
 1

Web and Java Based Architecture for

Laboratory Experiments

By

Mustafa Özgür TUTUM

A Dissertation Submitted to the

Graduate School in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department: Computer Engineering

 Major: Computer Software

Izmir Institute of Technology

Izmir,Turkey

June, 2003

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@IZTECH Institutional Repository

https://core.ac.uk/display/324140274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

We approve the thesis of Mustafa Özgür Tutum

Date of Signature

-- -----------------------

Prof. Dr. Sıtkı AYTAç

Supervisor

Department of Computer Engineering

-- -----------------------

Assoc. Prof. Dr. Ahmet KOLTUKSUZ

Department of Computer Engineering

-- -----------------------

Assist. Prof. Dr. �evket GÜMÜ�TEKiN
Department of Electrical and Electronics Engineering

-- -----------------------

Prof. Dr. Sıtkı AYTAÇ

Head of Department

 3

ACKNOWLEDGEMENTS

The author would like to express his gratitude to his thesis adviser, Prof. Sıtkı

AYTAÇ, Ph.D, for his encouragement, guidance and support throught the

development of this thesis.

The author would like to thank all friends and colleagues at the department for

their support.

The author would especially like thank to his friend, Burak Galip ASLAN for his

synergy .

The author would also like to express his gratitude to his parents for their

patience.

 4

ÖZETÇE

�leti�im teknolojilerindeki geli�meler e�itim faaliyetlerinin ileti�im

kanallarını kullanmasını yaygınla�tırmı�tır. Bu kanallardan biri olan �nternet,

laboratuar uygulaması gerektirmeyen e�itimlerin vazgeçilmez bir parçası

olmu�tur. E�itmen ve ö�renciler co�rafi konumdan ba�ımsız olarak �nternet

ortamında bulu�maktadır. Ne var ki farklı olan ihtiyaçlar ve bu ihtiyaçları

kar�ılamaktaki güçlükler laboratuar uygulaması gerektiren e�itimlerin �nternet

üzerinde aynı ölçüde yaygınla�masını engellemektedir. Bu çalı�mada laboratuvar

uygulamalarının �nternet üzerinden gerçekle�tirilmesinde kullanılabilecek

metodolojiler tartı�ılmaktadır. �htiyaçlar yeniden gözden geçirilerek �YTE’ deki

uygulamalar için rafine edilmi�tir. Saptanan ihtiyaçları kar�ılayacak bir mimari

önerilmi�tir ve bu mimari üzerinde geli�tirilebilecek bir yazılımın analizi

yapılmı�tır.

�

 5

ABSTRACT

Developments in the communication technologies area have increased the

popularity of usage of communication channels for the education activities. Being

one of these communication channels, Internet, has become an inevitable

component for theoretical education. Internet has brought together instructor and

student without any geographical constraint. But having different requirements

and difficulties during the satisfaction of these requirements are the common

drawbacks for the widespread usage of Internet for laboratory educations. In this

thesis, methodologies, which can be used in remote laboratory systems, have been

discussed. Requirements have been scrutinized and refined. Remote laboratory

architecture for IYTE has been proposed according to these requirements.

Analysis of software that can be developed on the proposed architecture has been

made.

 6

TABLE OF CONTENTS

LIST OF FIGURES………………………………………………………….…...ix

Chapter 1. MOTIVATION…...……………..…………………………………1

 1.1 Remote Experiment Concept ………………………………….1
 1.2 Overview of the Thesis…...……………………………………2

 1.3 Related Research and Recent Advances ………………………2

Chapter 2. REQUIREMENTS OF REMOTE EXPERIMENTATION……….4

 2.1 Introduction……………………………………………………4

2.2 Controller Design……...………………………………………5

 2.2.1 Basic Definitions Related to Control Systems……….5

 2.2.1.1 Plant…………………….………………….5

 2.2.1.2 System………….…………………………..5

 2.2.1.3 Disturbance………….……………………..5

 2.2.1.4 Feedback Control System….……………....5

2.2.1.5 Closed Loop Control Systems………….….6

2.2.1.6 Open Loop Control Systems……………….6

 2.2.1.7 Actuator……….…………………….……...7

 2.2.1.8 Sensor………….…………………………...7

2.2.2 Common Control Actions…………………….……...7

 2.2.2.1 On-Off Control Action…………..…………8

 2.2.2.2 Proportional Control Action……...………..9

 2.2.2.3 Integral Control Action…….……………....9

 2.2.2.4 Proportional-Integral Control Action…..…10

2.2.2.5 Proportional-Derivative Control Action.…10

2.2.2.6 Proportional-Integral-Derivative Control

Action……………………………………………..11

 2.2.3 Mathematical Model of Remote Experiment Plant...11

 7

2.2.4 Transient Response Characteristics of the plant…..12

 2.2.4.1 Delay Time…………………………12

2.2.4.2 Rise Time………...…………………12

 2.2.4.3 Peak Time…………...…………...…13

 2.2.4.4 Maximum Overshoot…………..……13

 2.2.4.5 Settling Time….……………….....…13

 2.2.5 Two Approaches for Controllers………….……….14

 2.2.5.1 Microcontroller Based Control……………..14

 2.2.5.2 PC Based Control…………………………..15

2.3 Access Management………………………………………….17

2.4 Multimedia Support………………..…………………………18

 2.4..1 Streaming Media and Real Time Transfer Protocol..19

Chapter 3. REMOTE EXPERIMENT SYSTEM PROPOSED FOR IYTE....22

 3.1 Feasibility Study……………………………………………..23

 3.2 Emulator Solution………………….……………………...…24

 3.3 Mathematical Model of Experiment Emulator ………………25

 3.4 Implementation of Experiment Emulator…………………….31

Chapter 4. OBJECT-ORIENTED ANALYSIS and DESIGN with UML…...33

 4.1 UML……………..…………………………………………...33

 4.1.1 Use Case…………………………………………....33

 4.1.2 Collaboration……………………………………….33

4.2 Use Case and Collaboration Diagrams of the Remote Experiment
System……………………………………………….35

 4.2.1 Registration to the System Use Case……………….35

 4.2.2 Collaboration Diagram for the Registration to the
System Use Case………………………………………....35
4.2.3 Login Use Case……………………………………..37

4.2.4 Collaboration Diagram for the Login Use Case……37

4.2.5 Do Preliminary Work Use Case…………………….40

4.2.6 Collaboration Diagram for the Do Preliminary Work

Use Case……………………………………………….….40

 8

4.2.7 Registration to Experiment Use Case………………43

4.2.8 Collaboration Diagram for the Registration to
Experiment Use Case………………..……………………43
4.2.9 Change the Time of the Experiment Use Case....…..45

4.2.10 Collaboration Diagram for the Change the Time of

the Experiment……………………………………………45

4.2.11 Send Experiment Parameters Use Case……………46

4.2.12 Collaboration Diagram for the Send Experiment

Parameters Use Case……………………………………...46

4.2.13 View Registrations Use Case……………………...50

4.2.14 Collaboration Diagram for View Registrations Use

Case……………………………………………………….50

4.2.15 Update Experiment Schedule Use Case…………...51

8.2.16 Collaboration Diagram for Update Experiment

Schedule Use Case……………………………………..…51

4.3 Class Diagram…………………………………….………….51

Chapter 5. CONCLUSION AND FUTUREWORK…………………………53

REFERENCES…………………………………………………………………...54

 9

LIST OF FIGURES

Figure 2.1. A typical closed-loop control system......................................………..6

Figure 2.2. An Open-loop control system...………7

Figure 2.3.a Block diagram of an on-off controller………...8

Figure 2.3.b Block diagram of an on-off controller with differential gap.…….….8

Figure 2.4. Block diagram of a proportional controller............................………...9

Figure 2.5. Block diagram of an integral controller.......................................……10

Figure 2.6. Block diagram of second order system..……12

Figure 2.7. Unit step response of a second-order system..............................….…13

Figure 2.8. RTP transmission...………20

Figure 3.1. Proposed Remote Experiment Architecture..................................…..22

Figure 3.2. Remote Experiment System with the Emulator......................……….24

Figure 3.3 RLC Circuit………………………………………………..…………25

Figure 3.4 Emulator System Block Diagram...25

Figure 3.5. Html form for Emulator parameters..31

Figure 3.6 V-t plot of Emulator………………...……………………...…………32

Figure 4.1. Use Case Diagram of The System..................................….............…34

Figure 4.2. Collaboration Diagram for Registration to the System Use Case...…36

Figure 4.3. Collaboration Diagram for Login Use Case................................……39

Figure 4.4. Collaboration Diagram for Do Preliminary Use Case...............…......42

Figure 4.5. Collaboration Diagram for Registration to Experiment Use Case..…44

Figure 4.6. Collaboration Diagram for the Change the Time of the Experiment

Use Case...…...………………..........................….45

Figure 4.7. Collaboration Diagram for SendExperimentParameters Use Case.....49

Figure 4.8 Collaboration Diagram for View Registrations Use Case ………...…50

Figure 4.9 Collaboration Diagram for Update Experiment Schedule Use Case…51

Figure 4.10 Class Diagram of the Analysis……………………………...………52

 1

Chapter1

MOTIVATION

1.1 Remote Experiment Concept
Education process is composed of three basic components. These are

education source, student and relationship between this source and student.

Written documents, audiovisual presentations and instructor can be an education

source. Relationship between these sources and student is called as an education

method. In education, major aim should be to increase the student’s reasoning

skills.

Reasoning can be performed by using induction, deduction and retroduction

methods in a complex order. Deduction is the mental process of forming

conclusions based on premises. The conclusions must follow directly and

necessarily from the premises. Retroduction is a pattern of inference, which

accounts for the hypothetical causes of unobservable entities as verifiable,

meaningful objects of a scientific inquiry. And finally; induction can be described

as collecting the individual bits of verifiable information that exist around us and

then trying to arrive at general truths. In order to collect the necessary information

for induction, observation or experiment should be done.

Observation is collection process of information. Observation must have two

properties in order to be scientifically meaningful. One property is reliability. For

reliable observation observer should be objective and observation should have a

tolerable error. Other property is validity. Collecting information without any aim

is not a valid observation.

Another method for collecting the information is doing an experiment. While

observer does not change the facts in observation, in experiment scientist plays

with the facts. Scientist makes systematic changes in initial conditions of the

observation and observes the dependent conditions. Here, initial conditions are

independent variables. In order to make systematic changes and necessary

controls, an artificial observation environment is needed. Laboratories provide

this environment.

 2

Being two basic components laboratory equipments and student determine

the laboratory cost. Cost is depending on expensive equipments and students’

physical presence in the lab. Remote experimentation solution reduces the

laboratory cost. Expensive laboratory equipments should be shared among

students. Hence, there is no need for physical presence of students.

1.2 Overview of the Thesis
This chapter will continue with related work sub title. At that part, recent

advances in remote experimentation subject are introduced.

In the second chapter, requirements of remote experimentation such as

computer controlled experiment setup and multimedia support is discussed.

In the third chapter, feasibility study that has been done for IYTE is

presented. Emulator solution is proposed as the first step of the real remote

experimentation. Mathematical model of emulator and implementation details are

explained.

Fourth chapter covers the object oriented analysis and design of proposed

system . Unified Modelling Language is used for analysis and design.

Last chapter gives the conclusion and proposes the future extensions of

this work.

1.3 Related Research and Recent Advances
Many institutions of higher education have successfully established Web-

based environments where learners can pursue their higher education via Internet

or alternative distance education methods. The success, however, has been

concentrated on the domain of virtual classroom (Hirumi&Bermudez, 1996). But,

still many learners whose courses are heavily lab-dependent are not able to enjoy

the multidimensional benefits of real laboratory experimentation via the virtual

classroom due to its technical limitations (Aktan, Bohus, Crowl, Shorl, 1996). In

distance teaching, laboratory experimentation is inconvenient because the students

usually have to be physically present in the universities' labs. One solution to

avoid this disadvantage is virtual experimentation. In this paradigm the

 3

experiments are simulated and visualized by means of virtual reality (Schimid,

1999). Another concept is remote control of laboratory experiments (Alhalabi,

Anandapuram & Hamza, 1998).

Currently, various studies are being executed about remote laboratory subject,

but two of them are much more important than the others.

 The University of Western Australia executes one of these projects. They

state that over $2 million had been invested for this system since 1993.� Their

telerobot research team has developed reliable Internet software and user

interfaces which can be tailored for remote control and operation of any kind of

equipment. And their web-based teaching team has shown how students can

effectively learn basic theoretical material through computers and how staff can

track their progress. They are trying to combine these two studies to provide

remote access to teach laboratory equipment. Their system allows student to

operate the equipment and collect data automatically. Labview program is at the

core of the system. Labview is commercial software for instrumentation of

experiments. Software includes drivers for various type of PC interface card

(RATL, 2003).

Another important project continues at Federal University of Santa Carina

in Brazil. Their system gives students an opportunity to run an assembly code

remotely for 8051 microcontroller. Their lab is composed of a board containing

8051 microcontroller and other devices for the communication between the

microcontroller and the server. They have server software that receives

information from the client. Then software takes this information to the

microcontroller and the results back to the client. Web browser is not enough for

client in this system so they use client side software that loads student’s machine

code and sends it to the server. Here no visual feedback is used. It can be asked

that what is the difference from the simulation of the microcontroller, but here

students use real equipments and when an unexpected situation occurs, system

responses real results (RELB, 2003).

Also, there are some other projects, but these two have partially finished

and they are leading projects in this area.

 4

Chapter 2

REQUIREMENTS OF REMOTE EXPERIMENTATION

2.1 Introduction

In engineering education, experiments play an important role. Experiment

setups can be described as the light version of the real and complex engineering

problems. Therefore, we should carefully determine which experiment could be

done and which couldn’t be through Internet.

Clearly we can state that computer based controller implementation is

necessary for remote experimentation. With this statement we have changed our

problem domain. Henceforth we will only deal with controller, regardless the type

of experimental setup.

Other component of the remote experiment system is scheduling.

Experiment setup must be shared among students. Registered students select the

time that they will do their experiment. These processes should be executed by the

access control mechanism.

Another important component is multimedia support. Visual feedback

should be supplied to the student. With the visual feedback, the student supervises

the experiment and checks whether the performance of the process is as expected.

Therefore we will examine if Java software development environment is

enough or not to meet the needs belonging to three basic components of a remote

experiment system. Controller design, access management and multimedia

support… The reason that we examine Java is only for research purposes. It may

be interesting to see that all-Java solution is not feasible.

In the next part of the chapter we will concentrate on these three basic

components.

 5

2.2 Controller Design

In the previous part we have stated that computer based controller

implementation is necessary for remote experimentation. Therefore, necessary

definitions about control systems will be given, before we explore the controller

alternatives appropriate for remote experiments. Then, common control actions

will be introduced.

2.2.1 Basic Definitions Related to Control Systems

2.2.1.1 Plant

A plant is a piece of equipment, perhaps just a set of machine parts

functioning together, the purpose of which is to perform a particular operation

(Ogata, 1990). In this thesis we shall call any physical experiment object to be

controlled a plant.

2.2.1.2 System

 A system is a combination of components that act together and perform a

certain objective (Ogata, 1990).

2.2.1.3 Disturbance

A disturbance is a signal that tends to adversely affect the value of the output

of a system. If a disturbance is generated within the system, it is called internal,

while an external disturbance is generated outside the system and is an input

(Ogata, 1990).

2.2.1.4 Feedback Control System

A system that maintains a prescribed relationship between the output and

some reference input by comparing them and using the difference as a means of

control is called a feedback control system (Ogata, 1990).

 6

2.2.1.5 Closed-Loop Control Systems

Feedback control systems are often referred to as closed-loop control

systems. In a closed-loop control system the actuating error signal, which is the

difference between the input signal and the feedback signal, is fed to the controller

so as to reduce the error and bring the output of the system to a desired value

(Ogata, 1990).

Figure 2.1. A typical closed-loop control system

2.2.1.6 Open-Loop Control Systems

Those systems in which the output has no effect on the control action are

called open-loop control systems. In other words, in an open-loop control system

the output is neither measured nor fed back for comparison with the input. Open-

loop control can be used, in practice, only if the relationship between the input

and output is known (Ogata, 1990).

 7

Figure 2.2. An Open-loop control system

2.2.1.7 Actuator

Actuator is a power device that produces the input to the plant according to

the control signal so that the feedback signal will correspond to the reference

input signal. The output of controller is fed to an actuator, such as a pneumatic

motor or valve, a hydraulic motor, or an electric motor (Ogata, 1990).

2.2.1.8 Sensor

The sensor or measuring element is a device that converts the output

variable into another suitable variable, such as a displacement, pressure, or

voltage, that can be used to compare the output and the reference input signal

(Ogata, 1990).

2.2.2 Common Control Actions

 There are six basic control actions are very common among industrial

controllers: on- off, proportional, integral, proportional-plus-integral,

proportional-plus-derivative and proportional-plus-integral-plus-derivative control

action. Before examining these control action we need to explain two concepts

Laplace transform and transfer function.

 The Laplace transform of function f(t) is given by

 � [f(t)] = F(s) = 0�
ϖ

 f(t)e-st dt (Kuo, 1991)

 (eq. 2.1)

 8

 The transfer function of a linear, time-invariant, differential equation

system is defined as the ratio of the Laplace transform of the output to the Laplace

transform of the input under the assumption that all initial conditions are zero

(Kuo, 1991).

 The transfer function of a system is a mathematical model. It is an

operational method of expressing the differential equation that relates the output

variable to the input variable. A transfer function gives a full description of the

dynamic characteristics of the linear and time-invariant system, as distinct from its

physical description (Ogata, 1990).

2.2.2.1 On-off Control Action

 Actuating element has only two fixed positions. If the output signal from

the controller is u(t) and the actuating error signal is e(t), the signal u(t) remains at

either a maximum or minimum value, depending on whether the actuating error

signal is positive or negative (Ogata, 1990).

 u(t) = U1 for e(t) > 0 (eq. 2.2)

 u(t) = U2 for e(t) < 0 (eq. 2.3)

(a) (b)

Figure 2.3. (a) Block diagram of an on-off controller (b) Block

diagram of an on-off controller with differential gap

 A differential gap is indicated Figure 2.3 (b). This gap causes the

controller output u(t) to maintain its present value until the actuating error signal

has moved slightly beyond the zero value. It may be the result of unintentional

 9

friction. However, it is intentionally provided in order to prevent too frequent

operation of the on-off mechanism (Ogata, 1990).

2.2.2.2 Proportional Control Action

The relationship between the output of the controller u(t) and the actuating

error signal e(t) is

u(t)=Kp*e(t) (eq. 2.4)

, where Kp is the proportional gain. In Laplace transform quantities,

 T(s)=U(s) / E(s) = Kp (eq. 2.5)

, where T(s) is the transfer function of the controller (Ogata, 1990).

 Figure 2.4. Block diagram of a proportional controller

2.2.2.3 Integral Control Action

 The value of the controller output u(t) is changed at a rate proportional to

the actuating error signal e(t). It is

 u(t)=KI
0
�

t
 e(t) dt (eq. 2.6)

, where KI is an adjustable constant.

 The transfer function of the integral controller is

T(s)=U(s) / E(s)=KI / s (eq. 2.7)

 In the proportional control of a plant whose transfer function does not

possess an integrator 1/s, there is a steady-state error in the response of a unit step

input. Such error can be eliminated if the integral control action is included in the

controller (Ogata, 1990).

 10

Figure 2.5.

Block diagram of an integral controller

2.2.2.4 Proportional-Integral Control Action

The control action is defined as:

u(t) = Kp *e(t) + Kp / TI
0�

t
e(t) dt (eq. 2.8)

, where TI is the integral time.

The transfer function T(s) is

U(s) / E(s) = Kp * (1 + 1/ (TI * s)) (Ogata, 1990) (eq. 2.9)

2.2.2.5 Proportional-Derivative Control Action

The control action is defined as:

u(t) = Kp *e(t) + K p *Td * de(t)/dt (eq. 2.10)

The transfer function T(s) is

U(s) / E(s) = Kp * (1 + Td * s) (Ogata, 1990) (eq.2.11)

Derivative control action provides high sensitivity. An advantage of using

derivative control action is that it responds to the rate of change of the actuating

error and can produce a significant correction before the magnitude of the

actuating error becomes too large. Although derivative does not affect the steady-

state error directly, it adds damping to the system and thus permits the use of a

larger value of the gain K, which will result in an improvement in the steady-state

accuracy. Because derivative control operates on the rate of change of the

 11

actuating error and not the actuating error itself, this mode is never used alone

(Ogata, 1990).

2.2.2.6 Proportional-Integral-Derivative Control Action (PID)

It is the combination of proportional, integral and derivative control

actions. The equation of a controller with this combined action is given by

u(t) = K *e(t) + (Kp/T I) *
0�

t
e(t) dt + KpT d * (de(t)/dt) (eq.2.12)

or the transfer function is

T(s) = U(s) / E(s) = Kp * [1 + (1 / (Ti * s)) + (Td * s)] (eq.2.13)

, where Kp is the proportional gain, Ti is the integral time and Td is the derivative

time. They can be called as P, I and D parameters of the controller. In summary, it

has three parameters and these parameters describe the model (Ogata, 1990).

PID model is frequently used in industry. It is simple and powerful model.

Thus we will use this model in remote controller design. In our design we will

permit student to give an appropriate combination of three control parameters, Kp,

Ti and Td through the Internet and to perform the experiment .

2.2.3 Mathematical Model of Remote Experiment Plant

 Although we concentrate on the design of the controller, we should define

the model of our experiment setup or plant in control terminology. Most of basic

real plants have no more than third order differential equation definition. Also

controller solutions for second order systems are similar for higher order systems.

Thus, we can design our controller for second order systems.

 Second order systems are the systems that can be defined with second

order differential equations. Transfer function of the system describes its dynamic

behavior.

 12

 Figure 2.6. Block diagram of second order system

T(s) = C(s) / R(s) = ωn
2 / (s2 + 2ξωns+ ωn

2) (Sarıo�lu, 1999) (eq.2.14)

 Also the dynamic behavior of the second order system can be described in

terms of two parameters ξ and ωn. ωn is the undamped natural frequency and ξ is

the damping ratio of the system. If 0 < ξ < 1, then the system is called

underdamped and the transient response is oscillatory. If ξ = 1, the system is

called critically damped. Overdamped systems corresponds to ξ > 1. The transient

responses of critically damped and overdamped systems do not oscillate. If ξ = 0,

the transient response does not die out (Sarıo�lu, 1999).

2.2.4 Transient Response Characteristics of the Plant

2.2.4.1 Delay Time (td)

The delay time is the time required for the response to reach half of the

final value at the first time (Ogata, 1990).

2.2.4.2 Rise Time (tr)

The rise time is the time required for the response to rise from 0% to 100%

of its final value (Ogata, 1990).

 13

2.2.4.3 Peak Time (tp)

The peak time is the time required for the response to reach the first peak

of the overshoot (Ogata, 1990).

2.2.4.4 Maximum Overshoot (Mp)

The maximum overshoot is the maximum peak value of the response curve

measured from the final steady-state value (Ogata, 1990).

2.2.4.5 Settling Time (ts)

The settling time is the time required for the response curve to reach and

stay within a range about the final value. This range changes between 2% and 5%

of the final value (Ogata, 1990).

These specifications are quite important since if we specify the values of

these, then the shape of the response is virtually determined. Another important

note is the conflict between the maximum overshoot and rise time. Both of them

cannot be made smaller simultaneously. If one of them is made smaller, the other

becomes larger.

 Figure 2.7. Unit step response of a second-order system

Our experiment emulator has generated the Plot in Figure 2.7. Here we can

see tr, td, tp, ts and Mp in the in the unit step response.

 14

 In remote experiment system, student will determine the PID parameters

of the controller according to desired transient characteristics of overall system.

 The next step of the analysis is to select the appropriate method to

implement the control system.

2.2.5 Two Approaches for Controllers

2.2.5.1 Microcontroller Based Control

 Microcontroller is a computer that all components of computer are on a

single chip. These components are control unit, arithmetic logic unit, I/O interface

and memory. In microcontroller-based control, control algorithm runs on the

microcontroller’s memory. For the meeting the remote experimentation needs, it

will be suitable to connect the microcontroller to the serial port of a PC, because

most of microcontroller have serial unit for PC interfacing. This PC can be a web

server or an agent for a web server.

All communication between microcontroller and this PC is obtained

through RS-232 interface. Experiment plant is connected using the

microcontroller I/O ports and if it is needed, the number of these ports can be

increased with external chips named peripheral interface adapter (PIA).

If we want all Java solution for the remote experiment system, serial port

access should be obtained using Java. Java Communications API is appropriate

for this purpose. Java communications API contains support for RS232 serial

ports and IEEE 1284 parallel ports. We can enumerate available ports in the

system and perform asynchronous and synchronous I/O on ports (CommAPI,

2002).

 Let us examine the sequence of the process. Microcontroller waits for the

PID parameter at the present time. PC sends parameters and waits for the result.

Result is the output of the plant. In fact, it is the output of feedback sensor. All

sampled outputs are written into microcontroller memory during the experiment

and transferred to the PC memory. At this time we have only raw data. Here we

have two choices. One is sending the raw data to client. The other is processing

 15

and then sending. If raw data is sent, a program at the client side should make it

visualized. On the other hand, if processed data is sent, client will loose the

chance of making detailed analysis. Thus both of them should be sent to the client

so client will make further analysis using the raw data.

 Besides, in the microcontroller market there are some sorts of

microcontrollers that include Ethernet module. They do not need any external web

server to send and get information, but their applications to remote experiment

systems are impractical because, still we need a PC as a web server for other

purposes. But it can be used as only remote instrumentation server.

 As a conclusion, microcontroller based controller is one possible

alternative for remote experimentation.

2.2.5.2 PC Based Control

If PC based control is used, control algorithm runs on the PC memory.

Communication between PC and experiment setup is obtained with PC interface.

Using a PC provides us various interface alternatives.

A general-purpose interface board is the most suitable solution if we need

a lot of input and output ports. It is connected to the PCI slot of the PC. PCI

(Peripheral Component Interconnect) bus standard have been developed by Intel

in order to use for its own microprocessors. PCI has 32 and 64 bit data bus. Also,

PCI bus supports maximum ten peripheral interfaces (Gümü�kaya, 1999). Its

signaling mechanism is very complex and it requires an expertise to design a card

that uses PCI bus.

ISA bus is other alternative for interfacing. This is old standard for PC

interfacing. PC producers have started to leave this standard. But an old IBM PC

can be used to implement ISA bus interface.

We cannot access the addresses of I/O with java. If we use PCI or ISA bus

for interfacing, all java solution will be infeasible. One solution can be obtained

by using a DLL that performs a communication between the hardware and java.

DLLs are executable procedures that are loaded when they are needed. A DLL

that performs this hardware access can be coded with a programming language

 16

that can access hardware directly. It can be C or another language. Then Java uses

this DLL with its native interface. Java native interface is used when a procedure,

which is coded by using another language, is required (Schildt, 2001). But there

are some drawbacks in the usage of native methods. One of them is loosing the

portability because of using a native method depended on the native CPU. The

other disadvantage is potential security risk. Because of this risk applets, which

are small applications and one of the components of a web document that can be

carried through the Internet have no right to use native methods (Schildt, 2001).

One practical solution is to use parallel port. This solution is suitable for

simple applications. Parallel port has 8-bit data pins. Standard parallel port

supports unidirectional data transfer. It is only used for output. Besides, other

parallel port standards are PS/2, Enhanced Parallel Port (EPP), Extended

Capabilities Port (ECP) permits bidirectional data transfer (Axelson, 1999). 8-bit

is not enough for experiment setup interface. We should have at least two signals.

Actuator signal as an output and feedback signal as an input…Thus we need to

expand the I/O capacity using external chips called Peripheral Interface Adapter

(PIA). Most commonly used PIA is Intel’s 8085 chips. They triple the I/O

capacity (Gümü�kaya, 1999). Other parallel interfaces are Small Computer

System Interface (SCSI) and IEEE 488 (Axelson, 1999). IEEE 488 is important

for us, because they are commonly used for laboratory equipment interfacing.

Also expansion cards for IEEE488 are available.

Also serial port (RS-232) is another alternative for interfacing. But this

cannot alone provide I/O operations for remote experimentation. With an external

board this alternative may be utilized. But this solution is not better than the

solution, which includes serially connected microcontroller as previously

described. RS-485, Universal Serial Bus (USB), Fireware (IEEE 1394) and IrDA

(Infrared Data Association) are some of the other serial interfaces different from

the RS-232 interface (Axelson, 1999). Each has different transfer rates, maximum

allowable cable lengths and maximum allowable number of device connections

(Gümü�kaya, 1999).

If we want all Java solution, Java Communication API should be used. But

as we state in the previous part, this API supports only RS-232 serial and IEEE

 17

1284 parallel port standards. Thus, native methods should be used for other

standards.

In this part we made a survey about controllers and interfacing

alternatives. We will continue with other two components of remote

experimentation.

2.3 Access Management

 Doing an experiment is only one phase of the real laboratory applications.

Other phases are registration, theoretical study and preliminary work including

necessary simulations, laboratory quiz and report. In designing a remote system

all these phases should be taken in consideration.

Access management is one of the main parts of the remote

experimentation. Student’s access to the system should be controlled at the each

phase of the application process.

Firstly, students enter the web page of the experiment. They examine the

documents about the subject of the experiment. This examination corresponds to

the theoretical study before the experiment. Animations about the subject

strengthen the comprehension. Everything up to here had been doing at the first

ages of the distant education. Thus, animations can be considered as the first level

of remote experimentation.

After theoretical study or immediately at the beginning, students should

register to the system entering their name and e-mail. Session should be opened

after the login process. In the session, student can view the previous documents.

In addition they will have a chance of getting a quiz. This quiz corresponds to a

preliminary work. If a student wants to take this quiz, a quiz page will be opened

with several test questions. Results are recorded and informed to the students.

Successful students will have right to download the simulation applet and to

determine the experiment time suitable for them. Unsuccessful students will have

no chance to continue. Until the experiment, students will have time to do

simulations. In these simulations, they have a second order system to be

 18

controlled. ωn and ξ are the random parameters that describe the system. They

should enter the PID controller parameters in order to satisfy the desired transient

response characteristics such as rise time, maximum overshoot and settling time.

Nowadays, making a simulation of an experiment is the most common technique

at distant education of laboratory courses. Simulation process obtained by an

applet can be considered as the second level of remote experimentation.

 Students can have a chance to change the time of experiment if the

schedule is available. Then they perform the third and the last level of remote

experimentation. Doing the real experiment remotely. They send their PID

parameters as they did at the simulation phase and get the drawing of the transient

response function of over all system. They repeat the experiment in a given period

of time. All parameters they sent are recorded to the system. According to the

parameters, an evaluation of the student is made and recorded. At the end of the

experiment students’ accounts have expired.

2.4 Multimedia Support

 Multimedia is the core of the remote experimentation process. It gives the

feeling of a real experiment to the remote student. With the visual feedback,

student manages the experiment and checks the experiment environment is as

expected. A web camera provides this video broadcast.

Mustek 300 mini web cam has been tested using the methods suggested by

Java Media Framework (JMF), which makes it possible to capture the streaming

video. In order to capture and to transmit images, we have used Real Time

Transfer Protocol (RTP) implemented by JMF. This protocol is widely used for

videoconference systems. It is faster for the transfer of an image than the TCP/IP

protocol since it uses sending of UDP datagram and does not check the good

arrival of the packages because loosing packages is not significant for the

 19

streaming video. However, JMF is not the part of Java Development Kit (JDK)

and not supported by the browsers. It means that the student has to download a

plug-in, which has size about 8 Mb.

 The RTP protocol will be examined in order to comprehend the real-time

media streams.

2.4.1 Streaming Media and Real Time Transfer Protocol

 When media content is streamed to a client in real-time, the client can

begin to play the stream without having to wait for the complete stream to

download.

 Transmitting media data across the net in real-time requires high network

throughput. It is easier to compensate the lost data than to compensate large

delays in receiving the data. This is very different from accessing static data such

as a file, where the most important is that all of the data arrive at its destination.

Thus, the protocols used for static data do not work well for the streaming media.

The HTTP and FTP protocols are based on the Transmission Control

Protocol (TCP). TCP is transport layer protocol designed for reliable data

communications. When a packet is lost or corrupted, it is retransmitted. The

overhead of guaranteeing reliable data transfer slows the overall transmission rate.

Then, another protocol should be used for streaming media.

User Datagram Protocol (UDP) is commonly used protocol for streaming

media. UDP is an unreliable protocol. It does not guarantee that each packet will

reach its destination. Also, there is no guarantee that the packets will arrive in the

order that they were sent.

UDP is a general transport layer protocol, which application specific

protocols are built on it. RTP is the Internet standard for transporting real-time

data such as video and it is often used over UDP.

RTP is defined in Internet Engineering Task Force’s RFC 1889. RTP

enables to identify the type of data being transmitted, determine what order the

packets of data should be presented in, and synchronize media streams from

different sources.

 20

An RTP session is an association among a set of applications

communicating with RTP. Each media type is transmitted in a different session.

For example, if both audio and video are used in a conference, one session is used

to transmit the audio data and a separate session is used to transmit the video data.

This enables participants to choose which media types they want to receive. So,

someone who has a low-bandwidth network connection might only want to

receive the audio portion of a conference.

JMF enables the playback and transmission of RTP streams through the

APIs defined in the javax.media.rtp, javax.media.rtp.event, and

javax.media.rtp.rtcp packages.

We can play incoming RTP streams locally, save them to a file or both.

Also, we can implement a videoconference application that captures live audio

and video and transmits it across the network using a separate RTP session.

Similarly, we can record a conference for later broadcast or use a previously

recorded audio in a conferencing application.

Figure shows the how RTP transmission process occurs.

 Figure 2.8. RTP transmission

 21

 In the figure, processor performs some user-defined processing on the

media data, and then outputs the processed media data. JMF use data source to

manage the transfer of media content. A data source encapsulates both the

location of media and the protocol. Either a JMF media locator or a universal

resource locator (URL) identifies a data source. Media locator is similar to a URL

and can be constructed from a URL. A session manager is used to coordinate an

RTP session. The session manager keeps track of streams that are being

transmitted. In JMF, session manager interface defines the methods that enable an

application to initialize, start participating in a session and close the entire session.

A data sink is used to read media data from a data source and render the media to

the destination. A particular data sink might write data to a file or write data

across the network. Using JMF, data sink object are constructed through the

manager class using a data source.

 The simplest way to transmit RTP data is to construct an RTP data sink

object using the createDataSink method of Manager class. Then we should pass in

the output data source from the processor and a media locator that describes the

RTP session to which the data source is to be streamed. The media locator

provides the address and the port of the RTP session. To control the transmission,

we can call start and stop methods on the data sink (JMFAPI, 1999).

 Another way to transmit RTP data can be performed with Session

Manager. Firstly, we should create a JMF Processor object and set each track

format to an RTP specific format. After retrieving the output DataSource object

from the processor, we should call createSendStream class on a previously created

and initialized SessionManager object, passing in the DataSource object. Lastly,

we should start the session manager by calling the startSession method of the

SessionManager object (JMFAPI, 1999).

 As a conclusion Java Media Framework makes easier to capture and

transmit the video. Using JMF can be the part of the all-Java solution in remote

experimentation.

 22

Chapter 3

REMOTE EXPRIMENT SYSTEM PROPOSED FOR IYTE

 According to the basic requirements that we have mentioned, such

architecture can be proposed for remote experiment system. We must have an

interfacing computer to interface the experiment system. Database server is

proposed to use in access management and experiment scheduling activities.

Multimedia server is an interface for multimedia components such as web cam.

All these servers can be executed either on a single computer or on different

computers. Architecture should be checked if it is feasible or not for IYTE.

Figure 3.1. Proposed Remote Experiment Architecture

 23

Up to here, the three basic components of a remote experiment system

have been examined. Access management and multimedia components can be

applied to any laboratory course. The critical component is design of the

controller. Therefore in order to determine the environment that the control

algorithm will execute on, we have done an inventory research.

3.1 Feasibility Study
In IYTE, Computer engineering department there is a computer

architecture laboratory. In this laboratory Intel’s 8086-microprocessor

development kits, 8051 microcontrollers, digital oscilloscopes and lots of EPROM

and Peripheral Interface Adapter (PIA) chips are the main laboratory equipments.

8086 development kit has a ROM-based monitor program for simple

interaction (MTS86-C). Using its RS-232 serial interface, data transmission can

be done between kit and PC. It has Analog to Digital and Digital to Analog

Converter. Also its three PIA is suitable for experiment interfacing. In the case of

remote experiment, control parameters can be taken and the output can be sent

using the serial port. All communication is performed through this port.

 To use 8051 microcontroller is another alternative solution. It has ROM

based BASIC interpreter for programming (Axelson, 1997). This interpreter gets

the code from the PC through the serial port. It is unnecessary for our needs.

Instead, it will be better to use an EPROM for programming needs.

 Up to here, everything seems agreeable, but we left all control to the

microprocessors. If we want to design a controller other than a PID controller, all

software should be changed. We loose the flexibility and we restrict ourselves

with a single controller algorithm.

 If we examine the PC based controller solution, available PC Interfaces

should be searched. At the Computer Engineering Department we don’t have any

interface board for PCI or ISA slot. Then we have decided to design an emulator

on PC, that emulates the experiment hardware and to concentrate on the protocol

between this emulator and student. So when we have chance to get any PCI card

in the future, new hardware can be substituted with the emulator and the same

 24

protocol can be used. This emulator idea can be seen as the first step of building

the remote experiment system.

3.2 Emulator Solution

Emulators imitate real systems. In this emulator, we are trying to emulate

the experiment plant and PID controller. For the experiment system, we will use

the mathematical model, which has been explained in the controller design

chapter previously.

 That was the second-order system having two parameters that describe its

characteristics. Damping ratio ξ and undamped natural frequency ωn. The

emulator will produce these parameters randomly. Then emulator sends the plot of

unit step response of the system to the student for system identification. Emulator

waits for the PID parameters. After getting the PID parameters, emulator executes

the controller process under a unit step input. Then emulator sends the response

curve as a JPEG image. JPEGImageEncoder class, which belongs to

com.sun.image.codec.jpeg package of Java, can be used for this purpose.

Fourth order Runge-Kutta method (Karagöz, 2001) has been used for the

execution of the overall controller system that can be defined with third order

differential equation.

Then, after the inclusion of the emulator, our architecture has changed.

Figure 3.2. Remote Experiment System with the Emulator

 25

3.3 Mathematical Model of Experiment Emulator
In emulator, parallel RLC circuit was used as an experiment plant. This

circuit includes resistor, capacitor and inductor in parallel.

Figure 3.3. RLC circuit

After adding PID controller, whole emulator system’s block diagram can be seen

in figure 3.4.

Figure 3.4. Emulator system block diagram

 In order to describe emulator system with its tranfer function, differential

equations of PID controller and RLC circuit should be given.

u(t) = K *e(t) + (Kp/T I) *
0�

t
e(t) dt + KpT d * (de(t)/dt) (eq. 3.1)

 26

In equation 3.1, e(t) is error input, K is proportional parameter, Ti is integral

parameter and Td is derivative parameter.

Acoording to figure 3.3;

I=V/R + (1/L)
 0�

t
V dt + C (dv/dt) (eq. 3.2)

(d
2

V / dt
2

) + (1/RC)(dV/dt) + (1/LC)V=i (eq. 3.3)

When we take Laplace tranforms of the differential equations,

For RLC circuit:

V(s)[s
2

+(1/RC)s+(1/LC)]=I(s) (eq. 3.4)

For PID controller

 U(s)= Kp * [1 + (1 / (Ti * s)) + (Td * s)]E(s) (eq. 3.5)

Then transfer functions of block diagram in figure 3.4,

For RLC circuit:

T1(s)=V(s) / I(s) = RLC / [RLs
2

 + Ls + R] (eq. 3.6)

For PID controller

T2(s) = U(s) / E(s) = Kp * [1 + (1 / (Ti * s)) + (Td * s)] (eq. 3.7)

Open loop transfer function of the system To(s) is,

To(s) = T1(s) * T2(s) (eq. 3.8)

 27

To(s) = (KpTdTiRLC s
2

 + KpTiRLC s + KpRLC) / (RLCTi s
3

 + TiL s
2

 + RTi s)

 (eq. 3.9)

When feedback is added, closed loop transfer function Tc(s) is,

Tc(s) = To / (1+To) (eq. 3.10)

 Y(s) (KpTdTiRLC s
2

 + KpTiRLC s + KpRLC)

Tc(s) =

=

 U(s) RLCTi s
3

 +(RLCKpTdTi+TiL) s
2

+(RLCKpTi+RTi) s + KpRLC

 (eq. 3.11)

In order to solve this transfer funtion with computer, state space definition of the

system should be obtained. Thus, 3 first order differential equation can be solved

simultaneously with Runga-Kutta method.

The state space representation for the transfer function

 Y(s) b
0

s
n

 + b
1

s
n-1

 + ……………………..+ b
n-1

 s + b
n

T(s) = ___ = __

 U(s) s
n

 + a
1

 s
n-1

 + ………………………. + a
n-1

s + a
n

 (eq. 3.12)

can be given by equations (eq. 3.13) and (eq. 3.14)

 28

 .
 X = Ax + Bu (eq. 3.13)

 Y= Cx + Du (eq. 3.14)

where
 � � � �

 � x
1

 � � 0 1 0 .. 0 �

 � x
2

 � � 0 0 1 .. 0 �

 � x
3

 � � �

x = � � , A = � �

 � � � �

 � x
n-1
� � 0 0 .. 1 �

 � x
n

 � � -a
n

 -a
n-1

 .. -a
1
�

� � � �

� �

� 	
1

 �

� 	
2

 �

� �

B = � � , C = [1 0 .. … 0], D = [
0

]

� �

� �

� 	
n-1
�

� 	
n

 �

� �

Our transfer function is third order then its state space form is,

 29

�
.
 � � � � � � �

 x
1

 0 1 0 x
1

 	
1

 .

 x
2

= 0 0 1 . x
2 + 	

2
.u

 .
 x

3
 -a

3
 -a

2
 -a

1
 x

3
 	

3

 � � � � � � � �

 � �

 x
1

y = [1 0 0] . x
2

 + 	
0
.u

x

3

� �

a1, a2, a3 can be obtained from the equations.

	
0

, 	
1

 , 	
2

 and 	
3

 can obtained from the following equations,

	
0

 = b0 (eq. 3.15)

	
1

 = b1-a1 	
0 (eq. 3.16)

	
2

 = b2 -a1 	
1

 –a2 	
0

 (eq. 3.17)

 30

	
3

 = b3 –a1 	
2

 –a2 	
1

 –a3 	
0

 (eq. 3.18)

After getting state space form of our emulator system, Runga-Kutta method can

be applied to these 3 derivative equations.

.
x

1
 = x

2
 + 	

1
 u (eq. 3.19)

.
x

2
 = x

3
 + 	

2
 u (eq. 3.20)

.
x

3
 = x

2
 = -a

3
 .x

1
- a

2
 . x

2
 – a

1
 . x

3
 + 	

3
 u (eq. 3.21)

. dx

x
1

 =

 = f (t, x) Assume that in t-x plane (t
i
,x

i
) is known and we wish to

 dt

find point (t
i+1

 , x
i+1

). The incremental time t
i+1

 – t
i

= h is the time interval

for computation, or the sampling period.

k1, k2, k3 and k4 are Runga-Kutta parameters which are the change of the x value

at t= t
i+1

.

k1=h*f(t
i
,x

i
) (eq. 3.22)

k2=h*f(t
i
 + ½ h, x

i
+ ½ k1) (eq. 3.23)

k3=h* f(t
i
 + ½ h, x

i
+ ½ k2) (eq. 3.24)

k4=h* f(t
i
 + h, x

i
+ k3) (eq. 3.25)

 31

When we obtain the weighted average of k1, k2, k3 and k4, where the weights are

1, 2, 2 and 1 respectively,

x
i
=x

i+1
 –x

i
 = (1/6) * (k1 + 2k2 + 2k3 + k4) (eq. 3.26)

Then the value of x
i+1

can be given by

x
i+1

= x
i
 +
x

i
 = x

i
 + (1/6) * (k1 + 2k2 + 2k3 + k4) (eq. 3.27)

This equation is called the fourth order Runga-Kutta equation, because it involves

four values of k’s.

3.4 Implementation of Experiment Emulator
 Runga-Kutta equation is used for the simultaneous computation of x

1
, x

2

and x
3

 with the help of eq. 3.19, 3.20 and 3.21. Program is coded in java and java

server page is used. Tomcat is used as jsp server. Apache is used as web server.

Servers executed on a PC having Windows XP operating system and 128 MB

memory.

 In program, three methods were used for defining the three states of

system and one method for Runga-Kutta method. After server is started and URL

is entered, such form is shown as in figure 3.5.

Figure 3.5. Html form for Emulator parameters

 32

After entering the parameters, v-t plot is drawn, where v is output voltage

and t is time.

 Sample figure is shown in figure 3.6.

Figure 3.6 V-t plot of emulator

At that computation incremental time, h, is taken as 0.001. Plot is drawn for 10

seconds of voltage signal, where R=0.4 Ohm, C=1 Farad, L=1 Henry, P=1, Ti=5

and Td=0.2.

 33

Chapter 4

OBJECT-ORIENTED ANALYSIS and DESIGN with UML

4.1 UML

Object-Oriented software development techniques have gone through three

stages of evolution.

1. Object-Oriented programming languages were developed and began to

use.

2. Object-Oriented analysis and design techniques were produced to help in

the modeling business, the analysis of requirements and the design of

software systems.

3. Unified Modeling Language (UML) was designed to bring together the

best features of a number of analysis and design techniques and notations

to produce an industry standard (Bennett, Skelto & Lunn, 2001).

 UML is a visual language that provides a way for people who analyze and

design object oriented systems. UML includes a lot of components for different

purposes. Two of them are Use Case and Collaboration. These will help us during

the analysis of the system.

4.1.1 Use Case

Use Cases are descriptions of the functionality of the system from the

users’ perspective. Use Case diagrams show three aspects of the system: actors,

Use Cases and the system boundary. Actors represent the roles that people or

devices take on when communicating with the particular Use Cases in the system

(Bennett, McRobb & Farmer, 2002). We have two actors in our system. Student

and instructor…

4.1.2 Collaboration

In Object-Oriented systems, the objects working together produce the

functionality. In order to work together, objects need to communicate with one

another and they do this by passing messages. This process is called as

Collaboration. In the UML specification, Collaboration is described as something

that defines a set of participants and relationships that are meaningful for a given

set of purposes (Bennett, McRobb & Farmer, 2002).

 34

Figure 4.1. Use Case Diagram of The System

 35

4.2 Use Case and Collaboration Diagrams of the Remote

Experiment System

Preceeding figure shows the set of all Use Cases for the system. Student

actor has seven Use Case. Five of them use another Use Case and one of them is

extended using another one. Instructor actor has two Use Case. Each Use Case

will be explained thorough their Collaboration diagrams. After we combine all

information comes from collaborations, Class Diagram of the system will appear.

4.2.1 Registration to the System Use Case

 When Student wants to make his or her registration through a Welcome

page of the System, a registration form is opened. Student enters name, e-mail

address, login name, password and other necessary information. After student

approves this information, a registration control mechanism validates the

registration information, performs registration and prompts user that registration

has been done.

4.2.2 Collaboration Diagram for the Registration to the System Use Case

 Three boundary classes, two control classes and one entity class are

proposed for the collaboration of the Registration to the System Use Case.

 Boundary classes are WelcomePageUI, RegistrationFormUI, and

ApprovalWindow.

WelcomePageUI is responsible to generate a WelcomePage user interface.

It should contain a link for the static page, in which all theoretical explanations

have been presented. Also it should contain separate links for login and system

registration. When the login link is activated, a login form is opened containing

login name and password text fields. And when the system registration link is

activated, Registration form is opened as in our use case.

RegistrationFormUI is responsible to perform the activities related to the

registration form. It has form fields and approve link. Student fills the form and

approves them using the approve link.

 After the registration process has been established, ApprovalWindow is

opened in order to prompt user that registration has been done.

 36

 Control classes are WelcomePageControl and RegistrationControl classes.

 Here, WelcomePageControl gets the registration request from the

WelcomePageUI and starts the RegistrationFormUI.

 RegistrationControl gets the student information. After validating, it makes

the registration sending them to the Student entity.

 We have one entity class. Student entity has all attributes about students.

Figure 4.2. Collaboration Diagram for Registration to the System Use Case

The Sequence of operations:

1.WantsToRegister: Students activates the SystemRegistration link.

 37

2.EnterRegistration: WelcomePageUI object calls EnterRegistration method of

WelcomePageControl object.

 3.WelcomePageControl object calls StartRegistrationFormUI method of

RegistrationFormUI object.

4.Student fills the registration form and approves the information.

5.RegistrationFormUI object calls TakeFormInformation method of

RegistrationControl object.

6.RegistrationControl object checks whether student has entered valid information

and then makes registration by calling MakeRegistration method of Student

object.

7.RegistrationControl object prompts user by calling PromptApproved method of

ApprovalWindow object.

4.2.3 Login Use Case

 When student activates the login link at the WelcomePage, Login form is

generated. Student enters login name and password and approves them activating

the approve link of the Login form. Login name and password are controlled and

a session is started. Afterwards, one of the possible three interfaces is opened

according to the state of the student. If student did not do the preliminary work,

UserInterfaceA is opened. If student did the preliminary work but did not make

the experiment registration, UserInterfaceB is opened. If student did the

preliminarywork and made the experiment registration, UserInterfaceC is opened.

4.2.4 Collaboration Diagram for the Login Use Case

Five boundary classes, three control classes and three entity classes are

proposed for the collaboration.

Boundary classes are WelcomePageUI, LoginUI, UserInterfaceA,

UserInterfaceB and UserInterfaceC.

In this collaboration Login link of the WelcomePage is activated.

LoginUI generates the login form and send the information to the

LoginControl object.

UserInterfaceA consists of a link for Preliminary Work. It is constructed, if

the student did not do the Preliminary Work.

 38

UserInterfaceB shows the Preliminary Work grade and it has a link for

experiment registration. It is constructed, if the student did not make the

experiment registration after doing the Preliminary Work.

UserInterFaceC shows the Preliminary Work grade and the experiment

time. Also, it has a links for changing the experiment time and doing the

experiment. It is constructed if the student made the experiment registration. If the

students login at the experiment duration, this interface is generated again.

Students cannot login after the end of the experiment time.

Control classes are WelcomePageControl, LoginControl and StateControl.

WelcomePageControl gets the login request from the WelcomePageUI and

starts the LoginUI.

LoginControl gets the login name and password from the LoginUI and checks

if they are valid by calling GetLoginApproval method of the Student object. This

method returns the student id of the student. Then LoginControl starts a session

for this student by calling the StartSession method of the Session object.

The Session object constructs StateControl object. Calling the GetState

method of the student object controls the state of the student. If student did not do

the Preliminary Work, StateControl starts the UserInterfaceA. If the student did

the Preliminary but did not do the experiment registration, StateControl starts the

UserInterfaceB by getting the Preliminary grade from the Student object. If the

student did the experiment registration, UserInterfaceC is started getting both

preliminary grade and registered experiment time.

Session object is active during the all session. In this collaboration it is used

for registering the starting time of the session to the Student object’s

LastSessionTime variable.

The need for a session revealed a session concept automatically during the

analysis. Java Server Page can be used for the session needs (Pekgöz, 2002).

We can extract from this collaboration that the Student object must include

the Preliminary grade and the experiment time as an attribute.

 39

 Figure 4.3. Collaboration Diagram for Login Use Case

 40

4.2.5 Do Preliminary Work Use Case
 Students enter the Preliminary Work by activating the PreliminaryWork

link of the UserInterfaceA. They get Preliminary test and approve their answers.

Control mechanism checks the answers and register the grade to the student

entity. If the grade is enough to continue, this control mechanism starts the

UserInterfaceB for experiment registration. Otherwise grade is displayed and

session is closed.

4.2.6 Collaboration Diagram for the Do Preliminary Use Case
 We have four boundary classes, one control and three entity classes.

 Boundary classes are UserInterfaceA, PreliminaryQuizForm,

UserInterfaceB and LowGradeUI.

 UserInterfaceA includes the PreliminaryWork link. UserInterfaceB

includes the quiz grade and experiment registration link. PreliminaryQuizForm

has test questions, necessary fields for choices and approval link. LowGradeUI

has only the quiz grade.

 Contol class is the PreliminaryControl. It takes the request from the

UserInterfaceA and starts the PreliminaryQuizForm interface taking questions

from the PreliminaryQuiz entity. PreliminaryQuizForm sends the answers.

Control class checks the answers and according to the grade activates the

UserInterfaceB or LowGradeUI.

 PreliminaryQuiz entity has quiz questions and answers. Other two entity

classes are the session class and the student class.

 Sequence of the operations:

1.wantsToDoPreliminaryWork: Students activates the PreliminaryWork link of

the UserInterfaceA.

2.openPreliminary: UserInterfaceA sends this request to the PreliminaryControl.

3.getQuestions: PreliminaryControl gets questions.

4.showQuizForm: PreliminaryControl starts the Quiz interface.

5.sendAnswers: Student fills the quiz form and approves the form.

6.getAnswers: Quiz interface sends the answers.

 41

7.getStudentID: PreliminaryControl gets the student id from the Session entity.

8.calculateGrade: calculateGrade method of the PreliminaryQuiz calculates the

grade Student’s answers are the input parameters of the calculateGrade method

and method returns the grade checking with the correct answers.

9.1. setPreliminaryGrade: PreliminaryQuiz objects registers the grade to the

Student entity.

9.2.a.startInterfaceB: PreliminaryControl starts the UserInterfaceB, if the grade is

enough to continue. Then one of the scenarios ends.

9.2.b.1 closeSession: PreliminaryControl closes the session, if the grade is not

enough.

9.2.b.2 expireAccount: Control object expires the account calling expireAccount

of the Student object.

9.2.b.3 startLowGradeUI: Control object starts the LowGradeUI and the other

scenario end.

 42

Figure 4.4. Collaboration Diagram for Do Preliminary Use Case

 43

4.2.7 Registration to Experiment Use Case
 Student starts the registration process through the UserInterfaceB

activating the Experiment Registration link. Available experiment sessions are

shown to the student. Student selects the appropriate session.

4.2.8 Collaboration Diagram for the Registration to Experiment Use Case

 We have three Boundary classes, three entity classes and one class in the

collaboration.

 Boundary classes are UserInterfaceB, Schedule and UserInterfaceC.

 Schedule shows the timetable of available experiment sessions. It has

approval link.

 Our control class is RegistrationControl. We used the same class in the

collaboration of RegistrationToSystem Use Case.

 Entity classes are Session, Student and ExperimentSession.

 Sequence of the process is:

1.wantsToRegisterToExperiment: Student activates the ExperimentRegistration

link of the UserInterfaceB.

2.wantsToregister: UserInterfaceB calls the wantsToRegister method of

RegistrationControl object.

3.getAvailableTime: RegistrationControl gets the available experiment sessions

from the ExperimentSession entity.

4.showAvailableTime: RegistrationControl object calls this method in order to

activate the Schedule Interface.

5.enterAvailableTime: Student enters the appropriate experiment time and

activates the Approval link.

6.sendTime: Schedule interface sends time to the RegistrationControl.

7.getStudentID: StudentId is taken from the Session entity.

8.recordStudentID: StudentID and selected time is sent to the ExperimentSession.

9.recordExpSessionID: After ExperimentSession object constructs the Student

object with given StudentID, ExpSessionID is recorded to the student entity.

.

 44

10.getPreliminaryGrade: RegistrationControl gets the preliminary grade from the

Student entity.

11.startInterfaceC: RegistrationControl object starts the interfaceC.

Figure 4.5. Collaboration Diagram for Registration to Experiment Use

Case

 45

4.2.9 Change the Time of the Experiment Use Case
Students can change their experiment time before the experiment through the

UserInterfaceC.

4.2.10 Collaboration Diagram for the Change the Time of the Experiment

It is similar to the Collaboration Diagram of the Experiment Register Use

Case. The only difference is starting interface is UserInterfaceC.

Figure 4.6. Collaboration Diagram for the Change the Time of the Experiment

Use Case

 46

4.2.11 Send Experiment Parameters Use Case

 Experiment Emulator produces two system parameters ξ and ωn randomly.

The probability distribution of these parameters is uniform and values change

between reasonable limits. The plot of unit step response of the system is sent to

the student with transient system characteristics such as maximum overshoot,

rising and settling times. In addition student gets the desired values of transient

system characteristics. Student does the system identification making necessary

calculations and estimates the system parameters. According to desired unit step

response, student determines the PID parameters of the controller. Simulation

program can be used in order to check correct PID parameters. After sending PID

parameters, the Experiment Emulator generates a plot of unit step response.

 System and controller parameters are recorded to the Student entity. If the

student’s transient system characteristics are close to the desired characteristics,

experiment grade of the student will be high.

 Also, a visual feedback is supplied to the student. For the emulator case, it

does not matter. But when the emulator is changed with the real experiment

system, similar collaborations can be used.

4.2.12 Collaboration Diagram for the Send Experiment Parameters Use Case

 We used four Boundary classes, four entity classes and two control

classes.

 Boundary classes are UserInterfaceC, ExperimentInterface, ResponsePlot

and the VideoInterface.

 ExperimentInterface has text fields for PID parameters and the plot of unit

step response of the second-order system. Also, desired transient response

characteristics are given through this interface. Extended

ExperimentWithVideoFeedBack Use Case can be started asynchronously through

this interface by activating the video request link.

 ResponsePlot is unit step response of the controlled system.

 VideoInterface is an interface for video feedback.

 RegistrationControl and WelcomePageControl classes are needed for the

collaboration.

 47

 Session, Student, ExperimentGenerator and VideoSession entities are used

in this collaboration.

 This collaboration is more complex. Because

ExperimentWithVideoFeedBack Use Case is extended, its collaboration is

combined with SendExperimentParameters Use Case.

Sequence of the operations:

1. wantsToDoExperiment: Students start the experiment interface by

activating the DoTheExperiment link of the InterfaceC.

2. startExperiment: UserInterfaceC notifies the RegistrationControl object to

start the experiment process.

3. getStudentID : Session object gives the StudentID.

4. generateSystemParameters: Emulator generates the plot of the response

according to randomised system parameters.

5.1. recordSystemParameters : Generated parameters are recorded to the

Student enetity.

5.2.1. startExpInterface: RegistrationControl starts the ExperimentInterface.

5.2.2.a.1. entersPIDParameters: Student enters the controller parameters.

5.2.2.a.2. getPID: Control object gets the control parameters.

5.2.2.a.3. generateOutput: Using student’s PID parameters, emulator generates

the unit step response of the controller system.

5.2.2.a.4.1.1. recordPIDParametersAndGrade: Student’s PID parameters and

grade given according to these parameters are recorded to the Student entity.

5.2.2.a.4.1.2. displayOutput: Emulator displays the plot of the response.

5.2.2.a.4.2.1. startVideoRecord: Control object notifies the Session object for

video recording.

5.2.2.a.4.2.2. startRecord: VideoSession is opened for recording the video

image of experiment environment. Later, instructor can view this file or it can

be sent to the student via e-mail.

5.2.2.b.1. streamingVideoRequest: Student can also request a real-time

visual feedback asynchronously. This request extends this use case to the

ExperimentWithVideoFeedBack use case. In order to make easy to follow the

extended path, instead of “a”, we add “b” to the message numbers.

 48

5.2.2.b.2. getVideoRequest: VideorRequest is sent to Control object.

5.2.2.b.3. getIPAddr: RegistrationControl object gets the IP address of the

student

in order to use in video transfer.

5.2.2.b.4. sendVideoRequest: RegistrationControl object notifies the Session

object.

5.2.2.b.5. streamingVideo: Session object starts the VideoSession.

5.2.2.b.6. startStreamingVideoInterface: VideoSession starts streaming video

interface.

 49

Figure 4.7. Collaboration Diagram for the Send Experiment Parameters Use Case

 50

Henceforth, our actor is the instructor. For all instructor operations,

instructor’s main menu is used and all use cases related to instructor, starts with

the activation of any component on this main menu.

4.2.13 View Registrations Use Case

In this Use case Instructor can view all attributes of the Student entity.

4.2.14 Collaboration Diagram for View Registrations Use Case

 This Collaboration is very simple. It has three classes. Instructor makes

some queries about students. StudentInterface has necessary text fields for the

query.

 Figure 4.8. Collaboration Diagram for View Registrations Use Case

 51

4.2.15 Update Experiment Schedule Use Case

 Instructor updates the Experiment Schedule. Instructor can only make

changes on vacant sessions.

4.2.16 Collaboration Diagram for Update Experiment Schedule Use Case

 Collaboration diagram has one interface for schedule. This interface can be

started with the activation of UpdateSchedule link of the Instructor’s main menu.

Figure 4.9. Collaboration Diagram for Update Experiment Schedule Use Case

4.3 Class Diagram

 Class Diagram is composed of entity classes that are relating with one

other entity class. Possible attributes are shown in the diagram. Detailed class

diagram can be constructed during the design phase.

 52

 Figure 4.10. Class Diagram of the analysis

 53

Chapter 5

CONCLUSION AND FUTUREWORK

Due to the limited number of instructor and education equipment, distant

education methods have been evolved as an alternative against classical education

methods. But, still there is a big gap between those new methods and traditional

methods of education that require laboratory work. In this thesis, we have tried to

fix the needs and propose system architecture in order to reduce this gap. Object

oriented analysis of this system has been done and some ideas for Java

implementation have been developed throughout the thesis.

As the first step of the system development, an emulator system was

designed and implemented using control theory principles. As a future work,

firstly, software development process should be completed using the analysis in

the thesis. Then, a data acquisition hardware should be obtained for PC based

controller implementation of a real plant. The remote access mechanism

developed in this thesis can be used for “distance learning” as well as many

different industry fields.

 54

REFERENCES

Aktan B., Bohus C. A., Crowl L.A., Shor M.H. (1996): “Distance Learning

Applied to Control Engineering Laboratories”, IEEE Transactions on

Education, 39(3), 320-326.

Alhalabi B., Anandapuram S., Hamza K. (1998): “Real Laboratories: an

innovative rejoinder to the complexities of distance learning”, The Bulletin of

the International Council for Open and Distance Education, vol.2.

Axelson Jan (1999): “Parallel Port Complete”, Third Edition Published by

Lakeview Research

Axelson Jan (1997): “8051 The Microcontroller Idea Book”, Second Edition

 Published by Lakeview Research

Bennett Simon, McRobb Steve, Farmer Ray (2002): “Object-Oriented Systems

 Analysis and Design Using UML”, Second Edition Mc-Graw Hill

Education

Bennett Simon, Skelton John, Lunn Ken (2001): “UML”, Mc-Graw International

 Limited

CommAPI (2002): “Java(tm) Communications API Documentation”,

 www.java.sun.com

Gümü�kaya Haluk (1999): “Mikroi�lemciler ve Bilgisayarlar”, 1. Baskı Alfa

Basım Yayım

Hirumi A., Bermudez A. (1996): “Interactivity, Distance Education and

Instructional System Design Converge on the Information Superhighway”,

Journal of Research on Computing in Education, vol. 29, no 1.

JMFAPI (1999): “Java Media Framework API Documentation”,

www.java.sun.com

Karagöz �rfan (2001): “Sayısal Analiz ve Mühendislik Uygulamaları”, 1. Baskı

 Uluda� Üniversitesi Güçlendirme Vakfı Yayınları

Kuo Benjamin (1991): “Automatic Control Systems”, Sixth Edition Prentice Hall

 International Editions, New Jersey 07632.

 55

MTS-86C : “MTS-86C 8086 Experiment Setup Guide”, Published by MFG. Co.

LTD Taipei, Taiwan.

Ogata Katsuhiko (1990): “Modern Control Engineering”, Second Edition Prentice

 Hall International Editions, New Jersey 07632.

Pekgöz Numan (2002) : “Java Server Pages”, 1.Baskı Pusula Yayınları

RATL (2003): “Remote Access to Teaching Laboratories Project at University of

 Western Australia”, http://www.mech.uwa.edu.au/jpt/tele/

RELB (2003): “Remote Experiment Lab Project at the Federal University of

Santa Carina”, http://www.inf.ufsc.br/~jbosco/lexrem1i.htm

Sarıo�lu Kemal (1999): “Otomatik Kontrol 2”, 1. Baskı Birsen Yayınevi

Schildt Herbert (2001): “Java 2 The Complete Reference”, Fourth Edition The

Mc- Graw Hill Companies

Schimid C. (1999): “A Remote Laboratory Using Virtual Reality on the Web”,

 Simulation, 73(1), 13-21.

	Cover
	Thesis

