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ABSTRACT 
 

INVESTIGATION OF FLOW THROUGH  

A SEMI AXIAL CENTRIFUGAL PUMP 
 

 The aim of present study is to perform a numerical work to investigate flow 

inside a semi axial centrifugal pump. The results of the study can be used to improve the 

design of the pump.  

The Navier Stokes equations with appropriate boundary conditions are solved 

for a 3 dimensional rotating geometry. To solve the governing equations, Fluent 

program is used. Fluent is a commercial CFD program, which has been developed based 

on the finite volume method. The mesh for the flow volume is created by Gambit. The 

ε−k  turbulence model is used to handle the turbulence inside the flow. Obtained 

results are compared with experimental test results. An acceptable agreement between 

the numerical and experimental results is observed.  

Based on the obtained results, the velocity vectors, pressure distributions on 

impeller and diffuser blades and flow patterns are plotted for three different flow rates. 

The necessary discussions are performed for these results. It is observed that the design 

of the impeller provides a regular flow inside the channel; however some vortexes are 

observed in the channel between the diffuser blades.  

The effect of the surface roughness is also investigated and the problem is 

solved for four different roughness values (0, 50, 100 and 250 �m). It is found that the 

roughness of the surface affects the characteristic curves of the pump. By increasing the 

roughness, the head and efficiency of the pump decrease however the consumed power 

is almost constant.   
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ÖZET 
 

YARI EKSENEL SANTR�FUJ B�R POMPANIN �Ç�NDEK� AKI�IN 

�NCELENMES� 
 

Bu çalı�manın amacı, yarı eksenel santrifüj bir pompa içindeki akı�ı incelemek 

için nümerik bir çalı�ma gerçekle�tirmektir. Bu çalı�manın sonuçları bir pompa 

tasarımının geli�tirilmesinde kullanılabilinir.  

Navier Stokes denklemleri, uygun sınır ko�ulları ile 3 boyutlu döner bir 

geometri için çözülmü�tür. Probleme ait denklemler Fluent programı ile çözülmü�tür. 

Fluent, sonlu hacimler tekni�i üzerine geli�tirilmi� ticari bir HAD programıdır. Akı� 

hacmi için olu�turulan sayısal a� ise Gambit programında olu�turulmu�tur. Akı�ın 

içindeki türbülans için ε−k  türbülans modeli kullanılmı�tır. Elde edilen sonuçlar, 

hassas test sonuçları ile kar�ıla�tırılmı�tır. Nümerik ve deneysel sonuçlar arasında kabul 

edilebilir bir uyu�ma gözlemlenmi�tir.  

 Elde edilen sonuçlara dayanarak, 3 farklı debi için hız vektörleri, çarktaki ve 

difizördeki basınç da�ılımları ve akı� yörüngeleri çizdirilmi�tir. Bu sonuçlar için gerekli 

olan görü�ler belirtilmi�tir. Çarkın dizaynının, çarkın kanatları arasındaki kanaldaki 

akı�ın düzgün olmasını sa�ladı�ı görülmü�tür. Fakat difizör kanatları arasındaki akı�ta 

burulmalar gözlemlenmi�tir.  

 Yüzey pürüzlülü�ün etkisi de ayrıca incelenmi�, ve problem 4 farklı yüzey 

pürüzlülük de�eri (0, 50, 100 and 250 �m) için çözülmü�tür. Yüzey pürüzlü�ünün 

pompanın karakteristik e�rilerine etkidi�i gözlemlenmi�tir.Yüzey pürüzlülü�ünü 

arttırarak, pompanın basma yüksekli�i dü�mü�, fakat pompanın  çekti�i güç hemen 

hemen aynı kalmı�tır.  
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CHAPTER 1 

 

INTRODUCTION 
 

Lots of machinery has been developed in order to transfer liquids, especially 

water, to higher locations, or forcing it against a resistance. These machines that add 

energy to a fluid stream are called pumps (De�er, 2005). Thus, as the water, pumps are 

also very important in daily life. From ancient times to now, they have vital roles in 

irrigation, fire extinguishing, industry, and water network systems. Among pump types, 

the centrifugal pumps are those that can suit any working condition, process with high 

efficiencies and the most widely used ones (van Esch, 1997). 

Due to the work done, a pump consumes huge amounts of energy, which means 

high operating costs. According to a research made in Europe, the initial cost of a pump 

that operates about 20 years, constitutes just 5% of its lifecycle cost. However, 80% of 

rest is the operating cost and 15% is the maintenance cost respectively (Frenning, 2001). 

These lead the manufacturers to design and produce pumps with higher efficiencies in 

order to decrease the operating costs.  

Pump designs are made by using empirical relations that have been developed 

based on the experiences. The first designs were made after the theoretical work of 

Euler in 1750. That study made the working principle of a pump a little clear. However, 

centrifugal pump design shows a great development after the “The Great Exhibition” 

(van Esch, 1997).   

In the most of the pump factories, a preliminary design is performed in order to 

develop a pump. After the design is completed, the manufacturing models are 

processed, so that a prototype can be manufactured. Then this prototype pump is tested 

for verification of the design values. If the pump can not prove its design criteria, all the 

procedure is restarted until the obtained experimental results will satisfy the design 

criteria. This method of manufacturing is expensive and requires long design period.  

Developments in the computer technology in the recent years, in both software 

and hardware, enable the pump design by using computers. The designers not only can 

design the required pump, but also can simulate fluid flow inside the pump. The 

development of the three-dimensional drawing softwares (computer aided design-
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CAD), also causes development of the analysis software.  Nowadays many mechanic, 

magnetic, fluid and noise problems can be numerically solved.  

Computational fluid dynamics softwares are widely used in the industry and 

universities. Many commercial CFD programs have been developed to solve the 

governing equations of the fluid problem. Although the use of these softwares seems 

easy, user must have advanced knowledge of fluid dynamics and also numerical 

methods in order to set the appropriate boundary conditions and interpret the results. 

The accuracy of the results depends on the experience of the analyst. If the flow and 

parameters are properly defined, the obtained results will have high accuracy and 

reliability.   

As mentioned before the traditional design procedure of a pump is complicated 

and expensive. The accuracy and performance of the design mostly depend on the 

experience of the designer. The efficiency of a pump at the operating conditions is an 

important parameter for a designer. The improvement of efficiency requires a great 

research and development work. The computational fluid dynamics softwares enable the 

designer to visualize both flow and pressure distributions inside the pump and minimize 

the experiment and verification costs. It also decreases the design period. However, the 

results of the computational analysis should match with experimental results.  

The purpose of this study is to investigate the flow in the impeller and diffuser 

of a semi axial pump by using Computational Fluid Dynamics. For this reason, a semi 

axial pump of VANSAN Company is selected. The analyzed pump is a 14” vertical 

single stage turbine pump that consists of a 6 blades rotating impeller and a static 

diffuser with 7 blades. This pump is the one that was designed and researched by 

Duymu� (Duymu�, 2003). In Duymu� study, the pump was tested by sensitive test 

equipments and then the characteristic curves of the pump were obtained. In the present 

study, the problem is solved by the Fluent program. It is a commercial program which 

has been developed based on primitive variable approach in order to solve continuity, 

momentum, energy and mass transfer equations not only for laminar but also for 

turbulent flows. The program uses finite volume method to solve the governing 

equations.   

The considered pump is firstly modeled and the three dimensional fluid model is 

constructed by the UniGraphics NX3 program. Then, the model is exported to the 

Gambit program for mesh generation. Then, the constructed mesh is exported to the 

main analysis program; Fluent. The boundary conditions are defined and the solution 
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methods are chosen. The ε−k  turbulence model is used to handle the turbulence of the 

flow. An acceptable agreement between the numerical and experimental study is 

observed. The flow inside the pump is investigated for seven different flow rates (from 

90 kg/s to 150 kg/s with 10 kg/s interval). All the details about the employed solution 

procedure and the parameters are given in different chapters of this thesis. The static, 

dynamic and total pressure on the surfaces of impeller and diffuser are also studied. The 

pressure and velocity fields are plotted and necessary discussions are performed. Based 

on the obtained results, it is observed that the pressure distribution on the surfaces of the 

impeller blades and flow distribution inside the rotor are close to the desired distribution 

and values. However, in the diffuser, some vortexes occur and flow patterns are too far 

from the desired conditions. The pressure distribution on the blades of the diffuser is 

also far from the ideal and desired distribution. 

The affect of the surface roughness on the characteristic of the pump is also 

handled. The roughness of the wall boundaries has a considerable affect on the pump 

characteristic curves. The head and efficiency of pump decreases by increase of the 

roughness, however, the required power is almost same.  

 

1.1. Literature Survey 

 

Numerical methods for solving differential equations were built in earlier times. 

However, since the computations are lasts long, and not accurate enough, there have not 

been obtained any significant success. With the invention of transistor, thus the 

computers, these calculations can be made in shorter periods. As the processors are 

developed more, finer and more accurate results are became available. Less assumptions 

and simplifications in the governing equations and more detailed definitions of the 

geometry by two dimensional or even there dimensional analysis, with possible 

unsteady conditions make the obtained results more realistic and valuable. Since the 

development of CFD is highly dependent to the development in the computer 

technology, the main studies and researches have been mainly done in the recent years.  

Even there are many published studies in the literature, about the use of CFD 

within the turbomachinery concept; a few of them are about the semi axial centrifugal 

deep well pumps.  
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 The closest work to this study is done by Bartholomeus Petrus Maria van Esch 

(van Esch, 1997). He showed that the flow in radial and mixed flow type pumps can be 

modeled with unsteady flow while considering the flow is incompressible potential 

flow. The effect of viscosity is modeled in the thin boundary layers, wakes and mixing 

areas. In his thesis, in order to solve the unsteady potential flow, he used fully three 

dimensional finite element methods. He divided the computational mesh into rotor and 

stator parts, and connected them with sliding interfaces. To reduce the computational 

time, he employed special numerical techniques based on subtracting method combined 

with the implicit imposition of the Kutta conditions at the trailing edges of the impeller 

and diffuser blades. His computational results showed a good agreement with the 

experimentally obtained values.  

 There also similar works done in Türkiye. One of them belongs to Ebru Suna 

Ergün (Ergün, 1999). She used a two dimensional impeller with 8 blades and a two 

dimensional diffuser and discretize them by finite element method. The flow has been 

modeled by the vorticity stream approach. Since the results are based on vorticity and 

streamlines, she showed how to calculate the pressure and velocity in both x and y 

directions in terms of these.   

 Kemal Sarıo�lu, also made his thesis on this numerical solution of the flow in 

the pump impellers (Sarıo�lu, 19997). As the domain, he used radial impellers and 

discretized it by finite volume method. The solution method consists of three-

dimensional incompressible Eulerian equations. He obtained several two dimensional 

analysis for different meridian axis. Thus as a whole he obtained three-dimensional 

solution. 

 Ali A�kın Karaka�, also used a radial impeller discretized by finite volume 

method (Karaka�, 2000). In his work, the viscous terms of the Navier Stokes equations 

have been initially eliminated and the equations have been converted into Euler 

equations type. Then the viscous terms are added again. As the solution domain, the 

flow between the impeller blades was investigated.   
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CHAPTER 2 

 

REVIEW OF PUMPS 

 

Pumps are machines that change the energy level of the fluids (De�er, 2005). 

They can be classified based on applications they serve, the materials they are 

constructed, the liquids they handle and even their orientation in space. The most basic 

one is defined by the principle which energy is imported to the fluid (Karassik, 1986). 

Due to this system, all pumps can be classified in two major categories; dynamic 

(kinetic) pumps and positive displacement pumps.  

A positive displacement pump operates by alternating of filling a cavity and then 

displacing a given volume of liquid. It delivers a constant volume of liquid against 

varying discharge pressure or head. The positive displacement pumps can be classified 

as:  

 

• Reciprocating pumps 

• Power pumps 

• Steam pumps 

• Rotary pumps 

 

Dynamic pumps can be divided into subcategories; centrifugal and other special 

effect pumps (Karassik, 1986). Centrifugal pumps are basically consists of a stationary 

pump casing and an impeller mounted on a rotating shaft. It is a kinetic machine that 

converts mechanical energy into the hydraulic energy through a centrifugal activity such 

that water enters in axial direction near the shaft is accelerated by revolving impeller 

blades and finally leaves the pump in circumferential direction (van Esch, 1997).  

Selecting between a centrifugal pump and positive displacement pump is not 

always straightforward. The two types of pumps behave very differently regarding 

pressure head and flow rate: the centrifugal pump has varying flow depending on the 

system pressure or head, however, the positive displacement pump has more or less 

constant flow regardless of the system pressure or head. Positive displacement pumps 

generally give more pressure than centrifugal pumps’.  
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Figure 2.1. Pump classifications due to specific speed (Source: Pump Handbook). 

 

Another major difference between the pump types is the effect of viscosity on 

the capacity; in the centrifugal pump, the flow is reduced when the viscosity is 

increased. However, for the positive displacement pump the flow is increased by 

increasing of the viscosity. 

 

2.1.  Historical Review of the Centrifugal Pumps 
 

The invention of the use of centrifugal force as a driving mechanism for pumps 

was started at the second half of the 17th Century. Initially, problems, like lack of 

suitable gearing and prime movers of sufficiently high speed and complexity of the 

efficient centrifugal pump design theory prevent the development and usage of 

centrifugal pumps at those times. Even after the theoretical work of Euler in 1750, very 

few understood its principle. However, The Great Exhibition in 1851 became a turning 

point in the development of the centrifugal pump. Several designs were shown, of 

which a few appeared to be very successful. Since then the centrifugal pump has 

developed into a high efficiency machine (van Esch, 1997).  

Dennis Papin (1647 – 1712) is believed to be the originator of the centrifugal 

pump (van Esch, 1997). Although the existence of centrifugal forces was known long 

before his time, he developed the first proper centrifugal pump as known today: a 

machine that water enters in axial direction near the shaft, is accelerated by the 

revolving impeller blades and finally leaves the pump in circumferential direction.  
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In 1818, the famous “Massachusetts Pump” was introduced in America, which 

was also a turning point for the development of the centrifugal pump. Its design was 

similar to the original conception of Denis Papin which the blades running in a circular 

or spiral casing. From this moment on, the design steadily evolved into the centrifugal 

pump of today, although departures from previous designs were not always 

improvements (van Esch, 1997).  

 

2.2. Centrifugal Pumps 
 

Centrifugal pumps are widely used for various types of applications in the 

industry, irrigation, fire extinguishing, water network systems etc. They have a key 

position in all watering applications. They have high reliability and stability.  

Every centrifugal pump consists of two principal parts: an impeller, which 

forces the liquid into a rotary motion by impelling action and the diffuser, which directs 

the liquid into the impeller and leads it away under a higher pressure.  

 

 
 

Figure 2.2. The impeller and diffuser of a centrifugal pump. 

 

The impeller, attached on a spinning shaft, is the heart of the centrifugal pump. 

It contains several blades or vanes, which are always curved backwards. The blades 

may be of single or double curvature (twisted suction ends). All impeller pumps are 

rotodynamic, including those with radial flow, mixed flow and axial flow impellers: the 
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term “centrifugal pumps” tends to encompass all rotodynamic pumps. These types are 

classified due to blade shapes: 

 

• Radial flow pumps with generally low mass flow rates, high-pressure output 

and lower efficiencies. The blades of the radial flow pumps are parallel to the pump 

shaft. 

• Mixed flow pumps with wide range of flow, medium range head and high 

efficiencies. The blades of the mixed flow pumps have curvatures.  

• Axial flow pumps with high mass flow rates, low head and high efficiencies. 

The blades of the axial flow pumps are nearly perpendicular to the pump shaft. The 

sections of a blade are composed of different airfoil profiles.  

 

   
  (a)     (b)    (c) 

 

Figure 2.3.  The centrifugal pumps types: a) Radial flow pump, b) Mixed flow pump, 

c) Axial flow pump (Source: Karassik, 1986) 

 

Centrifugal pumps can be single stage with one impeller, or multi stages with 

several impellers in series. Each impeller raises the pressure, so the total pressure rise is 

the sum of those.  

Due to the arrangements of the impeller, the centrifugal pumps can be divided 

into four groups (Karassik, 1986): 

 

• Overhung impeller pumps have their single impellers mounted on the shaft 

without any bearings horizontally.   
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• Pumps that have their impellers between bearings, that the impellers are 

mounted on a shaft that is supported by the bearings and driven through a flexible or 

rigid coupling by a driver. 

• Vertically suspended impeller pumps, which are also called vertical turbine 

pumps. These pumps have no bearings.  

• Magnetically suspended impeller pumps; the impeller is suspended by a 

magnetic bearing, therefore providing contact free rotation of the impeller inside the 

pump. They are also known as blood pumps.   

 

The discharge region of the pump, can be a volute or a diffuser, collects the fluid 

as it leaves the impeller. The cross sectional area of that region is increasing such that 

high velocity of the fluid is partly converted to the static pressure; in other words, the 

dynamic head (velocity head) is converted to the static head.  

The pump casing has to be packet around the shaft to prevent external leakage. 

Closely fitted rings, called wearing rings, are mounted on the impeller and fitted in the 

casing to restrict leakage of high-pressure liquid back to the pump suction. Liquid is 

directed to the impeller eye by the suction nozzle and is brought into a circular motion 

by the impeller vanes.  

Centrifugal pumps are high efficiency machines, which also can be adapted to 

suit almost any working condition. 

 

2.3. Definitions 
 

A pump has three main parameters that define its characteristic: the rotation 

speed, the head and the mass flow rate. 

The total head, TH  of a pump is defined as the height (in meters) which the 

pump can lift a fluid. It includes the velocity head, and the elevation height at the point 

of interest. The static head, however, is related with the increase in total pressure sp  of 

the fluid by: 
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g
p

H s

ρ
=           (2.1)  

 

where ρ  is the density of the fluid raised and g  is the gravitational constant. 

The head is reversely proportional to the flow rate. However, as in the Figure 

2.4, due to the recirculation, shock and friction losses, the actual head flow curve is 

much lower than the expected one. 

 

 
 

Figure 2.4. The head flow curve. 

 

Unfortunately, due to the first law of thermodynamics, the power applied can not 

be transferred to the liquid without any losses. Several sources for energy losses can be 

identified. The most important are mechanical losses in shaft bearings, losses attributed 

to leakage, disc friction losses and hydraulic losses resulting from roughness, 

turbulence, boundary layer separation, mixing processes etc. The overall efficiency η    

is defined as the ratio of the pumps energy output to the power input applied at the 

shaft. In terms of delivered head H  the overall efficiency can be written as 

 

shaft
othermechhyd P

gQHρηηηη == ..          (2.2) 
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where Q  is the mass flow rate and shaftP  is the shaft power. A convenient means of 

presenting the overall performance of a specific pump is the use of characteristic curves.  

For any centrifugal pump, curves can be developed to show the relationship 

between flow head, power, efficiency, and net positive suction head. Variation of the 

head with capacity at a constant speed is called the pump characteristic. The 

characteristic curves indicate the behavior of a pump under changing operating 

conditions. At such a curve the head, power input and efficiency at constant speed are 

plotted against the flow rate. The flow rate for which the efficiency is highest is called 

the best efficiency point (BEP) (Figure 2.5). 

 

 
 

Figure 2.5. A simple pump characteristic curve. 

 

Since the operating principle is based on the centrifugal forces, rotation speed is 

the one of the most important parameter of the pumps. Head and capacity of a pump 

vary with the speed in such a way that the performance curves retain their characteristic 

features. The variation of head, capacity, and power with speed follows definite rules 

known as affinity rules. When applied to every point on the head – capacity curve, these 

laws state: when rotation speed is changed, capacity varies directly as the speed, the 

head varies directly as the square of the rotation speed, and the power consumed varies 

directly as the cube of the rotation speed. The cube of the rotation speed is based on the 

assumption that efficiency stays constant with speed for each point (Stephanoff, 1957). 

The affinity laws can be expressed by the following equations: 
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where n  is the rotational speed.  

These affinity rules are results of dimensional analysis of Stephanoff in 1964, 

which reveals the existence of several scaling laws for groups of geometrically similar 

machines. He defines dimensionless specific speed as; 

 

( ) 4
3

2
1

gH

nQ
n =ω           (2.4) 

 

where ωn is the specific speed, can also be accepted as the identity card of a pump. 

According to its definition, geometrically similar machines with similar internal flow 

conditions have the same specific speed value.   Depending on the specific speed, the 

slope of the head characteristic varies from flat (low specific speed) to steep (high 

specific speed). 

Characteristics of centrifugal pumps are said to be stable when the head curve 

rises steadily, such as there is always a negative slope in relation to the Q axis. For 

every head, there is a single flow rate. Pumps with low specific speeds and large angles 

of incidence are prone to instability. Axial flow pumps (high specific speed) with 

adjustable impeller vanes have an instability range within which it is not permissible to 

operate them. 
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CHAPTER 3 

 

PUMP TESTS 

 

Numerical analyses are useless unless the results are compared with the actual 

test results. The comparison gives the accuracy of the numerical analysis and validates 

the employed coefficient such as the verification for the mesh, the coefficients used, and 

the solution method. If the results matched within a specific tolerance, the other 

obtained results, which can not be measured by tests, can be accepted true and 

evaluated. For such a comparison, the pump tests must also have high accuracy and 

precision. The calibration of the measurement equipment must be done, and the tests 

must be conducted due to the specified standards.  

The test of the pump is important due to the many reasons such as; to find the 

pump performance, to optimize the impeller diameter, to find the effect of special 

materials on the performance and for several other reasons. During pump a test, the 

mass flow rate, head, and pump inlet energy are the main parameters, which should be 

measured (De�er, 2004). 

 The pump, investigated in this study, has been tested by Duymu� in the 

calibrated test stand of Vansan Company and the characteristic curve has been obtained. 

The numerical results of the present study are compared with the experimental study of 

Duymu�.  

It might be useful to briefly explain the test stand in which the experimental 

study of Duymu� has been performed. The test stand has magnetic flow meters, pressure 

transmitters, power analyzers, and a network system. The signals of measuring devices 

are collected by a data acquisition card and are processed by a computer program. 
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Figure 3.1. The data acquisition schematic view. 

  

 The test mechanism is built on a test pool and controlled via the control room 

(Figure 3.2). In order to process the data received, an interface program is used. This 

program, basically, analyzes the input data, eliminates the distortions and calculates the 

averages of the measured values.  

 

 
 

Figure 3.2. The flow meters, pressure transmitters, and the linearly controlled valves in  

                   the test process. 
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There are inevitable errors in the used digital equipments. Due to their catalogue 

data, the power analyzer has ±0.3 %, pressure transmitters have ±0.5 %, and mass flow 

meters have ±0.5 % error in their measurements.   

 In order to measure pressure, pressure tapings are used. They are located 3 pipe 

diameters after the pump discharge in order to comply with the ISO 3555 standard.  The 

mass flow rate is controlled by the valve, in front of the flow meter, after the pressure 

transmitter. So for different mass flow rates, the characteristic of the pump can be 

obtained.  

 The power analyzer is connected to the motor panel of the pump. It can measure 

almost all parameters about the energy consumed by the motor. This value is multiplied 

with the motor efficiency that can be obtained from the motor catalogue. So the power 

that pump consumes can be calculated: 

 

MOTORMOTORPUMP PP η×=         (3.1) 

 

 As mentioned before, for the validation of a test, the test stand must fit the 

conditions which are described in standards. The ISO 5198 standard defines the 

minimum pipe length that must be used before and after the flow meter; that is a 

minimum of 10 times of pipe diameter for the inflow and a minimum of 5 times the pipe 

diameter for the outflow. 

Briefly, by changing the water mass flow rate, the head and the power for the 

pump is measured and the efficiency of the pump is calculated. After obtaining the 

experimental values, the characteristic curve of the pump for the specified rotation is 

plotted.  
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CHAPTER 4 

 

THE CONSIDERED PROBLEM 

 

4.1. General Information 

 

The pump which is considered in this study is a semi axial centrifugal pump that 

consists of closed impellers and a diffuser. It is a submersible type which is widely used 

for well applications. It is a vertical turbine pump that was designed for 14” wells and 

120 kg/s flow rate. Practically, a suction case for the inlet and a discharge for the outlet 

are mounted on the pump. According to the required head, these stages are connected 

serially on a shaft. In order to increase the head for a constant flow rate, more stages are 

added to the pump. The investigated pump is the product of VANSAN Company and 

coded as VDP 1433. More information about the pump can be obtained from VANSAN 

Company (http://www.vansan.com.tr).  

 

 
 

Figure 4.1. VDP 1433 with two stages and its CAD model.  
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Figure 4.2. The sectional view of the assembled pump with main dimensions. 

 

4.2. Specifications 
 

A general view of a single stage is shown in Figure 4.2. The diffuser has seven 

blades and the impeller has six blades. The diffusers are designed such that to increase 

the static pressure at the outlet of the pump.  

The diffusers and impellers are produced by casting method. Their materials are 

usually cast iron, however they can also be manufacturing from bronze. It should be 

also noted that, before the installation of the pump parts, the inner surfaces of the 

impeller and the diffuser are polished and so the surface roughness is decreased. Some 

specific dimensions of the pump as specified in Figure 4.2 are as follows: 

 

Maximum diameter of pump : 365 mm 

The height of the diffuser : 315 mm 

Impeller diameter  : 292 mm 

 

In order to start the numerical procedure, the fluid model of the pump is 

required. From the solid model of the pump, the fluid model was obtained as seen in 

Figure 4.3. This model also contains the impeller fluid, which is rotating, and the 

stationary diffuser part. 
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   (a)      (b) 

 

Figure 4.3.  The solid and fluid model of the pump (the diffuser is sectioned for better  

view).  

  

Apart from the geometry, a pump is best described by its performance curve. 

The speed of the considered pump is 1450 rpm. As seen from the chart, the best 

efficiency point of the pump is at 120 kg/s, and at this point, the head is approximately 

160 kPa. The characteristic curve of the pump is shown in Figure 4.4. 

 

Table 4.1. The test values of a single stage VDP 1433. 

 

Head Capacity Power 
Consumed 

Hydroulic 
Power Efficiency 

mWC kg/s kW kW % 
26.95 0 19.2 0.0 0.0 
22.2 47.8 19.7 10.4 52.8 
20.25 74.7 20.5 14.8 72.3 
18.3 93.4 21.35 16.8 78.5 
16.3 113.9 21.95 18.2 82.9 
15.35 124.8 22.35 18.8 84.0 
14.35 131.5 22.35 18.5 82.8 
13.35 137 22.25 17.9 80.6 
11.4 150.5 21.95 16.8 76.6 
9.45 162.3 21.1 15.0 71.3 
7.45 174.3 20.3 12.7 62.7 
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Figure 4.4. The characteristic curves of VDP 1433 at1450 RPM 
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CHAPTER 5 

 

INTRODUCTION TO CFD 

 

CFD is the analysis and simulation of fluid flow by the mathematical models 

within the given conditions (Ferziger, 2002). This provides to understand the physical 

events that occur in the flow of fluids around and within designated objects. Those 

fields are governed by the equations of the fluid mechanics, chemical reactions, and the 

related phenomena are nonlinear which often have no analytical solutions. So instead, 

numerical methods with acceptable truncation errors are used.  

These simulations require many computations, which mean high computational 

sources and complex softwares. With the increasing computer technology and industrial 

demand, by a qualified analyst, these flow modeling softwares can be used to create a 

virtual prototype of the product or process that simulates the real world conditions. The 

advantages of the CFD can be listed as (Lomax, 1999): 

 

• Substantial reduction of lead times and costs of new designs 

• Ability to study systems where controlled experiments are difficult or 

impossible to perform (e.g very large systems) 

• Ability to study systems under hazardous conditions and at beyond their 

normal performance limits (eg safety studies and accident scenarios) 

• Practically unlimited level of detail of results.  

 

In order to perform a meaningful CFD design analysis, four main elements must 

be incorporated into the method.  

 

1. Goal definition – what are the objectives? How will they be measured?  

2. Domain and material definitions – CAD representation of the domain, 

physical properties for fluid and solids (if modeled) 

3. Boundary condition definitions – are conditions time dependent? What 

kinds of boundaries exist? (wall, inlet, outlet, mass flow, pressure etc). Can the 

conditions represent the actual conditions? 
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4. Iterative development plan – how will the analysis be performed. 

The first step of a CFD analysis involves the specification the problem and 

governing parameters. The CAD representation of the domain and the material 

properties for fluids and solids should be given. Then this geometry of interest is 

divided, or discretized, into a number of computational cells. Discretization is the 

method of approximating the differential equations by a system of algebraic equations 

for the variables at some set of discrete locations in space and time. The discrete 

locations are referred to as the grid or the mesh.  Then the problem is specified and an 

appropriate set of governing equations and boundary conditions must be selected. If 

required, the appropriate turbulence model should be specified. Then, the iterative 

development plan of the performed analysis is stated. Finally, after completing the 

sufficient number of iterations, the results of the simulation must be commented and 

interpreted. This step can require post-processing of the data and can be done by flow 

visualization tools like colorful and error estimation techniques.   

The most important part of a CFD is, the results can not be evaluated without 

experimental validation.  

There are many possible sources of error in a CFD analysis, as summarized 

below: 

 

1. Discritization error. 

2. Machine truncation error. 

3. Mesh related errors such as the lack of resolution (number and skewness of 

elements) and the approximation of the boundary geometry. 

4. Stability enhancers such as artificial viscosity. 

5. Approximations of the flow physics by simplified models (turbulence) 

6. Computational error such as stalled convergence. 

 

As seen above, the magnitude of the discretization error depends upon both the 

order of discretization and the size of the elements. 
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CHAPTER 6 

 

GOVERNING EQUATIONS 

 

6.1. General Form of the Governing Equations  
 

There are three main equations valid for a flow inside a control volume; 

 

a. Continuity equation which is a scalar equation and describes the 

conservation of mass 

b. Momentum equations, which are vectoral equations, are derived based on 

Newton’s second law of motion: the changes of momentum for a control volume in a 

finite time interval are equal to the sum of all applied forces to the control volume. The 

continuity and the momentum equations are also called as Navier-Stokes equations 

c. Energy equation, which is a scalar equation, defines the conservation of 

energy. 

These equations in their general forms can be listed as; 
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where ρ  is the density, V
�

 is the velocity vector, p  is the pressure, τ  is the stress, 

BODYF  is the body forces (external forces), h  is the total enthalpy, T  is the temperature, 

k  is the thermal conductivity, and S  as the external source.  
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6.2. Assumptions for the Considered Flow 
 

For most fluid flow problems, these equations are too complicated to be solved 

either analytically or numerically. In the case of a flow through a hydraulic pump 

operating near design condition, the used mathematical equations can be simplified 

considerably without losing its overall validity. The following assumptions can be 

accepted in order to obtain more convenient and simplified form of the governing 

equations:  

 

6.2.1. Isothermal Flow 
 

Temperature inside the pump is not changed with time and fluid flows at a 

constant temperature. Thus, the fluid flow through a centrifugal pump is essentially 

isothermal. Heat generation due to viscous forces and heat transfer between pump and 

surroundings are negligible. Even if the process is not isothermal, the density of a liquid 

weakly depends on the temperature. For the present problem, the temperature of the 

flow is not changed and the flow is considered as isothermal. Thus, the terms in the 

general form of the governing equations (Eq. 6.1 to 6.3) that contain variation of 

temperature and enthalpy are neglected. The energy equation is excluded from the 

governing equations and will not be solved for the present problem.  

  

6.2.2. Incompressible Newtonian Fluid 
 

Flows, in which variations of density are negligible, are defined as 

incompressible; when the density variations within a flow are not negligible, the flow is 

called compressible. Compressible flows occur frequently in engineering applications. 

Compressibility effects are very important in the design of modern high speed aircraft 

and missiles, power plants, fans, compressors etc. 

 Actually incompressible fluid is a thermo dynamical term; however 

incompressible flow is a term of fluid mechanics. These two terms are different from 

each other and should not be confused. The motion of a compressible fluid can be 

assumed as incompressible (Sarıo�lu, 1997). The main criterion for the incompressible 
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flow is the Mach number (M); for M<0.3, the maximum density variation is less than 

5%, therefore the flow can be treaded as incompressible. 

 As defined before, incompressible flow is the flow that the substantial change in 

the density of the fluid particles with respect to time can be negligible. This can be 

modeled from the continuity equation as, 

 

1
0
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ρ
ρ

=           (6.4) 

 

For the present study, density of the all the fluid particles can be assumed same 

and is not changed through space and time. Thus, for an incompressible flow since the 

density is not changed and is constant, the general form of the governing equations 

become as: 
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As is seen from the above equations, density is constant and is taken out of 

derivatives.  

All real fluids have internal friction, so their rate of deformation is a function of 

the applied shear stress. If the rate of deformation is directly proportional to the applied 

shear stress, the fluid is called Newtonian fluid. For the Newtonian fluids the stress 

terms are defined based on the velocity components. Thus, for an incompressible 

Newtonian fluid the governing equations can be written as: 
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 In the present study, the governing equations are solved for water at 20oC. As 

known, water is a Newtonian and incompressible fluid. Thus, the general form of the 

continuity and momentum equations (Eq 6.1 and 6.2) are simplified to Eq 6.5 and 6.7. 

 

6.2.3. Turbulent Type Flow 
 

The flow inside the pump is internal turbulent type. Flows, which are bounded 

by solid surfaces, are called internal flows. Internal flows include flows through pipes, 

ducts, nozzles, diffusers, sudden contractions and expansions, valves and fittings. These 

flows may be laminar or turbulent.  

All flows encountered in engineering practice become unstable above a certain 

Reynolds number. At low Reynolds numbers flows are laminar however as the 

Reynolds number increases; flows are observed to become turbulent.  A chaotic and 

random state of motion develops in which the velocity and pressure change 

continuously with time within substantial regions of flow. Obviously, the flows in turbo 

machines are mainly turbulent due to high velocities. 

Direct calculation of a basic turbulence situation needs a huge amount of 

computational source and time. Since it is difficult to solve turbulent flows directly, 

some basic models are used instead. These models are usually obtained by adding a 

shear stress term, which expresses the turbulence, to the laminar viscous stress: 

 

teff µµµ +=           (6.8) 

 

where tµ  and effµ  are turbulence and effective viscosity respectively. As seen, the 

effective viscosity includes both dynamic and turbulence viscosity. Actually, the 

kinematic viscosity is the property of the fluid; however, turbulence viscosity is the 

feature of the flow.  

Turbulent flow and turbulence models will be examined in details in the next 

chapter. In this study, ε−k  turbulence model is mainly used and the governing 

equation for this model can be described as: 
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6.2.4. Three Dimensional Flow 
 

The modeled pump geometry and the fluid volume inside this geometry are 

three-dimensional. There might be some studies in literature in which the flow inside a 

pump has been studied as two-dimensional. Foe example the flow inside a radial pump 

impeller can be investigated in two-dimensional. However, for the selected pump, 

which is a semi axial pump, the velocity vectors for all dimensions are important and 

have directly effects on the required results. Therefore, the problem should be handled 

in three-dimensional coordinate systems.  

 

6.2.5. Symmetric Geometry Position 
 

Although the impeller rotates and the position of the impeller blades with respect 

to diffuser blades changes with time, the modeled flow for a specific position is solved. 

However, the geometry can be regarded as same for all other positions. Although the 

transfer of the energy to the fluid by rotating blades is unsteady, the flow across the 

boundaries of a control volume surrounding the pump can be considered as steady flow. 

So the problem is solved for a fixed impeller and diffuser position. Since the flow is 

considered as at steady state, the terms, which have time variables in the general form of 

governing equations, will be omitted.  

 

6.3. Proper Form of Governing Equations for Pumps 
 

Based on the all information given above and assumptions for the present flow, 

the governing equations for the problem which are continuity, momentum, k and e 

equations can be written as:  
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CHAPTER 7 

 

TURBULENCE AND ITS MODELLING 

 

Almost all-fluid flow that is encountered in daily life is turbulent. Typical 

examples are flow around cars, airplanes and buildings. The flow and combustion in 

engines, both in piston engines and gas turbines and combustors, are highly turbulent. 

Air movements in rooms are also highly turbulent. 

At values of Reynolds number above critRe  a complicated series of events takes 

place, which eventually leads to a radical change of the flow character. The velocity and 

all other flow properties vary in a random and chaotic way. This regime is called 

turbulent flow.  

 

7.1.  Turbulent Flow Characteristics 
 

Turbulent flow is irregular, random and chaotic. Even tough turbulence is 

chaotic, it is deterministic and is described by the Navier Stokes equations.  

 In turbulent flow the diffusivity increases. This means that the spreading rate of 

the boundary layers, jets, etc. increases as the flow becomes turbulent. The turbulence 

increases the exchange of momentum in e.g. boundary layers and reduces or delays 

thereby separation at bluff bodies such as cylinders, airfoils and cars. The increased 

diffusivity also increases the resistance (wall friction) in internal flows such as in 

channels and pipes. 

Turbulent flow is always three-dimensional. It is dissipative, which means that 

kinetic energy in the small (dissipative) eddies are transformed into internal energy. The 

small eddies receive the kinetic energy from slightly larger eddies and so on. The largest 

eddies extract their energy from the mean flow. This process of transferred energy from 

the largest turbulent scales to the smallest is called cascade process (Davidson, 2003).  

Even though there are small turbulent scales in the flow, they are much larger 

than the molecular scale and can be treated as a continuum. 

The effects produced by turbulence may or may not be desirable, depend on the 

application. Intense mixing is useful when chemical mixing or heat transfer is needed; 
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both of these may be increased by the orders of magnitude by turbulence. On the other 

hand, increased mixing of momentum results in increased frictional forces, thus 

increasing the power required to pump a fluid or to propel a vehicle; again, an increase 

by an order of magnitude is not unusual.   

 

7.2. Turbulence Modeling 
 

As mentioned before, the velocity and all other characteristics vary in a random 

way in turbulent flow. Therefore, modeling turbulent flow directly (direct numerical 

solution) requires using very small scales and a very fine resolution in time (since the 

turbulent flow is always unsteady). However small scales mean more calculations and 

high computer sources that are still not available today for modeling this amount of 

turbulence. So, in order to show the effect of the turbulent flow in a steady flow 

analysis, by using the mentioned characteristics, a turbulent viscosity term is 

introduced. This term is calculated from the other properties and shows its effect as 

viscosity increase in the equations.  

Modeling turbulence starts with velocity component which can be decomposed 

into a steady mean value V  with a fluctuating component ( )tv'  superimposed on it; 

 

( )tvVtV ')( +=          (7.1) 

 

In general, it is most attractive to characteristic turbulent flow by the mean 

values of flow properties (U, V, W, P etc) and the statistical properties of their 

fluctuation (u’, v’, w’, p’, etc). One reason why these variables are decomposed is that 

when the quantities are measured the mean values are more important and interested 

than the time histories.   

These time-averaged variables modify the governing equations which contains 

additional unknown variables. For different types of flow, determining these variables 

in terms of known quantities requires different turbulence models.  
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Figure 7.1. The velocity measurement in turbulent flow. 

 

7.3. Types of Turbulence Models 
 

No turbulence model is universally accepted as being superior for all types of 

problems. The choice of the turbulence model will depend on considerations such as the 

physics encompassed in the flow, established practice for a specific class of problem, 

the level of accuracy required, the available computational resources, and the amount of 

time available for simulation.   

An algebraic model equation is used to compute a turbulent viscosity, often 

called eddy viscosity. The Reynolds stress tensor is then computed using an assumption, 

which relates the Reynolds stress tensor to the velocity gradients and the turbulent 

viscosity. This assumption is called the Boussinesq assumption. Models that are based 

on turbulent (eddy) viscosity are called eddy viscosity models. 

 In one-equation models, a transport equation is solved for a turbulent quantity 

(usually turbulent kinetic energy) and a second turbulent quantity (usually turbulent 

length scale) is obtained from an algebraic expression. The turbulent viscosity is 

calculated from Boussinesq assumption. The two equation models fall into the class of 

the eddy viscosity models. Two transport equations are derived which describe transport 

of two scalars, for example the turbulent kinetic energy k  and its dissipationε . The 

Reynolds stress tensor is then computed using an assumption which relates the 

Reynolds stress tensor to the velocity gradients and an eddy viscosity. The latter is 

obtained from two transported scalars. 
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Above the different types of turbulence models have been listed in increasing 

order of complexity, ability to model the turbulence, and cost in terms of computational 

work. Among the mentioned models,  ε−k  model (Jones and Launder 1972) has 

become the popular one for most of applications (Wilcox 1993). It is computationally 

tractable and robust. In this model, two partial differential equations, one for the 

turbulent kinetic energy ( k ) and a second for the rate of dissipation of the turbulent 

kinetic energy (ε ) are solved, where k  and ε  are defined follows (Wilcox 1993): 

 

iiuuk ′′′′= ρρ
2
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          (7.3) 
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The transport equation for these properties is presented below: 
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 In these equations, kG  represents the generation of turbulence kinetic energy 

due to the mean velocity gradients. bG  is the generation of turbulence kinetic energy 

due to the buoyancy. MY  represents the contribution of the fluctuating dilatation in 

compressible turbulence to the overall dissipation rate. εεε 321  and  , CCC  are constants. 

εσσ  and k  are the turbulent Prandtl numbers for k  and ε , respectively. εSS k  and   are 

source terms that can be defined by the user.  

So the turbulent (or eddy) viscosity is: 

 

ε
ρµ µ

2k
Ct =           (7.7) 
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where µC  is a constant. The values of the constants can be listed as: 

 

3.1     0.1     09.0     92.1     44.1 21 ===== εµεε σσ kCCC  

 

These default values have been determined from experiments with air and water 

for fundamental turbulent shear flows including homogenous shear flows and decaying 

isotropic grid turbulence. They have been found to work fairly well for a wide range of 

wall – bounded and free shear flows.  

 

7.4. Wall Functions 
 

As mentioned before, flow inside a pump is highly turbulent. This is because of 

the high velocities and the twisted blade geometries. The flow behavior and turbulence 

structure at the walls are considerably different from the free turbulent flows in different 

ways. 

Numerous experiments have shown that the near wall region can be largely 

subdivided into three layers. In the innermost layer, called the “viscous sublayer”, the 

flow is almost laminar, and so the (molecular) viscosity plays a dominant role in 

momentum and mass transfer. In the outer layer, also called the fully turbulent layer, 

turbulence plays a major role. Between these two layers, there is an interim region 

where the effects of molecular viscosity and turbulence have nearly same importance. 

These regions are plotted on a chart as in Figure 7.2.  

In the linear sub layer where the fluid layer in contact with a smooth wall, 

turbulent eddying motions end near the wall. Therefore, the turbulent shear stress 

effects are dominated by the viscous shear. At this layer, the shear stress is assumed 

constant and equal to the wall shear stress throughout the layer.  
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Figure 7.2. The layers at the near wall region (Source: Fluent Users Guide) 

 

 The outside of the viscous sublayer where the viscous and turbulent effects are 

both important, is called the log law layer. Here the shear stress varies slowly with 

distance from the wall, and within this layer, it is assumed constant and equal to the 

wall shear stress.   

Traditionally, there are two approaches to model near wall region. In the first 

approach, the viscosity affected inner region (viscous sublayer and buffer layer) is not 

resolved. Instead, semi empirical formulas called “wall functions” are used to handle 

the viscosity-affected region between the wall and the fully turbulent region. The use of 

wall functions overcomes the need to modify the turbulence models for the presence of 

the walls.  

 In the second approach however, the turbulence models are enable the viscosity-

affected region to be resolved with a mesh all the way to the wall, including the viscous 

sublayer. For the purposes of discussion, this will be termed the “near wall modeling” 

approach.  

In most high Reynolds number flows, the wall function approach substantially 

saves the computational resources, because the viscosity affected near wall region in 

which the solution variables change most rapidly, does not need to be resolved. The 



34 

wall function approach is popular because it is economical, robust, and reasonably 

accurate. It is a practical option for the near wall treatments for industrial flow 

simulations.  

The wall function approach however, is inadequate in situations where the low 

Reynolds number effects are pervasive in the flow domain in question, and the 

hypotheses underlying the wall functions cease to be valid. Such situations require near 

wall models that are valid in the viscosity-affected region and accordingly integrable all 

the way to the wall.  

The standard wall functions in Fluent, which are also used in the present study, 

are based on the works of Launder and Spalding. It has been most widely used model 

for industrial flows.  
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CHAPTER 8 

 

BOUNDARY CONDITIONS 

 

All numerical problems have to be defined within their initial and/or boundary 

conditions. It is important to correctly specify the boundary conditions in order to obtain 

realistic results. The type of the boundary conditions that is required by any partial 

differential equation depends on the physical condition of the problem. Generally, the 

value of the variable at the boundary (Dirichlet boundary conditions) or its gradient in a 

particular direction (usually normal to the boundary – Neumann boundary conditions), 

or linear combinations of the two quantities can be defined. These types of the 

boundaries will be applied to various surfaces. Some of the used boundary types can be 

classified as: 

 

• Inlet boundary condition 

• Outlet boundary condition 

• Wall boundary condition 

• Symmetry boundary condition 

• Periodicity boundary condition. 

 

For the introduced problem, four types of boundary conditions, namely non – 

slip stationary wall, non – slip rotating wall, inlet and outlet boundaries exists.  

The impeller and diffuser have symmetrical shape and can be considered 

symmetric individually to simplify the problem. However, as a whole system, since the 

diffuser and impeller have different number of blades, their position with respect to 

each other breaks the symmetrical features. For different positioning of the blades, 

different results are obtained. The periodicity boundary condition is also not suitable for 

the problem considered.  

Figure 8.1 shows the section of the diffuser, impeller and their fluid sections. On 

the left side of the figure, the types of the boundary conditions applied to the fluid 

domain can be observed. 
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Figure 8.1. The types of the boundary conditions for the considered problem. 

 

8.1. Inlet Boundary Conditions 
 

The inlet boundary condition can be specified by various methods. One of them 

is to define the pressure at the inlet. The other general one is to specify mass flow at the 

inlet. For the analysis, the inlet boundary condition is applied at the inlet of the impeller 

as depicted in Figure 8.2. The velocity vectors are defined as to be normal to this 

surface. In the present study, all design calculations are performed based on that 

principle. This definition of inlet boundary condition complies with the practical 

applications. Practically, a suction case is installed at the inlet of the pump to uniform 

the flow for impeller inlet. 

  

 
 

Figure 8.2. The inlet boundary condition is applied to the impeller inlet. 
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8.1.1. Pressure Inlet Boundary Conditions  
 

Pressure inlet boundary conditions are used to define fluid pressure (total or 

static pressure) at flow inlets.  They are suitable both for incompressible and 

compressible flow calculations. Pressure inlet boundary condition can be used when the 

inlet pressure is known but the flow rate and/or velocity is not known. Therefore, the 

mass flow rate at the inlet is determined due the pressures at the inlet and outlet 

surfaces. It might be useful to mention that, for a pressure inlet boundary condition, 

besides the total pressure, the flow direction should also be entered. The total pressure 

can be defined as: 

 

2
0 2

1
Vpp s

�
ρ+=          (8.1) 

 

where 0p  is the total pressure, sp  is the static pressure, and  dp  is the dynamic 

pressure.  

In Fluent program, the flow direction can be specified by either setting the 

direction vector in any coordinate system or defining normal the direction to boundary 

surface.  

 

8.1.2. Mass Flow Inlet Boundary Conditions 
 

Mass flow inlet boundary conditions are used to provide a prescribed mass flow 

rate at the inlet of a fluid volume. Both uniform and non-uniform velocity vectors can 

be defined at inlet boundary. If non-uniform velocity exists, in addition to magnitude, 

the distribution vector should also be known. Since the mass flow rate is known, the 

Fluent program calculates the total pressure from the interior computational solution.  

If both the total pressure and the mass flow rate at an inlet are known, the mass 

flow rate condition is preferred to be employed because the convergence of the pressure 

inlet solution is much slower with respect to its alternative. 
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8.2. Pressure Outlet Boundary Conditions 
 

The outlet boundary condition can only be defined by specifying the pressure at 

the outlet boundary, where the fluid leaves the domain. Pressure outlet boundary 

conditions require the specification of a static (gauge) pressure at the outlet boundary 

and all other conditions are extrapolated from the interior of the domain.  

As seen from the Figure 8.3, the pressure outlet is defined on the discharge 

surface of the diffuser. Since the pump shaft passes trough the stage, there is a hole at 

the center of the boundary, represents the shaft.  

If the pressure defined, is higher than the pressure inside the pump, the flow is 

developed at the reverse direction. In order to model this backflow, a set of backflow 

conditions should also be specified. The normal velocity can be calculated from the 

mass flow rate and the inlet area of the geometry. 

 

 
 

Figure 8.3. The outlet boundary is defined on the discharge of the diffuser. 

 

8.3. Wall Boundary Conditions 
 

Wall boundary conditions are used to bound fluid and solid regions. In viscous 

flows, the no-slip boundary condition is enforced at walls. All components of the 

velocity vector at wall boundaries are zero. As shown in Figure 8.4, the blades, hub and 
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shroud of the both impeller and diffuser can be accepted as the wall boundary condition 

for the considered problem. The diffuser surfaces are stationary, however, the impeller 

surfaces rotate at 1450 rpm. For rotating surfaces, a special treatment called “moving 

reference frame” is employed. 

 

 
(a)    (b)    (c) 

   
(d)    (e)    (f) 

 

Figure 8.4.  The wall boundaries specified for the problem. a) The impeller blades,               

b) impeller hub, c) impeller shroud, d) diffuser blades, e) diffuser hub,              

e) diffuser shroud. 

 

8.4. Defining Wall Motion 
 

Wall boundaries can be either stationary or moving. The stationary boundary 

condition specifies fixed walls, whereas the moving boundary condition can be used to 

specify the transitional or rotational velocity of the wall, or the velocity components. 

For rotational motion, the rotation speed (angular velocity) about a specified axis should 

be specified.   

 The rotating zone approach consists of two main types. Flows in multiple 

rotating reference frames, and flow in a single rotating frame as in turbomachinery 
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applications. In both of the cases, the flow is unsteady relative to a stationary space. 

Therefore solving a rotating domain problem consists of complex analysis if the angular 

velocity is directly used. However, if the relative velocity is used instead, the 

calculations will be simpler. The angular velocity of the rotating domain will be set to 

zero by defining a rotating space and the flow is steady relative to the rotating (non 

inertial) frame. Therefore, the computational domain is rendered steady state by 

considering it rotates with the same speed of the impeller.  

This type of treatment provides a stationary domain for the flow inside the rotor. 

However, if stators are present in addition to a rotor, then it is not possible to render the 

computational problem steady by choosing the calculation domain that rotates with the 

rotor or impeller. In other words, for each of the rotating zones and stationary zones, 

separated domains have to be defined.  

There is no doubt the solution between two zones should be matched in order to 

determine solution for the entire computational domain. In the Figure 8.5 the two fluid 

zones can be seen separately, also the assembly position is also stated. In such 

problems, the common surfaces of the both zones that the flow passes through from one 

to other are called interface surfaces. Since these surfaces are inside the fluid interior, 

surfaces of both zones should be marked and matched. The yellow surfaces at the 

Figure 8.5 are interface surfaces of the impeller. 

 The rotating zone model can also be situated mathematically by defining the 

relative velocity rV  as: 

 

( )rxVVr Ω−=          (8.4) 

 

where r  is the position vector in the rotating frame, V
�

 and rV
�

 are actual velocity and 

relative velocity vectors. By substituting Eq. 8.4 into the general form of the continuity 

and momentum equations, the new form of those equations based on the relative 

velocity vector will be obtained. The continuity and momentum equations appear as 

follows for an inertial reference frame: 

 

0=⋅∇ rV
��

          (8.5) 
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 As will be mentioned in the further chapters, the turbulence equations also take 

the new form due to the relative velocity, and became as 
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Figure 8.5 – The computational fluid domain inside the diffuser and the impeller. 

 

  Therefore, if the equations of motion are revised due to the rotating frame of 

reference, the acceleration of the fluid should be augmented by the additional terms that 

appear in the momentum equations. One of the mentioned terms is the centrifugal force 

and the other one is known as the Coriolis force term in turbomachinery that is 

 

( )rV
��

×Ω2ρ           (8.9) 
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8.4.1. The Coriolis Force 
 

When a fluid filled impeller is started to rotate about its axes, due to the 

centrifugal forces, the fluid gets out from the surface B of the Figure 8.6 that is a semi 

axial impeller. Therefore, the fluid sucked from the surface E is pressured from the 

surface B. As indicated in Figure 8.6, a fluid particle inside the impeller will rotate with 

the impeller at the velocity  

 

rVp

��
.Ω=           (8.10) 

 

about its rotating axis, and at the same time it will move with a velocity W, relative to 

the impeller, and leave the impeller. U is called the slip velocity, and the W is called the 

relative velocity (Edis, 1998).  

 

 
 

Figure 8.6 – The Coriolis and centrifugal forces acting on a rotating fluid particle. 

 
Since the fluid particle is leaving the axis, the slip velocity is constantly 

increasing. The difference of the velocity constitutes an acceleration, which is known as 

Coriolis Acceleration. 

As known from the fluid mechanics that, the pressure of a fluid particle will 

increase in the direction of the applied body forces. Due to the direction of the 
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centrifugal forces, as the distance from the rotation axis increase, the pressure inside the 

impeller will also increases. Therefore, the flow will enter from the surface E, and 

moves trough the blades, and leaves from the surface B. Therefore, the flow will gain 

pressure while it is passing inside the impeller.  

The circles have concentric rotation axis with an impeller are called parallel 

circles. It can be seen from the Figure 8.6 that the Coriolis forces are tangent to those 

parallel circles.  Therefore, during a motion on those parallel circles in the reverse 

direction to the rotation, the increase of pressure increase will be noticed due to the 

Coriolis forces. Therefore, for each parallel circle, the pressure in front of a blade is 

greater than the pressure behind the blade. Such a pressure distribution causes a 

negative force in the reverse direction of rotation. These forces, called blade loading, 

constitutes a negative moment on the rotation axis, in the reverse direction. In order to 

rotate the impeller, this moment has to be provided at the pump shaft. 

 

 

8.5. Modeling Wall Roughness Effects in Turbulent Wall Bounded  

        Flows 
 

No slip condition indicates that the fluid sticks to the wall and its relative 

velocity with respect to the wall is zero (if the wall is moving, fluid on the wall has the 

same wall velocity). Fluid flows over rough surfaces are encountered in diverse 

situations. The roughness of the wall has important affect on the velocity distribution in 

the sublayer and transition regions. Wall roughness affects drag (resistance) and mass 

transfer on the walls. For the surfaces, which roughness requires to be considered, low 

of the wall is applied. This theory is used to include the roughness of the surfaces.  

The mean velocity distribution near rough walls, has the same slope ( )κ1  with 

the smooth ones but with a different intercept (additive constant B in the log-law). The 

law-of-the-wall for mean velocity modified for roughness has the form 
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rfB ln
1
κ

=∆            (8.13)  

 

and rf  is a roughness function that quantifies the shift of the intercept due to roughness 

effects.  

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

CHAPTER 9 
 

MESH GENERATION 
 

9.1. Introduction 
 

The governing equations used in the solutions are nonlinear partial differential 

equations and they can not be solved analytically. In order to solve them numerically 

over a certain geometry, the domain has to be divided into finite number of subdomains 

(i.e. finite volumes or finite areas). The governing equations are then solved for each of 

these volumes under acceptable approximations. The variables are calculated at these 

discrete locations, which are also called the numerical grid.  

In the present study, the numerical grid is generated by the commercial software 

Gambit. Further information can be found in the Gambit Users Guide. The Gambit 

software can generate 3D meshes, as in Figure 9.1.  

 

 
 

Figure 9.1. Prism, wedge, tetrahedron, and hexahedron type meshes. 

 

9.2. Structured Grid 
 

Regular or structure grids consist of families of grid lines with the property that 

members of a single family do not cross each other and cross each member of the other 

families only once. This is the simplest grid structure since it is logically equivalent to a 

Cartesian grid. The neighbor connectivity of the structured grids simplifies 

programming and the matrix of the algebraic equation system has a regular structure, 

which also can be exploited in developing a solution technique.  
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9.3. Unstructured Grids 
 

For very complex geometries, the most flexible type of grid is one, which can fit 

an arbitrary solution domain boundary. In principle, such grids could be used for any 

type of discretization scheme, but they are best adapted to finite volume and finite 

element approaches.  Furthermore, the matrix of the algebraic equation system no 

longer has regular, diagonal structure; the bandwidth needs to be reduced by reordering 

of the points. Thus, the solvers of the algebraic equation systems are usually slower than 

those for regular grids.  

It is obvious that more accurate results can be obtained by increasing number of 

the elements in the mesh. However, this causes increase of computational costs in terms 

of computation time and the memory requirements. The generated mesh should also 

completely represent the details of the geometry. Therefore, an optimum number of 

elements must be considered based on the employed computer capacity. Nevertheless, 

some methods are developed to obtain accurate results with relatively less number of 

meshes. In the regions where the flow gradient is high, fine meshes should be employed 

in order to determine the gradient effects, however for uniform or relatively low 

gradient regions, rough meshes can be applied. It is obvious that, the domain mesh 

strategy should be developed based on the problem. 

The non–uniform grids can be arranged by a method called size function. In the 

size function method, the size of the smallest mesh element, size increment ratio, and 

the maximum required size should be defined. The edges, surfaces or volumes, for 

which the method applied onto, should also be known. Since it highly affects the 

number of grids, the increment ratio has to be selected appropriately.  

High velocities and surface roughness increase the importance of the boundary 

layer concept. In order to calculate the shear stresses and the turbulence on a wall 

correctly, the mesh size of boundary layer region must be sufficiently fine and, the 

meshes should be aligned with the flow.  

The quality of the mesh plays a significant role in the accuracy and stability of 

the numerical computation. The attributes associated with mesh quality can be listed as 

node point distribution, smoothness, and skewness. Increasing quality for a mesh will 

decrease the residuals of the analysis. The generation of a high quality and convenient 

mesh requires experience and ability of the CFD users.  
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9.4. Adaption 
 

Mesh is the numerical presentation of the flow geometry. For accurate analysis, 

the used mesh must have a fine resolution. However, this resolution is restricted by the 

available computer sources and the required resolution can not be obtained all the time. 

The unstructured meshing provides using different mesh sizes for complex 

geometries. The defined size functions can modify the cell dimensions within a specific 

algorithm. Therefore, while meshing a complex shape, for the surfaces where the 

gradient is high, smaller volumes can defined. This method defines the surfaces and the 

boundary layer effect correctly.  

However, the gradients of the flow can be apart from the specified surfaces. In 

such a situation, the mesh quality will be insufficient to solve the flow for this region. In 

addition, the exact locations can not be determined unless any - even a poor solution - is 

obtained. This orients the user to modify the mesh with respect to the results of any 

obtained solution.  

The solution adaptive refinement is defined as the increase of the cells where 

they are required in the mesh.  When the adaption is made properly, the obtained mesh 

is optimal for the flow solution. This also disables use of extra computer resources. The 

effect of the mesh refinement on the solution can be studied without completely 

regenerating the mesh.  

The adaption feature works properly within the following conditions: 

 

1- The surface mesh must be fine enough to adequately represent the important 

features of the geometry 

2- The initial mesh should contain sufficient cells to capture the essential 

features of the flow field 

3- A reasonably well converged solution before performing an adaption must 

be obtained. If an incorrect solution is adapted, cells will be added in the wrong region 

of the flow. 

4- Suitable variables should be selected for performing gradient adaption. 

5- Over refining a particular region of the solution domain also causes very 

large gradients in cell volume. Such poor adaption will affect the accuracy of the 

solution in the bad way. 
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Furthermore, for some analysis, the adaption process can be made automatically 

between a certain numbers of iterations. This type of adaption is called dynamic 

adaption and useless for the considered problem.    

 

9.5. The Generated Mesh of the Present Study 
 

The mesh generated for the selected problem is based on the triangular element 

structure as defined before. The employed grids are also non-uniform. Size functions, 

enable fine grids, are employed around blades of both impeller and diffuser and also for 

the regions where small geometric details have to be identified, like in Figures 9.2 and 

9.3. Another size function is defined for the inlet and the outlet surfaces of the domain 

(inlet of the impeller and discharge of the diffuser). Since the flow between the diffuser 

and the impeller is also important, a size function is also applied to these interface 

surfaces. 

It is obvious that the flow is highly turbulent at the tip of the blades. Therefore, 

these parts should have the smallest meshes. These blades of both diffuser and impeller 

are covered by boundary layers as seen at Figures 9.4 and Figure 9.5. The boundary 

layer at these regions keeps its continuity and represents the geometry successfully. The 

wedge shaped elements aligned with the flow are defined at these regions. This 

boundary layer has a 0.5 mm meshes at its first row and constantly increases its size 

with a factor of 1.1. It consist of 4 layers of wedge meshes, and with the given growth 

factor, this means 2.32 mm of thickness. However, the important part is that this 

thickness is not the calculated boundary layer thickness: it is estimated to be larger than 

the real boundary layer thickness.  

The problem can be solved for different number of grids. Based on the obtained 

results, it is observed that 1.000.000 – 1.800.000 meshes are sufficient for reasonable 

solutions. The mesh used here has 1.576.422 finite volumes.  

The used size functions enables the minimum and maximum grids lengths 

between 1 mm and 8 mm, and the increment ratio is changed from 1.2 to 1.4 based on 

the region.  The values of the applied size functions are listed in Table 9.1  
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Figure 9.2. Top view of the impeller mesh. 

 

 
 

Figure 9.3. The generated mesh for the impeller (the shroud is hided for better view). 
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Figure 9.4. The size functions builds fine meshes near the vane and blade tips. 

 

 
 

Figure 9.5. Detailed view of the boundary layer defined at the blade surfaces. 
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Figure 9.6. The mesh structure of the diffuser (the shroud is hided for a better view). 

 

Table 9.1. The size functions applied to the numerical grid. 

 

IMPELLER 
LOCATION Start size Growth Rate Size limit 

Tip of the blades 1 mm 1,20 8 mm 
Blade surfaces 3 mm 1,20 8 mm 
Inlet of the impeller 3 mm 1,30 8 mm 
Interfaces of the impeller 3 mm 1,30 8 mm 
Shaft of the impeller 4 mm 1,30 8 mm 

DIFFUSER 
LOCATION Start size Growth Rate Size limit 

Tip of the blades 1 mm 1,30 8 mm 
Blade surfaces 4 mm 1,35 8 mm 
Interfaces of the diffuser 3 mm 1,35 8 mm 
Discharge of the diffuser 3 mm 1,35 8 mm 
Hub surfaces 4 mm 1,35 8 mm 
Top of the rotor hub 4 mm 1,35 8 mm 
End of blades 3 mm 1,35 8 mm 
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CHAPTER 10 

 

SOLUTION METHOD 

 
10.1. Solution Approximation  
 

There are three common types of solution techniques generally used today in 

numerical computations: finite difference, finite volume and finite element. These 

methods differ in how the equations are discretized, and how they are applied to the 

elements in the flow domain. It is chosen due the type of the problem (steady or 

unsteady), shape of the domain, the boundary conditions specified in the problem (i.e. 

rotating wall motion) and the discretization technique.  

The finite differences method calculates the variables of the flow equations at 

discrete points in the domain. These points are defined by the nodes, which are located 

at the corners of the   elements in the mesh. The finite elements method interpolates the 

variables within the elements. The order of interpolation determines how accurately the 

method approximates the continuous solutions of the governing equations.  

The method of finite volumes is based on the conservation of mass, momentum 

and energy laws. These conservations are applied for each control volume of 

computational domain, and then the obtained set of the algebraic equations are solved. 

More information about the control volume method and application of it to fluid 

problems can be found various books (Ferziger, 2002 or Lomax, 1999). One of the most 

important advantages of this method is its application to complex geometries with 

different grid types (tetrahedral, quadratic and other) by different gridding strategies 

including structured, unstructured, hybrid, composite, and overlapping grids. 

 The Fluent program used in this study, uses finite volume (control volume) 

technique. Detailed information about the program and method are presented in the 

Fluent Users Guide (Fluent Inc., 2005).  
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10.2. Solution Method  
 

Fluent software solves fluid problems by control volume method. The primitive 

forms of the continuity and momentum equations are solved. Fluent offers different 

solution methods for solving continuity and momentum equations. These methods are 

described in various CFD textbooks and in Fluent User Guides.  

For unsteady flows, methods based on those used for initial value problems. 

Steady flow problems are usually solved by pseudo – time marching or an equivalent 

iteration scheme.  These methods used successive linearization of the equations and the 

resulting linear systems are always solved by iterative techniques. The choice of the 

solver depends on the grid type and the number of nodes involved in each algebraic 

equation.  

The main difficulty of solving primitive form of the momentum and continuity 

equation is the pressure terms. There is no equation for pressure terms in the governing 

equations. Additionally, pressure values on the boundaries, especially solid boundaries, 

are not known. A special treatment should be employed to obtain the pressure field and 

establish a relation between velocity and pressure. The pressure values at the surfaces 

can be interpolated from the momentum equation coefficient if there are not high-

pressure variations between the surfaces, thus a smooth distribution is obtained. 

However, for the flows as in a turbomachine, these conditions can not be meaningful. 

Instead, a relation between the velocity and pressure must be first obtained from the 

discrete continuity equation, and then the momentum equations are solved. Some 

general pressure velocity coupling algorithms can be listed as SIMPLE, SIMPLEC, 

SIMPLER and PISO. 

The acronym SIMPLE stands for Semi Implicit Method for Pressure Linked 

Equations. The algorithm was originally put forward by Patankar and Spalding 

(Versteeg, 1995) and is a guess and correct procedure for the calculation of pressure on 

the staggered grid arrangement. The SIMPLE algorithm uses a relationship between the 

velocity and pressure corrections to enforce mass conservation and to obtain pressure 

field.  In the present study, SIMPLE method is mainly used. 

 The main idea of the PISO algorithm is to move the repeated calculations 

required by SIMPLE and SIMPLEC inside the solution stage of the pressure correction 

equations. After one or more additional PISO loops, the corrected velocities satisfy the 
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continuity and momentum equations more closely. This iterative process is called a 

momentum correction or “neighbor correction”. Despite that, the PISO algorithm 

increases the iteration time, the number of required iterations for convergence 

decreases.  

The SIMPLEC can obtain a converged solution earlier for the uncomplicated 

flows such as laminar flows, because its under relaxation factor is generally set to 1.0. 

But of course, this is not valid for a poor quality mesh. In such cases, in order to use 

skewness correction schemes or more proper under relaxation factors, the SIMPLE 

algorithm can be used.  

As it was mentioned before, in order to convert the governing equations to 

algebraic equations that can numerically be solved, a control volume based technique is 

used. This control volume technique consists of integrating the governing equations that 

conserve each quantity on a control volume basis. At this technique, the discrete values 

of the scalars can be appointed at both the cell centers and the cell corners. If the values 

are stored at the cell centers, the face values required for the convection terms must be 

interpolated from the cell center values. However, a face has two neighboring cell 

centers. The derivation of the face value from the quantities in the cell upstream or 

“upwind” relative to the direction of the normal velocity is called upwinding. There are 

several schemes for upwinding: first order upwind scheme, power law scheme, QUICK 

scheme and the second order upwind scheme. Details about these schemes, advantages 

and disadvantages are also given in CDF textbooks (Versteeg, 2005, Fersiger, 2002). 

Each type of the method yields the same solution if the grid is very fine. However, some 

methods are more suitable to some classed of problems than others. The preference is 

often determined by the attitude of the developer. 

If the mesh geometry is constructed parallel to flow, the first order convective 

discretization can be acceptable. However, in a tetrahedral mesh structure, if the flow is 

not aligned with the cells, the first order convective discretization increases the 

numerical discretization error. Thus, more accurate results are obtained by the second 

order discretization (Fluent Users Manual, 2005). In this study, the second order upwind 

scheme is used for the treatment of convection terms. In this approach, higher order 

accuracy is achieved at cell faces through a Taylor series expansion of the cell-centered 

solution about the cell centroid. 
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The solution method should have certain properties. These properties can be 

listed as below: 

• Consistency 

• Stability 

• Convergence 

• Conservation 

• Boundedness 

• Reliability 

• Accuracy  

 

10.3. Solution Procedure 
 

10.3.1. Coupled and Segregated  Solution Procedure 
 

Fluent software offers two solution procedures for the fluid problems, which are 

segregated and coupled. In the segregated procedure the governing equations are solved 

sequentially (i.e., segregated from one another). Since the equations are non-linear (and 

coupled), several iterations of the solution loop must be performed before a converged 

solution is obtained. The segregated process method can be outlined as: 

 

1- Fluid properties are updated, based on the current solution (also the 

initialization of the solution) 

2- The momentum equations are solved in turn using the current values for 

pressure and face mass fluxes, in order to update the velocity field 

3- Since the velocities obtained in the previous step may not be satisfy the 

continuity equation locally, a “Poisson-type” equation for the pressure correction is 

derived from the continuity equation and the linearized momentum equations. This 

pressure correction equation is then solved to obtain the necessary correction to the 

pressure and velocity fields and the face mass fluxes such that continuity is satisfied 

4- Where appropriate, equations for scalars such as turbulence, energy, species, 

and radiation are solved using the previously updated values of the other variables 
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5- When interphase coupling is to be included, the source terms in the 

appropriate continuous phase equations may be updated with a discrete phase trajectory 

calculation 

6- A check for convergence of the equation set is made 

These steps are repeated until the convergence criteria are met. 

The difference of the coupled solver from the segregated solver is that the 

coupled solver solves the governing equations of continuity and momentum 

simultaneously. Governing equations for additional scalars like turbulence are solved 

sequentially using the procedure described for segregated solver. Since the governing 

equations are non-linear, several iterations of the solution loop must be performed 

before a converged solution is obtained. In the coupled approach: 

 

1- Fluid properties are updated, based on the current solution. The fluid 

properties are defined by the initialized solution parameters at the beginning of the 

solution 

2- The governing equations are solved simultaneously 

3- Equations for turbulence are solved using the previously updated values of 

the other variables 

4- A check for convergence of the equation set is made. 

 

Both the segregated and coupled procedures will provide results for a broad 

range of flows, but the convenient procedure should be selected based on the domain 

and flow conditions. These procedures differ in the way that the continuity and the 

momentum equations are solved.   

In the present study, the implicit segregated procedure is used.  

 

10.3.2.  Implicit and Explicit Method  
 

In the finite volume method, the continuity and momentum equations are 

integrated over each grid and algebraic equations are constructed for each cell. All the 

variables of cell are influenced from its neighbors and in order to solve them they have 

to be linearized. Thus, the manner in which these governing equations are linearized 

may take an “implicit” or “explicit” form. 
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In the implicit form, a set of equations are constructed from all the existing and 

unknown variables of all the cells. After an arrangement, there appears same number of 

equations and unknowns. Thus solving this equation set will provide all the unknowns.  

The explicit form is simpler with respect to implicit form. In the explicit form, 

the unknowns of the each cell are computed by the existing values. Thus all the 

variables can be calculated easily by their own equation.  

The segregated approach solves for a single variable field by considering all 

cells at the same time. It then solves for the next variable field by again considering all 

the cells at the same time, and so on. Therefore, there is no explicit solution for the 

segregated solver. On the other hand, the coupled solution method can use both the 

forms to calculate the variables.  

 

10.4. Initial Conditions (Initializing)  
 

For many complex flow problems such as those found in rotating machinery, or 

flows in expanding or spiral ducts, flow convergence can be accelerated if a better 

initial solution is used at the start of the calculation. This means that if the values for all 

the cells are close to the actual solution; it will be easy to reach the required solution. 

The mentioned initial conditions can be provided by iterating the equations by the first 

order explicit form starting from the inlet boundary (the inlet surface is set to mass flow 

inlet boundary condition). A few iterations after, the initial conditions are more or less 

defined for all cells and then the actual solution method can be executed. In this manner, 

the present study is initialized with 5 first order iterations.  

In addition, after obtaining just one converged solution for a case, the other 

solutions for the same case can be executed by just changing the boundary condition. 

Thus, result of a solution can be used for the initial condition for another problem. In 

the present study, after obtaining and saving the solution for a flow rate, the flow inlet 

boundary condition is set to other required value, and the computer is made to continue 

iterating.  
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10.5. Setting the Under Relaxation Factors 
 

The under relaxation factors are used by the segregated solver to control the 

update of the computed variables at each iteration. For a course mesh or for a high 

turbulent complex flow, the under relaxations may be decreased. This also causes to 

make more iteration for convergence.  

 

10.6. Residual Convergence Criteria  
 

The convergence criteria are needed to be set for the iterative methods. Usually, 

there are two levels of iterations: inner iterations, within which the linear equation are 

solved, and outer iterations that deal with the nonlinearity and coupling of the equations. 

Deciding, when to stop the iterative process on each level is important, from both the 

accuracy and efficiency points of view.  

Residuals are defined as the RMS (root mean square) of the error between two 

iterations. Theoretically, the residuals will go to zero as the solution converges. 

However, practically, residuals decrease up a very small value. For the analysis on a 

high capacity computer that can handle double precision, they can reach to 10-12 level, 

and for the single precision solutions, 10-6 level residuals can be reached.  

 

10.7. Employed Computer and Computational Time  
 

The computer used for the analysis is desktop personal computer with Intel 

Pentium 4 – 3.0 Prescott processor and it has 2 GB of RAM. The processor and the 

main board have Hyper-Threading Technology, which enables to use computer during 

iterations. This amount of RAM can handle 1,8 million meshes.  
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CHAPTER 11 

 

RESULTS AND DISCUSSIONS 

 

 The centrifugal pumps, governing equations of the flow inside a pump and 

numerical solution methods in order to obtain velocity and pressure distributions were 

introduced in previous chapters. The pump for which the analyses are made were also 

described. Boundary condition types were also explained in details. 

 The selected pump VDP 1433 has a specific constant geometry. The capacity, 

head and the consumed power of the pump has been determined by a calibrated and 

high-resolution test stand (De�er, 2004). The working conditions of the pump are also 

defined by the Vansan Company already (i.e. density and max temperature of the fluid, 

rotational speed, etc.).  

As it was mentioned before, the aim of this study is to solve the governing 

equations of the flow inside the selected pump. Thus, the prior results of the problem 

will be the velocity and pressure distributions. Additionally, these results enable solver 

to determine the consumed power, the head of the pump and consequently its efficiency.  

The design point of the pump, also the experimental best efficiency point, is 

found at 120 kg/s. Thus, the main detailed study for visualization of flow patterns and 

pressure distribution are performed for the best efficiency point. Although the pump 

should work at best efficiency point, the pressure and the velocity distributions for 90 

kg/s to 150 kg/s with 10 kg/s interval are also obtained and investigated.  

The generated mesh with 1576422 number of elements and 2.32 mm thick 

boundary layer is used within the analysis. To model the turbulence, standard ε−k  

model is selected. Since the flow inside the pump is turbulent, the roughness of the solid 

surfaces may affect the flow. The variation of pressure and velocity with respect to 

roughness is another part of the present work. The rotational speed of the impeller fluid 

domain is set to 1450 rpm. For the inlet surface, mass flow inlet boundary condition, 

and for the outlet, a constant static pressure of 500 kPa is defined. This defined static 

pressure is greater than the expected total pressure of the pump. The pressure at the inlet 

is calculated from the interior of the domain and different for each analysis.  
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11.1. Ideal Pressure and Velocity Distributions 
 

 Before starting to explain the results of the study, it might be useful to mention 

about the ideal velocity and pressure distributions inside a pump. The aim of a pump 

designer is to design the pump close to its ideal conditions. Therefore, the ideal 

hydrodynamic behaviors of both impeller and diffuser should be known. 

  For the impeller, firstly, the region between the blades should be inspected. At 

its ideal condition, the static pressure should increase from the entrance of the blade to 

the outlet steadily and uniformly. No disturbances in pressure and velocity are desired. 

The streamlines that are started near the inlet region should follow a smooth path. The 

velocity vectors should be parallel to the flow and no swinging, rotation, spin, screw or 

direction change should occur. The dynamic pressure for the impeller should increase 

steadily with the increase of magnitude of velocity vectors. The velocity vectors at the 

entrance region should be at the normal to the inlet surface.  

For the diffuser, the dynamic pressure should steadily decrease from inlet to the 

discharge. There should not be any back flows or vortex paths. The total pressure 

contours should be smoothly increasing on the hub surface. 

The flow pattern between the impeller and the diffuser fluid zones should also 

be evaluated. The motion of fluid from impeller to the diffuser, the flow at the interface 

surfaces should also be smooth. The flow should not be separate from the back surfaces 

of the impeller and diffuser blades.  

 The results of analysis for different flow rates should be used to obtain the 

characteristic curve of the pump. The obtained characteristic curve should also be 

compared with the experimental results. Apart from the values of the results, the match 

of the curves should be evaluated. The determination of the head capacity curve is more 

important and should be initially evaluated. Then the power capacity curve should be 

matched with the experimentally measured one. If these two curves perfectly match, the 

efficiency curve has to match. 

It should be noted that, during the comparison of the curves, there can be fixed 

differences between the experimental and numerical curves. Even one of the curves 

look like the offset or shifted of the other curve. This situations show that these 

numerical analysis can also represent the experimental data, but there still exists a 

numerical error.  
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11.2. The Employed Physical and Computational Constants  
  

The governing equations and methods have some coefficients and constants that 

have to be defined. These constants, which are given below, are used for all runs in the 

present study; 

• The properties of the fluid:  

ρ     : 998.2 3m
kg  

pC     : 4182 kgK
j  

µ     : 0.001003 sm
kg

−  

• Constants for turbulence models 

µC     : 0.09 

ε1C     : 1.44 

ε2C     : 1.92 

 kσ     : 1 

εσ     : 1.3 

• Constants for convergence 

Residual for continuity : 510−  

Residuals for velocity  : 610−  

Residual for k   : 510−  

Residual for ε    : 510−  

• Constants for under relaxation factors 

Pressure   : 0.3 

Density   : 1 

Momentum   : 0.7 

Turbulence kinetic energy : 0.8 

Turbulence dissipation rate : 0.8 

Turbulent viscosity  : 1 
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11.3. Methods of Comparison between Obtained Results 

 

One of the most important parts of the evaluation of obtained results is the post 

processing part. To compare the obtained results the velocity and pressure distribution 

have to be plotted and visualized, however the positions and the colors and the data 

labels have to be same for all figures.  

In order to compare the obtained results with an ideal pump, and to compare 

results of different flow rates with each others and to see the effect of the surface 

roughness, both for impeller and diffusers, the following distributions are obtained and 

plotted for both impeller and diffusers: 

 

1- The static, dynamic and total pressure the pressure distributions on the walls 

of impeller and diffuser blades are calculated and plotted. However, the plotted figures 

are colorful, so for a better comparison, the ranges of colors corresponding to the range 

of pressure should be made same for all figures. Therefore, same color ranges are used 

in all pressure figures. The adjusting of color ranges is especially difficult for the 

problems with mass flow inlet boundary conditions since the head values between 

different cases are different and thus the inlet pressure varies. As it was mentioned 

before, the pressure at the inlet surface is calculated from the interior of the domain. 

Therefore, the pressure difference between the inlet and the outlet surfaces should be 

used. Since the static pressure at the outlet is defined and constant for all flow rates of 

the analysis, the inlet static and dynamic pressure is expected to increase with the 

increasing flow rate. Actually, the pressure values of the whole domain should be 

arranged due to the inlet static pressure. Then the selected range for the static pressure, 

that covers all analysis, should be defined for each analysis. Similarly, for the total 

pressure, in addition to the static pressure, maximum dynamic pressure should also be 

considered and the total range should be determined.  

2- The velocity vectors in impeller and diffuser are plotted. This also provides 

the visualization of flow inside the pump. Since the velocity is a vectoral quantity, 

besides its scalar quantity, the direction of the flow is also plotted. This is provided by 

the colorful velocity vectors and colors represent the velocity magnitude. 

3- Flow patterns inside the impeller and diffuser are also plotted. These patterns 

show fluid paths. This provides better view for understanding of flow inside the pump.  
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11.4. Comparison of the Numerical Results with Experimental Results 

 

The numerical analyses are questionable unless they are compared with the 

experimental results. Also, in order to compare a numerical analysis, the residuals 

should converge to the desired level. Then numerical results can be compared with the 

experimental ones, and the differences should be commented. Unfortunately, it is not 

easy to compare the velocity and pressure distribution between experimental and 

numerical results. However, the obtained head, consumed power and efficiency of 

pump for different mass flow rates can be compared with the numerical results. A good 

agreement between the numerical and experimental curves will sufficiently prove the 

accuracy of the numerical results.  

The calculated head of the pump is the total pressure difference between the 

outlet and inlet surfaces of the whole domain. Since mass flow boundary condition is 

defined for the inlet area, the pump capacity is defined already.  

The input power of the pump is calculated from the torque on the rotor surfaces. 

The total of pressure and viscous moments on the blade, hub, shroud surfaces, and also 

the moment on the shaft and rotor top surfaces will equal to the applied power. The 

required power for the analyses can be obtained as: 

 

60
2π⋅⋅= TnP pumpINPUT          (11.1) 

 

where INPUTP  is the power, pumpn  is the rotational speed, and T  is the torque on the 

surfaces. 

 

11.5. The First Analysis: Zero Roughness on the Surfaces 
 

The first analysis is made with zero roughness in order to find the effect of 

roughness in the following analysis. In Figure 11.1, the convergence of residuals for 

120 kg/s is represented. The numerical values of the whole analyses are given in Table 

11.1.  As seen from the table, the maximum calculated efficiency is 83.1% corresponds 

to the 120 kg/s mass flow rate. If this data is compared with the experimental results on 
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a chart as it is shown in Figure 11.2, a perfect agreement between the calculated and 

experimental efficiency can be observed.  

 

 
 

Figure 11.1 The residuals at 120 kg/s with zero roughness on the walls. 

 

Table 11.1 The numerical results for the first analysis with zero roughness on the walls. 

 

Speed Torque Power 
Total 

Pressure 
at Outlet 

Total 
Pressure 
at Inlet 

Total 
Pressure 

Difference 

Flow 
rate Head Efficiency 

rpm Nm kW kPa kPa kPa kg/s Water 
Column %%%%    

1450 148.9 22.6 515.4 317.6 197.8 90.0 20.2 78.9 

1450 153.5 23.3 517.0 328.0 188.9 100.0 19.3 81.2 

1450 158.2 24.0 518.2 337.7 180.5 110.0 18.4 82.8 

1450 162.3 24.6 519.1 348.7 170.4 120.0 17.4 83.1 

1450 165.0 25.1 520.4 361.9 158.5 130.0 16.2 82.4 

1450 166.1 25.2 522.3 377.2 145.1 140.0 14.8 80.6 

1450 165.4 25.1 523.9 393.8 130.1 150.0 13.3 77.8 
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Figure 11.2. The comparison with the experimental results. 
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The match of the efficiency curves can be misleading because the head and 

power curves have not such a perfect match. Instead, they both are greater than the 

experimental values. Their ratio, coincidentally, makes the efficiency curves be matched 

with each other.Although, there are differences between the head and the power of 

experimental and numerical results, the trend of the numerical results follow the trend 

of experimental data. (Figure 11.3) The difference between the actual head is constant 

and independent of the flow rate. The maximum relative difference between the 

numerical and the experimental values is 1.72 WC.  

On the other hand, the consumed power is also higher and the difference 

increases with the increasing flow rate. The consumed power is directly related with the 

pressure and viscosity moments on the surfaces. If these two moments are compared, as 

in Figure 11.3 for different flow rates, it can be observed that the pressure moment is 

the dominant to the viscous moment. Since the calculated pressure is higher on the 

surfaces, the pressure moment is also calculated higher. 
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Figure 11.3 The comparison of the pressure and viscous moments with respect to flow  

        rate for zero roughness on the walls. 
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11.6. Effect of Roughness 

 

In order to consider the effect of the roughness on fluid flow, the wall functions 

and fine meshes close to the walls are employed since the roughness on the walls has 

important affects. So far the analyses were made with the zero roughness on the walls. 

The considered pump is manufactured by the casting method. After casting, the 

outer shell of the impeller and some partial of the diffuser are processed by the CNC 

machines. The unprocessed surfaces, however, have acceptable roughness values even 

after smoothing and polishing. In order to model this roughness value, and to see its 

effect, an investigation is performed. Since the used sand in the casting is same for all 

pumps, the roughness should be the same for all pumps. The surfaces that the roughness 

must be applied are hub, shroud and blades surfaces of both the impeller and diffuser. 

The upper part of the impeller hub, which is included in the analysis is processed 

by the CNC machines and so no roughness should be applied to this surface. 

The surface roughness is measured with sensitive instruments. However, in this 

study, in order to measure the roughness, the analyses are made with three different 

values, and the effect of the roughness is investigated. The roughness is represented by 

two values in the analysis: the roughness value and the roughness constant. The 

roughness constant is assumed to be the same for all analysis and is accepted as 0.5.  

The results of the analysis with different roughness values are compared with 

the experimental results below in Figure 11.4, 11.5, 11.6. As can be noticed, increase in 

roughness slightly affects the consumed power. However, the main effect of the 

increasing roughness is on the total head. As the roughness increases, the calculated 

total head decreases.  

From the pump curves, presented in Figures 11.3, 11.4, 11.5, 11.6, the best one 

that has a good agreement with experimental results is found to be the Figure 11.4, in 

which the surfaces have 50-micron roughness. The 50-micron roughness value makes 

the numerical efficiency curve has the same curvature with the experimental efficiency 

curve, and at the same time, has the closest head capacity curve among the other values. 
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Table 11.2. Numerical values of the analysis with 50-micron roughness on the walls. 

 

50 micron 

Speed Torque Power 
Total 

Pressure 
at Outlet 

Total 
Pressure 
at Inlet 

Total 
Pressure 

Difference 

Flow 
rate Head Efficiency 

rpm Nm kW kPa kPa kPa kg/s Water 
Column %%%%    

1450 149.1 22.6 514.7 318.6 196.2 90.0 20.0 78.0 
1450 153.7 23.3 516.7 329.2 187.4 100.0 19.1 80.3 
1450 158.5 24.1 517.9 339.0 178.9 110.0 18.2 81.7 
1450 162.6 24.7 518.7 350.1 168.6 120.0 17.2 81.9 
1450 165.3 25.1 520.1 363.6 156.6 130.0 16.0 81.1 
1450 166.3 25.3 522.1 379.3 142.8 140.0 14.6 79.1 
1450 165.6 25.1 524.0 396.7 127.3 150.0 13.0 75.9 

 

Table 11.3. Numerical values of the analysis with 100-micron roughness on the walls. 

 

100 micron 

Speed Torque Power 
Total 

Pressure 
outlet 

Total 
Pressure 

inlet 

Total 
Pressure 

Difference 

Flow 
rate Head Efficiency 

rpm Nm kW kPa kPa kPa kg/s Water 
Column %%%%    

1450 151.1 22.9 514.5 321.5 193.0 90.0 19.7 75.6 
1450 155.3 23.6 516.5 333.4 183.1 100.0 18.7 77.6 
1450 159.6 24.2 517.9 344.5 173.4 110.0 17.7 78.7 
1450 163.2 24.8 519.3 357.6 161.6 120.0 16.5 78.3 
1450 165.5 25.1 521.6 373.4 148.2 130.0 15.1 76.6 
1450 166.3 25.2 523.6 390.6 133.0 140.0 13.6 73.7 
1450 165.6 25.1 526.2 410.2 116.1 150.0 11.8 69.2 

 

Table 11.4. Numerical values of the analysis with 250-micron roughness on the walls. 

 

250 micron 

Speed Torque Power 
Total 

Pressure 
outlet 

Total 
Pressure 

inlet 

Total 
Pressure 

Difference 

Flow 
rate Head Efficiency 

rpm Nm kW kPa kPa kPa kg/s Water 
Column %%%%    

1450 151.4 23.0 514.0 323.0 191.0 90.0 19.5 74.7 
1450 155.7 23.6 516.0 334.7 181.3 100.0 18.5 76.6 
1450 159.9 24.3 517.2 346.0 171.2 110.0 17.5 77.5 
1450 163.5 24.8 518.7 359.5 159.1 120.0 16.2 76.9 
1450 165.7 25.2 520.9 375.7 145.2 130.0 14.8 75.0 
1450 166.4 25.3 523.2 393.3 129.8 140.0 13.2 71.9 
1450 165.6 25.1 525.8 413.2 112.6 150.0 11.5 67.1 
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Figure 11.4. The comparison of the 50-micron roughness with the experimental results. 
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Figure 11.5. The comparison of the 100-micron roughness with the experimental results. 
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Figure 11.6. The comparison with the 250-micron roughness with the experimental results. 
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11.6.1. Effect of Roughness on Consumed Power 
 

The analysis shows that the head is more sensitive to roughness rather than the 

consumed power, and it seems the consumed power is slightly affected from the 

roughness. In this section, it is struggled to explain this different behavior between head 

and consumed power.  

There is no doubt that by increasing the surface roughness, turbulences on the 

surfaces occur and friction increases. Thus a part of power, which is imposed to the 

fluid, is consumed to overcome the friction. This causes the pump head to decrease. By 

increasing the roughness, the friction increases and consequently the head decreases 

more.   

However, the same trend is not observed for power. As mentioned before, power 

is calculated from the rotation speed and moment on the impeller surfaces. The moment 

on the impeller surfaces has two components; the pressure moment and the viscous 

moment. This means that two types of forces are applied onto the surfaces of impeller, 

one related to pressure force and the other one is the shearing forces due to both 

kinematic and Reynolds stresses. To visualize the change of these momentum 

components, they have been compared with the values of zero roughness analysis in 

Figures 11.7, 11.8, 11.9. As seen from the figures, with the increasing roughness, the 

pressure moment decreases while the viscous moment increases. These figures show 

that, increasing the surface roughness increases the viscous moments. This is an 

expected result, since the friction due to roughness increases. Besides this, the pressure 

moment also decreases since the head of the pump decreases. The increase in power due 

to viscous moment is compensated by the decrease in the pressure moment. That is why 

the increase of the roughness does not affect the consumed power. Since the geometry is 

large, and the power is mainly dominated by the pressure moment, the effect of 

roughness on the viscous moment is negligible. However, if a smaller domain is 

considered, for example, if a 6” pump was analyzed instead of a 14” pump, the 

effectiveness of the viscous moment will increase. Thus in such a situation, roughness 

value of the surfaces has more effect on the consumed power, and will increase the 

consumed power for small pumps. 
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Pressure Moment & Viscous Moment 
for 50 Micron Roughness
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Figure 11.7. The comparison of the 50-micron roughness with zero roughness. 

 

Pressure Moment & Viscous Moment 
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Figure 11.8. The comparison of the 100-micron roughness with zero roughness. 
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Pressure Moment & Viscous Moment 
for 250 Micron Roughness
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Figure 11.9. The comparison of the 250-micron roughness with zero roughness one. 

 

11.7. Pressure Distribution Inside the Pump at BEP 
 

 Pumps are designed for a specific flow rate. All the angles and profiles are 

determined for a working point. For the improvement of a pump design, the analysis 

should be performed at the best efficiency point. In this section, the variation of 

pressure in the pump section, containing the impeller and diffuser is investigated. 

The static, dynamic and the total pressure distributions at the cross section of the 

considered pump are shown on Figure 11.10. Figure 11.10.a shows the distribution of 

the dynamic pressure. As expected, the maximum dynamic pressure occurs at the 

impeller outlet since the velocity reaches its maximum at this region. One of the duties 

of the diffuser is to convert this dynamic pressure to the static pressure. Figure 11.10.b 

shows the distribution of static pressure through the pump section. As seen from the 

figure, the static pressure is not high at the inlet surface, but it steadily increases up to 

the outlet of the pump. The variation of the total pressure through the pump is shown in 

Figure 11.10.c. Since static pressure is more dominant to the dynamic pressure, the 

behavior of the total pressure is similar to the static pressure. The distributions are also 

not symmetrical due to the rotation axis, because of the symmetrical structure of 

impeller and diffuser, and their position with respect to each others. 
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11.8. Pressure Distribution in the Impeller 

 

  In Figure 11.11, where the impeller is represented upside down without its 

shroud for a better view, the variation of static pressure contours on the blade and hub 

surfaces are shown for three different mass flow rates. The visual comparison of the 

static pressure distribution between figures shows that the static pressure decreases with 

the increasing flow rate as it is expected. This is what can be seen from the pump 

characteristic curve.  

 Figure 11.11.b shows distribution of static pressure on the impeller blade 

surfaces for the best efficiency point. This figure is very important for the designer, 

because the design of the pump is shaped for this point. The static pressure along the 

impeller blades and hub increases steadily through the impeller channel, and the isobars 

are formed perpendicular to the flow direction between the blades. The maximum static 

pressure is seen on the tip of the blade. Moreover, the minimum static pressure is 

observed at the suction side.  

 

 

 

 

 

 

 

 

 

 



76 

 
(a) 

 
(b) 

 
(c) 

 

Figure 11.10. The dynamic (a), the static (b) and the total (c) pressure distribution over  

                        the pump cross section at its best efficiency point.  



77 

 
 

  
(a)      (b) 

 

  
   (c)      (d) 

 

  
   (e)      (f) 

 
Figure 11.11. The static pressure distributions in the channel of the impeller for 90 kg/s  

                       (a-b), 120 kg/s (c-d), and for 150 kg/s (e-f) mass flow inlet. 
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In the Figure 11.11, the suction sides of the blades can be examined. Figure 

11.12, where the hub and shroud surfaces are hided, shows variation of static pressure 

on the pressure side of the blades where the mechanical power is mainly converted to 

the hydrodynamic power. As seen, the static pressure is monotonically increases from 

the inlet of the impeller to the outlet. Like as the suction side, the pressure side of the 

vanes have also cascaded pressure increase through the impeller surface. The distortion 

at the outlet region, where the channel flow is ended, can also be observed. The 

distortion at the pressure for the outlet region of the impeller may be due to the effect of 

the diffuser blades. 

 

11.9. Velocity Distribution Inside the Impeller 

 

The relative velocity vectors on the hub and blade surfaces of the impeller are 

shown in Figure 11.13. Since the static pressure distribution is smooth, there is not any 

significant deviation from the path. The velocity increases smoothly. The angle of the 

vectors at the outlet region can also be calculated in order to control the design 

parameters. 

The path lines of flow inside the impeller, which are colored by velocity 

magnitude, are shown in Figure 11.14. These path lines are released from the inlet 

surface of the impeller, follow the paths that are calculated at the design stage. As seen, 

they follow the channel between the blades without any distortions. The colors again 

indicate that magnitude of the velocity increases through the channel of the impeller.  

The smooth increase in velocity magnitude, straight path lines that follow the 

blades, the velocity vectors perpendicular to the channel sections between the blades, 

and also the static and dynamic pressure distributions show that the design of the 

impeller achieves its duty and so the impeller design is successful.  
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   (a)      (b) 
 

  
   (c)      (d) 

 

  
   (e)      (f) 
 
Figure 11.12. Distribution of static pressure on the active side of impeller for 90 kg/s  

                      (a-b), 120 kg/s (c-d), and for 150 kg/s (e-f) mass flow inlet. 
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Figure 11.13. Relative velocity vectors through the impeller at 120 kg/s with 50 mµ     

                       roughness.   

 

  
 

Figure 11.14. Path lines, that are colored by the relative velocity magnitude (m/s),   

          released from the inlet of the impeller at 120 kg/s. 
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11.10. Pressure Distribution in the Diffuser 

 

The diffuser part of the pump is also investigated. The static pressure 

distribution of the diffuser blades and the hub at three different flow rates are shown on 

Figure 11.6. As expected from the pump characteristic, the static pressure decreases as 

the flow rate increases.  

The Figures 11.15.b and 11.15.c, where the pressure distribution for the best 

efficiency point at 50-micron roughness is represented, shows that there exists a 

disorder at the distribution near the discharge region. The pressure is not properly 

increasing through the path perpendicular to flow. Instead, it is increasing in the radial 

direction from hub to shroud. Since there is lower pressure on the hub surface, the fluid 

should flow from shroud surface to the hub surface. This causes turbulence, vortexes in 

the channel of the diffuser and thus the kinetic energy loss.  

The path of the fluid in the channel between the diffuser blades and the velocity 

vectors through the diffuser blades should be investigated for a better comparison.  

 

11.11. Velocity Distribution Inside the Diffuser 

 

The diffuser velocity distribution, shown in Figure 11.16.a is not as good as the 

impeller velocity distribution. As mentioned in the previous section, since the pressure 

distribution changes on the blade surfaces is not perpendicular to the flow disturbances, 

turbulence and back flows occur inside the channel of the diffuser. As detailed in Figure 

11.16.b, the backflows are mainly developed at the back of the stator impellers, where 

the pressure has the lowest value.  

The Figures 11.17.a and b, which show the path lines released from the inlet of 

the diffuser and move forward through the channel. These figures prove what explained 

above. There are macro vortexes at the discharge of the flow because of the irregular 

pressure distribution. If the Figure 11.17.b is examined carefully, the path of the screws 

is found to be started from the shroud and directed into the hub surface, which also 

explained before. Another reason of the screws is the pressure difference between the 

side surfaces of the diffuser, at the outlet region. At this region, since the pressure at the 

front side is greater than the backside, the flow tends to direct to the lower pressure side, 

which also causes back flows and again kinetic energy loss at the discharge.  
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   (a)      (b) 

 

  
   (c)      (d) 

 

  
   (e)      (f) 

 
Figure 11.15.  The static pressure distribution of diffuser (kPa) for (a) 90 kg/s,    

(b)120 kg/s and (c) 150 kg/s. 
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Figure 11.16. The velocity vectors inside the diffuser, colored by the velocity magnitude, at 120 kg/s flow rate. 
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(a) 

 

 
(b) 

 

Figure 11.17. The path lines, released from the inlet of the diffuser, colored by the   

                       velocity magnitude (m/s) , at 120 kg/s flow rate. 
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CHAPTER 12 

 

CONCLUSION 

 

 Pumps are machines that are providing transfer of fluids. From the various types 

of pump developed for different types of purposes, centrifugal pumps are the most 

efficient ones and are widely used in daily life. Deep well pumps constitute one of the 

subtypes of centrifugal pumps. 

 Since pumps are widely used, in response to the work done, they require high 

energy capacities. This brings the importance of the energy costs and thus the efficiency 

of the pump. The efficiency of the pump directly depends on the design of the pump. A 

proper design not only provides the operating conditions, but also provides the 

maximum possible efficiency. Therefore, searches are made in order to maximize the 

pump efficiency and to improve the pump design methods, which are mainly based on 

empirical methods. However, the designed pumps can not prove themselves until they 

are manufactured and tested in a calibrated test stand.  

The traditional design and verification of the operating conditions is too 

expensive and takes long period. Computational fluid dynamics not only provides 

important information for designer, but also facilitates the test of the pump by the 

computers. 

 In the present study, a semi axial pump is investigated. A single stage pump 

belongs to Vansan Company is researched. The impeller and diffuser of the pump is 

modeled by AutoCAD and Unigraphics softwares. Then the mesh is generated by the 

Gambit program and data are transferred to the main program; Fluent.  

 The characteristic curve of the pump is obtained numerically and compared with 

the experimental curve of Duymu�. It is observed that there are differences between the 

numerical and experimental studies. In order to explain these differences, the pressure 

and the momentum were investigated individually. 

 The effect of roughness on the pump characteristic curves is also investigated. It 

is observed that by increasing the roughness, the head of the pump decreases, while the 

consumed power is almost constant. This causes the decrease of the efficiency at the 

same time.  
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 The reason of the head loss is explained by the increase of the viscous forces. 

The increase of roughness increases turbulences in the boundary layer and consequently 

a part of the applied power is consumed to overcome the friction. Since the decrease in 

pressure moment compensates the increase of the viscous moment, the power seems to 

be almost constant.  

 The design of the impeller is proper. Fluid flows through the channel of the 

impeller and no vortexes or distortion forms in the channel. The isobars are 

perpendicular to the flow. No back flow is observed in the channel between the blades 

of the impeller.  

 On the other hand, there exist problems with the design of the diffuser. The 

increase of the pressure is not proper. The isobars are not perpendicular to the fluid 

flow. The pressure distribution causes forming of the vortexes in the channel of the 

diffusers. Thus, the design of the diffuser should be changed and a proper design should 

be replaced. The gain from the static pressure will increase, the friction losses decrease, 

the inlet of the second stage will be corrected, and the efficiency of the pump will 

increase.  

 The main difficulty of this study is the available computer sources. The 

computer technology is still not at the point for proper use of CFD codes. The analysis 

of just one point requires approximately 1000 iterations, which means the computers 

run for a night. The journal files, which enable to give commands computer during the 

analysis, make this analysis easier to be made.  

 Meshing the geometry is also a huge problem for the inexperienced users. The 

use of size functions, boundary layers and the interface regions is complicated and 

highly requires experience.  

 In order to improve this study, the following suggestions can be made: 

 

• The pump, in actual working conditions has more than only a stage. A more 

proper geometry can be analyzed with discharge and suction case, even with two or 

more stages. Thus, the effect of the second impeller to the diffuser, the effect the flow 

straightening blades on the suction case and such interactions between the pump parts 

can be investigated. 

• The effect of the other parameters like the turbulence models, pressure 

velocity coupling methods, different types of wall functions, pressure inlet condition,  

and even unsteady solution methods can be evaluated.  
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• During the experimental tests, the rotational speed and the efficiency of the 

motor are referred to its catalog data. However, instead of this, the rotational speed 

should be measured by the magnetic sensors, and the torque applied to the pump should 

be evaluated by a load cell. The change of rotational speed of the pump will affect the 

efficiency at third order of the change ratio. 

• If the computational sources are available, the mesh can be developed. A 

mesh with more finite volumes will increase the resolution of the solution. Different 

mesh strategies, mesh structures like as hexahedral meshes can be employed instead of 

the tetrahedral meshes. 

• The selected pump is a 14” pump. In order to see the effect of roughness in 

terms of viscous moment, a pump with a smaller geometry can be selected.   
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