A Turkish Password Cracker for UNIX Based
Operating Systems

By
Osman Okyar TAHAOGLU

A Dissertation Submitted to the
Graduate School in Partial Fulfillment of the

Requirements for the Degree of

MASTER of SCIENCE

Department: Computer Engineering

Major: Computer Software

Izmir Institute of Technology

Izmir, Turkey

June, 2001

We approve the thesis of Osman Okyar TAHAOGLU

Date of Signature

.................... w 27.06:2004

Assoc. Prof. Dr. Ahmet H. KOLTUKSUZ
Supervisor

Izmir Institute of Technology

Department of Computer Engineering

............................ :" t’) 21062004,
Prof. Dr. Saban EREN

Ege University

Department of Computer Engineering

.......... Al Agh) 27:06:2004.

Asst. Prof. Dr. Tugkan TUGLULAR
[zmir Institute of Technology
Department of Computer Engineering

2F.00:2004.

Prof. Dr. Sitki AYTAC
Izmir Institute of Technology
Head of Department

IZMIR YUKSEK TEKNOLOJT ENSTITE:
REKTORLUGU

ii Kituphane ve Dokimantasyon Doire Bsk..

ACKNOWLEDGEMENTS

I would like to thank to my advisor Assoc.Prof. Ahmet H KOLTUKSUZ, Ph.D., firstly
for his advice about studying on this subject and for his enduring support and supervision that
made this thesis possible.

Additionally, my deepest thanks to my family, to the academic staff of my department,
and to my colleagues for their support and encouragement.

1

ABSTRACT

UNIX and UNIX-based operating systems have been widely utilized in local
area and wide area network systems that supply application and development chain of
users through remote access as well as online connections. Although UNIX operating
system has got powerful tools which have secure methods for user authentication, user
management and for password storage, weak password choices of the users affect the
entire system security negatively.

This study aims to crack the password hashes which are encrypted by DES
using the method of dictionary attack. The developed application is introduced and
compared with the previous utilities. Password encryption, password storage, and the
structure which was developed against a possible dictionary attack of UNIX are
examined. The good password choosing method for the users and the system
administrator are given.

v

0z

Kullanicilara uzaktan erigim, uygulama ve gelistirme saglayan pek ¢ok yerel
ve genis bilgisayar sistemlerinde UNIX ve UNIX tabanli isletim sistemleri
kullanilmaktadir. Unix tabanli igletim sistemlerinde, kullanicilari tanimlama ve
yetkilendirme araglar1 giiglii sifreleme ve saklama tekniklerine sahip olmalarina
karsin, kullanicilarin zayif olarak tanimlanabilecek sifre segimleri, kullanic1 yonetimi
ve giivenligini olumsuz yonde etkilemektedir.

Bu ¢alismayla, DES algoritmasi ile sifrelenmis kullanic: sifrelerinin s6zlikkten
tarama ve saldir1 yontemiyle kirilmasi amaglanmis ve gelistirilen uygulama ile daha
once aym amagla yazilmis programlar karsilastirilmustir. Isletim sisteminin sifreleme
yontemi, kullanici adlarm1 ve sifrelerini saklama yontemi ve olasi sozlitkten
saldirilara kars1 gelistirdigi yap: incelemistir. Kullanicilara ve sistem yGneticilerine
iyi sifre se¢im tanimu yapilmustir.

TABLE OF CONTENTS

CHAPTER L.INTRODUICTION -oovmion e s
1.1 IMOTIVALION. ... eeveeiteiieieeteieeieete et e eeecetaesste s e s et e st s e esaessesaeesaesaesee e e e e e
1.2 OBJECHVE e eeeereessessesseesseseeesseseseesesesessessssssessesssesseess e eees
1.-3 Scope and STIUCTUIE.c.coveueuierireeeeee et
CHAPTER 2 CRYPTANALY SIS AND DES. i
7 R
2.2 Standards for the Modes 0f DES.........cccoooiiiiiiiiiiiiieiciccenie e
2.3 Data Encryption AIROrithin. ..o anssnnmmnmsvisaivis
2.3.1 INtroduCtion.oueniiiiiieiieieeie ettt e
232 PPN oo i S e T A G I
2.3.3 DeCIPhering......oiuv ittt e e e
CHAPTER 3 PASSWORD STRULTLIRE IN YINEX . covmmmsnsiaamminsssi
S OO s s s e R S T e
3.2 User AUthentiCatiON.eeuerueruierueenieniiesieesseesessesseeseaaee s seessnesnn s n e e
321 sty and Passinds.. conmnunnemninmminn s
3.2.2 Password for System Accounts.........cc.ceeeeeeveuennen.
3.3 PABSWOTHE BEOITIIN umnisoassbmibaliions s i
3.3 Jeepase Wl T8 o i i it adn s
<o - R WSO =00 PO 1 N
3.3.1.2 Understanding Default System User Names
3.3.1.3 PaSSWOTI.......cccecevuerrerreirererererereeenereseeesnerseseeneee e e e

3.3.2 Salted Passwords.................

3.3.2.1 The Threat of the DES Chip.....c.ccceceevevvevviiicecienen .
3.3.3 Login Procedure..........cccooeereeereeeeeeeeeeeeeeeeeeeeeee e e e
3.3.5 Shadow File Entry......cccceocieeiiriiiiiiieieseceeeene e s e

Vi

111

v

vi

X

CHAPTER 4 VARIOUS ATTACK SCHEMES ON PASSWORD.........cccccvervrunnnne
4.1 INtrodUCHiON ..oeviceeiiiiiciecc e e e e e
4.2 The Imiportance of Good Passwords . uumwamanensansassimis
4.3 Human Password Choices and System Security..............cocvvereennnnn.
44 PasROrd ARCRE. o o o s e O SR

44T DHCHIONETY ATACKS i siisiissnismmiassmmsnssne tionaaspsssssmamtasesrsesaannns
442 Bost rrpt I plenie b atOnS o mssmissasssmssmasss s
4.4.3 Precomputed Encrypied DICHoARres.cownmamnannms
4.5 Automated Dictionary. ABACK. ..cuasusmessmescmmmssssssmsmniorssssmrssanmmmne
4.5 1 Knowi BEncrption Algostthin . oenummnsmnnaanss
4.5.2 Acceptable Running TImes..........coereruemineiniineienienescee e e
4.5.3 Encrypted Password Availability......vamimamnuninsnarsses
4.5.4 Decreasing Password Guessability......ccocecvvierivniiciecnien e,
4.5.5 Other Approaches...mmsmimmmsseinssissitsssmitmsss
4.6 Password Composition: Valnerabilities.,o immamsaimsnessmsnnmosnss
AT C T B 5T o L OO
4:6.1.1 'What Notto Use a5 g Passwond «ocansmmnnnnsivs
4.6.2 GOOd PasSWOIdScccueeueiiuiiiiiieiiiieeieeeeee et e
#.0.2. 1 What to Ust..c.uvvanmnnnvasunsissnsisseioms
4.6.2.2 Reducing Break-in Possibilities..........cccccoveviirieeenn..
4623 Password SCrBetiiil. o siostssamaissassis
4.6.2:4 Piclang (ood Passwords.....auwmmsimamimiaainsigs

4.6.2.4.1 Method to Choose Secure and Easy to
Remember Passwerds.csmmnsmnnmmrmsressire
4.6.2.5 Improving Passwords Against Social Engineering.......
4.7 Case Studies: Cracking Linux Passwords via Dictionary Attack.........
4. 7.1 LOpWCTECk 2.5 o s o it i et e
4.7.2 John the RIPPETccuiiiiiiiiiiiiiniicecicereeeee e e e
B

S L DB OT T D i B S s s
5.2 Selection of the Medium and TOOIS. eeee e

vii

5.3 Implementation of the Program................cooooiiiiiiiiiiiiii,
Sl RBSUIT oy s S S B AR e e wins
CHAPTER 6 CONCLUSIONS....c.oitiiiteteirietitereereseesieseestessssenssssssesssssssessessssessessesens

6.1 Concluding Remarks...........
6.2 Suggestions for Future Work.........ooeoeviiininiiiccccie e
BUINENERIL Y oo om0 D £ O B S T R W P S DR

Viii

39
42
44
44
44
45
46
47

LIST OF FIGURES

Figure 2.1 DES Algorithm, Enciphering Computationcccoevvvnnnnn.... 5
e 2 2 Chleilstion of {R. K) ccorsnmnnaasnnimmsamsimssiaaims 8
Bate 3.1 /etc/passwd File ..coovvvnmmmnsasissmmmimsamssisivis isvis s 12
Figure 5.1 Salt Generation............ouvuuiuiiieiieieteit it iieiiereeieireeaeaeans 39
e 5.2 Paswonird Criickiny PIOCERE ... uvsvunuamiiiisiissniinsin snnisgs 40
R TR SR 1o OGO OTNI.{ S 41

ix

LIST OF TABLES

P BB T B LT SR 5
Table 2.2 Inverse Initial..........oouiiniiniiiiii i e 6
R able 2.3 E BU-SEIECIION. ... cousscisusvivas s visassdosssissasaiesissisavis s 8
Table 2.4 ST FUNCHON.vitiieie it ee e e e e 9
Table 0.5 Pertiittation PUNCHD.ocrrinssiscsisrmsmissinmmmssssishins sobessmss st anense 9
Table 3.1 Excerpts from a sample /etc/shadow file from an SVR4 system.......... 18
Table 5.1 Hardware Profile.........c.cooeiviriiiiiiiiiiiii e eeea e 38
Fable 5.2 SoRWare PIole....c..oovovsivisninnmmnsinisssesnis s s 38
Hable 5.3 Regulis of Bxperimitit #1 .c.vnvmmssimimissssssssmmmmsratisssssevine 42
[Eable 5.4 Resiillz of Experiment 200 o i i s s i iisiiiassarnstsns 43

CHAPTER 1

INTRODUCTION
1.1 Motivation

As computers get more and more into our life and business, security gets more
importance. Most medium to. large-sized computers and even the smaller computers are now
shared among users. Therefore, remote access to computer systems need to be managed under
the perspective of security policy.

Even though UNIX operating system is very much security conscious and many of its
processes such as authentication, adding, deleting and management of the users have been
standardized and more over passwords are kept in a shadowed file in an encrypted format
while encryption algorithm(DES) which is used in due process is away from being decrypted
however, users’ password choices weaken the entire system just like a weak ring in a chain.
Uneducated and/or careless users prefer easy to remember passwords for themselves. But the
point is a good password security is the first line of defense against the system abuse.

1.2 Objective

This work covers password guessing of UNIX/UNIX-based operating systems by the
method of a Turkish dictionary attack. The application program coded in C is executed for a
real environment password file on a Linux (SUSE) operating system. Before the case study on
cracking the passwords, it is assumed that by somehow the password file (or the shadow file if
shadowing is activated) with the known encryption algorithm is accessed. An acceptable
running time (and CPU time) and a large on-line Turkish dictionary is available. The
percentage of successful guesses relies on the passwords with a significant probability of
being in the word list.

Several other crackers which are available on Internet have been examined and
compared with the developed program.

1.3 Scope and Structure

In Chapter 1, a brief introduction is made about aim, goal and objectives of the thesis.
Chapter 2 deals with the most popular cipher in history, Data Encryption Standard (DES).
Describes the modes of the encryption algorithm, examines a brief explanation of the
encryption and the decryption procedures.

In Chapter 3, password security in UNIX and UNIX-based Operating Systems is
focused. The relationship between the users and the user authentication is examined.

Password protection mechanism provided and maintained by the operating system plus the
DES algorithm is introduced.

In Chapter 4, the reason for choosing the dictionary attack against user passwords is
introduced. The good and the bad password identifications are determined. Advices for the

password choosing are given. Possible dictionary attack methods and the other available
password crackers are introduced.

Chapter 5 is the case study of this thesis. It introduces a password cracker coded in C.
Constraints about the cracker software which is developed under the circumstances of
predetermined realities about the users’ weaknesses and the environment are explained in this
chapter.

Chapter 6 is a general conclusion involving password cracking via dictionary attack
with the method defined in Chapter 4 and with the result in Chapter 5. Necessary remarks and
advices are given for the future studies.

CHAPTER 2

CRYPTANALYSIS AND DES

2.1 History

The Data Encryption Standard (DES) is the most popular cipher in history, even
though it's been around for the last 25 years.

Because of the unavailability of general cryptographic technology outside the
national security arena, and because of various security provisions, including
encryption, National Bureau of Standards (NBS) initiated a computer security
program in 1973 which included the development of a standard for computer data
encryption. Since Federal standards impact on the private sector, NBS solicited the
interest and cooperation of industry and user communities in this work. The criteria
specified for the call were:'

Provide a high level of security.

Must be specified and easy to understand.

Must provide the security independent of the secrecy of the algorithm.
Must be available to all users.

Must be adaptable for use in diverse applications.

Must be economical to implement in electronic devices.

Must be efficient to use.

e Must be able to be validated.

e Must be exportable.

Many companies developed proposals, but International Business Machines
(IBM) prevailed. IBM's DES was subjected to rigorous testing and, by 1977, the NBS
and the National Security Agency (NSA) endorsed it. Since then, DES has been the
de facto encryption algorithm used in non-classified environments and UNIX/Linux
passwords. >

Federal Processing Standards Publication 46-2 concisely describes DES as:

“..a mathematical algorithm for encrypting (enciphering) and decrypting
(deciphering) binary coded information. Encrypting data converts it to an
unintelligible form called cipher. Decrypting cipher converts the data back to its
original form, called plain-text.”

Both encryption and decryption functions rely on a key, without which
unauthorized users can-not decrypt a DES-encrypted message. This key derived from
the user's typed password, consists of 64 binary digits. 56 bits are used in encryption,

! Charles P.Pfleeger. Security in Computing, p. 106.
? Anonymous, Maximum Linux Security, p. 126.

and 8 are used in error checking. The total number of possible keys is therefore quite
high.

2.2 Standards for the Modes of DES

The Federal Data Encryption Standard described in Federal Information
Processing Standards (FIPS 46) specifies a cryptographic algorithm to be used for the
cryptographic protection of sensitive, but unclassified, computer data. This FIPS
defines four modes of operation for the DES which may be used in a wide variety of
applications. The modes specify how data will be encrypted (cryptographically
protected) and decrypted (returned to original form). The modes included in this
standard are the Electronic Codebook (ECB) mode, the Cipher Block Chaining
(CBC)3 mode, the Cipher Feedback (CFB) mode, and the Output Feedback (OFB)
mode.

2.3 Data Encryption Algorithm

2.3.1 Introduction

The algorithm is designed to encipher and decipher blocks of data consisting
of 64 bits under control of a 64-bit key.* Deciphering must be accomplished by using
the same key as for enciphering, but with the schedule of addressing the key bits
altered so that the deciphering process is the reverse of the enciphering process. A
block to be enciphered is subjected to an initial permutation IP, then to a complex
key-dependent computation and finally to a permutation which is the inverse of the
initial permutation IP -1. The key-dependent computation can be simply defined in
terms of a function f, called the cipher function, and a function KS, called the key
schedule. A description of the computation is given first, along with details as to how
the algorithm is used for encipherment. Next, the use of the algorithm for
decipherment is described. Finally, a definition of the cipher function f is given in
terms of primitive functions which are called the selection functions Si and the
permutation function P.

The following notation is convenient: Given two blocks L and R of bits, LR
denotes the block consisting of the bits of L followed by the bits of R. Since
concatenation is associative, B1B2...B8, for example, denotes the block consisting of
the bits of BI followed by the bits of B2...followed by the bits of BS.

2.3.2 Enciphering
A sketch of the enciphering computation is given in Figure 2.1. The 64 bits of

the input block to be enciphered are first subjected to the following permutation,
called the initial permutation IP. (see Table 2.1)

3 FIPS PUB 81.
*FIPS PUB 46-3.

iNPUT j
=" INITEAL P:P;:uncn 1
— 1
S B
PERMUTED | L | Ko {
INPUT bogm .O b, z
i L K
H { i
§ - U e
T et
S J—
i
R o Iiseo: N
L l[—Ra 4 Rl Lo +3 f(RQ "(!}]
i e — r :
'_ Ko
b N
A e
.‘-‘-""‘*\--. -
| Ly=Ry | [razy ® i(al K?}_]l
i i !
, - S s
1 1
R o - ——— -—¢
L = -
i *‘_‘,:—..._‘__’_'
. by i
l L15<Ryq | lRIS L|4**fRs4 Kls"
| { Kie
(+ it ~<}
—— i g e —
PREQUTPUT (R 6 =Ly 5 (3 i{RH m|0)| Lg=Ryy |
1 .]
.I_?;I-\-_E_!;‘-_S_ETFIETIM PFRM
| ournu: - _

Figure 2.1 DES Algorithm, Enciphering Computation.

IrP
58
60
62
64
D7
59
61
63

50
52
54
56
49
51
53
55

42
44
46
48
41
43
45
48

34
36
38
40
33
35
37
39

Table 2.1 Initial Permutation.

26
28
30
32
25
27
29
31

10
12
14
16

34 §
13
15

S I R - - S 1

That is the permuted input has bit
58 of the input as its first bit, bit 50 as its
second bit, and so on with bit 7 as its last
bit. The permuted input block is then the
input to a complex key-dependent
computation described below. The output
of that computation, called the preoutput,
is then subjected to the following
permutation which is the inverse of the
initial permutation as in Table 2.2.

That is, the output of the

Table 2.2 Inverse Initial. algorithm has bit 40 of the preoutput
IP-1 block as its first bit, bit 8 as its second
40 8 48 16 56 24 64 32 bit, and so on, until bit 25 of the
39 7 47 15 55 23 63 31 preoutput block is the last bit of the
38 6 46 14 54 22 62 30 | Output
maliesdithiluclons g The computation which uses the
36 4 44 12 52 20 60 28 . &
permuted input block as its input to
3003 43 1 sl 18 88 2 produce the preoutput block consists,
3¢ 2 42 10 50 18 58 26 | pyt for a final interchange of blocks, of
33 1 41 9 49 17 57 25 | 16 iterations of a calculation that is

described below in terms of the cipher
function f which operates on two blocks, one of 32 bits and one of 48 bits, and
produces a block of 32 bits.

Let the 64 bits of the input block to an iteration consist of a 32 bit block L

followed by a 32 bit block R. Using the notation defined in the introduction, the input
block is then LR. Let K be a block of 48 bits chosen from the 64-bit key. Then the
output L'R’ of an iteration with input LR is defined by:

L'=R 1)
R'=L® f(RK)

where @ denotes bit-by-bit addition modulo 2.

As remarked before, the input of the first iteration of the calculation is the
permuted input block.

If L'R' is the output of the 16" iteration then R'L’ is the preoutput block. At
each iteration a different block K of key bits is chosen from the 64-bit key designated
by KEY. With more notation we can describe the iterations of the computation in
more detail. Let KS be a function which takes an integer » in the range from 1 to 16
and a 64-bit block KEY as input and yields as output a 48-bit block Kn which is a
permuted selection of bits from KEY. That is

Kn = KS(n,KEY) (2)

with Kn determined by the bits in 48 distinct bit positions of KEY. KS is called the
key schedule because the block K used in the #'th iteration of (1) is the block Kn
determined by (2).

As before, let the permuted input block be LR. Finally, let L() and R() be
respectively L and R and let Ln and Rn be respectively L' and R’ of (1) when L and

R are respectively Ln-1 and Rn-1 and K is Kn; that is, when # is in the range from 1
to 16,

Ln = Rn-1 (3)
Rn = Ln-1 ® f(Rn-1,Kn)

e

The preoutput block is then RI6L16.

The key schedule produces the 16 Kn which are required for the algorithm.

2.3.2 Deciphering

The permutation IP -1 applied to the preoutput block is the inverse of the
initial permutation IP applied to the input. Further, from (1) it follows that:

R=L')
L=R'® f(L',K)

Consequently, to decipher it is only necessary to apply the very same
algorithm to an enciphered message block, taking care that at each iteration of the
computation the same block of key bits K is used during decipherment as was used
during the encipherment of the block.

Using the notation of the previous section, this can be expressed by the
equations:

Rn-1=Ln (5)
Ln-1=Rn ® f(Ln,Kn)

where now RI6LI16 is the permuted input block for the deciphering calculation and
LORO is the preoutput block. That is, for the decipherment calculation with RI6L16
as the permuted input, K76 is used in the first iteration, K15 in the second, and so on,
with K7 used in the 16™ iteration.

The Cipher Function f

A sketch of the calculation of f{(R,K) is given in Figure 2.2

R {32 BITS) i
(g

a8 BIfs | |

e g

i

I

%
z o |

_ |
1 1 11 L
| | | 1
|
WF
J28I05

 SRS———

Figure 2.2 Calculation of f{R, K).

Let E denote a function which takes a block of 32 bits as input and yields a
~ block of 48 bits as output. Let E be such that the 48 bits of its output, written as 8
blocks of 6 bits each, are obtained by selecting the bits in its inputs in order according

12
16
20
24
28

to the following Table 2.3:
Table 2.3 E Bit-Selection.

2 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
e 21 22 23
24 25 26 27
. 29 30 .31

32

13
17
21
25
29

Thus the first three bits of E(R)
are the bits in positions 32, 1 and 2 of R
while the last 2 bits of E(R) are the bits
in positions 32 and 1.

Each of the unique selection
functions S1,52,...,88, takes a 6-bit block
as input and yields a 4-bit block as output
and is illustrated by using the Table 2.4
containing the recommended S1.

Table 2.4 S1 Function (X: Column Number Y: Row).

X|0| 1 2] 3 4 | 5|6 |7 |8 9 |10 |11 | 12|13 | 14|15

Y
0 14 4 | 13| 1 2 |15) 11| 8] 3 10 6 |12 5 9 0 7
1 0157 | 4 |14|2]|13]1 10| 6 |12|11]| 9 5 3 8
2 4 1 14| 8 136 |2 (1115129 |73]|10] S5 0
3 15112 8 2 14]9 1 |75 |11 3 |14]10] 0 6 | 13

If §1 is the function defined in this table and B is a block of 6 bits, then S1(B)
is determined as follows: The first and last bits of B represent in base 2 a number in
the range 0 to 3. Let that number be i. The middle 4 bits of B represent in base 2 a
number in the range 0 to 15. Let that number be j. Look up in the table the number in
the /'th row and j'th column. It is a number in the range 0 to 15 and is uniquely
represented by a 4 bit block. That block is the output S7(B) of §1 for the input B. For
example, for input 011011 the row is 01, that is row 1, and the column is determined
by 1101, that is column 13. In row 1 column 13 appears 5 so that the output is 0101.

The permutation function P yields a 32-bit output from a 32-bit input by
permuting the bits of the input block. Such a function is defined by the following
Table 2.5:

Table 2.5 Permutation

Function.

16

7

20

74 |

129

12

28

1

1

15

23

26

5

18

31

10

2

8

24

14

32

27

3

19

13

30

22

11

4

25

The output P(L) for the function P defined by this
table is obtained from the input L by taking the 16" bit
of L as the first bit of P(L), the 7™ bit as the second bit
of P(L), and so on until the 25™ bit of L is taken as the
32™ bit of P(L).

Now let §1.,...,§8 be eight distinct selection
functions, let P be the permutation function and let E be
the function defined above.

To define f(R,K) we first define BI,...,B8 to be
blocks of 6 bits each for which

BIB2..B8 =K ® E(R) (6)
The block f{R,K) is then defined to be

P(S1(B1)S2(B2)...S8(B8)) (7)

Thus K ® E(R) is first divided into the 8 blocks as indicated in (6). Then each
Bi is taken as an input to Si and the 8 blocks S1(B1),S2(B2),...,S8(B8) of 4 bits each

are consolidated into a single block of 32 bits which forms the input to P. The output
(7) is then the output of the function f for the inputs R and K.

10

CHAPTER 3

PASSWORD STRUCTURE IN UNIX

3.1 Introduction

The reason being that UNIX systems are very popular, especially in an
educational environment, where one can expect an increased concentration of hackers
due to the openness that is appreciated in such environments. This is in contrast to a
commercial environment, where data has to be protected. Thus enter security
problems.

3.2 User Authentication

Authentication is a fancy name for identifying the user as a valid user of a
given computer. system, and it's the first defence against a break-in. Until recently,
UNIX user authentication meant typing a valid login name and password. This is
known as reusable password authentication, meaning that you enter the same
password each time you log in. Reusable password authentication is too weak for
some systems and will eventually be replaced by one-time password systems in
which the user enters a different password each login that will need a different way of
user management process.

Reusable passwords are strong enough for some sites as long as users choose
good passwords. Unfortunately, many don't—as we will examine in Chapter 5 and
prove in Chapter 6. A security policy should both require strong passwords and
provide guidelines for choosing them.

3.2.1 Users and Passwords

The access to a Linux system is through such a user account. Every user
account must be set up by the system administrator. When the Linux software is
installed, one master login is created automatically, called root. This is known as the
superuser because there is nothing the login can't access or do. Although most user
accounts on a Linux system are set to prevent the user from accidentally destroying
all the system files, for example, the root login can blow away the entire Linux
operating system with one simple command. The root login has no limitations."

3.2.2 Password for System Accounts

The system administrator must take special care in choosing a good password
for his account and the superuser account. The superuser account must be protected
because of the power it possess thus provides the cracker with, and the system
administrator's account because it can give access to the superuser account in many
ways. For instance, if a system administrator's account is broken, the cracker can
install a fake su program in his private bin directory that records the root password,

" Tim Parker, Limux System Administrator's Survival Guide, Chapter 16.

removes itself, and then invokes the real su progr::un.2 The system administrator
account may have other special privileges that a cracker can make use of; for
instance, membership to groups that allows one to read—or worse, write—system
memory or raw disk devices, and permission to su to the superuser account. The
systems administrator and root passwords should be changed often and should be as
strong as possible.

3.3 Password Security
3.3.1 /etc/passwd File

Every person using Linux OS should have his or her own unique user name
and password stored in /etc/passwd file and this folder contains all the information the
system needs to know about each user.

If necessary levels are not set, this file can be printed out by anyone on the
system. But having the password blocks in the /etc/passwd file is useless, the
passwords are encrypted using an encoding scheme that makes deciphering
someone's password very difficult, thanks to DES algorithm which is explained in the
previous chapter. That’s why system administrators prefers to give a new temporary
password for a user who has lost or forgotten his or her password, instead of
decrypting the old password.

A typical excerpt from /etc/passwd looks like in Figure 3.1. Each line in the
letc/passwd file is composed of seven fields separated by a colon. If nothing is to be
entered in a field, the field is left blank, but the colons are retained to make sure each
line has seven fields (which also means each line will have six colons).

johnsmith:naVwowMManasMMo:10:200:John Smith:/users/johnsmith:/bin/bash

A ~ ~ ~ ~ ~ A

I | + User's

I

| | | shell program

| | +--- User's home directory
| ek e User's real name

B e e e s e User number

oo e e e e User's group number

e et o e e e e Hash of the password

Figure 3.1 /etc/passwd File.

IIMIR YUKSEK TEKNOLOJI ENSTITUSU

2 Jeff Smith, et.al., UNLX Unleashed, Section 4. REKTORLUGU l
Kitphane ve Dokimantasyon Daire B§k.J

12

- Username is the name under which the user logs in. Usually this is accomplished by
typing in the username at the username prompt and then the password at the password
prompt. The user name is a unique identifier for the user.

- Hash of user's password is the target of the cracking method. This is what the hash
of each word in the dictionary file is compared to.

- User's group number determines things such as access to certain files, etc. Used
more in the exploit technique.

- User's number is basically identification for the system. The superuser account is
always defined as the account with a user ID number of zero.

- User's real name is the name the user entered. Not used by the system, but it
provides a handy human-readable id of each user, sometimes it is a phone number,
department, or other information.

- User's home directory is the directory that they go to when they log into the system.

- User's shell is the user interface that the user uses. Shells include /bin/bash /bin/ash
/bin/tesh /bin/csh and /bin/sh.

3.3.1.1 User Name

This is a one- to eight-character alphanumeric field that represents the user's
login name. Traditionally the name is all lowercase characters. Any value may be
used for this field. To make it easy to tell a user name from a userID, the name should
not start with a number.

3.3.1.2 Understanding Default System User Names

The previous extract from the /etc/passwd file lists over a dozen system-
dependent user names. These names serve special purposes on the Linux system. A
few of these logins are worth noting as they have specific uses for the operating
system and system administrators:’

o The root login is the superuser account (UID 0) and has unrestricted access. It
owns many system files.

¢ The deamon login is used for system processes. This login is used only to own
the processes and set their permissions properly.

e The bin login owns executables.

o The sys login owns executables.

e The adm login owns accounting and log files.

¢ The uucp login is used for UUCP communication access and files.

o The other system logins are used for specific purposes (postmaster for mail,
and so on) that are usually self-evident. Non of the system logins should be

* Tim Parker, Linux System Administrator's Survival Guide, Chapter 16.

13

changed. In most cases, they have an asterisk in the password field to prevent
their use for entry purposes.

3.3.1.3 Password (If Not Using a Shadow Password Scheme)

This field can be used to restrict access to the system. If it is wanted to prevent
a login from ever being used for access, such as a system login like Ip or sync, an
asterisk is placed between the two colons for the password field. This asterisk
restricts all access. In the /etc/passwd file, many system logins have an asterisk as
their password, effectively blocking access.

This field can also be used to allow unrestricted access by leaving it blank. If
no password entry exists (the field has nothing in it), anyone using the user name is
granted access immediately, with no password requested.

Passwords must not be left open unless the Linux system is being used for
pleasure and have nothing of value on the file system.

It must not be attempted to put a password directly in the password field using
an editor. The encryption method cannot be recreated, and it will end up locking the
user account out. Then only the system administrator will be able to change the
password and allow access.

The users password, encrypted with a one-way cipher is stored in the second
field. Only the first 8 characters of the password are used. These are mixed with a 2-
character salt to produce a 13-character encrypted password.(see Section 3.3.2) When
it is necessary to compare a password, the plain text is encrypted with the salt, and a
comparison is made against the encrypted version. If the passwd field is empty, this
account has no password, and none is required to log in.

On systems that support password aging and place the password in is the
passwd file, the password data can be followed by a comma and four characters that
describe the aging information. Each of these characters is drawn from the following
character set:

.=0

/=1
0—9=2—11
A—7 =12—37
a—z=38—63

The first character after the comma denotes the maximum number of weeks
the password is valid. The second character is the minimum number of weeks
required between password changes. If both of these characters are zero (..), the user
is forced to change his password the next time he logs in. If the change interval is
larger than the valid interval, then only the root user can change the password.

On systems that do not use the passwd file to hold the password, such as those

using /etc/shadow or some password adjunct scheme, this field contains a fixed string
that has fewer than 13 characters.

14

3.3.2 Salted Passwords

For each user’s password p, a ‘salt’ value s is chosen at random with the real-
time clock, and one-way hash function g() is applied to the password and the salt.*
The value s and the 64-bit result of the encryption g(p,s) are both stored in the
password file.

The salt is chosen from the set of digits, upper and lowercase letters, .
(period), and / (slash). Therefore the salt is used to select one of 4,096 cryptographic
methods related to the National Bureau of Standards DES encryption algorithm. That
metl;od is used to encrypt and convert the key into the 11 bytes that, along with the
salt.

The key search technique is still likely to turn up a few passwords when it is
used on a large collection of passwords, and it seemed wise to make this task as
difficult as possible.

It is likely that a bad guy (password cracker) can spend days of computer time
trying to find a password on a system with hundreds of passwords, and find none at
all.® More important is the fact that it becomes impractical to prepare an encrypted
dictionary in advance that will be examined in section 4.4.3.

Salting procedure is done so that integrated circuit chips that implement DES
can't be used to crack UNIX passwords.

3.3.2.1 The Threat of the DES Chip

Chips to perform the DES encryption are already commercially available and
they are very fast. The use of such a chip speeds up the process of password hunting
by three orders of magnitude. To avert this possibility, one of the internal tables of the
DES algorithm (in particular, the so-called E-table) is changed in a way that depends
on the 12-bit random number. The E-table (see Section 2.3.2) is inseparably wired
into the DES chip, so that the commercial chip can not be used.” Obviously, the bad
guy could have his own chip designed and built, but the cost would make the whole
scenario unfeasible at least for the time being.

However, it would not be too expensive to build VLSI chips that compute the
crypt function and run 1000 faster than these software implementations, not to
mention the possible gain due to parallelism and pipelining.®

*Li Gong, “Protecting Poorly Chosen Secrets from Guessing Attacks”, p. 3.
*P.H. Wood, S.G. Kochan, UNIX System Security, p. 36.

§ R Morris, K.Thompson, Password Security: A Case History, p. 4.

- "RMorris, K.Thompson, Password Security: A Case History, p. 4.

¥D.C. Feldmeier, P.R. Karn, UNLX Password Security - Ten years Later, p. 4.

15

3.3.3 Login Procedure

When a user logs in, the login program logically compares the password the
user typed to a block of zeros, and then compares that result to the entry in the
password field. If they match, the user is granted access. Any deviation causes login
procedure to refuse access.

The detailed procedure is as follows; after the login request, the 12-bit
quantity is extracted from the password file and appended to the typed password. The
encrypted result is required, as before, to be the same as the remaining 64 bits in the
password file. This modification does not increase the task of finding any individual
password, starting from scratch, but now the work of testing a given character string
against a large collection of encrypted passwords has been multiplied by 4096 (2'2).
The reason for this is that there are 4096 encrypted versions of each password and
one of them has been picked more or less at random by the system.’

If someone wants to change his password, he can't directly modify the
/etc/passwd file-that's not allowed. If it were, sooner or later someone would go in
and change all the passwords; then nobody would be able to log in. Instead, he should
use the passwd command.'® All has to be done is typing in passwd and it prompts for
the rest:

$ passwd

Changing password for pat

Old password:wizzard]l Not printed
New password:wom?2bat Not printed
Re-enter new password:wom2bat Not printed
$

Before allowing one to change his password, the passwd command requests
for typing in the old password. This is just to make sure it's really him and not some
one else using your terminal while he is away. If he makes a mistake typing in the old
password, the system responds with “Sorry.”, meaning that no change was made and
that he should try again. If the old password is correct, the passwd command then
asks to enter the new password. Since the passwords are not printed, the command
makes sure one doesn't unwittingly make a mistake by asking him to enter his new
password a second time. If the two entries don't match, the passwd command will
again ask to enter the new password twice:

$ passwd

Old password:wom2bat Not printed
New password:wizzardl Not printed
Re-enter new password: wizrdl Not printed
They don't match; try again.

New password:wizzard] Not printed
Re-enter new password:wizzardl Not printed

* R Morris, K.Thompson, Password Security: A Case History, p. 4.
P.H. Wood, S.G. Kochan, UNIX System Security, p. 10.

16

»

To login successfully on the UNIX system, it is necessary after dialing in to
type a valid user name, and then the correct password for that user name. It is poor
design to write the login command in such a way that it tells an interloper when he
has typed in a invalid user name. The response to an invalid name should be identical
to that for a valid name. "’

When the slow encryption algorithm was first implemented, the encryption
was done only if the user name was valid, because otherwise there was no encrypted
password to compare with the supplied pass word. The result was that the response
was delayed by about one-half second if the name was valid, but was immediate if
invalid. The bad guy could find out whether a particular user name was valid. The
routine was modified to do the encryption in either case.

3.3.4 crypt()

crypt() is the password encrypting program on the UNIX system. It is also
called by /ust/lib/makekey.'?> The crypt routine isn't related to the crypt command,
crypt, like /usr/lib/makekey, takes an eight-character key and a two-character salt.
The key is used as input to the setkey() routine. The salt is then used to jumble the
DES algorithm in encrypt(). Finally, the encrypt() routine is called to repeatedly
encrypt a constant string 25 times (to eat up computer time). crypt() returns a
character pointer to the encrypted password, of which the first two characters are the
salt. One of the advantages of crypt is that it uses a significant amount of computer
time to encrypt a password.

Actually, crypt() does not use pure DES. To prevent use of off-the shelf high-
speed DES hardware to crack passwords, crypt modifies the DES algorithm slightly.
As we know the 12-bit salt ranges from zero to 4095. We can think of the salt as a
permutation that immediately follows the expansion function £ in DES. If bit 1 of the
salt is a 1, then the salt permutation swaps bits 1 and 25 of the 48-bit block generated
by E. If bit 2 is a 1, then bit 2 and 26 are swapped and so on." Since there are 12
possible swaps and any combination of these swaps may occur, this produces 4096
possible variations of DES (a salt of zero corresponds to pure DES).

3.3.5 Shadow File Entry

Since the /etc/passwd file is world readable, as an added measure of security,
SVR4 UNIX systems, (also used in current versions of Linux systems available) use a
shadow file to hold the password information.'*

It is readable only by root because of potential security problems against
crackers. It contains the password field data in an expanded format and the password
fields on the system are all set to x.

"' R Morris, K. Thompson, Password Security: A Case History, p. 4.

" P.H. Wood, S.G. Kochan, UNIX System Security, p. 81.

B D.C. Feldmeier, P.R. Karn, UNIX Password Security - Ten years Later, p. 11.
" Tim Parker, Linux System Administrator's Survival Guide, Chapter 6.

174

The shadow file, as shown in Table 3.1, is not designed to be edited directly,
but instead is modified by the passwd command automatically as needed.

Table 3.1 Excerpts from a sample /etc/shadow file from an SVR4 system.
root:03de466J42315:6445::::::

daemon:NP:6445::::::
bin:NP:6445::::::
sys:NP:6445::::::
adm:NP:6445::::::
Ip:NP:6445::::::
smtp:NP:6445::::::
uucp:NP:6445::::::
nuucp:NP:6445::::::
Bsten:*LEK"¥::::::
Pwesite:x3d5dtyfetonK:8774::::::
syd:43 ASxete436h.:8776:0:168:7:::
nobody:NP:6445::::::
noaccess:NP:6445::::::

The shadow file consists of the following fields:

User Name

This name is used to match against the name in the passwd file.

Password

The user's password, encrypted with a one-way cipher, is stored in the second field.
This field has the same properties as in the /etc/passwd file Only the first 8 characters
of the password are used. These are mixed with a 2-character salt to produce a 13-
character encrypted password. When it is necessary to compare a password, the plain
text is encrypted with the salt, and a comparison is made against the encrypted

version. If the passwd field is empty, the account has no password, and none is
required to log in.

18

CHAPTER 4

VARIOUS ATTACK SCHEMES ON PASSWORD

4.1 Introduction

The password is the most vital part of account security. If an attacker can
discover a user's password, he or she can then log into the system and operate with all
the capabilities of that user. Such an attack is usually hard to detect and can last for
months.

Easy-to-guess passwords offer hackers the possibility to enter a system. By
means of good password-security, one can protect a system from newbie hackers.

There are many ways to hack a UNIX system, and there are many programs
for finding a user's password. These programs can be used by people who have little
knowledge of UNIX. Choosing good passwords can therefore help in keeping newbie
hackers out. Advanced hackers are often capable of entering a system without using
passwords.' This implies that the security of a system depends not solely on well-
chosen passwords.

In UNIX one can use all printable characters, case is significant and only the
first 8 characters will be used, so in the password “computer+3,Z' only computer' (an
easy-to-guess password) is significant and the remaining characters will be ignored.
On some systems like Ultrix with upgrade security features one can have passwords
with up to 16 characters.

4.2 The Importance of Good Passwords

The security of each individual user is closely related to the security of the
whole system. Users often have no idea how a multi-user system works and don't
realize that they, by choosing an easy to remember password, indirectly make it
possible for an outsider to manipulate the entire system. It is essential to educate the
users well to avoid attitudes such as below.’

“It doesn't matter what password I use on my account, after all, I only use it
for laser printing...”

It is important to notify the users of the security guidelines. A solution might
be giving new users a limited course. Or at least make them understand why good

! Walter Belgers, UNLX Password Security, p. 1.

? Alec E. Muffett, Almost Everything You Wanted To Know About Security, Internet Document,
USENET newsgroup.alt.security.

passwords are essential. This can be done e.g. when a user gets his or her initial
password from the system administrator.’

We see that the usual way to find passwords is by guessing them. So we have
to make sure that users do not use easy-to-guess passwords, i.e. passwords that can be
found in lists (a dictionary, an encyclopedia, files with astronomical terms, flora and

fauna, etc.).

4.3 Human Password Choices and System Security

Encryption is a vital security component. However, no matter how strong the
encryption is, it will fail when users make poor password choices. Users are lazy,
error-prone, and forgetful.* Usually, users create passwords from the following
(partly to save time and make their lives easier):

Birth date
Social security number
Children’s names
Names of favorite performing artists
Words from the dictionary
Numeric sequences (like 90125)
Words spelled backwards
By regularly checking the strength of the passwords on the network, one can
ensure that crackers cannot penetrate it by exploiting bad password choices. Such a

regimen can greatly improve the system security. In fact, many system administrators
now employ tools that check a user's password when it is first created.

4.4 Password Attacks

Password security is so critical that the system will never be safe without it.
Indeed, one could install a dozen firewalls and still, if her/his passwords were
vulnerable, Linux system would have an open door.

Hence, password security demands practically a two-pronged approach. On
the one hand, we can apply advanced tools to strengthen passwords. On the other, we
can educate our users and hold them responsible to essential password policies.

In the security pecking order, password attacks are primitive. In fact,
password cracking is the first thing that budding hackers and crackers learn, chiefly

* Walter Belgers, UNLX Password Security, p. 1.
Anonymous, Maximum Limax Security, pp. 154-155.
® Anonymous, Maximum Limux Security, p. 122.

20

because it demands minimal technical expertise. Today, anyone can crack Linux
passwords using automated tools.

Attackers that initially gain only limited access can rapidly expand that access
by attacking weak password security. Often, through password attacks alone,
attackers obtain root access and seize control of not just one host but several.

This chapter will cover various password dictionary attack techniques,
importance of passwords, predefined cases for such a dictionary attack, and steps
required to secure the passwords, including advices.

4.4.1 Dictionary Attacks

DES, like most things, is not infallible. Linux passwords encrypted with DES
can be cracked quickly, usually within minutes. There are two chief reasons for this:®

The human factor: Users invariably choose characteristically weak passwords.

Limited length: Linux passwords are short. The number of transformations necessary
to encrypt one is relatively small.

In dictionary attacks, attackers take dictionaries or long wordlists and encrypt
them using DES. During this process, they send regular words, proper names, and
oilier text through precisely the same permutations and transformations that Linux
passwords are exposed to. Over time, using high-speed cracking tools, attackers can
encrypt each dictionary word in some 4,096 different ways. Each time a cracking tool
derives such encrypted text, it compares it to the passwords from /etc/passwd. Sooner
or later (often sooner) it finds a match, and when it does, it notifies the attacker; that a
password has been cracked.

4.4.2 Fast Crypt Implementations

The crypt implementation that is included with UNIX distributions (such as
BSD 4.2) is not optimized for speed because it already allows logins in a reasonable
amount of time. Several techniques can be used to speed up an implementation. One
technique is to alter the crypt algorithm so that it is easier to compute but still
produces the same results. Another technique is to take advantage of the architectural
features of the computer that runs the algorithm.” Some of the cracker programs use
these features.

Using the speeds of several fast crypt implementations and the prices of
several computers an effective ratio can be found. Crypts/seconds/dollars is the
correct metric because password cracking is an easily segmented problem.

The ultimate size of the key space allowed by the UNIX crypt program is very
large: 2% or about 7.2 x 10'® possible keys. Even with only 95 printable characters on

§ Anonymous, Maximum Linux Security, p. 128.
" D.C. Feldmeier, Philip R. Karn, UNIX Password Security - Ten Years Later, p- 2.

21

a keyboard, there are still 958 or about 6.6 x 10" possible keys. This is large enough
to resist brute-force attacks in software, yet most of the passwords selected by users
are in a very small part of this total space.

4.4.3 Precomputed Encrypted Dictionaries

A fast way of cracking large batches of passwords on a routine basis is to first
encrypt a list of likely passwords and then compare each new batch of encrypted
passwords against this pre-encrypted list. Salting was specifically designed to hinder
this approach. Because the specific salt values are not known in advance, the pre-
encrypted dictionary must encrypt each trial password with all possible salts,
increasing storage requirements considerably.

Encrypting each trial password 4,096 times (once for each possible salt value)
takes several CPU-weeks. Each encrypted password is stored as an 8-byte value; the
plain text is not stored on the tape. Not only does this reduce the amount of tape
necessary, but the tapes alone are enough to determine whether an encrypted
password is in the password list without revealing the plain text password. This is
ideal for improving system security without the possibility of the tapes being used to
infiltrate other systems.®

The cassettes can be replayed repeatedly and checked against lines from the
letc/passwd file. The system checks faster than the fast crypt code runs in real time.
The tapes also can be supplemented with tapes produced from new passwords. The
precomputed dictionary is helpful but not essential for password cracking.

4.5 Automated Dictionary Attack

The elements required to crack passwords using any of the corresponding
crackers are:’

* High performance/price ratio computers

» Large on-line word lists (dictionaries, etc.)

* A known password encryption algorithm (DES)

* A constraint on the acceptable running times for the login program
* A publicly-readable password file

* Passwords with a significant probability of being in the word list

¥D.C. Feldmeier, Philip R. Karn, UNIX Password Security - Ten Years Later, p. 4.
’D.C. Feldmeier, Philip R. Karn, UNIX Password Security - Ten Years Later, . 5.

22

4.5.1 Known Encryption Algorithm

We consider it a given that the encryption algorithm used for the one-way
password crypt function must be published and subjected to public scrutiny. As in
cryptography, it is neither practical nor necessary to base the security of a password
algorithm on its secrecy. The storm of protest in response to the NSA's recent attempt
to replace DES with a secret cipher of its own design indicates the importance of this
principle. Furthermore, the enormous success of the UNIX operating system is based
largely on the openness of its design and the availability of its algorithms and source
code. Assuming that the basic algorithm has not been compromised, there is no real
reason to change it.'°

4.5.2 Acceptable Running Times

Software de-facto standards, such as the UNIX password algorithm, tend to
outlive their original underlying hardware. Also, a crypt routine written specifically
for password cracking runs orders of magnitude faster than a version built into a login
command.

4.5.3 Encrypted Password Availability

A resource available to the adversary that is removable is the existence of a,
publicly readable encrypted password file (/etc/passwd). It is assumed that physical
access to the machine alone is enough to subvert it and it is assumed that the machine
itself is physically secured according to the desired level of security. Many machines
can be rebooted into privileged mode with physical access, so that physical access
implies that a password-based attack is really unnecessary for system access.

4.5.4 Decreasing Password Guessability

The main weakness in any password system is that users often choose easily
guessable passwords. One way to decrease password guessability is to eliminate
common passwords from /etc/passwd.

Another possibility is to restrict the passwords accepted from the user with a
system that filters out easily guessed passwords. This system acts as a password
advisor that indicates insecure passwords, but it does not force the user to accept its
recommendation.

The most drastic solution is to have the system assign an arbitrary password.
The problem is that such a password is hard to remember, so the temptation to write it
down is strong. A written password is like a physical key, and can be used by anyone
who obtains it.

A fundamental problem is that passwords typed by the user are truncated to 8
characters in length. Easily remembered passwords that are this short almost
inevitably have much less than the 56 bits of entropy allowed by the crypt algorithm,
making them easier to find by exhaustive search. All of the techniques just described

D.C. Feldmeier, Philip R. Kam, UNIX Password Security - Ten Years Later, pp. 5-8.

23

attempt to increase entropy in the users' passwords, but they do it in a way that -
ignores human factors considerations. Almost anyone can remember 56 bits of
arbitrary information, but he must, be allowed to do it in a way that is suited to
human, not computer, memory. The way to do this is by extending the present
algorithm to allow pass phrases.'' A pass phrase is simply a longer version of a
password that includes several words. According to Shannon'?, English text has a
lower bound of 1-2 bits of entropy per character. Therefore an ordinary English
phrase of 5-10 words (assuming 5-6 characters/word and no unusual punctuation or
capitalization) has sufficient entropy as a pass phrase.

To accommodate this in the UNIX crypt algorithm, a hash function is needed
to fold the typed pass phrase into 56 bits, with each input character affecting the
result. This function should be backward compatible with the existing UNIX
password algorithm for pass phrases of 8 characters or less. One possibility is to treat
the first 8 characters as before, exclusive-ORing into it each successive 8-character
block from the pass phrase (if the phrase is not a multiple of 8 characters, it is null-
padded on the right).

Users might still object to pass phrases if they were required to type them too
frequently (e.g., when they must repeatedly log into a several different systems, each
for short intervals). A solution to this problem lies in the use of an distributed
authentication system such as Kerberos, in which the user needs to type his password
only once to obtain a set of "tickets" that can be used to access other systems
repeatedly without having to retype the pass phrase each time."?

4.5.5 Other Approaches

Two suggested solutions to the problem of easily cracked passwords are to
increase the size of the salt or to change the constant that is encrypted by crypt.
Neither of these seems to be particularly helpful.

Increasing the size of the salt does not help prevent attack on an individual
password, but it does help defeat checking multiple passwords simultaneously and
pre-encrypted wordlist attacks by increasing the time and space required,
respectively. The current salt is large enough that few of the lines in a typical
fetc/passwd file share the same salt. The only remaining reason to increase the size of
the salt is to reduce the number of pre-encrypted passwords that can fit onto a fixed
amount of tape. But as shown, pre-encryption decreases the cracking time by a factor
of 30, so this is the maximum penalty that could be exacted by even a large increase
in the salt size.

The current UNIX password system is not always sufficient to prevent
unauthorized entry because it is fairly easy to crack passwords. An important point is
that although the crypt algorithm is a good one, the password system as a whole is

' D.C. Feldmeier, Philip R. Karn, UNLX Password Security - Ten Years Later, p. 7.
2 Claude Shannon, “Prediction and Entropy of Printed English. Bell System Technical Journal”.
¥ J.G. Steiner, et.al., “Kerbelos, An Authentication Service for Open Network Systems”.

24

weak. Nothing can be done about large on-line dictionaries or high performance/price
ratio computers. The password encryption algorithm must be known to be trusted and
that there is a range of acceptable running times for the algorithm which sets an upper
limit on the amount of computation that the password encryption algorithm may use.
Unfortunately, the computation limit is small enough to allow faster machines to use
a dictionary-based attack.

Two of the main problems with the current system are that users choose easily
guessable passwords and that the encrypted password file is publicly readable. A dual
approach is suggested. One part is to make passwords less predictable by allowing
pass phrases and restricting passwords accepted by the system. This effectively
increases the entropy of a password, making wordlist attacks less successful. The
other approach is to make the encrypted password file less accessible. How exactly
this is done depends on the desired level of security and includes shadow password
files. :

4.6 Password Composition Vulnerabilities

There are really only a couple of problems with passwords: Picking a good
one, and then managing it. "Good" passwords avoid being something that an intruder
can guess or otherwise easily figure out.

4.6.1 Bad Passwords
Bad passwords have the following properties:
Exactly match a word in the dictionary,

Match a reversed word in a dictionary,

Match a word in the dictionary with some or all of the letters capitalized,

Match a reversed word in the dictionary with some or all of the letters reversed.,
Are shorter than a specific length (usually 6 characters),

Do not contain a mix of upper and lower case, or mixed letters and numbers, or
mixed letters and punctuation,

Are hased on the users account name, initials, or given name, or any other info about
the user: SSN, license plate number, etc.,

Match a dictionary word with any of the following translations:
a->2,a->4,e->3,h->4,i>1,1>1,0->0,s->%,5s->5,z-> 5,

Are conjugations or plurals of dictionary words,

Are acronyms, geographical or product names, and technical terms,

Are either proceeded or followed by a digit, a punctuation mark, up arrow, or space,

Are a word with all the vowels deleted,

25

Are phrases with the whitespace deleted,

Are all numbers.

4.6.1.1 What Not to Use as a Password

Words similiar the login name in any form (as-is, reversed, capitalized, doubled, etc.).
Words that are also first or last name of the user in any form.

Spouse's or child's name.

All digits, or all the same letter. This significantly decreases the search time for a
cracker.

Word contained in (English or foreign language) dictionaries, spelling lists, or other
lists of words.

One of the above with a single character tacked onto the end.

Password shorter than six characters."*

Words that can be found in the password file itself like Okyar, Berkay, Adam, etc.
Patterns like 123456, qwerty, etc.

Geographical names

Words from an encyclopedia ('Socrates')

The license plate of a car, the room number, the phone number or other things that
have something to do with the owner of the account

Given names

Variations such as walter, WALTER, retlaw, Walter, wAlter, walter0, walt3r,
Retlaw4,...

Acronyms of words that are in any dictionary of any language, spelling lists, or other
lists of words.

Sequences of letters like ‘abcdef or 'qwerty’, place names, car names, cartoon heroes.
Only the first or the last character in uppercase '
Only vowels in uppercase

Only consonants in uppercase.

" David A. Curry, Improving The Security of Your UNIX System, p. 7.
** Lionel Cons, CERN Security Handbook Practical Computer Security for CERN Users Version 1.2

26

A character appended or prepended to a word from a dictionary (for instance
“7tables' or ‘secret! ') or use simple substitutions like c=>0 or s==>s (for
instance “snOOpy' or even “$n00py'), most cracking programs will also try
these...

Some characters are "dangerous" for passwords because they can be trapped by
some programs, one should therefore not use them in his passwords. They include:'®

Most "control" characters such as Ctrl-C or Alt-Q and other like:
e #: can be interpreted as erase by some versions of telnet

e (@: can be interpreted as kill by some versions of telnet

e \: is usually an "escape" character, for instance "\#' may be interpreted as a
simple "#' (and not the erase character).

4.6.2 Good Passwords

Might be two words separated by a non-letter non-digit, such as 'mac2%beav' or
‘cat,bear#'. Note that 'go2work’ is probably bad. A good password is:"’

private: it is used and known by one person only

secret: it does not appear in clear text in any file or program or on a piece of
paper pinned to the terminal

easily remembered: so there is no need to write it down

not guessable: by any program in a reasonable time, for instance less than one
week.

Although this seems quite restrictive, it's easy to pick good passwords.

4.6.2.1 What to Use

Use a password with:

- mixed upper- and lower-case alphabetic.

- non-alphabetic characters, e.g., digits or punctuation.
Use a password that:

- is easy to remember, so there will be no need to write it down.

' Lionel Cons, CERN Security Handbook Practical Computer Security for CERN Users Version 1.2
17 Lionel Cons, CERN Security Handbook Practical Computer Security for CERN Users Version 1.2

744

- can be typed quickly, without having to look at the keyboard. This makes it harder
for someone to steal the password by watching over his shoulder.

4.6.2.2 Reducing Break-in Possibilities

It is important for users to have hard to guess but in the meantime easy to
remember passwords. There are methods for generating such passwords. System
operators should inform the users about the importance of good passwords.'® To
reduce the risk of a break-in there are several possibilities:

- Making sure the users know why a good password is important and how they can
choose one.

- Installing a new /bin/passwd (or yppasswd) that checks whether the password is not
too obvious (by checking if it contains punctuation marks, or by investigating if the -
password can be found in standard wordlists).

- Installing a shadow password file (this involves changing some software).

- Letting passwords expire, for example after three months for regular users, after a
month for users with extra privileges. The timespan a password lives should not be
chosen too small. What will still exist is the danger of users using series of
passwords, like 'Secretl’, 'Secret2',... making it easy for a hacker to, once he has
obtained a password, guess the successor.

- Using a program that hacks passwords to check if some users have guessable
passwords. Letting those users visit the administrator personally to inform them about
the fact that a good password is everyone's concern.

- Switching to single-use passwords."”

- Using passwords of accounts with privileges like that of root on the console only to
avoid eavesdropping the network. When impossible, trying to avoid logging in on
such accounts from computers or terminals that are connected to a LAN segment, on
which people can easily and/or anonymously wiretap the network, like classrooms.

It must be kept in mind that the total system security is as weak as the weakest
chain.

4.6.2.3 Password Screening

Retroactive password vetting puts the administrator in the role of the cracker.
The admin makes the best effort to break the users' passwords, and if he succeeds he
notifies the user and require her to change her password to something safer.?’

'8 Walter Belgers, UNLY Password Security.

" Wietse Venema, Using SecurID Tokens in an Open Multi-Host UNIX Environment, Internet
Document, ftp.nic.surfnet.nl as /surf/net/net-security/docs/securid, 1993.

2 Jeff Smith, et.al., UNLX Unleashed, Section 44.

28

Proactive password screening is more like a preemptive strike—the users are
prevented from choosing poor passwords. With proper education via a security policy
users will react more positively to being told they must choose a more secure
password than to being told that their current one is broken.

4.6.2.4 Picking Good Passwords

The object when choosing a password is to make it as difficult as possible for
a cracker to make educated guesses about what one’s chosen. This leaves him no
alternative but a brute-force search.

Good passwords are 6—8 characters long, use a rich character set (upper and
lowercase letters, digits, punctuation, and control characters), are not in Turkish or
any foreign-language dictionaries, and don't contain any public information about the
user, such as his name or license number. One good method is to take a random
phrase and modify it in ingenious ways. For instance, the phrase "If pigs had wings"
could yield the password "1fpiGzhw." This password is a combination of a
misspelled word ("1f" standing for "if"), a misspelled word with odd capitalization
("pigZ"), and the first letters of two more words. It's as secure as a reusable password
can be since it isn't found in any dictionary and uses a fairly rich vocabulary (the digit
- "1" and capitalization in a system which lets the first character of the password to be a
digit), and it's easy to remember.*!

Password choice is one of the areas in which users will deviously (and
sometimes maliciously) thwart the security policies—some people can't be convinced
that they should pick a good password. There are two alternatives for these
recalcitrant users: proactive and retroactive password vetting as explained above.

4.6.2.4.1 Method to Choose Secure and Easy to Remember Passwords

Concatenate two words that together consist of seven characters and that have no

connection to each other. Concatenate them with a punctuation mark in the middle
122

and convert some characters to uppercase, for instance: 'Pit+idEa’, 'plOVer#me'.
Use the first characters of the words of a certain (not too common) sentence.

Alternately pick a consonant and one or two vowels resulting in a pronounceable
(and therefore easy to remember) word. Examples: 'koDupaNy', 'eityPOop'.

Use a password with mixed-case alphabetic, digits, and punctuation.
Use long passwords (with more than 6 characters).

Finally, here are some methods of making passwords:*

?! Jeff Smith, et.al., UNLX Unleashed, Section 44.
22 Walter Belgers, “UNIX Password Security”.
% Lionel Cons, CERN Security Handbook Practical Computer Security for CERN Users Version 1.2

29

Choose a line or two from a song or poem, and use the first letter of each word.
For example, ‘In Xanadu did Kubla Kahn a stately pleasure dome decree' becomes
"IXdKKaspdd'.

Alternate between one consonant and one or two vowels, up to eight characters,
do use mixed-case. This provides nonsense words that are usually pronounceable and
thus easily remembered (ex: ‘roUtboo’, ‘quADpop’ , and so on.).

Choose two short words (or a big one that can be splited) and concatenate them
together with one or more punctuation characters between them (or digits if only
alphanumeric characters can be wused). For example: ‘dog+F18’ or
‘comP77Uter’ . Note that ‘dog’, ‘F18’ or ‘computer’ are in dictionaries but
as the passwords use punctuation or digit, mixed-case characters, they are really hard
to guess.

4.6.2.5 Improving Passwords Against Social Engineering

When system users have such passwords, even the best security systems
cannot protect against intrusion. What makes a strong password (one that is difficult
to break)? Here are a few general guidelines that many system administrators adhere

24
to:

It must be avoided:

- using any part of a user's real name and any name from the user's family or pets
(these passwords are the easiest to guess).

- using important dates (birth dates, wedding day, and so on) in any variation.

- numbers or combinations of numbers and letters with special meaning (license plate
number, telephone number, special dates, and so on).

- any place names or items that may be readily identified with a user (television
characters, hobby, and so on)

Producing a strong password isn't that difficult. The users must be forced into
the habit of mixing letters, numbers, and characters at random. Suppose a user wants
to use lionking as a password. Encouraging modification to lion'king!, 1 ionk ing,
lionSking, or some similar variation can be needed. Even a slight variation in a
password's normal pattern can make life very difficult for someone trying to guess the
password.

The /etc/passwd file can be checked at regular intervals to see whether there
are entries that may have been added as a route into the system without being
recognized. It must also be checked whether each account has a password. Any
accounts that are not needed anymore should be removed.

2 Tim Parker, Linux System Administrator's Survival Guide, chapter 24.

30

4.7 Case Studies: Cracking Linux Passwords via Dictionary Attack

A dictionary attack experiment made on a password file gives disappointing
results. Some words produced were from the set of :*

- The dictionary with the words spelled backwards.

- A list of first names (best obtained from some mailing list). Last names, street
names, and city names also work well.

- The above with initial upper-case letters.
- All valid license plate numbers.

- Room numbers, social security numbers, telephone numbers, and the like.

4.7.1 LOphtCrack 2.5

LOphtCrack is an NT password auditing tool. It will compute NT user
passwords from the cryptographic hashes that are stored by the NT operating system.
The operating system does not store the user passwords in their original clear-text
form for security reasons. The actual user passwords are encrypted into hashes
because they are sensitive information that can be used to impersonate any user,
including the administrator of the operating system. LOphtCrack computes the
password from a variety of sources using a variety of methods.*®

There are many uses for computing user passwords. First and for most it is for
a system administrator to check the strength of the passwords that their users are
using. Other uses include recovering a forgotten password, retrieving the password of
a user in order to impersonate them, or migrating NT users to another platform such
as UNIX.

LOphtCrack 2.5 is distributed in a self-installing executable distribution file.
When the installation file is run it will create a directory named \Program
Files\LOphtCrack, put itself in and add a LOphtCrack start menu item.

LOphtCrack can recover passwords directly from the registry, from the file
system and backup tapes, from repair disks, or by recovering the passwords as they
traverse the network. LOphtCrack first extracts the password hashes, which is the way
the OS stores the encrypted passwords. It uses three different methods for cracking.

The fastest method for cracking the passwords is a dictionary attack.
LOphtCrack tests all the words in a dictionary or word file against the password
hashes. When it finds the correct password it displays the result. LOphtCrack ships
with a small but effective word file.

%5 R.Morris, K. Thompson, Password Security: A Case History, p. 3.
% LOphtCrack 2.5 Manual.

31

The second method LOphtCrack uses is called a hybrid crack method. This
builds upon the dictionary method by adding numeric and symbol characters to
dictionary words. Many users choose passwords such as "bogus11" or "Annaliza!!".
These passwords are just dictionary words slightly modified with additional numbers
and symbols. The hybrid crack rapidly computes these passwords. These are the types
of passwords that will pass through many password filters and policies yet still are
easily crackable.

The final and most powerful cracking method is the brute force method. This
method will always recover the password no matter how complex. It is just a matter
of time. Really complex passwords that use characters that are not directly available
on the keyboard may take so much time that is not feasible to crack them on a single
machine using today's hardware. But most complex passwords can be cracked in a
matter of days. This is usually much shorter than the time most administrators set
their password policy expiration time to. Using a real-world cracking tool is the only
good way to know what time one should set for password expirations.

Even though getting the password files for the corresponding OS’s is not a
focus of this thesis; how to get a copy of the hash file is explained here within the
LOphtCrack. In advance this will also be a good example for the ones who think
retrieving a copy of hashes is far away from practice.

LOphtCrack must first retrieve the password hashes to start the cracking
process. If one has administrator rights he can use the Tools Dump Passwords from
Registry command on the LOphtCrack menu to retrieve the hashes. One can dump the
password hashes from the local machine or over the network if the remote machine
allows network registry access. The NT machine name or IP address is entered into
the Dump Passwords from Registry dialog box and OK is pressed. The usernames
and password hashes are now loaded into LOphtCrack. If this is the way one has
retrieved the password hashes he may now proceed to crack the password hashes.

The second method is to access the password hashes from the file system.
Since the operating system holds a lock on the Security Accounts Manager (SAM)
file where the password hashes are stored on the file system it is not possible to just
read them from this file while the operation system is running. Sometimes a backup
of this file is made on tape or on an Emergency Repair Disk or in the repair directory
of the system hard drive. Also, another operating system such as DOS can be booted
from a floppy and the password hashes can be read directly from the file system. This
is especially useful if physical access to the machine is possible and it has a floppy
drive.

Password hashes can be loaded from a "SAM" or "SAM. " file into
LOphtCrack by using the File Import SAM File menu command and specifying the
filename. LOphtCrack will automatically expand compressed "SAM. " files on NT.

The final method LOphtCrack offers is to capture the encrypted hashes over
the network. Ones machine must have one or more Ethernet devices to access the
network. Server Message Block (SMB) Packet Capture command is used to bring up
the SMB Packet Capture window. User will now be capturing any SMB

32

authentication sessions that the network device can capture. If the computer is on a
switched network it will only see sessions originating from the machine or connecting
to the machine.

As SMB session authentications are captured they are displayed in the SMB
Packet Capture window. The display shows source and destination IP addresses, the
user name, the SMB challenge, the encrypted LANMAN hash and the encrypted
NTLM hash, if any. The capture can be saved at any time using the Save Capture
button. To crack these hashes one must save the capture and then open the captured
file using the File Open Password command. Other passwords be captured and
cracked at the same time.

The first method LOphtCrack uses to crack passwords is called a dictionary
attack. This method tries to encrypt each word in a dictionary or word file. It then
tests each encrypted word against the password hash. If it gets a match it knows the
user's password is that dictionary word. LOphtCrack comes with a nice 25,000-word
file named words-english that contains many common words. This file or another
word file is loaded into LOphtCrack using the File Open Wordlist File menu
command. The default dictionary file is the words-english file.

Next select Tools Run Crack on the menu to start the cracking process. The
default options for cracking are to run a dictionary attack, then a hybrid attack, and
then the brute force attack. LOphtCrack runs these attacks on the password hashes in
succession by default.

During any crack attack the LOphtCrack window displays status information
to show the progress of the attack. During dictionary attacks the number of dictionary
words tried is displayed along with the percentage complete.

After the dictionary attack is completed the Aybrid attack begins. The hybrid
attack uses simple patterns that users use when creating passwords from common
words. By slightly modifying dictionary words the way users do, LOphtCrack is able
to make educated guesses to decide which passwords to try. An example would be to
try 'BOGUSI11'. Many users just append a few numbers or symbols to a dictionary
word in an attempt to make it a non-guessable password. LOphtCrack can guess these
passwords quickly. In much less time than it would take for a brute force attack.
LOphtCrack 2.5 checks to see if any number of number and symbol characters are
appended to each word in the word file that has been selected. The default number of
number and symbol characters is 2. This can be changed using the Tools Options
command.

After the dictionary and hybrid attacks have completed the brute force attack
begins. Brute force can take a long time but it usually takes far less time than most
password policies specify for password changing. This makes passwords found
during the brute force attack still too weak. The character set can be configured that
the brute force attack uses with the Tools Options command. The default character set
is all the alphanumeric characters and the numbers 0 through 9.

33

One can expect the brute force attack to take of 24-72 hours on machines with
CPUs ranging from Pentium II/450 to Pentium 166. LOphtCrack has useful
commands to help the user through the cracking process. It is easy to open files, run
and configure profiles for the job.

4.7.2 John the Ripper

John the Ripper is a password cracker, currently available for UNIX, DOS,
WinNT/Win95. Its primary purpose is to detect weak UNIX passwords. It has been
tested with Linux x86/Alpha/SPARC, FreeBSD x86, OpenBSD x86, Solaris 2.x
SPARC and x86, Digital UNIX, AIX, HP-UX, and IRIX. The DOS and Win32 ports
are done with DJGPP and Cygnus Developer's Kit, respectively. 4

To run John, it must be supplied with some password files and optionally
specify a cracking mode, like this, using the default order of modes, and assuming
that passwd is a copy of the password file:

john passwd

or, to make it use a wordlist with rules only:
john -wordfile:/usr/dict/words -rules passwd

Cracked passwords will be printed to the terminal and saved in file called
~/john.pot. This file is also used not to load passwords that one has already cracked,
when he runs John the next time. To retrieve the cracked passwords, run:

john -show passwd

While cracking, any key can be pressed for status, or Ctrl+C to abort the
session, saving point information to a file (~/restore by default). By the way, Ctrl+C
is pressed twice John will abort immediately without saving. The point information is
also saved every 10 minutes (configurable in the configuration file, ~/john.ini) in case
of a crash. To continue an interrupted session, run:

john -restore

John the Ripper is designed to be both powerful and fast. It combines several
cracking modes in one program, and is fully configurable for particular needs (one
can even define a custom cracking mode using the built-in compiler supporting a
subset of C). Also, John is available for several different platforms, which enables the
same cracker to be used everywhere (for example even continue a cracking session
that was started on another platform).

John supports (and autodetects) the following ciphertext formats: standard and
double-length DES-based, BSDI's extended DES-based, FreeBSD's (and not only)
MD5-based, and OpenBSD's Blowfish-based. With just one extra command to extract
the passwords, John can crack AFS passwords and WinNT LM hashes.

%7 John the Ripper-Password Cracker Manual.

34

Unlike other crackers, John doesn't use a crypt(3)**-style routine. Instead, it
has its own highly optimized modules for different ciphertext formats and
architectures. Some of the algorithms used couldn't be implemented in a crypt(3)-
style routine: they require a more powerful interface (bitslice DES is an example).
Additionally, there're assembly routines for several processors and architectures
(special Intel Pentium version, x86 with MMX, generic x86, Alpha EV4, SPARC
V38).

4.7.3 Crack

Crack is the UNIX community's best-known password auditing tool that is
designed to quickly locate insecurities in UNIX (or other) password files by scanning
the contents of a password file, looking for users who have misguidedly chosen a
weak login password.”

In early releases, its author. Alec Muffett, described Crack as;

“...a freely available program designed to find standard UNIX eight-character
DES encrypted passwords by standard guessing techniques... It is written to be
flexible, configurable and fast, and to be able to make use of several
networked hosts via the Berkeley rsh program (or similar), where possible.”

Over time, he only slightly amended that description. Today, Muffett
describes Crack as

“...a password guessing program that is designed to quickly locate insecurities
in UNIX (or other) password files by scanning the contents of a password file,
looking for users who have misguidedly chosen a weak login password.”

Some new features of Crack are:

Complete restructuring - uses less memory

Ships with Eric Young's "libdes" as standard

API for ease of integration with arbitrary crypt() functions

API for ease of integration with arbitrary passwd file format
Considerably better gecos-field checking

More powerful rule sets

Ability to read dictionaries generated by external commands
Better recovery mechanisms for jobs interrupted by crashes
Easier to control (e.g.: to put to sleep during working hours)
Tested on Solaris, Linux, FreeBSD, NetBSD, OSF and Ultrix *°

*e ®o ° o 0o o 0o 0o 0

28 Simson Garfinkel, Practical UNIX Security, p 30.
¥ Alec Muffett, Crack Version v5.0 User Manual.
30 Alec Muffett, Crack Version v5.0 User Manual.

35

And the requirements of using Crack are as follows:

UNIX-like operating system.

C Compiler

Moderate amount of disk space.

Lots of CPU time.

Permission from the sysadmin.
Root-privileges, quite possibly.

"gzip" is extremely desirable.

"perl", if net‘.ﬂwz)rking/mu1tipr0cessi:ng.31

Unpack the Crack distribution.

Edit the "Crack" script, configuring the values of CRACK_PATH, C5FLAGS,
CC, CFLAGS and LIBS to suit the operating system.

The general form to invoke Crack is:

Crack [options] [-fmt format] [file ...]
e.g.: Crack -nice 10 /etc/passwd

...where "filename" is a file that stores password entries, e.g.: "/etc/passwd".

Crack does not generate human-readable output directly; instead, to see the
results of a Crack run, the user should do:

./Reporter [-quiet] [-html]

The "-quiet" option suppresses the reporting of errors in the password file
(corrupt entries, etc), whilst "-html" produces output in a fairly basic HTML-readable
format.

4.7.4 Other Linux-Compatible Password Auditing Tools

Killer Cracker

A lightweight password auditing tool from Doctor Dissector, written in C++.
Although Killer Cracker lacks some of the extended functionality available with
Crack, it’s still fast.

Lard

A password auditing tool for Linux and other UNIX versions. Lard is small
enough to fit on a floppy diskette, which is good for auditing on non-networked boxes
in different departments. '

31 Alec Muffett, Crack Version v5.0 User Manual.

36

PerlCrack
A Perl DES password cracker for Linux.

Xcrack
A Perl script for cracking Linux passwords. It does not exercise complex
rules. Instead, it performs straight-ahead encryption of words for the wordlist.

Some of the password auditing tools use brute force as well. A brute force
attack will always eventually prevail(“Eventually” here could mean months).
Conversely, a dictionary attack is only as good as the wordlist and the rules that are
defined to use the words in the wordlist.*

32 Anonymous, Maximum Linux Security, p. 136.

37

CHAPTER 5

TURKEY TURKISH BASED PASSWORD CRACKER

5.1 Design of the Utility

In the application part of this thesis, a Turkish password cracker is designed
and coded in C language on a Linux operating system. This application aims to prove
the weak password choices of human that are described and classified in section 4.3.
and to find its percentage in the whole account table of a real world UNIX system.
During the design of the cracker, the most suitable software and hardware
environments are investigated. C programming language is selected for the coding
medium and Linux distribution SUSE 6.2 is selected as the operating system.

5.2 Selection of the Medium and Tools

Linux distribution of SUSE has a configuration utility called Yast. It is easy to
manage, setup and install applications with a graphical interface for the operating
system. Users are added and passwords are assigned for these users via Yast and
these accounts became the target of the cracker during the testing phase.

Process Monitoring and Management window is also a very useful application
for the Linux users. Such programs let the user to monitor, manage, hang up, set the
level of nicing, wait, and kill the processes running on the system. Nicing option for a
process can be used if a process takes too much CPU time and forces the other
processes to fall into dead lock and/or live lock phases. Meanwhile, the cracker can
run for a long time without affecting the common jobs of the server with a low
priority level. An administrator can let the cracker work for weeks if the etc/passwd
file has to many user accounts or the wordlist is too long.

Table 5.1 and 5.2 summaries the hardware and software profiles selected,
respectively.

Table 5.1 Hardware Profile. Table 5.2 Software Profile.

Intel Pentium Celeron II SUSE 6.2

233 MHz CPU Kernel 2.2.10

32 MB SDRAM KDE 1.1.1

6.2 GB Hard Disk GCC, GNU project compiler (egcs-1.1.2)
Library for C compiler (v.2.1.1-9)

MR YUKSEK TERNOLOJT ENSTITs.
REXTORLOGE
Kittiphane ve Dokimantasyon Doire Bsk.

5.3 Implementation of the Program

Sub-programs Coded:
Several sub-programs with read and write operations are coded and unit tests

are prepared. String commands are used to compare words, to eliminate carriage-
returns from strings, and append two words.

In order to keep the privacy of the users, passwords can be unstringed from
the user line of the password file. Only the password hashes containing 13 characters
can be taken out of the file and the cracker work on them. In such a case, user name
as a word will not be utilized to crack the password.

A sub-program is coded to generate all possible salting values. This can be
used either when the salt value of the target is not known or if a precomputed
dictionary attack is being used. 4096 possible values are thus generated and used as
input for a call to crypt() as shown in Figure 5.1 below.

wordlist

encrypted
wordlist is
stored with
the
combination

set of salt values of all salt
values

A

0 selected salt

pairs

Figure 5.1 Salt Generation.

As shown in Figure 5.2 below, the main algorithm is being used to read a hash
from the etc/passwd file, and compare it with the hash value of the encrypted object.
Here, the hash value of object is the output of the crypt() with the inputs; sequentially
read wordlist and the salt taken from the 2 bytes of the password in the etc/passwd
file. These approaches have been taken under the circumstances that already defined
in section 4.5. Therefore the salt is known if the password file is available.

39

Y

Encryption

‘ Hash value of
Sequentially the tad
read words
from the Compare the

dictionary file encrypted
password with the
encrypted guess
untill a match is

Dictionary File found

Figure 5.2 Password Cracking Process.

In order to keep the run-time of the program shorter, some of the data are kept
in memory for less I/O operations. Both the password file and the dictionary are input
files and more over the dictionary file is to be rewinded for each hash in the password
file. Now, this causes more 1/O operation, therefore a copy of the wordlist is loaded
into the memory as the initial section of the program. Such manipulations and
command elimination are used during the coding phase. There will always be
alternatives for runtime optimization; however, the program can be regarded as
acceptable as it is.

Dynamic memory allocation is used for tables to obtain more memory space
at execution time to hold new nodes, and to release space no longer needed.
Functions malloc and free, and the operator size of, are essential to dynamic memory
allocation. Function malloc takes as an argument the number of bytes to be allocated,
and returns a pointer of type void* to the allocated memory. A void* pointer may be
assigned to a variable of any pointer type.' With the statement

newPtr = malloc(size of (typeName));

the memory is allocated on the heap (the extra memory available to the program at
execution time).”

' H. M. Deitel, P. J. Deitel, C How to Program, p. 470.
2 H. M. Deitel, P. J. Deitel, C How to Program, p. 576.

40

The free function de-allocates memory,

Free(newPtr);

Once a program is coded it is compiled and an output file is created by the
command below. The —o option applies regardless to whatever sort of output GCC is
producing, whether it be an executable file, an object file, an assembly file, or a
preprocessed C code.
$ gec <source.c> < link edited output>—o
and the
$./<link edited output >
command runs the program. Since we are using the crypt library for a call to the
function crypt() which is shown in Figure 5.3. The compile command above will not

_ be enough to link the glibc-crypt library. Therefore, the program is compiled with the

command;

$ gee <source.c> <object file name> —o —lerypt

define XOPEN_SOURCE
include <unistd.h>

char *crypt(const char *key, constant char *salt);

key: user password

salt: [a...zA...A0...9./]

Figure 5.3 Call to crypt().

If the password hashes can not be cracked by the first (simple mode) method
then the numbering mode (appendAge mode) is activated. In this mode, numbers
form 40 to 99 are appended to the end of each word in the dictionary in an
incremented way. Some passwords are expected to have two digits stringed at the end
of a word or a name. Some people use their passwords just the same of their user
names with the year of birth at the end. This is one of the common mistakes done,
although the user mistakenly thinks no one can either guess or know the birth year of
him but that it is not much hard for the attacker to work on a set of possible digits.

41

5.4 Results

The cracker -John the Ripper- was ran on an etc/passwd file and the successful
matches obtained in the first 3 hours which are:

Men/women names: 2.6 %
Several patterns: 0.3 %

The coded application is also executed for the same etc/passwd file. Two
experiments are done. In the first one a dictionary containing 3723 men and women
names is used. In the second experiment a longer wordlist that contains 38595 words
is used. This long wordlist is obtained by a combination of several online wordlists by
eliminating the doubles. One thing that must be mentioned here is that there is a small
difference between a wordlist and a dictionary and, thus crypt() uses the left most
eight characters of an input word. Therefore using two different words whose first
eight characters are the same as an input for the crypt() respectively, gives the same
output hash value. Before using a dictionary for the cracker, the dictionaries are
combined and truncated starting from the 9® byte. Then the doubles are eliminated.
This procedure supplies an effective wordlist that can be used during an optimum
execution time.

The results of the two experiments are given in the Tables 5.3 and 5.4

respectively. The union of the results of these two experiments gives us a successful
match 0f 6.31 %.

Table 5.3 Results of Experiment #1.

Real execution time : 01:29:30 (hh:mm:ss)
Total number of passwords x 01
Total number of cracked passwords : 12
Percentage of cracked passwords :3.99 %
by simple mode :0.03 %
by AppendAge mode :3.96 %
Password Content
Women’s names : 1.66 %
Men’s names :233%

42

Table 5.4 Results of Experiment #2.

Real execution time : 17:56:15 (hh:mm:ss)
Total number of passwords : 301
Total number of cracked passwords i |
Percentage of cracked passwords :3.32%
by simple mode : 0.66 %
by AppendAge mode :2.65%
Password Content
Places :0.33 %
Job names :0.33 %
Favorite meal names :0.33 %
Phrases and patterns 21233 %

The application was designed and coded to work as batch program. It uses an
output file to report and log the actions. It reports the real time and the CPU clock as
soon as it starts and opens the files, writes the cracked passwords, number of words in
the dictionary, number of cracked passwords, and any other predefines cases into this
file. At the end of the execution just before the internal controls like closing the files,
it again reports the time. Therefore, the user can run and leave the job, he then may
claim the results by browsing the out.dat file later.

The security of each individual user whose passwords have been cracked is
closely related to the security of the whole system. The owner of the classified
passwords above often have no idea how a multi-user system works. Their poor
choices opens a door for an outsider to the entire system. The cracked passwords are
all in the set of bad passwords that are described in section 4.6.1. They consist of
strings that are easy to remember for their owners and if there is a set of numbers
appended to the end of this word it is usually the year of birth or the year that the
account is activated.

43

CHAPTER 6

CONCLUSIONS

6.1 Concluding Remarks

In this study, it is described that some of the passwords in an UNIX based
operating system can be cracked by an automated dictionary attack. As described
earlier, the security of the entire system can be at risk if the user password security is
in risk. The results of the experiments given in the Chapter 5 show that the users of a
UNIX based operating system must be educated about choosing and using their
passwords due to fact that the cracked passwords were all in the set of weak
passwords. Meanwhile, it is obvious that the number of cracked passwords can be
increased by using a longer wordlist and moreover the amount of execution time can
be decreased by running the program on a computer that has a faster CPU.

System administrators must ensure that all the passwords in the system are
strong which means that; they are all well chosen. This can be supplied by checking
the passwords when they are first created or by regular checking the strength of the
passwords in the operating system.

6.2 Suggestions for Future Work

The applied cracker program can be developed by applying new sections. An
attack with a better wordlist will always give better results hence a higher percentage
of cracked passwords.

The dictionaries can be classified by their categories before they are used in
cracking. Therefore the result of the attack will give better ideas about the passwords
in the etc/passwd file.

The letters of words in the dictionaries can be capitalized; this can be applied
for all of the letters or only for the first and the last letters of a word. A digit, a
punctuation mark, an up arrow, or a space can be appended to the end of each word in
the wordlist.

SUMMARY

In this study, it is aimed to crack the password hashes which are encrypted by
DES, in an UNIX-based operating system using the method of dictionary attack. The
developed application is introduced.

Remarks and recommendations are given for the users by defining the good
and bad password choosing methods. Secure methods for user authentication, user
management and for password storage are introduced for the system administrators to
let them check the security of user accounts in the system dynamically and frequently.

The results of the developed program shows us the threat of weak password
choices over the entire operating system. For future studies; the utility can be
developed to give a higher percentage of cracked passwords in a shorter running time.
Recommendations are given about software and hardware requirements that must be
taken into account for the future study.

45

OZET

Bu ¢alismada, DES algoritmasi ile sifrelenmis UNIX tabanli isletim sistemi
kullanict sifrelerinin sdzliikten tarama ve saldir1 yontemiyle kirilmast amaglanmis ve
gelistirilen uygulama tanmtilmistir.

Iyi ve kotii segilmis sifre tamimlamalari yapilarak, kullamicilara sifrelerini
Ozenle segmeleri i¢in bazi uyar ve tavsiyelerde bulunulmustur. UNIX tabanli isletim
sistemlerinin kullanici parolalarini sifreleme ve saklama teknikleri tanitilmig béylece
sistem yoOneticilerinin kullanici hesaplarini ve sistem giivenligini aktif olarak
izlemeleri saglanmustir.

Gelistirilen uygulamanin sonuglarindan yola ¢ikarak kullanicilarin zayif sifre
secimlerinin tiim sistemin giivenligini olumsuz yonde etkiledikleri gbzlemlenmistir.
[lerideki c¢alismalar i¢in yazillm ve donamim gereksinimleri gdze alinarak.
uygulamanin gelistirilmesi ve daha kisa ¢aligma stiresi ile daha yiiksek bir sifre kirma
yiizdesine ulagmak miimkiindiir. Bunun i¢in tavsiyelerde bulunulmustur.

46

BIBLIOGRAPHY

ANONYMOUS, Maximum Linux Security, Sams Publishing, 2000.
BELGERS, Walter, “UNIX Password Security”, December 6, 1993.

CONS, Lionel, CERN Security Handbook Practical Computer Security for CERN
Users Version 1.2, 12 December 1996.

CURRY, David A., Improving The Security of Your UNLX System, Information and
Telecommunications Sciences and Technology Division, ITSTD-721-FR-90-
21,

DEITEL, H. M., DEITEL, P. J., C How to Program, 2" Edition, Prentice Hall, 1994.

FELDMEIER, D.C., KARN P.R., “UNIX Password Security- Ten Years Later”.

FIPS, Federal Information Processing Standards Publication, “Data Encryption
Standard, Fips Pub 46-3”, Reaffirmed 1999 October 25 U.S. Department of
Commerce/National Institute of Standards and Technology.

FIPS, Federal Information Processing Standards Publication 81, “Announcing the
Standard for Des Modes of Operation”, 1980 December 2.

GARFINKEL, S., SPAFFORD, G., Practical UNIX Security, O’Reilly and
Associates, Inc., 1991.

GONG, Li, “Protecting Poorly Chosen Secrets from Guessing Attacks”.

JOHN THE RIPPER, Password Cracker Manual, Internet Document,
http://www.openwall.com/john, 2001.

LOPHTCRACK, Password Cracker v.2.5 Manual, Internet Document, Internet
Document, http://www.10pht.com, 2000.

MORRIS, Robert, THOMPSON, K., “Password Security: A Case History”.

MUFFETT, Alec E. “Almost Everything You Wanted To Know About Security (but
were afraid to ask!)”, Internet Document, USENET newsgroup.alt.security.

MUFFETT, Alec, “Crack Version v5.0 User Manual”, Internet Document,
http://www.users.dircon.co.uk/~crypto/, 2001.

PARKER, Tim, “Linux System Administrator's Survival Guide”, Internet Document,
http://10.10.0.5/htmlbooks/, May 2001.

PFLEEGER, Charles P., Security in Computing, Prentice Hall, 1989.

47

SAMS DEVELOPMENT TEAM (PARKER, Scott, SMITH, Jeff, et.al., UNLY
Unleased, Sams Publishing, 1994.

SHANNON, Claude, “Prediction and Entropy of Printed English”, Bell System
Technical Journal, 30(1):50-64, January 1951.

STEINER, J.G., NEUMAN, C., SCHILLER, J.I.,, “Kerbelos, An Authentication
Service for Open Network Systems”, USENIX Conference Proceedings,
Dallas, Texas, February 1988.

VENEMA, Wietse, “Using SecurI]D Tokens in an Open Multi-host UNIX
Environment”, 1993.

WOOD, P.H., KOCHAN, S.G., UNIX System Security, Hayden Books. ISBN 0-8104-
6267-2. 1985.

48

