      (eq. 3.19) 

. 
x

2
 = x

3
 + 	

2
 u      (eq. 3.20) 
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x

3
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 .x
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 . x

2
 – a

1
 . x

3
 +  	

3
 u   (eq. 3.21) 

 

 

. dx 

x
1

 =  
_____

 = f (t, x)   Assume that in t-x plane (t
i
,x

i
) is known and we wish to  

 dt 

 

find point (t 
i+1

 , x 
i+1

). The incremental time t 
i+1

 – t 
i 

= h is the time interval 

for computation, or the sampling period. 

k1, k2, k3 and k4 are Runga-Kutta parameters which are the change of the x value 

at t= t 
i+1

. 

k1=h*f(t
i
,x

i
)       (eq. 3.22) 

k2=h*f(t
i
 + ½ h, x

i
+ ½ k1)     (eq. 3.23) 

k3=h* f(t
i
 + ½ h, x

i
+ ½ k2)     (eq. 3.24) 

k4=h* f(t
i
 + h, x

i
+  k3)     (eq. 3.25) 



 31

When we obtain the weighted average of k1, k2, k3 and k4, where the weights are 

1, 2, 2 and 1 respectively, 

 


x 
i
=x 

i+1
 –x 

i
 = (1/6) * ( k1 + 2k2  + 2k3 + k4)  (eq. 3.26) 

 

Then the value of  x 
i+1

can be given by 

x 
i+1

= x 
i
 +  
x 

i
 = x 

i
 + (1/6) * ( k1 + 2k2  + 2k3 + k4) (eq. 3.27) 

This equation is called the fourth order Runga-Kutta equation, because it involves 

four values of k’s. 

 

3.4 Implementation of Experiment Emulator 
 Runga-Kutta equation is used for the simultaneous computation of x

1
, x

2
 

and x
3

 with the help of eq. 3.19, 3.20 and 3.21. Program is coded in java and java 

server page is used. Tomcat is used as jsp server. Apache is used as web server. 

Servers executed on a PC having Windows XP operating system and 128 MB 

memory. 

 In program, three methods were used for defining the three states of 

system and one method for Runga-Kutta method. After server is started and URL 

is entered, such form is shown as in figure 3.5. 

 

Figure 3.5. Html form for Emulator parameters 
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After entering the parameters, v-t plot is drawn, where v is output voltage 

and t is time. 

 Sample figure is shown in figure 3.6. 

 

 

 
 

Figure 3.6 V-t plot of emulator 

At that computation incremental time, h, is taken as 0.001. Plot is drawn for 10 

seconds of voltage signal, where R=0.4 Ohm, C=1 Farad, L=1 Henry, P=1, Ti=5 

and Td=0.2. 
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Chapter 4 

OBJECT-ORIENTED ANALYSIS and DESIGN with UML 

4.1 UML                                                                                                                                                                                     

Object-Oriented software development techniques have gone through three 

stages of evolution.  

1. Object-Oriented programming languages were developed and began to 

use.  

2.  Object-Oriented analysis and design techniques were produced to help in 

the modeling business, the analysis of requirements and the design of 

software systems. 

3. Unified Modeling Language (UML) was designed to bring together the 

best features of a number of analysis and design techniques and notations 

to produce an industry standard (Bennett, Skelto & Lunn, 2001).  

 UML is a visual language that provides a way for people who analyze and 

design object oriented systems. UML includes a lot of components for different 

purposes. Two of them are Use Case and Collaboration. These will help us during 

the analysis of the system. 

4.1.1 Use Case 

Use Cases are descriptions of the functionality of the system from the 

users’ perspective. Use Case diagrams show three aspects of the system: actors, 

Use Cases and the system boundary. Actors represent the roles that people or 

devices take on when communicating with the particular Use Cases in the system 

(Bennett, McRobb & Farmer, 2002). We have two actors in our system. Student 

and instructor… 

4.1.2 Collaboration 

In Object-Oriented systems, the objects working together produce the 

functionality. In order to work together, objects need to communicate with one 

another and they do this by passing messages. This process is called as 

Collaboration. In the UML specification, Collaboration is described as something 

that defines a set of participants and relationships that are meaningful for a given 

set of purposes (Bennett, McRobb & Farmer, 2002).  
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Figure 4.1. Use Case Diagram of The System 
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4.2 Use Case and Collaboration Diagrams of the Remote 

Experiment System 
 

Preceeding figure shows the set of all Use Cases for the system. Student 

actor has seven Use Case. Five of them use another Use Case and one of them is 

extended using another one. Instructor actor has two Use Case. Each Use Case 

will be explained thorough their Collaboration diagrams. After we combine all 

information comes from collaborations, Class Diagram of the system will appear.  

4.2.1 Registration to the System Use Case 

 When Student wants to make his or her registration through a Welcome 

page of the System, a registration form is opened. Student enters name, e-mail 

address, login name, password and other necessary information. After student 

approves this information, a registration control mechanism validates the 

registration information, performs registration and prompts user that registration 

has been done. 

4.2.2 Collaboration Diagram for the Registration to the System Use Case 

 Three boundary classes, two control classes and one entity class are 

proposed for the collaboration of the Registration to the System Use Case.  

 Boundary classes are WelcomePageUI, RegistrationFormUI, and 

ApprovalWindow.  

WelcomePageUI is responsible to generate a WelcomePage user interface. 

It should contain a link for the static page, in which all theoretical explanations 

have been presented. Also it should contain separate links for login and system 

registration. When the login link is activated, a login form is opened containing 

login name and password text fields. And when the system registration link is 

activated, Registration form is opened as in our use case. 

RegistrationFormUI is responsible to perform the activities related to the 

registration form. It has form fields and approve link. Student fills the form and 

approves them using the approve link. 

 After the registration process has been established, ApprovalWindow is 

opened in order to prompt user that registration has been done. 
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 Control classes are WelcomePageControl and RegistrationControl classes. 

 Here, WelcomePageControl gets the registration request from the 

WelcomePageUI and starts the RegistrationFormUI.  

 RegistrationControl gets the student information. After validating, it makes 

the registration sending them to the Student entity.  

 We have one entity class. Student entity has all attributes about students. 

 

Figure 4.2. Collaboration Diagram for Registration to the System Use Case 

  

The Sequence of operations: 

1.WantsToRegister: Students activates the SystemRegistration link. 
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2.EnterRegistration: WelcomePageUI object calls EnterRegistration method of 

WelcomePageControl object.  

 3.WelcomePageControl object calls StartRegistrationFormUI method of 

RegistrationFormUI object. 

4.Student fills the registration form and approves the information. 

5.RegistrationFormUI object calls TakeFormInformation method of 

RegistrationControl object. 

6.RegistrationControl object checks whether student has entered valid information 

and then makes registration by calling MakeRegistration method of Student 

object. 

7.RegistrationControl object prompts user by calling PromptApproved method of  

ApprovalWindow object. 

4.2.3 Login Use Case 

 When student activates the login link at the WelcomePage, Login form is 

generated. Student enters login name and password and approves them activating 

the approve link of the Login form. Login name and password are controlled and 

a session is started. Afterwards, one of the possible three interfaces is opened 

according to the state of the student. If student did not do the preliminary work, 

UserInterfaceA is opened. If student did the preliminary work but did not make 

the experiment registration, UserInterfaceB is opened. If student did the 

preliminarywork and made the experiment registration, UserInterfaceC is opened. 

4.2.4 Collaboration Diagram for the Login Use Case 

Five boundary classes, three control classes and three entity classes are 

proposed for the collaboration. 

Boundary classes are WelcomePageUI, LoginUI, UserInterfaceA, 

UserInterfaceB and UserInterfaceC. 

In this collaboration Login link of the WelcomePage is activated. 

LoginUI generates the login form and send the information to the 

LoginControl object. 

UserInterfaceA consists of a link for Preliminary Work. It is constructed, if 

the student did not do the Preliminary Work. 
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UserInterfaceB shows the Preliminary Work grade and it has a link for 

experiment registration. It is constructed, if the student did not make the 

experiment registration after doing the Preliminary Work. 

UserInterFaceC shows the Preliminary Work grade and the experiment 

time. Also, it has a links for changing the experiment time and doing the 

experiment. It is constructed if the student made the experiment registration. If the 

students login at the experiment duration, this interface is generated again. 

Students cannot login after the end of the experiment time. 

Control classes are WelcomePageControl, LoginControl and StateControl. 

WelcomePageControl gets the login request from the WelcomePageUI and 

starts the LoginUI. 

LoginControl gets the login name and password from the LoginUI and checks 

if they are valid by calling GetLoginApproval method of the Student object. This 

method returns the student id of the student. Then LoginControl starts a session 

for this student by calling the StartSession method of the Session object. 

The Session object constructs StateControl object. Calling the GetState 

method of the student object controls the state of the student. If student did not do 

the Preliminary Work, StateControl starts the UserInterfaceA. If the student did 

the Preliminary but did not do the experiment registration, StateControl starts the 

UserInterfaceB by getting the Preliminary grade from the Student object. If the 

student did the experiment registration, UserInterfaceC is started getting both 

preliminary grade and registered experiment time.  

Session object is active during the all session. In this collaboration it is used 

for registering the starting time of the session to the Student object’s 

LastSessionTime variable. 

The need for a session revealed a session concept automatically during the 

analysis.  Java Server Page can be used for the session needs (Pekgöz, 2002).  

We can extract from this collaboration that the Student object must include 

the Preliminary grade and the experiment time as an attribute. 
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 Figure 4.3. Collaboration Diagram for Login Use Case 
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4.2.5 Do Preliminary Work Use Case 
 Students enter the Preliminary Work by activating the PreliminaryWork 

link of the UserInterfaceA. They get Preliminary test and approve their answers. 

Control mechanism checks the answers and register the grade to the student 

entity. If the grade is enough to continue, this control mechanism starts the 

UserInterfaceB for experiment registration. Otherwise grade is displayed and 

session is closed. 

4.2.6 Collaboration Diagram for the Do Preliminary Use Case 
 We have four boundary classes, one control and three entity classes. 

 Boundary classes are UserInterfaceA, PreliminaryQuizForm, 

UserInterfaceB and LowGradeUI. 

 UserInterfaceA includes the PreliminaryWork link. UserInterfaceB 

includes the quiz grade and experiment registration link. PreliminaryQuizForm 

has test questions, necessary fields for choices and approval link. LowGradeUI 

has only the quiz grade. 

 Contol class is the PreliminaryControl. It takes the request from the 

UserInterfaceA and starts the PreliminaryQuizForm interface taking questions 

from the PreliminaryQuiz entity. PreliminaryQuizForm sends the answers. 

Control class checks the answers and according to the grade activates the 

UserInterfaceB or LowGradeUI. 

 PreliminaryQuiz entity has quiz questions and answers. Other two entity 

classes are the session class and the student class. 

 Sequence of the operations: 

1.wantsToDoPreliminaryWork: Students activates the PreliminaryWork link of 

the UserInterfaceA. 

2.openPreliminary: UserInterfaceA sends this request to the PreliminaryControl. 

3.getQuestions: PreliminaryControl gets questions. 

4.showQuizForm: PreliminaryControl starts the Quiz interface. 

5.sendAnswers: Student fills the quiz form and approves the form. 

6.getAnswers: Quiz interface sends the answers. 
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7.getStudentID: PreliminaryControl gets the student id from the Session entity. 

8.calculateGrade: calculateGrade method of the PreliminaryQuiz calculates the 

grade Student’s answers are the input parameters of the calculateGrade method 

and method returns the grade checking with the correct answers. 

9.1. setPreliminaryGrade: PreliminaryQuiz objects registers the grade to the 

Student entity. 

9.2.a.startInterfaceB: PreliminaryControl starts the UserInterfaceB, if the grade is 

enough to continue. Then one of the scenarios ends. 

9.2.b.1 closeSession: PreliminaryControl closes the session, if the grade is not 

enough. 

9.2.b.2 expireAccount: Control object expires the account calling expireAccount 

of the Student object. 

9.2.b.3 startLowGradeUI: Control object starts the LowGradeUI and the other 

scenario end. 
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Figure 4.4. Collaboration Diagram for Do Preliminary Use Case 
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4.2.7 Registration to Experiment Use Case 
 Student starts the registration process through the UserInterfaceB 

activating the Experiment Registration link. Available experiment sessions are 

shown to the student. Student selects the appropriate session. 

4.2.8 Collaboration Diagram for the Registration to Experiment Use Case 

 We have three Boundary classes, three entity classes and one class in the 

collaboration.  

 Boundary classes are UserInterfaceB, Schedule and UserInterfaceC.  

 Schedule shows the timetable of available experiment sessions. It has 

approval link. 

 Our control class is RegistrationControl. We used the same class in the 

collaboration of RegistrationToSystem Use Case. 

 Entity classes are Session, Student and ExperimentSession. 

 Sequence of the process is: 

1.wantsToRegisterToExperiment: Student activates the ExperimentRegistration 

link of the UserInterfaceB. 

2.wantsToregister: UserInterfaceB calls the wantsToRegister method of 

RegistrationControl object. 

3.getAvailableTime: RegistrationControl gets the available experiment sessions 

from the ExperimentSession entity. 

4.showAvailableTime: RegistrationControl object calls this method in order to 

activate the Schedule Interface. 

5.enterAvailableTime: Student enters the appropriate experiment time and 

activates the Approval link. 

6.sendTime: Schedule interface sends time to the RegistrationControl. 

7.getStudentID: StudentId is taken from the Session entity. 

8.recordStudentID: StudentID and selected time is sent to the ExperimentSession. 

9.recordExpSessionID:  After ExperimentSession object constructs the Student 

object with given StudentID, ExpSessionID is  recorded to the student entity. 

. 
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10.getPreliminaryGrade: RegistrationControl gets the preliminary grade from the 

Student entity. 

11.startInterfaceC: RegistrationControl object starts the interfaceC. 

 

 

Figure 4.5. Collaboration Diagram for Registration to Experiment Use 

Case 
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4.2.9 Change the Time of the Experiment Use Case 
Students can change their experiment time before the experiment through the 

UserInterfaceC. 

4.2.10 Collaboration Diagram for the Change the Time of the Experiment  

It is similar to the Collaboration Diagram of the Experiment Register Use 

Case. The only difference is starting interface is UserInterfaceC. 

 

Figure 4.6. Collaboration Diagram for the Change the Time of the Experiment 

Use Case 
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4.2.11 Send Experiment Parameters Use Case 

 Experiment Emulator produces two system parameters ξ and ωn randomly. 

The probability distribution of these parameters is uniform and values change 

between reasonable limits. The plot of unit step response of the system is sent to 

the student with transient system characteristics such as maximum overshoot, 

rising and settling times. In addition student gets the desired values of transient 

system characteristics. Student does the system identification making necessary 

calculations and estimates the system parameters. According to desired unit step 

response, student determines the PID parameters of the controller. Simulation 

program can be used in order to check correct PID parameters. After sending PID 

parameters, the Experiment Emulator generates a plot of unit step response.  

 System and controller parameters are recorded to the Student entity. If the 

student’s transient system characteristics are close to the desired characteristics, 

experiment grade of the student will be high. 

 Also, a visual feedback is supplied to the student. For the emulator case, it 

does not matter. But when the emulator is changed with the real experiment 

system, similar collaborations can be used. 

4.2.12 Collaboration Diagram for the Send Experiment Parameters Use Case 

 We used four Boundary classes, four entity classes and two control 

classes.  

 Boundary classes are UserInterfaceC, ExperimentInterface, ResponsePlot 

and the VideoInterface.  

 ExperimentInterface has text fields for PID parameters and the plot of unit 

step response of the second-order system. Also, desired transient response 

characteristics are given through this interface. Extended 

ExperimentWithVideoFeedBack Use Case can be started asynchronously through 

this interface by activating the video request link. 

 ResponsePlot is unit step response of the controlled system. 

 VideoInterface is an interface for video feedback. 

 RegistrationControl and WelcomePageControl classes are needed for the 

collaboration. 
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 Session, Student, ExperimentGenerator and VideoSession entities are used 

in this collaboration. 

 This collaboration is more complex. Because 

ExperimentWithVideoFeedBack Use Case is extended, its collaboration is 

combined with SendExperimentParameters Use Case. 

Sequence of the operations: 

1. wantsToDoExperiment: Students start the experiment interface by 

activating the DoTheExperiment link of the InterfaceC. 

2. startExperiment: UserInterfaceC notifies the RegistrationControl object to 

start the experiment process. 

3. getStudentID : Session object gives the StudentID. 

4. generateSystemParameters: Emulator generates the plot of the response 

according to randomised system parameters. 

5.1. recordSystemParameters : Generated parameters are recorded to the 

Student enetity.  

5.2.1. startExpInterface: RegistrationControl starts the ExperimentInterface. 

5.2.2.a.1. entersPIDParameters: Student enters the controller parameters. 

5.2.2.a.2. getPID: Control object gets the control parameters. 

5.2.2.a.3. generateOutput: Using student’s PID parameters, emulator generates 

the unit step response of the controller system. 

5.2.2.a.4.1.1. recordPIDParametersAndGrade: Student’s PID parameters and 

grade given according to these parameters are recorded to the Student entity. 

5.2.2.a.4.1.2. displayOutput: Emulator displays the plot of the response. 

5.2.2.a.4.2.1. startVideoRecord: Control object notifies the Session object for 

video recording. 

5.2.2.a.4.2.2. startRecord: VideoSession is opened for recording the video 

image of experiment environment. Later, instructor can view this file or it can 

be sent to the student via e-mail. 

5.2.2.b.1. streamingVideoRequest: Student can also request a real-time 

visual feedback asynchronously. This request extends this use case to the 

ExperimentWithVideoFeedBack use case. In order to make easy to follow the 

extended path, instead of “a”, we add “b” to the message numbers. 
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5.2.2.b.2. getVideoRequest: VideorRequest is sent to Control object. 

5.2.2.b.3. getIPAddr: RegistrationControl object gets the IP address of the 

student 

in order to use in video transfer. 

5.2.2.b.4. sendVideoRequest: RegistrationControl object notifies the Session 

object. 

5.2.2.b.5. streamingVideo: Session object starts the VideoSession. 

5.2.2.b.6. startStreamingVideoInterface: VideoSession starts streaming video 

interface. 
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Figure 4.7. Collaboration Diagram for the Send Experiment Parameters Use Case 
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Henceforth, our actor is the instructor. For all instructor operations, 

instructor’s main menu is used and all use cases related to instructor, starts with 

the activation of any component on this main menu. 

4.2.13 View Registrations Use Case 

In this Use case Instructor can view all attributes of the Student entity.  

4.2.14 Collaboration Diagram for View Registrations Use Case 

 This Collaboration is very simple. It has three classes. Instructor makes 

some queries about students. StudentInterface has necessary text fields for the 

query.  

 

 

 

 

 Figure 4.8. Collaboration Diagram for View Registrations Use Case 
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4.2.15 Update Experiment Schedule Use Case 

 Instructor updates the Experiment Schedule. Instructor can only make 

changes on vacant sessions.  

4.2.16 Collaboration Diagram for Update Experiment Schedule Use Case 

 Collaboration diagram has one interface for schedule. This interface can be 

started with the activation of UpdateSchedule link of the Instructor’s main menu. 

 

 

 

Figure 4.9. Collaboration Diagram for Update Experiment Schedule Use Case 

 

4.3 Class Diagram 

 Class Diagram is composed of entity classes that are relating with one 

other entity class. Possible attributes are shown in the diagram. Detailed class 

diagram can be constructed during the design phase.  
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 Figure 4.10. Class Diagram of the analysis 
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Chapter 5 

 

CONCLUSION AND FUTUREWORK 

 
Due to the limited number of instructor and education equipment, distant 

education methods have been evolved as an alternative against classical education 

methods. But, still there is a big gap between those new methods and traditional 

methods of education that require laboratory work. In this thesis, we have tried to 

fix the needs and propose system architecture in order to reduce this gap. Object 

oriented analysis of this system has been done and some ideas for Java 

implementation have been developed throughout the thesis.  

 

As the first step of the system development, an emulator system was 

designed and implemented using control theory principles. As a future work, 

firstly, software development process should be completed using the analysis in 

the thesis. Then, a data acquisition hardware should be obtained for PC based 

controller implementation of a real plant. The remote access mechanism 

developed in this thesis can be used for “distance learning” as well as many 

different industry fields.  
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