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RATIONAL AND MULTI–WAVE SOLUTIONS TO 
NONLINEAR EVOLUTION EQUATIONS BY MEANS OF THE 

EXP–FUNCTION METHOD  

İsmail ASLAN1 

In this paper, we present a new application of the Exp–function method to 
carry out the integration of nonlinear evolution equations in terms of multi–wave 
and rational solutions. To elucidate the solution procedure, we analytically 
investigate the Sharma–Tasso–Olver equation and the fifth–order Korteweg de 
Vries equation. Unlike Hirota’s method, our procedure does not require the bilinear 
formalism of the equations studied. 

Keywords: Exp–function method; Multi–wave solution; Rational solution; 
Sharma–Tasso–Olver equation; Fifth–order Korteweg de Vries 
equation. 

1. Introduction 

Nonlinear evolution equations (NEEs) have been of fundamental 
importance in the study of applied physical and mathematical sciences. They are 
crucial for obtaining an understanding of the physical sciences, as well as the 
biological and social sciences. Thus, exactly solving NEEs has gained increasing 
importance. Nowadays, some modern analytic methods are available for tackling 
NEEs. To make mention of some; tanh function method [1], Adomian 
decomposition method [2], variational iteration method [3], first integral method 
[4], Exp–function method [5], homotopy perturbation method [6], (G'/G)–
expansion method [7], multiple–exp function method [8] and so forth. 

It is an important fact that one should be aware of the limitations of these 
methods and there is no guarantee that any of these techniques will succeed for a 
specific nonlinear problem. Among the others, the Exp–function method has 
received more attention and consequently it has been adapted, extended, and 
generalized to various kinds of nonlinear problems; for example, NEEs with 
variable coefficients [9], multi–dimensional equations [10–12], differential–
difference equations [13, 14], coupled NEEs [15], stochastic equations [16], n–
soliton solutions [17–19], rational solutions [20–22]. Hence, the Exp–function 
method provide a valuable addition to the wave theory. 

On the other hand, traveling waves of NEEs may be coupled with different 
frequencies and different velocities. Multi–wave solutions are crucial in the sense 
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that they may sometimes be converted into a single soliton of very high energy 
that propagates over large domains of space without dispersion. Therefore, an 
extremely destructive wave may be produced. The tsunami is a good example for 
this kind of phenomena. As is well known, Hirota’s method [23] can be used to 
construct multi–wave solutions if the equation considered can be transformed into 
a bilinear form. However, the existence of the bilinear form cannot be guaranteed 
or it may not be known. 

The main objective of this work is to show the applicability of the Exp–
function method to two important equations of mathematical physics having 
distinct physical structures (namely, the Sharma–Tasso–Olver equation and the 
fifth–order Korteweg de Vries equation) for rational and travelling wave solutions 
with distinct velocities and distinct frequencies. The rest of this paper is organized 
as follows. In Section 2, we briefly describe our method. In Sections 3 and 4, we 
analyze our problems. In Section 5, we give some concluding remarks. 

2. The Exp–function method 

For a given NEE, say, in two variables x  and t , 
( ), , , , , , 0t x tt tx xxP u u u u u u =… ,                                                         (1) 

where P  is a polynomial in its arguments, the Exp–function method is based on 
the assumption that its solutions can be expressed as 
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,                                     (2)    where m  and 

n  are positive integers to be determined; ia , jb , k  and w  are arbitrary constants 
to be specified; δ  is the phase shift. Substituting the function (2) into Eq. (1) and 

balancing the highest–order terms, one can determine the constants m  and n .  
To seek for N −wave solutions to Eq. (1), the function (2) can be generalized as 
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which corresponds to the case 2N = ; and 
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which corresponds to the case 3N = ; and so on. 
To obtain a rational solution for Eq. (1), we modify the function (2) as 
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where 1μ  and 2μ  are two embedded constants. It is obvious that when 1 1μ =  and 
2 0μ = , the function (5) turns out to be the function (2).  

 
Remark 1. The positive integers m  and n  in the function (2) are determined by 
balancing the linear and nonlinear terms of highest order in Eq. (1). However, as 
far as we could verify through the research literature, performing this procedure 
takes a lot of effort and time consuming. Recently, Ali [24] proved that the 
balancing step in the Exp–function method is redundant. Thus, taking the function 
(2) into account directly and assigning arbitrary values to the constants m  and n  
will make laborious calculations unnecessary. 

3. The Sharma–Tasso–Olver equation 

Let us consider the so–called Sharma–Tasso–Olver (STO) equation which reads 
2 23 3 3 0t x x xx xxxu u u u uu uα α α α+ + + + = ,                                   (6)  

where α  is a nonzero constant, and ( , )u u x t= . We suppose that Eq. (6) admits a 
solution of the form 
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which is embedded in (2). Substituting (7) into Eq. (6), we get the relation  
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Then, solving the system ( )0 1,2,3nC n= =  simultaneously, we obtain the solution 
set 

3
1 1,  kbw akα= − = ,                                                   (9) 

which yields a one–wave solution to Eq. (6) as 
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where k , 1b , and δ  remain arbitrary. 
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3.1. Two–wave solutions 
 
Assume that Eq. (6) admits a solution of the form 
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It is clear that the function (11) is embedded in (3). Substituting (11) into Eq. (6), 
we obtain the relation 
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where 00 04 40 44 0C C C C= = = = . Hence, solving the system ( )0 0 , 4ijC i j= ≤ ≤  
simultaneously, we obtain the solution set 
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which gives a two–wave solution to Eq. (6) as 
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where 01b , 10b , 1k , 2k , 1δ , and 2δ  remain arbitrary. 
 
3.2. Three–wave solutions 
 
Assume that Eq. (6) admits a solution of the form 
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where ( ) 1,2,3l l l lk x w t lξ δ= + + = . 
Obviously, the function (15) is embedded in (4). After substituting (15) into Eq. 
(6) and making similar manipulations, we get the solution set of the resultant 
algebraic system as  
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which leads to a three–wave solution to Eq. (6) as 
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where 001b , 010b , 100b , 1k , 2k , 3k , 1δ , 2δ , and 3δ  remain arbitrary. 
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3.3. Rational solutions 
 
Suppose that Eq. (6) admits a solution of the form 
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By the same procedure, we obtain the solution set of the resultant algebraic 
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which leads to a rational solution to Eq. (6) as 
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where 1a , 1b− , 0b , 1b , and k  remain arbitrary. 

4. The fifth–order Korteweg de Vries equation 

Let us consider the so–called fifth–order Korteweg de Vries equation which reads 
210 30 20 0t xxx x x xx xxxxxu uu u u u u u+ + + + = .                                      (21) 

First, we assume that Eq. (21) admits a solution in the form 
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which is embedded in (2). Substituting (22) into Eq. (21) and solving the resultant 
algebraic system for the unknowns 1a , 1b , k , and w , we obtain the solution set 
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which leads a one–wave solution to Eq. (6) as 
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where k , 1b , and δ  remain arbitrary. 
 
4.1. Two–wave solutions 
 
Second, we suppose that Eq. (21) admits a solution of the form 
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where ,  1,2l l l lk x w t lξ δ= + + = . 
  One can see that the function (25) is embedded in (3). Substituting (25) 
into Eq. (21) and solving the resultant algebraic system for the unknowns 10a , 01a , 

11a , 21a , 12a , 10b , 01b , 11b , 1k , 2k , 1w , and 2w , we get the solution set 
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which provides a two–wave solution to Eq. (6) as 
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where 1 1
5
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2 2k x k tξ δ− += , and 01b , 10b , 1k , 2k , 1δ , 2δ  remain 
arbitrary. 
 
4.2. Three–wave solutions 
 
Third, we assume that Eq. (21) admits a solution of the form 
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It is obvious that the function (28) is embedded in (4). After substituting (28) into 
Eq. (21) and proceeding as before, we get the solution set of the resultant 
algebraic system as 
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Finally, employing the determined coefficients (29)–(39) to (28), we derive a 
three–wave solution to Eq. (21), where 100b , 010b , 001b , 1k , 2k , 3k , 1δ , 2δ , and 3δ  
remain arbitrary.  
 
4.3. Rational solutions 
 
For a rational solution, we suppose that Eq. (21) admits the function (18) as a 
solution. Then, following the same procedure, we obtain the solution set of the 
resultant algebraic system as 
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where 1a , 1b , 0b , k , and δ  remain arbitrary. 
 
Remark 2. The existence of N–wave solutions often implies the integrability of 
the equation considered. The determination of three–wave solutions for our 
equations confirms the fact that ( )4N ≥ –wave solutions exist and can be obtained 
in a parallel manner. However, we observed that the computation becomes tedious 
and much more complicated. 
 

5. Conclusions 

Seeking exact and explicit solutions with multi–velocities and multi–
frequencies for NEEs is an important and active research area in the applied 
mathematical and physical sciences. In this study, we implemented the Exp–
function method to two completely integrable NEEs for explicitly constructing 
one–wave, two–wave, and three–wave solutions, as well as rational solutions. We 
successfully obtained such solutions involving more arbitrary parameters. Our 
results indicate that the Exp–function method can be used as a simplified form of 
the Hirota’s bilinear method. We conclude that the Exp–function method posses 
powerful features that make it practical for the determination of multi–wave 
solutions for a wide class of NEEs; this will be our future task. 
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